JP2004168263A - バッテリのsoc検出方法及びその装置、バッテリの電力供給制御方法及びその装置 - Google Patents

バッテリのsoc検出方法及びその装置、バッテリの電力供給制御方法及びその装置 Download PDF

Info

Publication number
JP2004168263A
JP2004168263A JP2002339477A JP2002339477A JP2004168263A JP 2004168263 A JP2004168263 A JP 2004168263A JP 2002339477 A JP2002339477 A JP 2002339477A JP 2002339477 A JP2002339477 A JP 2002339477A JP 2004168263 A JP2004168263 A JP 2004168263A
Authority
JP
Japan
Prior art keywords
battery
internal resistance
resistance value
terminal voltage
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2002339477A
Other languages
English (en)
Inventor
Takuya Nakagawa
卓也 中川
Hisashi Takemoto
寿 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2002339477A priority Critical patent/JP2004168263A/ja
Publication of JP2004168263A publication Critical patent/JP2004168263A/ja
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/16DC brushless machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/662Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

【課題】バッテリに劣化による放電可能容量の減少が発生していても、暗電流負荷に対するバッテリの電力供給を必要な充電状態を割り込む前に停止させる。
【解決手段】充電状態が予め定めた放電停止状態に至るまで低下したと端子電圧に基づいて判断した際に、電源のオフ中に暗電流を暗電流負荷に流れさせるための、バッテリ13から暗電流負荷に対する電力供給を停止させる装置であって、予め定められた内部抵抗測定条件が充足される毎にバッテリ13の内部抵抗値を内部抵抗値割出手段23Aにより求め、その求めた最新の内部抵抗値の、バッテリ13の新品時における内部抵抗値である基準内部抵抗値に対する変化の度合いに応じて、予め定められた端子電圧測定条件が充足される毎に端子電圧測定手段Aが測定するバッテリ13の端子電圧と、充電状態が放電停止状態まで低下したか否かの判断基準とのうち、いずれか一方を、補正手段23Bが補正する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、電源のオフ中におけるバッテリの、放出可能なクーロン量としてのSOC(state of charge )を検出するバッテリのSOC検出方法及びその装置と、電源のオフ中に暗電流を暗電流負荷に流れさせるための電力供給によってバッテリの過放電状態が発生するのを防止するように、バッテリから暗電流負荷に対する電力供給を制御する方法及びその装置に関する。
【0002】
【従来の技術】
自動車の分野においては、エンジンを唯一の推進駆動源とする車両や、補助推進駆動源である電動モータと併用してエンジンを主推進駆動源とする所謂ハイブリッド車両では、オルタネータやモータジェネレータ、即ち、その車両の電動始動装置を駆動するために必要な電力がバッテリに蓄えられていないと、止まっているエンジンを始動させることができなくなってしまう。
【0003】
そのため、エンジンの停止中には、暗電流負荷に暗電流を流すための放電によって徐々に低下するバッテリの充電容量を、電動始動装置を駆動させることができる程度の充電容量以上に保っておくことが重要である。
【0004】
ところで、車両には、スイッチ操作の検出やそれに対応する負荷への電力供給のオンオフをコントロールする制御ユニットのような、イグニッションスイッチ等のオンオフ状態とは無関係に暗電流が常時流れる暗電流負荷が搭載されており、例えば、車両を車庫内に長時間駐車する場合や生産直後の車両を輸出国まで輸送する場合等には、エンジンの止まった状態で暗電流負荷に長時間暗電流が流れることになる。
【0005】
この点に鑑みて本出願人は過去に、例えば電動始動装置を駆動させることのできる充電状態に相当する予め定められたスレッショルド電圧以下にバッテリの端子電圧が低下すると、暗電流負荷への電力供給を停止する技術を提案している(例えば、特許文献1,2)。
【0006】
また、暗電流負荷への電力供給を停止するものではないが、バッテリの充放電量を電流積算方式で求めてバッテリの充電状態を常時監視し、監視している充電状態が電動始動装置を駆動させることのできる充電状態よりも少なくなると、警報を発生させるようにすることも、従来から既に提案されている(例えば特許文献3)。
【0007】
尚、実際の車両の中には、エンジンをかけずに放置している期間がある日数(例えば30日)に達すると、自動的に暗電流負荷への電力供給を停止するものもある。
【0008】
【特許文献1】
特開平11−334497号公報
【特許文献2】
特開平11−334498号公報
【特許文献3】
特開2000−285968号公報
【0009】
【発明が解決しようとする課題】
しかしながら、特許文献1,2の従来技術では、バッテリの劣化による放電可能容量の減少を考慮に入れてスレッショルド電圧が設定されていないので、スレッショルド電圧以下にバッテリの端子電圧が低下して暗電流負荷に対する電力供給を停止させた際に、劣化による放電可能容量の減少がバッテリに発生していると、バッテリが既に電動始動装置を駆動させることのできる充電状態を割り込んでしまっている可能性があり、この点に改善の余地があった。
【0010】
また、特許文献3のように、バッテリの充放電量を電流積算方式で求めてバッテリの充電状態を監視すると、バッテリの充電状態が高い際には低い際に比べて充電効率が低下して、充電のために外部からバッテリに供給される電気量よりもバッテリに実際に蓄積される電気量が低くなるので、電流積算方式では正確な充電量を求めることができない。
【0011】
しかも、放電においても放電電流のピーク値が異なると、計算上の電流時間積が同じ値であっても実際の放電電気量には差が生じるので、放電量についても電流積算方式では正確な値を求めることができない。
【0012】
そのため、充放電が繰り返されて電流積算方式による計算上の充放電量と実際の充放電量との誤差が蓄積されると、電流積算方式により求められるバッテリの充電状態自体が正確度を欠くようになってしまい、これを基準にして暗電流負荷に対する電力供給を停止させると、バッテリが既に電動始動装置を駆動させることのできる充電状態を割り込んでしまっている可能性があり、特許文献1,2の従来技術と同様に改善の余地があった。
【0013】
さらに、エンジンをかけずに放置している期間がある日数に達すると自動的に暗電流負荷への電力供給を停止する従来の制御法では、放置期間中に実際のバッテリの充電状態を確認しないことから、実際には電動始動装置を駆動させることのできる充電状態を大きく上回る充電状態にあるにも拘わらず暗電流負荷に対する電力供給が停止されてしまい、例えば時計の再設定等の面倒な操作を行わなければならなくなってしまう。
【0014】
このような問題は、車両に搭載されているバッテリに限らず、携帯電話やその他種々のバッテリについて暗電流負荷に対する電力供給を制御する上でも、同様に発生し得るものである。
【0015】
本発明は前記事情に鑑みなされたもので、本発明の目的は、バッテリに劣化による放電可能容量の減少が発生していても、暗電流負荷に対するバッテリの電力供給を必要な充電状態を割り込む前に停止させることができるバッテリの電力供給制御方法と、この方法を実施する際に用いて好適なバッテリの電力供給制御装置、並びに、必要な充電状態を割り込む前に暗電流負荷に対するバッテリの電力供給を停止させる際にも有用な、バッテリの放出可能なクーロン量としてのSOC(state of charge )を検出する方法と、この方法を実施する際に用いて好適なバッテリのSOC検出装置とを提供することにある。
【0016】
【課題を解決するための手段】
前記目的を達成する請求項1乃至請求項7に記載した本発明は、バッテリのSOC検出方法に関するものであり、請求項8乃至請求項18に記載した本発明は、バッテリの電力供給制御方法に関するものであり、請求項19乃至請求項25に記載した本発明は、バッテリのSOC検出装置に関するものであり、請求項26乃至請求項36に記載した本発明は、バッテリの電力供給制御装置に関するものである。
【0017】
そして、請求項1に記載した本発明のバッテリのSOC検出方法は、電源のオフ中におけるバッテリのSOC(state of charge )を検出するに当たり、予め定められた端子電圧測定条件が充足される毎に前記バッテリの端子電圧を測定し、前記測定したバッテリの端子電圧に基づいて、前記端子電圧測定条件の充足時点において前記バッテリが現実に放電できるクーロン量の、満充電状態の前記バッテリが所定の標準状態にあるときに放電可能なクーロン量に対する割合を示す値を、電源のオフ中における前記バッテリのSOCとして間欠的に検出するようにしたことを特徴とする。
【0018】
また、請求項2に記載した本発明のバッテリのSOC検出方法は、請求項1に記載した本発明のバッテリのSOC検出方法において、前記バッテリはエンジンの動作中に充電される車載用のバッテリであり、前記エンジンの停止により電源がオフされるものとした。
【0019】
さらに、請求項3に記載した本発明のバッテリのSOC検出方法は、請求項1に記載された本発明のバッテリのSOC検出方法において、予め定められた内部抵抗測定条件が充足される毎に前記バッテリの内部抵抗値を求め、該バッテリの予め定められた基準内部抵抗値に対する、前記求めたバッテリの最新の内部抵抗値の変化の度合いに応じて、前記測定したバッテリの端子電圧を補正し、該補正したバッテリの端子電圧に基づいて、電源のオフ中における前記バッテリのSOCを間欠的に検出するようにした。
【0020】
また、請求項4に記載した本発明のバッテリのSOC検出方法は、請求項3に記載された本発明のバッテリのSOC検出方法において、電源のオフからの連続経過期間が所定時間に達する毎に前記内部抵抗測定条件が充足されるものとし、該所定時間に達する毎に、前記バッテリに予め定められた交流電流を流れさせつつ該バッテリの端子電圧の降下量を測定し、該測定した端子電圧の降下量と前記交流電流の電流値とから前記バッテリの内部抵抗を求めるようにした。
【0021】
さらに、請求項5に記載した本発明のバッテリのSOC検出方法は、請求項3又は4に記載した本発明のバッテリのSOC検出方法において、前記内部抵抗測定条件が充足される毎に、前記基準内部抵抗値を定める際の前提とした予め定めた前記バッテリの内部又は周辺の基準温度に対する、該バッテリの内部又は周辺の現在の温度の変化の度合いを求めて、該求めたバッテリの内部又は周辺の温度の変化の度合いに応じて前記求めたバッテリの内部抵抗値を補正した補正後内部抵抗値を求めると共に、前記端子電圧測定条件が充足される毎に、前記基準温度に対する、前記バッテリの内部又は周辺の現在の温度の変化の度合いを求めて、該求めたバッテリの内部又は周辺の温度の変化の度合いに応じて前記測定したバッテリの端子電圧を補正した補正後端子電圧を求め、前記補正後内部抵抗値の前記基準内部抵抗値に対する変化の度合いに応じて前記補正後端子電圧を補正した再補正後端子電圧に基づいて、電源のオフ中における前記バッテリのSOCを検出するようにした。
【0022】
さらに、請求項6に記載した本発明のバッテリのSOC検出方法は、請求項3、4又は5に記載した本発明のバッテリのSOC検出方法において、前記バッテリはエンジンの動作中に充電される車載用のバッテリであり、前記エンジンの停止により電源がオフされ、該エンジンを始動させるための電動始動装置の駆動時に前記内部抵抗測定条件が充足されるものとし、該電動始動装置の駆動時に、そのために前記バッテリが行う放電の放電電流と端子電圧とを周期的に測定して、それらの周期的に測定した端子電圧と放電電流とから、分極成分を含まない前記バッテリの純抵抗値を該バッテリの内部抵抗値として求め、前記基準内部抵抗値としての、前記バッテリの予め定められた基準純抵抗値に対する、前記求めたバッテリの最新の純抵抗値の変化の度合いに応じて、前記測定したバッテリの端子電圧を補正するようにした。
【0023】
また、請求項7に記載した本発明のバッテリのSOC検出方法は、請求項3、4、5又は6に記載した本発明のバッテリのSOC検出方法において、前記求めたバッテリの内部抵抗値の推移が減少傾向にある間、前記補正を行わないようにした。
【0024】
さらに、請求項8に記載した本発明のバッテリの電力供給制御方法は、バッテリの充電状態が予め定めた放電停止状態に至るまで低下したと前記バッテリの端子電圧に基づいて判断した際に、電源のオフ中に暗電流を暗電流負荷に流れさせるための、前記バッテリから前記暗電流負荷に対する電力供給を停止させるに当たり、予め定められた内部抵抗測定条件が充足される毎に前記バッテリの内部抵抗値を求めると共に、予め定められた端子電圧測定条件が充足される毎に前記バッテリの端子電圧を測定し、前記バッテリの予め定められた基準内部抵抗値に対する、前記求めたバッテリの最新の内部抵抗値の変化の度合いに応じて、前記測定したバッテリの端子電圧と、電源のオフ中における前記バッテリの充電状態が前記放電停止状態に至るまで低下したか否かの予め定めた判断基準とのうち、いずれか一方を補正するようにしたことを特徴とする。
【0025】
また、請求項9に記載した本発明のバッテリの電力供給制御方法は、請求項8に記載した本発明のバッテリの電力供給制御方法において、電源のオフからの連続経過期間が所定時間に達する毎に前記内部抵抗測定条件が充足されるものとし、該所定時間に達する毎に、前記バッテリに予め定められた交流電流を流れさせつつ該バッテリの端子電圧の降下量を測定し、該測定した端子電圧の降下量と前記交流電流の電流値とから前記バッテリの内部抵抗を求めるようにした。
【0026】
さらに、請求項10に記載した本発明のバッテリの電力供給制御方法は、請求項8又は9に記載した本発明のバッテリの電力供給制御方法において、前記内部抵抗測定条件が充足される毎に、前記放電停止状態を定める際の前提とした予め定めた前記バッテリの内部又は周辺の基準温度に対する、該バッテリの内部又は周辺の現在の温度の変化の度合いを求めて、該求めたバッテリの内部又は周辺の温度の変化の度合いに応じて前記求めたバッテリの内部抵抗値を補正した補正後内部抵抗値を求めると共に、前記端子電圧測定条件が充足される毎に、前記判断基準を定める際の前提とした予め定めた前記バッテリの内部又は周辺の基準温度に対する、該バッテリの内部又は周辺の現在の温度の変化の度合いを求めて、該求めたバッテリの内部又は周辺の温度の変化の度合いに応じて前記測定したバッテリの端子電圧を補正した補正後端子電圧を求め、前記補正後内部抵抗値の前記基準内部抵抗値に対する変化の度合いに応じて前記補正後端子電圧を補正した再補正後端子電圧と、前記補正後内部抵抗値の前記基準内部抵抗値に対する変化の度合いに応じて前記判断基準を補正した補正後判断基準とのうち、いずれか一方に基づいて、前記バッテリの充電状態が前記放電停止状態に至るまで低下したか否かを判断するようにした。
【0027】
また、請求項11に記載した本発明のバッテリの電力供給制御方法は、請求項8、9又は10に記載した本発明のバッテリの電力供給制御方法において、電源のオフ中に所定周期毎に前記端子電圧測定条件が充足されるものとし、該所定周期毎に測定した前記バッテリの端子電圧の値が基準電圧値に至るまで低下した際に、電源のオフ中における前記バッテリの充電状態が前記放電停止状態に至るまで低下したと判断するようにし、予め定められた所定電圧値に設定されている前記基準電圧値を、前記基準内部抵抗値と前記求めたバッテリの最新の内部抵抗値との相違に応じた量だけ高くすることで、前記判断基準の補正を行うようにした。
【0028】
さらに、請求項12に記載した本発明のバッテリの電力供給制御方法は、請求項8、9又は10に記載した本発明のバッテリの電力供給制御方法において、電源のオフ中に所定周期毎に前記端子電圧測定条件が充足されるものとし、該所定周期毎に測定したバッテリの端子電圧の値から電源のオフ中における前記バッテリのSOC(state of charge )を求め、該求めたバッテリのSOCの値が基準SOC値に至るまで低下した際に、電源のオフ中における前記バッテリの充電状態が前記放電停止状態に至るまで低下したと判断するようにし、予め定められた所定SOC値に設定されている前記基準SOC値を、前記基準内部抵抗値と前記求めたバッテリの最新の内部抵抗値との相違に応じた量だけ高くすることで、前記判断基準の補正を行うようにした。
【0029】
また、請求項13に記載した本発明のバッテリの電力供給制御方法は、電源のオフ中に暗電流を暗電流負荷に流れさせるための、バッテリから前記暗電流負荷に対する電力供給を、電源のオフからの連続経過期間が基準期間に達した際に停止させるに当たり、予め定められた内部抵抗測定条件が充足される毎に前記バッテリの内部抵抗値を求め、予め定められた所定期間に設定されている前記基準期間を、予め定められた基準内部抵抗値と前記求めたバッテリの最新の内部抵抗値との相違に応じた量だけ短縮するように補正するようにしたことを特徴とする。
【0030】
さらに、請求項14に記載した本発明のバッテリの電力供給制御方法は、請求項8、9、10、11、12又は13に記載した本発明のバッテリの電力供給制御方法において、電源のオフ中における前記バッテリから前記暗電流負荷に対する電力供給を停止させた後、電源がオンされた際に、前記バッテリから前記暗電流負荷に対する電力供給を再開させるようにした。
【0031】
また、請求項15に記載した本発明のバッテリの電力供給制御方法は、請求項8、9、10、11、12、13又は14に記載した本発明のバッテリの電力供給制御方法において、前記バッテリがエンジンの動作中に充電される車載用のバッテリであり、前記エンジンの停止により電源がオフされるようにした。
【0032】
さらに、請求項16に記載した本発明のバッテリの電力供給制御方法は、請求項15に記載した本発明のバッテリの電力供給制御方法において、前記エンジンを始動させるための電動始動装置の駆動時に前記内部抵抗測定条件が充足されるものとし、該電動始動装置の駆動時に、そのために前記バッテリが行う放電の放電電流と端子電圧とを周期的に測定して、それらの周期的に測定した端子電圧と放電電流とから、分極成分を含まない前記バッテリの純抵抗値を該バッテリの内部抵抗値として求め、前記基準内部抵抗値としての、予め定められた基準純抵抗値に対する、前記求めたバッテリの最新の純抵抗値の変化の度合いに応じて、前記測定したバッテリの端子電圧と前記判断基準とのうちいずれか一方を補正するようにした。
【0033】
また、請求項17に記載した本発明のバッテリの電力供給制御方法は、請求項15又は16に記載した本発明のバッテリの電力供給制御方法において、前記放電停止状態を、前記エンジンを始動させるために電動始動装置を少なくとも1回以上駆動するのに必要な電力を蓄えた前記バッテリの充電状態とするようにした。
【0034】
さらに、請求項18に記載した本発明のバッテリの電力供給制御方法は、請求項8、9、10、11、12、13、14、15、16又は17に記載した本発明のバッテリの電力供給制御方法において、前記求めたバッテリの内部抵抗値の推移が減少傾向にある間、前記補正を行わないようにした。
【0035】
また、請求項19に記載した本発明のバッテリのSOC検出装置は、図1の基本構成図に示すように、電源のオフ中におけるバッテリ13のSOC(state ofcharge )を検出するバッテリのSOC検出装置であって、予め定められた端子電圧測定条件が充足される毎に、前記バッテリ13の端子電圧を測定する端子電圧測定手段Aを備え、前記端子電圧測定手段Aが測定した前記バッテリ13の端子電圧に基づいて、前記端子電圧測定条件の充足時点において前記バッテリ13が現実に放電できるクーロン量の、満充電状態の前記バッテリ13が所定の標準状態にあるときに放電可能なクーロン量に対する割合を示す値を、電源のオフ中における前記バッテリ13のSOCとして間欠的に検出することを特徴とする。
【0036】
さらに、請求項20に記載した本発明のバッテリのSOC検出装置は、請求項19に記載した本発明のバッテリのSOC検出装置において、前記バッテリ13はエンジン3の動作中に充電される車載用のバッテリ13であり、前記エンジン3の停止により電源がオフされるものとした。
【0037】
また、請求項21に記載した本発明のバッテリのSOC検出装置は、請求項19に記載した本発明のバッテリのSOC検出装置において、予め定められた内部抵抗測定条件が充足される毎に前記バッテリ13の内部抵抗値を求める内部抵抗値割出手段23Aと、前記バッテリ13の予め定められた基準内部抵抗値に対する、前記内部抵抗値割出手段23Aが求めた前記バッテリ13の最新の内部抵抗値の変化の度合いに応じて、前記端子電圧測定手段Aが測定した前記バッテリ13の端子電圧を補正する補正手段23Bとをさらに備え、前記補正したバッテリ13の端子電圧に基づいて、電源のオフ中における前記バッテリ13のSOCを間欠的に検出するものとした。
【0038】
さらに、請求項22に記載した本発明のバッテリのSOC検出装置は、請求項21に記載した本発明のバッテリのSOC検出装置において、電源のオフからの連続経過期間が所定時間に達する毎に、前記バッテリ13に予め定められた交流電流を流れさせつつ該バッテリ13の端子電圧の降下量を測定する端子電圧降下量測定手段Bをさらに備えており、前記内部抵抗値割出手段23Aは、前記連続経過期間が所定時間に達する毎に前記内部抵抗測定条件が充足されたものとして、前記端子電圧降下量測定手段Bにより測定した前記バッテリ13の端子電圧の降下量と前記交流電流の電流値とから前記バッテリ13の内部抵抗を求めるものとした。
【0039】
また、請求項23に記載した本発明のバッテリのSOC検出装置は、請求項21又は22に記載した本発明のバッテリのSOC検出装置において、前記バッテリ13の内部又は周辺の温度を測定する温度測定手段18と、前記内部抵抗測定条件が充足される毎に、前記基準内部抵抗値を定める際の前提とした予め定めた前記バッテリ13の内部又は周辺の基準温度に対する、前記温度測定手段18が測定した前記バッテリ13の内部又は周辺の現在の温度の変化の度合いを求める第1温度変化割出手段23Cと、前記端子電圧測定条件が充足される毎に、前記基準温度に対する、前記温度測定手段18が測定した前記バッテリ13の内部又は周辺の現在の温度の変化の度合いを求める第2温度変化割出手段23Dとをさらに備えており、前記補正手段23Bが、前記端子電圧測定手段Aが測定した前記バッテリ13の端子電圧に、前記第2温度変化割出手段23Dが求めた前記バッテリ13の内部又は周辺の温度の変化の度合いに応じた補正がなされた補正後端子電圧を、前記内部抵抗値割出手段23Aが求めた前記バッテリ13の最新の内部抵抗値に、前記第1温度変化割出手段23Cが求めた前記バッテリ13の内部又は周辺の温度の変化の度合いに応じた補正がなされた補正後内部抵抗値の、前記基準内部抵抗値に対する変化の度合いに応じて補正するか、あるいは、前記判断基準を、前記補正後内部抵抗値の前記基準内部抵抗値に対する変化の度合いに応じて補正するものとした。
【0040】
また、請求項24に記載した本発明のバッテリのSOC検出装置は、請求項21、22又は23に記載した本発明のバッテリのSOC検出装置において、前記バッテリ13はエンジン3の動作中に充電される車載用のバッテリ13であり、前記エンジン3の停止により電源がオフされ、前記内部抵抗値割出手段23Aが、前記エンジン3を始動させるための電動始動装置5の駆動時に、前記内部抵抗測定条件が充足されたものとして、該電動始動装置5の駆動のために前記バッテリ13が行う放電の放電電流と端子電圧とを周期的に測定する電流測定手段C及び電圧測定手段Dを有していて、それら電流測定手段C及び電圧測定手段Dにより周期的に測定した端子電圧と放電電流とから、分極成分を含まない前記バッテリ13の純抵抗値を該バッテリ13の内部抵抗値として求めるように構成されており、前記補正手段23Bが、前記基準内部抵抗値としての、前記バッテリ13の予め定められた基準純抵抗値に対する、前記内部抵抗値割出手段23Aが求めたバッテリ13の最新の純抵抗値の変化の度合いに応じて、前記端子電圧測定手段Aが測定した前記バッテリ13の端子電圧を補正するように構成されているものとした。
【0041】
さらに、請求項25に記載した本発明のバッテリのSOC検出装置は、請求項21、22、23又は24に記載した本発明のバッテリのSOC検出装置において、前記補正手段23Bが、前記内部抵抗値割出手段23Aが求めた連続する前記バッテリ13の内部抵抗値の推移が減少傾向にあるか否かを判別する内部抵抗値推移判別手段を有していて、前記バッテリ13の内部抵抗値の推移が減少傾向にあると前記内部抵抗値推移判別手段が判別している間、前記補正を行わないように構成されているものとした。
【0042】
また、請求項26に記載した本発明のバッテリの電力供給制御装置は、バッテリ13の充電状態が予め定めた放電停止状態に至るまで低下したと前記バッテリ13の端子電圧に基づいて判断した際に、電源のオフ中に暗電流を暗電流負荷35に流れさせるための、前記バッテリ13から前記暗電流負荷35に対する電力供給を停止させるバッテリの電力供給制御装置であって、予め定められた内部抵抗測定条件が充足される毎に前記バッテリ13の内部抵抗値を求める内部抵抗値割出手段23Aと、予め定められた端子電圧測定条件が充足される毎に、前記バッテリ13の端子電圧を測定するる端子電圧測定手段Aと、前記バッテリ13の予め定められた基準内部抵抗値に対する、前記内部抵抗値割出手段23Aが求めた前記バッテリ13の最新の内部抵抗値の変化の度合いに応じて、前記端子電圧測定手段Aが測定した前記バッテリ13の端子電圧と、電源のオフ中における前記バッテリ13の充電状態が前記放電停止状態に至るまで低下したか否かの予め定めた判断基準とのうち、いずれか一方を補正する補正手段23Bとを備えることを特徴とする。
【0043】
さらに、請求項27に記載した本発明のバッテリの電力供給制御装置は、請求項26に記載した本発明のバッテリの電力供給制御装置において、電源のオフからの連続経過期間が所定時間に達する毎に、前記バッテリ13に予め定められた交流電流を流れさせつつ該バッテリ13の端子電圧の降下量を測定する端子電圧降下量測定手段Bをさらに備えており、前記内部抵抗値割出手段23Aが、前記連続経過期間が所定時間に達する毎に前記内部抵抗測定条件が充足されたものとして、前記端子電圧降下量測定手段Bにより測定した前記バッテリ13の端子電圧の降下量と前記交流電流の電流値とから前記バッテリ13の内部抵抗を求めるものとした。
【0044】
また、請求項28に記載した本発明のバッテリの電力供給制御装置は、請求項26又は27に記載した本発明のバッテリの電力供給制御装置において、前記バッテリ13の内部又は周辺の温度を測定する温度測定手段18と、前記内部抵抗測定条件が充足される毎に、前記放電停止状態を定める際の前提とした予め定めた前記バッテリ13の内部又は周辺の基準温度に対する、前記温度測定手段18が測定した前記バッテリ13の内部又は周辺の現在の温度の変化の度合いを求める第1温度変化割出手段23Cと、前記端子電圧測定条件が充足される毎に、前記判断基準を定める際の前提とした予め定めた前記バッテリ13の内部又は周辺の基準温度に対する、前記温度測定手段18が測定した前記バッテリ13の内部又は周辺の現在の温度の変化の度合いを求める第2温度変化割出手段23Dとをさらに備えており、前記補正手段23Bが、前記端子電圧測定手段Aが測定した前記バッテリ13の端子電圧に、前記第2温度変化割出手段23Dが求めた前記バッテリ13の内部又は周辺の温度の変化の度合いに応じた補正がなされた補正後端子電圧を、前記内部抵抗値割出手段23Aが求めた前記バッテリ13の最新の内部抵抗値に、前記第1温度変化割出手段23Cが求めた前記バッテリ13の内部又は周辺の温度の変化の度合いに応じた補正がなされた補正後内部抵抗値の、前記基準内部抵抗値に対する変化の度合いに応じて補正するか、あるいは、前記判断基準を、前記補正後内部抵抗値の前記基準内部抵抗値に対する変化の度合いに応じて補正するものとした。
【0045】
さらに、請求項29に記載した本発明のバッテリの電力供給制御装置は、請求項26、27又は28に記載した本発明のバッテリの電力供給制御装置において、電源のオフ中における前記バッテリ13の充電状態が前記放電停止状態に至るまで低下したとの判断が、電源のオフ中に前記端子電圧測定手段Aが測定した前記バッテリ13の端子電圧の値が基準電圧値に至るまで低下した際になされ、前記補正手段23Bが、前記判断基準の補正を、前記基準内部抵抗値と前記内部抵抗値割出手段23Aが求めた前記バッテリ13の最新の内部抵抗値との相違に応じた量だけ、予め定められた所定電圧値に設定されている前記基準電圧値を高くすることで行うものとした。
【0046】
また、請求項30に記載した本発明のバッテリの電力供給制御装置は、請求項26、27又は28に記載した本発明のバッテリの電力供給制御装置において、電源のオフ中における前記バッテリ13の充電状態が前記放電停止状態に至るまで低下したとの判断が、電源のオフ中に前記端子電圧測定手段Aが測定した前記バッテリ13の端子電圧の値から求めたバッテリ13のSOC(state of charge )の値が基準SOC値に至るまで低下した際になされ、前記補正手段23Bが、前記判断基準の補正を、前記基準内部抵抗値と前記内部抵抗値割出手段23Aが求めた前記バッテリ13の最新の内部抵抗値との相違に応じた量だけ、予め定められた所定SOC値に設定されている前記基準SOC値を高くすることで行うものとした。
【0047】
さらに、請求項31に記載した本発明のバッテリの電力供給制御装置は、図2の基本構成図に示すように、電源のオフ中に暗電流を暗電流負荷35に流れさせるための、バッテリ13から前記暗電流負荷35に対する電力供給を、電源のオフからの連続経過期間が基準期間に達した際に停止させるバッテリ13の電力供給制御装置であって、予め定められた内部抵抗測定条件が充足される毎に前記バッテリ13の内部抵抗値を求める内部抵抗値割出手段23Aと、予め定められた所定期間に設定されている前記基準期間を、予め定められた基準内部抵抗値と前記求めたバッテリ13の最新の内部抵抗値との相違に応じた量だけ短縮するように補正する補正手段23Bとを備えることを特徴とする。
【0048】
また、請求項32に記載した本発明のバッテリの電力供給制御装置は、請求項26、27、28、29、30又は31に記載した本発明のバッテリの電力供給制御装置において、電源のオフ中における前記バッテリ13から前記暗電流負荷35に対する電力供給を停止させた後、電源がオンされた際に、前記バッテリ13から前記暗電流負荷35に対する電力供給を再開させる電力供給再開手段23Eをさらに備えているものとした。
【0049】
さらに、請求項33に記載した本発明のバッテリの電力供給制御装置は、請求項26、27、28、29、30、31又は32に記載した本発明のバッテリの電力供給制御装置において、前記バッテリ13がエンジン3の動作中に充電される車載用のバッテリ13であり、前記エンジン3の停止により電源がオフされるものとした。
【0050】
また、請求項34に記載した本発明のバッテリの電力供給制御装置は、請求項33に記載した本発明のバッテリの電力供給制御装置において、前記内部抵抗値割出手段23Aが、前記エンジン3を始動させるための電動始動装置5の駆動時に、前記内部抵抗測定条件が充足されたものとして、該電動始動装置5の駆動のために前記バッテリ13が行う放電の放電電流と端子電圧とを周期的に測定する電流測定手段C及び電圧測定手段Dを有していて、それら電流測定手段C及び電圧測定手段Dにより周期的に測定した端子電圧と放電電流とから、分極成分を含まない前記バッテリ13の純抵抗値を該バッテリ13の内部抵抗値として求めるように構成されており、前記補正手段23Bが、前記基準内部抵抗値としての、予め定められた基準純抵抗値に対する、前記内部抵抗値割出手段23Aが求めたバッテリ13の最新の純抵抗値の変化の度合いに応じて、前記端子電圧測定手段Aが測定した前記バッテリ13の端子電圧と、電源のオフ中における前記バッテリ13の充電状態が前記放電停止状態に至るまで低下したか否かの判断基準とのうち、いずれか一方を補正するように構成されているものとした。
【0051】
さらに、請求項35に記載した本発明のバッテリの電力供給制御装置は、請求項33又は34に記載した本発明のバッテリの電力供給制御装置において、前記放電停止状態が、前記エンジン3を始動させるための電動始動装置5を少なくとも1回以上駆動するために必要な電力を蓄えた前記バッテリ13の充電状態であるものとした。
【0052】
また、請求項36に記載した本発明のバッテリの電力供給制御装置は、請求項26、27、28、29、30、31、32、33、34又は35に記載した本発明のバッテリの電力供給制御装置において、前記補正手段23Bが、前記内部抵抗値割出手段23Aが求めた連続する前記バッテリ13の内部抵抗値の推移が減少傾向にあるか否かを判別す内部抵抗値推移判別手段23Fを有していて、前記バッテリ13の内部抵抗値の推移が減少傾向にあると前記内部抵抗値推移判別手段23Fが判別している間、前記補正を行わないように構成されているものとした。
【0053】
請求項1に記載した本発明のバッテリのSOC検出方法と、請求項19に記載した本発明のバッテリのSOC検出装置とによれば、バッテリの状態が変化して、バッテリの状態が変化して、バッテリが現実に放電できるクーロン量が所定の標準状態にあるときよりも低下していると、その低下分が反映された、端子電圧測定条件の充足時点においてバッテリが現実に放電できるクーロン量の、満充電状態のバッテリが所定の標準状態にあるときに放電可能なクーロン量に対する割合を示す値が、予め定められた端子電圧測定条件が充足される毎に求められるバッテリの端子電圧に基づいて、電源のオフ中におけるバッテリのSOC(state of charge )として求められることになる。
【0054】
また、請求項2に記載した本発明のバッテリのSOC検出方法によれば、請求項1に記載した本発明のバッテリのSOC検出方法において、請求項20に記載した本発明のバッテリのSOC検出装置によれば、請求項19に記載した本発明のバッテリのSOC検出装置において、いずれも、エンジンの動作中に充電される車載用のバッテリの、充電が行われないエンジンの停止中におけるSOCが、バッテリの劣化による放電可能容量の減少の状況が反映されたバッテリの端子電圧の値を用いて求められるようになる。
【0055】
請求項3に記載した本発明のバッテリのSOC検出方法によれば、請求項1に記載した本発明のバッテリのSOC検出方法において、請求項21に記載した本発明のバッテリのSOC検出装置によれば、請求項19に記載した本発明のバッテリのSOC検出装置において、いずれも、バッテリの劣化が進行して、予め定められた内部抵抗測定条件が充足される毎に求めたバッテリの最新の内部抵抗値が、予め定められた基準内部抵抗値に対して変化(上昇)していると、予め定められた端子電圧測定条件が充足される毎に求められるバッテリの端子電圧が、基準内部抵抗値に対するバッテリの最新の内部抵抗値の変化の度合いに応じて補正されて、電源のオフ中におけるバッテリのSOC(state of charge )を求めるのに用いられるバッテリの端子電圧に、バッテリが現実に放電できるクーロン量のバッテリの劣化による低下の状況、即ち、バッテリの劣化による放電可能容量の減少の状況が反映されるようになる。
【0056】
また、請求項4に記載した本発明のバッテリのSOC検出方法によれば、請求項3に記載した本発明のバッテリのSOC検出方法において、請求項22に記載した本発明のバッテリのSOC検出装置によれば、請求項21に記載した本発明のバッテリのSOC検出装置において、いずれも、電源のオフからの連続経過期間が所定時間に達する毎に、予め定められた交流電流をバッテリに流れさせた際のバッテリの端子電圧の降下量と、交流電流の電流値とから、バッテリを消耗させることなく求めたバッテリの内部抵抗を用いて、バッテリの劣化による放電可能容量の減少の状況の、バッテリの端子電圧への反映が行われるようになる。
【0057】
さらに、請求項5に記載した本発明のバッテリのSOC検出方法によれば、請求項3又は4に記載した本発明のバッテリのSOC検出方法において、請求項23に記載した本発明のバッテリのSOC検出装置によれば、請求項21又は22に記載した本発明のバッテリのSOC検出装置において、いずれも、バッテリのSOCを求めるのに用いるバッテリの端子電圧や、これにバッテリの劣化による放電可能容量の減少の状況を反映させるために求められるバッテリの最新の内部抵抗値を取得した時点におけるバッテリの内部又は周辺の温度が、基準内部抵抗値を定める際の前提としたバッテリの内部又は周辺の基準温度に対して、変化していた場合に、その温度の変化によるバッテリの端子電圧や内部抵抗値の変動分が補償されることになる。
【0058】
さらに、請求項6に記載した本発明のバッテリのSOC検出方法によれば、請求項3、4又は5に記載した本発明のバッテリのSOC検出方法において、請求項24に記載した本発明のバッテリのSOC検出装置によれば、請求項21、22又は23に記載した本発明のバッテリのSOC検出装置において、いずれも、エンジンの動作中に充電される車載用のバッテリの、充電が行われないエンジンの停止中におけるSOCが、バッテリの劣化による放電可能容量の減少の状況が反映されたバッテリの端子電圧の値を用いて求められ、バッテリの劣化が進行して、エンジンを始動させるための電動始動装置の駆動時に周期的に測定したバッテリの放電電流と端子電圧とから内部抵抗値として求められるバッテリの純抵抗値が、基準内部抵抗値としての予め定められた基準純抵抗値に対して変化(上昇)していると、予め定められた端子電圧測定条件が充足される毎に求められるバッテリの端子電圧が、基準純抵抗値に対するバッテリの最新の純抵抗値の変化の度合いに応じて補正されることになる。
【0059】
したがって、暗電流負荷に対するバッテリからの電力供給を停止させるか否かを決定するための、バッテリのSOCが、分極の影響を含まないバッテリの純抵抗値を指標とした、バッテリの劣化による放電可能容量の減少の状況をより正確に反映させたバッテリの端子電圧の値を用いて求められることになる。
【0060】
また、請求項7に記載した本発明のバッテリのSOC検出方法によれば、請求項3、4、5又は6に記載した本発明のバッテリのSOC検出方法において、請求項25に記載した本発明のバッテリのSOC検出装置によれば、請求項21、22、23又は24に記載した本発明のバッテリのSOC検出装置において、いずれも、満充電乃至その近傍の充電状態にあるために劣化の進行とは無関係にバッテリの内部抵抗が高い状況にあり、そのため、端子電圧測定条件が充足される毎に測定されるバッテリの端子電圧に基づくと、バッテリの充電状態が放電停止状態に至るまで低下したと判断されてしまうような状況にあっても、電源のオフ状態であっても暗電流を流れさせる必要のある暗電流負荷に対する電力供給等により内部抵抗が減少傾向にある限り、測定したバッテリの端子電圧という、バッテリのSOCを求めるのに用いられるファクタの補正が行われないので、現実に発生している劣化による放電可能容量の減少以上に放電可能容量が減少しているものとして必要以上に低めの値がバッテリのSOCとして求められてしまうことがないようになる。
【0061】
請求項8に記載した本発明のバッテリの電力供給制御方法と、請求項26に記載した本発明のバッテリの電力供給制御装置とによれば、バッテリの劣化が進行して、予め定められた内部抵抗測定条件が充足される毎に求めたバッテリの最新の内部抵抗値が、予め定められた基準内部抵抗値に対して変化(上昇)していると、予め定められた端子電圧測定条件が充足される毎に求められるバッテリの端子電圧か、その端子電圧に基づいて充電状態が予め定めた放電停止状態に至るまで低下したか否かを判別する際の判断基準のどちらかが、基準内部抵抗値に対するバッテリの最新の内部抵抗値の変化の度合いに応じて補正されて、バッテリの充電状態が放電停止状態に至るまで低下したか否かの判断が、バッテリの劣化による放電可能容量の減少の状況が反映された値を用いて行われるようになる。
【0062】
また、請求項9に記載した本発明のバッテリの電力供給制御方法によれば、請求項8に記載した本発明のバッテリの電力供給制御方法において、請求項27に記載した本発明のバッテリの電力供給制御装置によれば、請求項26に記載した本発明のバッテリの電力供給制御装置において、いずれも、電源のオフからの連続経過期間が所定時間に達する毎に、予め定められた交流電流をバッテリに流れさせた際のバッテリの端子電圧の降下量と、交流電流の電流値とから、バッテリを消耗させることなく求めたバッテリの内部抵抗を用いて、バッテリの充電状態が放電停止状態に至るまで低下したか否かの判断が行われるようになる。
【0063】
さらに、請求項10に記載した本発明のバッテリの電力供給制御方法によれば、請求項8又は9に記載した本発明のバッテリの電力供給制御方法において、請求項28に記載した本発明のバッテリの電力供給制御装置によれば、請求項26又は27に記載した本発明のバッテリの電力供給制御装置において、いずれも、バッテリの充電状態が放電停止状態に至るまで低下したか否かを判断する際の材料となる、バッテリの最新の内部抵抗値やバッテリの端子電圧を取得した時点における、バッテリの内部又は周辺の温度が、放電停止状態を定める際の前提としたバッテリの内部又は周辺の基準温度や、電源のオフ中におけるバッテリの充電状態が放電停止状態に至るまで低下したか否かの判断基準を定める際の前提としたバッテリの内部又は周辺の基準温度に対して、変化していた場合に、その温度の変化によるバッテリの内部抵抗値や端子電圧の変動分が補償されることになる。
【0064】
また、請求項11に記載した本発明のバッテリの電力供給制御方法によれば、請求項8、9又は10に記載した本発明のバッテリの電力供給制御方法において、請求項29に記載した本発明のバッテリの電力供給制御装置によれば、請求項26、27又は28に記載した本発明のバッテリの電力供給制御装置において、いずれも、バッテリの劣化が進行して、予め定められた内部抵抗測定条件が充足される毎に求めたバッテリの最新の内部抵抗値が基準内部抵抗値に対して変化(上昇)すると、電源のオフ中に所定周期毎に測定したバッテリの端子電圧の値がそこまで低下するとバッテリから暗電流負荷に対する電力供給が停止される基準電圧値が、予め定められた所定電圧値から、バッテリの最新の内部抵抗値と基準内部抵抗値との相違に応じた量だけ高くされて、バッテリの劣化による放電可能容量の減少分だけ早めにバッテリから暗電流負荷に対する電力供給が停止されるようになる。
【0065】
しかも、バッテリの充電状態が予め定めた放電停止状態に至るまで低下したか否かのバッテリの端子電圧に基づいた判断が、電源のオフ中に所定周期毎に行われるようになることから、暗電流負荷に対する電力供給を停止させるか否かの判断が、電源のオフ中にも頻繁に行われるようになる。
【0066】
さらに、請求項12に記載した本発明のバッテリの電力供給制御方法によれば、請求項8、9又は10に記載した本発明のバッテリの電力供給制御方法において、請求項30に記載した本発明のバッテリの電力供給制御装置によれば、請求項26、27又は28に記載した本発明のバッテリの電力供給制御装置において、いずれも、バッテリの劣化が進行して、予め定められた内部抵抗測定条件が充足される毎に求めたバッテリの最新の内部抵抗値が基準内部抵抗値に対して変化(上昇)すると、電源のオフ中に所定周期毎に測定したバッテリの端子電圧の値から求めた電源のオフ中におけるバッテリのSOCの値がそこまで低下するとバッテリから暗電流負荷に対する電力供給が停止される基準SOC値が、予め定められた所定SOC値から、バッテリの最新の内部抵抗値と基準内部抵抗値との相違に応じた量だけ高くされて、バッテリの劣化による放電可能容量の減少分だけ早めにバッテリから暗電流負荷に対する電力供給が停止されるようになる。
【0067】
しかも、バッテリの充電状態が予め定めた放電停止状態に至るまで低下したか否かのバッテリの端子電圧に基づいた判断が、電源のオフ中に所定周期毎に行われるようになることから、暗電流負荷に対する電力供給を停止させるか否かの判断が、電源のオフ中にも頻繁に行われるようになる。
【0068】
また、請求項13に記載した本発明のバッテリの電力供給制御方法と、請求項31に記載した本発明のバッテリの電力供給制御装置とによれば、バッテリの劣化が進行して、予め定められた内部抵抗測定条件が充足される毎に求めたバッテリの最新の内部抵抗値が、予め定められた基準内部抵抗値に対して変化(上昇)していると、電源のオフからの連続経過期間がそこまで達するとバッテリから暗電流負荷に対する電力供給が停止される基準期間が、予め定められた所定期間から、バッテリの最新の内部抵抗値と基準内部抵抗値との相違に応じた量だけ短縮されるように補正されて、バッテリの充電状態が放電停止状態に至るまで低下したか否かの判断が、バッテリの劣化の状況が反映された値を用いて行われ、バッテリの劣化による放電可能容量の減少分だけ早めにバッテリから暗電流負荷に対する電力供給が停止されるようになる。
【0069】
さらに、請求項14に記載した本発明のバッテリの電力供給制御方法によれば、請求項8、9、10、11、12又は13に記載した本発明のバッテリの電力供給制御方法において、請求項32に記載した本発明のバッテリの電力供給制御装置によれば、請求項26、27、28、29、30又は31に記載した本発明のバッテリの電力供給制御装置において、いずれも、バッテリの充電状態が予め定めた放電停止状態に至ったと判断されて停止された暗電流負荷に対する電力供給が、その後、電源がオンされて負荷に対する電力供給が必要となった時点で再開されることになる。
【0070】
また、請求項15に記載した本発明のバッテリの電力供給制御方法によれば、請求項8、9、10、11、12、13又は14に記載した本発明のバッテリの電力供給制御方法において、請求項33に記載した本発明のバッテリの電力供給制御装置によれば、請求項26、27、28、29、30、31又は32に記載した本発明のバッテリの電力供給制御装置において、いずれも、エンジンの動作中に充電される車載用のバッテリの、充電が行われないエンジンの停止中における、暗電流負荷に対するバッテリからの電力供給を停止させるか否かを決定するための、バッテリの充電状態が予め定めた放電停止状態に至るまで低下したか否かの判断が、バッテリの劣化による放電可能容量の減少の状況が反映された値を用いて行われることになる。
【0071】
さらに、請求項16に記載した本発明のバッテリの電力供給制御方法によれば、請求項15に記載した本発明のバッテリの電力供給制御方法において、請求項34に記載した本発明のバッテリの電力供給制御装置によれば、請求項33に記載した本発明のバッテリの電力供給制御装置において、いずれも、バッテリの劣化が進行して、エンジンを始動させるための電動始動装置の駆動時に周期的に測定したバッテリの放電電流と端子電圧とから内部抵抗値として求められるバッテリの純抵抗値が、基準内部抵抗値としての予め定められた基準純抵抗値に対して変化(上昇)していると、予め定められた端子電圧測定条件が充足される毎に求められるバッテリの端子電圧か、その端子電圧に基づいて充電状態が予め定めた放電停止状態に至るまで低下したか否かを判別する際の判断基準のどちらかが、基準純抵抗値に対するバッテリの最新の純抵抗値の変化の度合いに応じて補正されることになる。
【0072】
したがって、暗電流負荷に対するバッテリからの電力供給を停止させるか否かを決定するための、バッテリの充電状態が予め定めた放電停止状態に至るまで低下したか否かの判断が、分極の影響を含まないバッテリの純抵抗値を指標とした、バッテリの劣化による放電可能容量の減少の状況をより正確に反映させた値を用いて行われることになる。
【0073】
また、請求項17に記載した本発明のバッテリの電力供給制御方法によれば、請求項15又は16に記載した本発明のバッテリの電力供給制御方法において、請求項35に記載した本発明のバッテリの電力供給制御装置によれば、請求項33又は34に記載した本発明のバッテリの電力供給制御装置において、いずれも、エンジンの停止中におけるバッテリの充電状態が放電停止状態に至るまで低下したとの判断により、バッテリから暗電流負荷に対する電力供給を停止させると、その時点で、エンジンを始動させるための電動始動装置を少なくとも1回以上駆動するために必要な電力がバッテリに蓄えられていることになる。
【0074】
さらに、請求項18に記載した本発明のバッテリの電力供給制御方法によれば、請求項8、9、10、11、12、13、14、15、16又は17に記載した本発明のバッテリの電力供給制御方法において、請求項36に記載した本発明のバッテリの電力供給制御装置によれば、請求項26、27、28、29、30、31、32、33、34又は35に記載した本発明のバッテリの電力供給制御装置において、いずれも、満充電乃至その近傍の充電状態にあるために劣化の進行とは無関係にバッテリの内部抵抗が高い状況にあり、そのため、端子電圧測定条件が充足される毎に測定されるバッテリの端子電圧に基づくと、バッテリの充電状態が放電停止状態に至るまで低下したと判断されてしまうような状況にあっても、暗電流負荷に対する電力供給により内部抵抗が減少傾向にある限り、測定したバッテリの端子電圧と判断基準とのうちいずれか一方や基準期間という、バッテリから暗電流負荷に対する電力供給を停止させるか否かの結論を左右するファクタの補正が行われないので、現実に発生している劣化による放電可能容量の減少以上に放電可能容量が減少しているものとして必要以上に早めに暗電流負荷に対するバッテリからの電力供給を停止させてしまうことがないようになる。
【0075】
【発明の実施の形態】
以下、本発明によるバッテリの電力供給制御方法を、本発明によるバッテリの電力供給制御装置と共に、車両に搭載されたバッテリの場合を例に取って、図面を参照して説明するが、その前に、図3〜図9を参照して、バッテリの純抵抗の第1の求め方について具体的に説明する。
【0076】
バッテリが搭載され、バッテリから電力供給されて動作する車両負荷として、12V車、42V車、EV車、HEV車には、スタータモータ、モータジェネレータ、走行用モータなどの大電流を必要とする定負荷が搭載されている。例えば、スタータモータ又はこれに類する大電流定負荷をオンしたとき、定負荷には、その駆動開始の初期の段階で突入電流が流れた後、負荷の大きさに応じた定常値の電流が流れるようになる。因みに、負荷がランプである場合には、突入電流に相当するものをラッシュ電流と呼ぶこともある。
【0077】
スタータモータとして直流モータを使用している場合、界磁コイルに流れる突入電流は、図3に示すように、定負荷駆動開始直後の例えば3ミリ秒という短時間内に、ほぼ0から定常電流に比べて何倍も大きなピーク値、例えば500(A)まで単調増加した後、このピーク値から例えば150ミリ秒という短時間内に定負荷の大きさに応じた定常値まで単調減少するような流れ方をし、バッテリから放電電流として供給される。したがって、定負荷に突入電流が流れる状況で、バッテリの放電電流とこれに対応する端子電圧を測定することによって、0からピーク値に至る広い範囲の電流変化に対する端子電圧の変化を示すバッテリの放電電流(I)−端子電圧(V)特性を測定することができる。
【0078】
そこで、スタータモータをオンしたときに流れる突入電流に相当する模擬的な放電として、0からほぼ200Aまで0.25秒かけて増加し、同じ時間をかけてピーク値から0まで減少する放電を電子負荷を使用してバッテリに行わせ、そのときのバッテリの放電電流と端子電圧とを対にして短い一定周期で測定し、これによって得た測定データ対を横軸に放電電流、縦軸に端子電圧をそれぞれ対応させてプロットして図4に示すグラフを得た。図4のグラフに示す放電電流の増加時と減少時の放電電流−端子電圧特性は、最小二乗法を用いて以下のような二次式に近似できる。
V=a1I+b1I+c1 ……(1)
V=a2I+b2I+c2 ……(2)
なお、図中には、二次の近似式の曲線も重ねて描かれている。
【0079】
図4中において、電流増加方向の近似曲線の切片と電流減少方向の近似曲線の切片の電圧差は、電流が流れていない0(A)の時の電圧差であるため、純抵抗と活性化分極による電圧降下を含まない、放電によって新たに発生した濃度分極のみによる電圧降下と考えられる。従って、この電圧差は、濃度分極のみによるものであり、この電流0(A)点の濃度分極をVpolc0 とする。この濃度分極Vpolc0 は、突入電流の大きさに電流の流れた時間を乗じて積算したもの、すなわちAh(短時間なので、以下Asec で表す)として求められる。
【0080】
次に、この電流0(A)点の濃度分極Vpolc0 を利用して電流ピーク値の濃度分極を算出する方法を説明する。今、電流ピーク値の濃度分極をVpolcp すると、Vpolcp は次式のように表される。
Vpolcp =[(電流増加時のAsec )/(放電全体のAsec )]×Vpolc0 ……(3)
なお、放電全体のAsec は次式で表される。
放電全体のAsec =(電流増加時のAsec +電流減少時のAsec )
【0081】
一般的には、電流増加時と減少時の電流は直線的に変化すると見なし得るので、簡略的には、Vpolc0 を、増加時間と減少時間の総時間Tsを増加と減少に要した時間Tz及びTgで按分することによって、増加時に発生した濃度分極による電圧降下と減少時に発生した濃度分極による電圧降下に分解することができ、以下のように表現できる。
Vpolcp =[Tz/Ts]×Vpolc0 ……(3′)
なお、Tz=Tsの場合には、Vpolcp =Vpolc0 /2となる。
【0082】
また、この求まったピーク値での濃度分極Vpolcp に時間tzの間の任意の時点の時間比率を乗じることによって、増加時の任意の時点の任意の電流値での濃度分極による電圧降下も求めることができる。さらに、濃度分極Vpolc0 からピーク値での濃度分極Vpolcp を差し引いたものは、減少時に発生した濃度分極とみなせるので、これに、時間Tgの間の任意の時点の時間比率を乗じることによって、減少時の任意の時点の任意の電流値での濃度分極による電圧降下も求めることができる。
【0083】
上述のようにして求めたピーク値における濃度分極Vpolcp を式(1)のピーク値における電圧に加算して、図5に示すように、ピーク値における濃度分極を削除する。なお、ピーク値における濃度分極を削除した後の電圧をV1とすると、V1は次式で表される。
V1=a1Ip+b1Ip +c1+Vpolcp
Ip はピーク値における電流値である。
【0084】
次に、上述のようにして求めたV1を利用して次式で表される、図5に示すような純抵抗と活性化分極だけの電圧降下曲線を求める。
V=a3I+b3I+c3 ……(4)
【0085】
式(1)および(4)で表される特性の初期状態、すなわち、電流が0(A)の点に注目すると、初期状態での分極は等しいので、c3=c1である。また、電流増加の初期状態から電流は急激に増加するが、濃度分極の反応は遅く、反応がほとんど進行していないとすると、式(1)および(4)の電流が0(A)の点の微分値は等しくなるので、b3=b1である。従って、c3=c1 、b3=b1 を代入することで、式(4)は
V=a3I+b1I+c1 ……(5)
と書き直され、未知数はa3のみとなる。
【0086】
そこで、式(5)に電流増加のピーク値の座標(Ip 、V1)を代入してa3について整理すると、次式が求められる。
a3=(V1−b1Ip −c1)/Ip
【0087】
従って、純抵抗と活性化分極だけの電圧降下曲線の式(4)が式(5)によって決定される。以上によって、任意時点での濃度分極による電圧降下とそれ以外、すなわち、純抵抗と活性化分極による電圧降下とを分離して求めることができるようになる。
【0088】
以上のように電流増加方向での純抵抗と活性化分極だけの電圧降下曲線の式(5)が求まったところで、式(5)と元の式(1)との差を求めることによって、電流増加方向での濃度分極の大きさを示す、以下のような近似式が得られることになる。
Vcz=(a3−a1)I ……(6a)
そして、この式に電流増加時の任意の電流値In を代入することによって、任意の電流値In での濃度分極による電圧降下Vczn を次式のように算出することができる。
Vczn =(a3−a1)In ……(6b)
ここで、電流増加方向での活性化分極抵抗Rczは、以下のように表され、電流の大きさとともに変化していることが分かる。
Rcz=(a3−a1)In ……(6c)
【0089】
一般に、純抵抗は化学反応にて生じるものでないので、バッテリの充電状態(SOC)、温度などが変わらなければ一定であるので、1回のスタータモータ作動の間は一定であるといえる。これに対し、活性化分極抵抗は、イオン、電子の受渡しの際の化学反応に伴って生じる抵抗であるので、濃度分極と相互に影響し合うこともあって、活性化分極の電流増加曲線と電流減少曲線は完全に一致しないことから、式(5)は濃度分極を除いた純抵抗と活性化分極の電流増加方向の曲線であるということができる。
【0090】
続いて、電流減少曲線からの濃度分極の削除の仕方を、以下説明する。純抵抗と活性化分極の電流減少方向の関係式は、電流ピーク値における濃度分極の削除と同様の方法で可能である。
【0091】
今、ピーク値以外の2点をA点およびB点とし、各点における濃度分極VpolcA 、VpolcB を次式ようにして求める。
VpolcA =[(電流増加時開始からA点までのAsec )/(放電全体のAsec )]×Vpolc0 ……(7)
、又は、簡略的には、
VpolcA =[ピーク点からA点までの時間Ta/Tg]×(Vpolc0 −Vpolcp ) ……(7′)
VpolcB =[(電流増加時開始からB点までのAsec )/(放電全体のAsec )]×Vpolc0 ……(7)
又は、簡略的には、
VpolcB =[ピーク点からB点までの時間Tb/Tg]×(Vpolc0 −Vpolcp ) ……(8′)
【0092】
上式(7)および(8)によって、ピーク値以外に濃度分極を削除した2点が求まったら、この2点とピーク値との3点の座標を利用して次式により表される、図6に示すような、純抵抗と活性化分極の電流減少方向曲線が求められる。
V=a4I+b4I+c4 ……(9)
なお、式(9)の係数a4、b4、c4は、2点A及びBとピーク点の電流値と電圧値とを、式(9)にそれぞれ代入して立てた3点の連立方程式を解くことによって決定できる。なお、c4はc1に等しい値になる。
【0093】
以上のように電流減少方向での純抵抗と活性化分極だけの電圧降下曲線の式(9)が求まったところで、式(9)と元の式(1)との差を求めることによって、電流減少方向での濃度分極の大きさを示す、以下のような近似式が得られることになる。
Vcg=(a3−a1)I+(b4−b1)I ……(10a)
そして、この式に電流減少時の任意の電流値In を代入することによって、任意の電流値In での濃度分極による電圧降下Vcgn を次式のように算出することができる。
Vcgn =(a3−a1)In+(b4−b1)In ……(10b)
ここで、電流減少方向での活性化分極抵抗Rcgは、以下のように表され、電流の大きさによって変化していることが分かる。
Rcg=(a3−a1)In +(b4−b1) ……(10c)
【0094】
以上によって、任意の電流値における濃度分極による電圧降下を一般化して表され、濃度分極以外による電圧降下と分離して算出することができるようになる。
【0095】
次に、純抵抗の算出の仕方を説明する。上式(5)で表される濃度分極を削除した純抵抗と活性化分極の電流増加方向の曲線と、式(9)で表される同じく濃度分極を削除した純抵抗と活性化分極の電流減少方向の曲線との相違は、活性化分極の相違によるものであるので、活性化分極を除けば純抵抗が求められる。
【0096】
ところで、活性化分極が互いに等しい値となる両曲線のピーク値に着目し、ピーク値での電流増加の微分値R1と電流減少の微分値R2とを次式によって求める。
R1=2×a3×Ip ×b3 ……(11a)
R2=2×a4×Ip ×b4 ……(11b)
上式によって求められる微分値R1およびR2の差は、一方が活性化分極の増加方向でのピーク値であるのに対し、他方が減少方向でのピーク値であることに基因する。そして、突入電流に相当する模擬的な放電として、0から200Aまで0.25秒かけて増加し、同じ時間をかけてピーク値から0まで減少する放電を電子負荷を使用してバッテリに行わせた場合には、ピーク値近傍での両者の変化率が等しく、両者の中間に純抵抗による電流−電圧特性が存在すると理解できるので、両微分値を加算して2で割ることによって、純抵抗Rを次式によって求めることができる。
R=(R1+R2)/2 ……(12)
【0097】
以上は、突入電流に相当する模擬的な放電を電子負荷を使用してバッテリに行わせた場合について説明したが、実車両の場合には、上述したようにスタータモータとして直流モータを使用しているとき、界磁コイルに突入電流が流れている間に電流はピークに達し、クランキングはピークに達した後ピーク電流の半分以下に低下した電流で作動している。従って、電流増加方向は3ミリ秒(msec)という短時間で終了してしまい、電流増加ピーク値ではほとんど濃度分極が発生しない早い電流の変化であるが、電流減少方向は電流増加方向に比べて150msecという長い時間電流が流れるので、減少方向とはいえ、大きな濃度分極が発生する。ただし、クランキング期間については、突入電流の流れている期間とは異質の現象が生じているので、この期間のバッテリの放電電流と端子電圧については、電流減少方向の電流−電圧特性を決定するためのデータとしては使用しないようにする。
【0098】
このような状況で、実車両では、図7に示すように、電流増加方向は電流増加開始点とピーク値の2点間を結ぶ直線にて近似することができ、しかもこのピーク値500(A)での濃度分極の発生は0(A)と近似することも可能である。この場合には、電流増加方向については、ピーク値の微分値としては、電流増加方向の近似直線の傾きを使用することになる。
【0099】
ただし、このような場合には、電流増加方向の近似直線の傾きと、電流減少方向の二次の近似式のピーク点における接線の傾きとを単純に加算平均することはできない。何故ならば、このような状況では、ピーク点までとそれ以降で、活性化分極の発生度合いが全く異なり、ピーク値近傍での両者の変化率が等しくなるという前提が成立しなくなるからである。
【0100】
このような場合には、純抵抗を求めるに当たって、濃度分極による電圧降下を除いた第1及び第2の近似式のピーク値に対応する点における単位電流変化当たりの2つの端子電圧変化の値、すなわち、傾きに、突入電流が流れている総時間に占める単調増加期間及び単調減少期間の時間の割合をそれぞれ乗じた上で加算すればよい。すなわち、総時間を単調増加及び単調減少にそれぞれ要した時間で比例按分した按分率を各傾きに乗じた上で加算することになる。このようにすることによって、活性化分極と濃度分極とが相互に影響し合うことを考慮して純抵抗を求めることができる。すなわち、活性化分極は原則電流値に応じた大きさのものが生じるが、その時々の濃度分極量に左右され、原則通りには生じることにならず、濃度分極が小さければ活性化分極も小さくなり、大きければ大きくなる。何れにしても、濃度分極による電圧降下を除いた2つの近似式のピーク値に対応する点における単位電流変化当たりの2つの端子電圧変化の値の中間の値をバッテリの純抵抗の値として測定することができる。このように純抵抗を求めることによって、純抵抗による電圧降下をこれ以外による電圧降下と分離して算出することができる。
【0101】
上述のように純抵抗Rが求まったときには、図6に示すように、IR電圧降下直線を描くことができ、純抵抗に電流値を乗じることによって、任意の電流値における純抵抗による電圧降下を算出することができる。
【0102】
IR電圧降下が算出できるようになったときには、電流増加方向の濃度分極を除いた上式(5)の近似式とIRとの差を求めることによって、電流増加方向での活性化分極の大きさを示す、以下のような近似式が得られることになる。
Vkz=a3I+(b1−R)I ……(13a)
そして、この式に電流増加時の任意の電流値In を代入することによって、電流増加方向での任意の電流値In での活性化分極による電圧降下Vknを次式のように算出することができる。
Vkzn =a3In+(b1−R)In ……(13b)
ここで、電流増加方向での活性化分極抵抗Rkzは、以下のように表され、電流の大きさによって変化していることが分かる。
Rkz=a3In +(b1−R) ……(13c)
【0103】
なお、電流減少方向の濃度分極を除いた純抵抗と活性化分極だけの電圧降下曲線の式(9)とIRとの差を求めることによって、電流減少方向での活性化分極の大きさを示す式
Vkg=a4I+(b4−R)I ……(14a)
が得られる。そして、この式に電流減少時の任意の電流値In を代入することによって、電流減少方向の任意の電流値In での活性化分極による電圧降下Vkgを次式のように算出することができる。
Vkgn =a4In+(b4−R)In ……(14b)
ここで、電流減少方向での活性化分極抵抗Rkgは、以下のように表される。
Rkg=a4In +(b4−R) ……(14c)
【0104】
以上によって、任意の電流値における活性化分極による電圧降下を一般化して表され、活性化分極以外による電圧降下と分離して算出することができるようになる。
【0105】
また、最近の車両では、モータとしては、マグネットモータなどのDCブラッシレスなどの三相入力を必要とする交流モータが使用されることが増えてきている。このようなモータの場合、突入電流はそれ程早く短時間にピーク値に達することがなく、100mescほどの時間を要し、電流増加方向においても濃度分極の発生が起こるので、上述した模擬的な放電の場合と同様に、電流増加方向の電流変化曲線は二次近似することが必要になる。
【0106】
また、活性化分極の電流減少方向の近似をする場合、ピーク値とこれ以外の2点を定める際、図8に示すように、B点として電流0(A)の点を使用すると、近似式を求める際の計算を簡略化することができる。
【0107】
さらに、例えば、ピーク電流の1/2程度の電流値に対応する点に濃度分極の削除した点を定めた場合、図9に示すように、この点とピーク値の2点を結ぶ直線に一次近似してもよい。この場合、電流減少方向については、ピーク値の微分値としては、電流減少方向の近似直線の傾きを使用することになるが、二次曲線を使用したものと変わらない、精度のよい純抵抗が求められる。
【0108】
以上要するに、濃度分極による電圧降下を除いた2つの近似式と元の近似式との差を求めることによって、濃度分極による電圧降下の近似式を求めることができる。また、濃度分極による電圧降下を除いた2つの近似式のピーク値に対応する点における単位電流変化当たりの2つの端子電圧変化の値の中間の値をバッテリの純抵抗の値として測定することができる。さらに、求めた純抵抗によるIR直線式と濃度分極による電圧降下を除いた2つの近似式との差を求めることによって活性化分極による電圧降下の近似式を求めることができる。
【0109】
そこで、車載用バッテリの純抵抗の測定方法を、定負荷として、増加する放電電流及び減少する放電電流のいずれにおいても濃度分極の発生を伴う突入電流が流れる例えばスタータモータが使用されている場合について具体的に説明する。
【0110】
定負荷が動作されると、バッテリからは定常値を越えて単調増加しピーク値から定常値に単調減少する放電電流が流れる。このときのバッテリの放電電流と端子電圧とを、例えば100マイクロ秒(μsec)の周期にてサンプリングすることで周期的に測定し、バッテリの放電電流と端子電圧との組が多数得られる。
【0111】
このようにして得られたバッテリの放電電流と端子電圧との組の最新のものを、所定時間分、例えばRAMなどの書換可能な記憶手段としてのメモリに格納、記憶して収集する。メモリに格納、記憶して収集した放電電流と端子電圧との組を用いて、最小二乗法により、端子電圧と放電電流との相関を示す増加する放電電流及び減少する放電電流に対する電流−電圧特性について式(1)及び(2)に示すような2つのの二次近似式を求める。次に、この2つの近似式から濃度分極による電圧降下を削除し、濃度分極を含まない修正した二次近似式を求める。
【0112】
このために、まず、式(1)及び(2)の近似式の電流が流れていない0(A)の時の電圧差を、純抵抗と活性化分極による電圧降下はなく、濃度分極によるものであるとして求める。また、この電圧差を利用して、増加する放電電流についての電流−電圧特性の近似式(1)上の電流ピーク値での濃度分極による電圧降下を求める。このために、濃度分極は、電流の大きさに電流の流れた時間を乗じた電流時間積によって変化していることを利用する。
【0113】
増加する放電電流についての電流−電圧特性の近似式上の電流ピーク値での濃度分極による電圧降下が求まったら次に、濃度分極の含まない近似式と含む近似式のいずれも定数及び一次係数が等しいとして、含まない近似式の二次係数を定め、増加する放電電流についての電流−電圧特性の近似式について修正した二次近似式(5)を求める。
【0114】
次に、減少する放電電流に対する電流−電圧特性について近似式(2)から濃度分極の含まない近似式を求める。このために、ピーク値以外に濃度分極を削除した2点を求める。この際に、濃度分極は、電流の大きさに電流の流れた時間を乗じた電流時間積によって変化していることを利用する。そして、ピーク値以外に濃度分極を削除した2点が求まったら、この2点とピーク値との3点の座標を利用して、減少する放電電流についての電流−電圧特性の近似式(2)について修正した二次近似式(9)を求める。
【0115】
上述のようにして求められた二次近似式(5)及び(9)と元の近似式(1)及び(2)との差をとって、濃度分極近似式(6a)及び(14a)が求められる。また、純抵抗Rを求めることにより、IR直線式と二次近似式(5)及び(9)との差を取ることによって活性化分極近似式(13a)及び(14a)が求められる。
【0116】
なお、純抵抗を求めるためには、上式(5)で表される濃度分極を削除した純抵抗と活性化分極の電流増加方向の修正二次近似式と、式(9)で表される濃度分極を削除した純抵抗と活性化分極の電流減少方向の修正二次近似式は、活性化分極の相違によるものであるので、活性化分極を除けば純抵抗が求められる。このために、両近似式のピーク値に着目し、ピーク値での電流増加の微分値と電流減少の微分値との差は、一方が活性化分極の増加方向であるのに対し、他方が減少方向であることに基因するものであるが、ピーク値近傍での両者の変化率の中間に純抵抗による電流−電圧特性が存在するとし、両微分値に突入電流が流れている総時間に占める単調増加期間及び前記単調減少期間の時間の割合をそれぞれ乗じた上で加算することによって、純抵抗を求める。
【0117】
例えば、電流増加時間が3mesc、電流減少時間が100mescとし、ピーク値での電流増加の微分値をRpolk1 、と電流減少の微分値をRpolk2 とすると、以下のようなようにして純抵抗Rを算出することができる。
R=Rpolk1 ×100/103+Rpolk2 ×3/103
【0118】
次に、バッテリの純抵抗の第2の求め方について具体的に説明すると、バッテリに正弦波による交流電圧(電圧波形e=Esinωt)を印加して、バッテリの両端間に現れる出力交流電圧(電圧波形e=Esin(ωt−θ))を、バッテリに印加した正弦波に同期して検波すると、e×eが得られることになる。
【0119】
ここで、e×eの値は、
×e=E×E×sinωt×sin(ωt−θ)
=E×E×sinωt×(sinωt×cosθ−cosωt×sinθ)
=E×E×(sinωt×cosθ−sinωt×cosωt×sinθ)
=E×E×{〔(1−cos2ωt)/2〕×cosθ−(sin2ωt/2)×sinθ}
={(E×E)/2}×{(1−cos2ωt)×cosθ−sin2ωt×sinθ}
となる。
【0120】
そこで、上記した同期検波により得られるe×eの値から、交流成分である角周波数2ωの成分を、ローパスフィルタにより除去すると、直流値(e×eLPF が、
(e×eLPF ={(E×E)/2}×cosθ
という値として得られる。
【0121】
この直流値(e×eLPF は、極座標平面上での、バッテリに印加する交流電圧eのベクトルEと、バッテリの両端に現れる出力交流電圧eのベクトルEのうちベクトルEと同じベクトル成分E×cosθとの積の1/2である。
【0122】
そして、ベクトルEはバッテリに印加する交流電圧eのピーク値を表しており、また、ベクトルEのうちベクトルEと同じベクトル成分E×cosθは、バッテリに印加する交流電圧eの周波数が分極の発生開始よりも十分に短い時間を周期とするという前提で、バッテリの純抵抗による電圧降下でその両端に現れる出力交流電圧eのピーク値を表している。
【0123】
したがって、バッテリに印加する交流電圧eのピーク値(ベクトルEの値)が予め判っていることから、同期検波により得られるe×eの値をローパスフィルタにかけた後に得られる直流値(e×eLPF から、バッテリの純抵抗による電圧降下でその両端に現れる出力交流電圧eのピーク値を表す、ベクトルEのうちベクトルEと同じベクトル成分E×cosθを求めて、これを、バッテリに交流電圧eを印加することで流れる電流iで除することで、バッテリの純抵抗Rが求まる。
【0124】
尚、電流iの値は、電流センサにより実測してもよく、バッテリに交流電圧eを印加する際にV−I変換を用いることになるので、予め定められている交流電圧eに相当するV−I変換後の電流値も既知であるとして、その既知の電流値を電流iの値として保持しておき、その保持値を計算に用いるようにしてもよい。
【0125】
次に、上述したようなことを可能にして本発明のバッテリの電力供給制御方法を実施する装置の具体的な実施の形態を、図10乃至図14を参照して以下説明する。
【0126】
図10は本発明のバッテリの電力供給制御方法を適用した本発明の一実施形態に係る車載用バッテリの電力供給制御装置の概略構成を一部ブロックにて示す説明図であり、図中符号1で示す本実施形態の車載用バッテリの電力供給制御装置は、エンジン3に加えてモータジェネレータ5を有するハイブリッド車両に搭載されている。
【0127】
そして、このハイブリッド車両は、通常時はエンジン3の出力のみをドライブシャフト7からディファレンシャルケース9を介して車輪11に伝達して走行させ、高負荷時には、バッテリ13からの電力によりモータジェネレータ5をモータとして機能させて、エンジン3の出力に加えてモータジェネレータ5の出力をドライブシャフト7から車輪11に伝達し、アシスト走行を行わせるように構成されている。
【0128】
また、このハイブリッド車両は、減速時や制動時にモータジェネレータ5をジェネレータ(発電機)として機能させ、運動エネルギを電気エネルギに変換してバッテリ13を充電させるように構成されている。
【0129】
なお、モータジェネレータ5はさらに、図示しないスタータスイッチのオンに伴うエンジン3の始動時に、エンジン3のフライホイールを強制的に回転させるスタータモータとして用いられるが、その場合にモータジェネレータ5には、短時間に大きな突入電流が流される。スタータスイッチのオンによりモータジェネレータ5によってエンジン3が始動されると、イグニッションキー(図示せず。)の操作解除に伴って、スタータスイッチがオフになってイグニッションスイッチやアクセサリスイッチのオン状態に移行し、これに伴ってバッテリ13から流れる放電電流は、定常電流に移行する。
【0130】
話を構成の説明に戻すと、本実施形態の車載用バッテリの電力供給制御装置1は、アシスト走行用のモータやスタータモータとして機能するモータジェネレータ5等、電装品に対するバッテリ13の放電電流Iや、ジェネレータとして機能するモータジェネレータ5からのバッテリ13に対する充電電流を検出する電流センサ15と、バッテリ13に並列接続した1Mオーム程度の抵抗値を有し、バッテリ13の端子電圧Vを検出する電圧センサ17と、バッテリ13の内部又は周辺の温度を検出する温度センサ18とを備えている。
【0131】
また、本実施形態の車載用バッテリの電力供給制御装置1は、上述した電流センサ15、電圧センサ17及び温度センサ18の出力がインタフェース回路(以下、「I/F」と略記する。)21におけるA/D変換後に取り込まれるマイクロコンピュータ(以下、「マイコン」と略記する。)23と、不揮発性メモリ(NVM)25とを備えている。
【0132】
さらに、本実施形態の車載用バッテリの電力供給制御装置1は、バッテリ13からの暗電流を受けて作動しマイコン23の制御により純抵抗測定用の交流電圧信号(電圧波形e)を発生するファンクションジェネレータ27と、ファンクションジェネレータ27で発生した交流電圧信号(電圧波形e)を交流電流(本実施形態では1kHz)iにV−I変換してバッテリ13に流れさせるV−I変換回路29と、ファンクションジェネレータ27で発生した交流電圧信号(電圧波形e)の周期で電圧センサ17の出力を検波する同期検波回路31と、同期検波回路31の出力から交流成分を除去するローパスフィルタ33とをさらに備えている。
【0133】
そして、前記マイコン23は、CPU23a、RAM23b、及び、ROM23cを有しており、このうち、CPU23aには、RAM23b及びROM23cの他、前記I/F21やNVM25、ファンクションジェネレータ27、ローパスフィルタ33が接続されており、また、上述した図示しないスタータスイッチ、イグニッションスイッチやアクセサリスイッチ、モータジェネレータ5以外の電装品(負荷)のスイッチ等が、さらに接続されている。
【0134】
前記RAM23bは、各種データ記憶用のデータエリア及び各種処理作業に用いるワークエリアを有しており、前記ROM23cには、CPU23aに各種処理動作を行わせるための制御プログラムが格納されている。
【0135】
なお、上述した電流センサ15及び電圧センサ17の出力である電流値及び電圧値は、短い周期で高速にサンプリングされてI/F21を介して、マイコン23のCPU23aに取り込まれ、取り込まれた電流値及び電圧値は前記RAM23bのデータエリアに収集され、各種の処理のために使用される。
【0136】
ちなみに、バッテリ13は、モータとして機能する際のモータジェネレータ5に駆動用の電力を供給する他、不図示の時計等、イグニッションスイッチやアクセサリスイッチのオンオフとは無関係に常時暗電流を流す必要のある暗電流負荷35に対して電力を供給するように構成されており、この暗電流負荷35に対するバッテリ13からの電力供給ライン上には、マイコン23によりオンオフされるスイッチ37が介設されている。
【0137】
前記NVM25には、バッテリ13の劣化がない状態における純抵抗や、モータジェネレータ5をスタータモータとして機能させるのに必要な電力が蓄えられている状態におけるバッテリ13のSOCの値を基準に定めた、暗電流負荷35に対する電力供給を停止させるリミットとしての基準SOCの、いずれも標準温度(本実施形態では摂氏20度)における値に関するデータ、即ち、基準純抵抗値及び基準SOC値が、予め格納されている。
【0138】
また、NVM25には、後述する処理によって割り出されるバッテリ13の純抵抗やSOCの値を、それらを求めた際に温度センサ18によって検出された温度を、上記した標準温度との温度差に応じて補正(温度補償)するための、補正前と補正後の値を対応づけたテーブルが、純抵抗とSOCとのそれぞれについて格納されている。
【0139】
次に、前記ROM23cに格納された制御プログラムに従いCPU23aが行う処理を、図11乃至図14のフローチャートを参照して説明する。
【0140】
バッテリ13からの給電を受けてマイコン23が起動しプログラムがスタートすると、図11のメインルーチンのフローチャートに示すように、CPU23aはまず初期設定を実行する(ステップS1)。
【0141】
ステップS1の初期設定が済んだならば、次に、CPU23aは、イグニッションスイッチがオンされたか否かを確認し(ステップS3)、オンされた場合は(ステップS3でY)、RAM23bのワークエリアの暗電流停止フラグF1が「1」であるか否かを確認し(ステップS5)、「1」でない場合は(ステップS5でN)、後述するステップS11に進む。
【0142】
一方、暗電流停止フラグF1が「1」である場合は(ステップS5でY)、スイッチ33を閉成させて(ステップS7)、暗電流停止フラグF1を「0」に設定した後(ステップS9)、ステップS11に進む。
【0143】
ステップS5で暗電流停止フラグF1が「1」でない場合(N)と、ステップS7でスイッチ37を閉成させた後とに各々進むステップS11では、始動時純抵抗割出処理を行う。
【0144】
このステップS11における始動時純抵抗割出処理では、図12のサブルーチンのフローチャートに示すように、急激に変化するスタータモータ(スタータモータとして機能するモータジェネレータ5)の駆動時の急激に変化する突入電流を測定することができるように、電流センサ15の検出したバッテリ13の放電電流Iや電圧センサ17の検出したバッテリ13の端子電圧VのI/F21によるサンプリング周期を、通常の500μsecから100μsecに短くする(ステップS11a)。
【0145】
その後、電流センサ15の検出したバッテリ13の放電電流Iと電圧センサ17の検出したバッテリ13の端子電圧VとのA/D変換値を対にしてI/F21を介して読み込み、読み込んだ実データをRAM23bのデータエリアに格納、記憶して収集する実データ収集処理を実行する(ステップS11b)。
【0146】
このステップS11bにおいて実データ収集処理を行っている過程で、収集した前後の実データの大小関係を比較することによって突入電流のピーク値を検出する(ステップS11c)。ピーク値が検出されたとき(ステップS11cでY)には、ピーク値検出からの時間を計時し、所定時間が経過するまで実データの収集を継続し、所定時間経過した時点(ステップS11dでY)で、ピーク値の前後の所定時間分の実データを保持する(ステップS11e)とともに、ピーク値を検出してから所定時間後にサンプリング周期を元の500μsecに戻す(ステップS11f)。
【0147】
そして、収集保持した所定時間分の実データが分析され、最小二乗法を適用して、電流−電圧特性の二次近似式を求めるのに適当なものであるかどうかが判定される。すなわち、バッテリから、0からピーク値まで単調増加する放電電流とピーク値から定常値まで単調減少する放電電流が流れているかどうかを分析する分析処理を行う(ステップS11g)。
【0148】
ステップS11gにおける分析の結果、電流−電圧特性の二次近似式を求めるのに適当なものが収集されているとき(ステップS11hでY)、増加する放電電流及び減少する放電電流に対する式(1)及び(2)で表される電流−電圧特性の二次近似式を求める近似式算出処理を実行する(ステップS11j)。
【0149】
ステップS11jの二次近似式算出処理によって求まった二次近似式から、上述した方法によって濃度分極近似式、バッテリの純抵抗、及び活性化分極近似式を求める。そして、求まった濃度分極近似式及び活性化分極近似式に任意の電流値を代入することによって、任意の電流値における濃度分極及び活性化分極による電圧降下を他の電圧降下成分と分離してそれぞれ算出する。そして、これら濃度分極及び活性化分極による電圧降下の値を、NVM25にデータが格納されている活性化分極抵抗の値や濃度分極抵抗の値を求める際に用いたのと同じ所定放電電流値によって除して、所定放電電流値における活性化分極抵抗の値や濃度分極抵抗の値を割り出し、かつ、純抵抗についても、所定放電電流値における純抵抗の値を割り出す。即ち、所定放電電流値における純抵抗の値、活性化分極抵抗の値、及び、濃度分極抵抗の値を割り出すための演算処理を実行する(ステップS11k)。
【0150】
なお、この演算処理においては、二次式に濃度分極による電圧降下が含まれている場合、この電圧降下を除いた修正二次近似式を求める修正二次近似式算出処理を行い、この修正二次近似式を用いてバッテリの純抵抗を求めるための演算処理を実行することになり、この場合には、増加する突入電流及び減少する突入電流に対する放電電流−端子電圧特性の2つの修正二次近似式のピーク値での微分値を算出した上で、2つの微分値の中間の値をバッテリの純抵抗として求める演算を行うことができる。また、特に濃度分極は放電電流の増加に対して遅延して増加する傾向があるので、純抵抗の値、活性化分極抵抗の値、及び、濃度分極抵抗の値を割り出す際に、上記した所定放電電流値を放電電流のピーク値とはせず、単調減少に移行した後の濃度分極が最大となる(飽和する)時点での放電電流の値とするようにしてもよい。
【0151】
いずれにしても、ステップS11kにおいて純抵抗の値、活性化分極抵抗の値、及び、濃度分極抵抗の値を割り出す際に、NVM25にデータが格納されている純抵抗、活性化分極抵抗、濃度分極抵抗の各値を求める際に用いた放電電流値と同じ値を用いればよい。
【0152】
そして、ステップS11kで求めたバッテリの純抵抗の値は、その時点で温度センサ18からI/F21を介して取り込まれる温度と標準温度とのギャップに応じて、NVM25に格納されている純抵抗に関する温度補償のためのテーブルを参照して、標準温度の場合の純抵抗値に換算され(ステップS11m)、この換算後の純抵抗値は、種々の目的で使用するため、RAM23bのデータエリアに格納されて記憶、更新される(ステップS11n)。ステップS11nの処理が終了したら、始動時純抵抗割出処理を終了して図11のメインルーチンに戻る。
【0153】
ちなみに、微分値の中間の値を求める方法としては、突入電流の流れ方によって2つの方法がある。
【0154】
突入電流の増加方向の時間と減少方向の時間とがほぼ等しいときには、2つの微分値の加算平均値を純抵抗として求める演算を行う。
【0155】
これに対して、突入電流の増加方向の時間と減少方向の時間とが大きく異なるときには、増加する放電電流に対する電流−電圧特性の修正二次近似式のピーク値での微分値に、放電電流の総時間に占める増加する放電電流の流れた時間の比率を乗じたものと、減少する放電電流に対する電流−電圧特性の2つの修正二次近似式のピーク値での微分値に、放電電流の総時間に占める減少する放電電流の流れた時間の比率を乗じたものとを加算した加算値を純抵抗として求める演算を行う。
【0156】
いずれの方法で純抵抗を求めた場合にも、バッテリの純抵抗は2つの微分値の中間の値として求められる。
【0157】
また、図11のフローチャートに示した例では、第1及び第2の近似式が共に二次近似式としているが、第1の近似式が一次近似式であるときには、修正近似式を求める処理は当然に不要になる。そして、この場合には、一次式の傾きを微分値に代えて利用することになる。
【0158】
ステップS11の始動時純抵抗割出処理が済んだならば、次に、図11に示すように、イグニッションスイッチがオフされたか否かを確認し(ステップS13)、オフされていない場合は(ステップS13でN)、オフされるまでステップS13をリピートし、オフされた場合は(ステップS13でY)、ステップS3にリターンする。
【0159】
また、ステップS3でイグニッションスイッチがオンされていない場合(N)は、RAM23bのワークエリアの暗電流停止フラグF1が「1」であるか否かを確認し(ステップS15)、「1」である場合は(ステップS15でY)、ステップS3にリターンし、「1」でない場合は(ステップS15でN)、駐車時純抵抗割出処理を行う(ステップS17)。
【0160】
このステップS17における駐車時純抵抗割出処理では、図13のサブルーチンのフローチャートに示すように、イグニッションスイッチがオフされてからの経過時間が所定時間に達するか、前回の駐車時純抵抗割出処理の実行からの経過時間が所定時間に達したか否かを確認し(ステップS17a)、達していない場合は(ステップS17aでN)、駐車時純抵抗割出処理を終了して図11のメインルーチンに戻る。
【0161】
一方、所定時間に達した場合は(ステップS17aでY)、純抵抗測定用の交流電圧信号(電圧波形e)をファンクションジェネレータ27に発生させ(ステップS17b)、電流センサ15の出力である電流値をI/F21を介して取り込むと共に(ステップS17c)、ローパスフィルタ33の出力を取り込む(ステップS17d)。
【0162】
そして、取り込んだそれらの値と、ファンクションジェネレータ31が発生させる交流電圧信号(電圧波形e)の値とを用いて、先に説明した計算によりバッテリ13の純抵抗の値を求め(ステップS17e)、求めたバッテリ13の純抵抗の値を、その時点で温度センサ18からI/F21を介して取り込まれる温度と標準温度とのギャップに応じて、NVM25に格納されている純抵抗に関する温度補償のためのテーブルを参照して、標準温度の場合の純抵抗値に換算し(ステップS17f)、RAM23bのデータエリアに格納されている純抵抗の値を、ステップS17fで換算した最新の値に更新した後(ステップS17g)、駐車時純抵抗割出処理を終了して図11のメインルーチンに戻る。
【0163】
ステップS17の駐車時純抵抗割出処理が済んだならば、次に、図11に示すように、SOC割出処理を行う(ステップS19)。
【0164】
このステップS19におけるSOC割出処理では、図14のサブルーチンのフローチャートに示すように、バッテリ13のSOCを割り出すべき所定周期が到来したか否かを確認し(ステップS19a)、所定周期が到来していない場合は(ステップS19aでN)、SOC割出処理を終了して図11のメインルーチンに戻る。
【0165】
一方、所定周期が到来した場合は(ステップS19aでY)、電圧センサ17の出力である電圧値をI/F21を介して取り込み(ステップS19b)、この電圧値(のデジタル値)から、バッテリ13の現在のSOCを求める(ステップS19c)。
【0166】
なお、バッテリ13のSOCは、I/F21を介して取り込んだ電圧センサ17の出力である電圧値をVn、満充電時の開回路電圧をVs、放電終止電圧をVeとした場合、電圧比では次式
SOC={(Vn−Ve)/(Vs−Ve)}×100(%)
で求められる。
【0167】
しかし、正確を期して、電力(V×Ah)の比に換算して満充電容量に対する現在の充電状態SOCを求めると、
SOC={〔(Vn+Ve)/2〕×〔(Vn−Ve)/(Vs−Ve)〕×Ah}/{〔(Vs+Ve)/2〕×Ah}×100(%)
={(Vn−Ve)/(Vs−Ve)}×100(%)
となる。
【0168】
現在のSOCを求めたならば、求めたバッテリ13のSOCの値を、その時点で温度センサ18からI/F21を介して取り込まれる温度と標準温度とのギャップに応じて、NVM25に格納されているSOCに関する温度補償のためのテーブルを参照して、標準温度の場合のSOC値に換算し(ステップS19d)、RAM23bのデータエリアに格納されているSOCの値を、ステップS19dで換算した最新の値に更新した後(ステップS19e)、SOC割出処理を終了して図11のメインルーチンに戻る。
【0169】
ステップS19のSOC割出処理が済んだならば、次に、図11に示すように、RAM23bのデータエリアに格納されている最新のバッテリ13の純抵抗の値を、NVM25に格納されている基準純抵抗値で除して、バッテリ13の劣化度を算出し(ステップS21)、NVM25に格納されているバッテリ13の基準SOC値を、ステップS21で求めたバッテリ13の劣化度により除して、補正後基準SOC値を求め(ステップS23)、RAM23bのデータエリアに格納されている最新のバッテリ13のSOCの値が、ステップS23で求めた補正後基準SOC値以下となっているか否かを確認する(ステップS25)。
【0170】
補正後基準SOC値以下となっていない場合は(ステップS25でN)、ステップS3にリターンし、補正後基準SOC値以下となっている場合は(ステップS25でY)、スイッチ37を開放させて(ステップS27)、暗電流停止フラグF1を「1」に設定した後(ステップS29)、ステップS3にリターンする。
【0171】
以上の説明からも明らかなように、本実施形態の車載用バッテリの電力供給制御装置1では、図12のフローチャートにおけるステップS11kや、図13のフローチャートにおけるステップS17eが、請求項中の内部抵抗値割出手段23Aに対応する処理となっており、図14のフローチャートにおけるステップS19bと電圧センサ17とにより、請求項中の端子電圧測定手段Aが構成されている。
【0172】
また、本実施形態の車載用バッテリの電力供給制御装置1では、図11のフローチャートにおけるステップS23が、請求項中の補正手段23Bに対応する処理となっており、図13中のステップS17b乃至ステップS17dと、電流センサ15と、ファンクションジェネレータ27と、V−I変換回路29と、同期検波回路31と、ローパスフィルタ33とにより、請求項中の端子電圧降下量測定手段Bが構成されている。
【0173】
さらに、本実施形態の車載用バッテリの電力供給制御装置1では、温度センサ18が請求項中の温度測定手段に相当しており、図13中のステップS17fが請求項中の第1温度変化割出手段23Cに対応する処理となっており、図14中のステップS19dが請求項中の第2温度変化割出手段23Dに対応する処理となっている。
【0174】
また、本実施形態の車載用バッテリの電力供給制御装置1では、図11中のステップS7が請求項中の電力供給再開手段23Eに対応する処理となっており、図12中のステップS11bと電流センサ15とで請求項中の電流測定手段Cが、ステップS11bと電圧センサ17とで請求項中の電圧測定手段Dが、各々構成されている。
【0175】
次に、上述のように構成された本実施形態の車載用バッテリの電力供給制御装置1の動作(作用)について説明する。
【0176】
まず、イグニッションスイッチがオンされてモータジェネレータ5がスタータモータとして駆動されると、それに伴う放電をバッテリ13が行っている状態で、スタータモータに定常値を越えて単調増加しピーク値から定常値に単調減少する突入電流が流れたときのバッテリの端子電圧と放電電流とが周期的に測定される。
【0177】
そして、周期的に測定されたピーク値の前後の所定時間分の実データが、RAM23bのデータエリアに格納、記憶して収集され、収集された放電電流Iと端子電圧Vとの所定時間分の実データが分析されて、最小二乗法を適用し、電流−電圧特性の2次の近似曲線式を求めるのに適当なものであるかどうかが判定される。すなわち、バッテリから定常値を越えて単調増加しピーク値から定常値以下に単調減少する放電電流が流れているかどうかが分析される。
【0178】
このため、電流−電圧特性の2次の近似曲線式を求めるのに適当なものが収集されるまで、近似曲線式算出処理が行われることがなく、近似曲線式算出処理も、既に収集した所定時間分の実データを用いて行われればよいので、端子電圧と放電電流との周期的な測定に同期して処理を行わなくてもよく、早い処理速度を必要としない。
【0179】
なお、上述した実施の形態では、イグニッションスイッチがオンされてモータジェネレータ5がスタータモータとして駆動されるときの放電電流に含まれる突入電流についてのみ注目して本発明を実施しているが、大きさこそ異なるもののスタータモータと同様に駆動開始時に突入電流の流れるスタータモータ以外の負荷にも等しく適用することができる。ただし、この場合には、IGスイッチの代わりに、負荷駆動開始時点を負荷スイッチのオン操作により捕らえて、ステップS11の処理を行うことになり、それ以外の処理は図11のフローチャートと実質的に同じ処理を行うことでよい。
【0180】
なお、上述のように分離して算出して、端子電圧の電圧降下成分を知り、この電圧降下成分からバッテリ13の現在の純抵抗の値を求めることになる。
【0181】
また、本実施形態の車載用バッテリの電力供給制御装置1では、イグニッションスイッチがオフされている状態においても、所定時間が経過する毎に、バッテリ13に交流電流が流されてそれに伴う電圧降下と交流電流の大きさとから、バッテリ13の現在の純抵抗の値を求めることになる。
【0182】
そして、イグニッションスイッチのオン時やイグニッションスイッチのオフ中に所定時間経過毎に求められるバッテリ13の純抵抗値は、その求めた時点のバッテリ13の内部や周辺の温度と標準温度とのギャップに応じて温度補償される。
【0183】
また、純抵抗値の割り出しと並行して、本実施形態の車載用バッテリの電力供給制御装置1では、イグニッションスイッチがオフされている状態において、所定周期が経過する毎に、バッテリ13の端子電圧が測定されてこれを基にバッテリ13の現在のSOCの値が求められ、純抵抗値と同様に、SOCの値を求めた時点のバッテリ13の内部や周辺の温度と標準温度とのギャップに応じて温度補償される。
【0184】
そして、温度補償後の純抵抗値と、バッテリ13の新品時の標準温度における純抵抗値との比率によって、予め定められている暗電流負荷35に対する電力供給を停止させるか否かの判断基準となっているNVM25の基準SOC値を補正した、補正後基準SOC値が割り出されて、温度補償後の最新のSOC値が補正後基準SOC値以下の値になったならば、それまで閉成されていたスイッチ37が開放されて、暗電流負荷35に対するバッテリ13からの電力供給が停止される。
【0185】
尚、停止された暗電流負荷35に対するバッテリ13からの電力供給は、その後、イグニッションスイッチがオンされた時点で、スイッチ37の閉成により再開される。
【0186】
ちなみに、イグニッションスイッチがオフされている状態においてバッテリ13の現在の純抵抗の値を求める、イグニッションスイッチのオフからの経過時間や、イグニッションスイッチがオフされている状態においてバッテリ13の現在のSOCの値を求める所定周期は、例えば24時間毎であってもよく、或は、1時間毎であってもよい。
【0187】
このように本実施形態の車載用バッテリの電力供給制御装置1によれば、バッテリ13の現在の純抵抗と新品時の純抵抗との相違に応じて、予め定められている暗電流負荷35に対する電力供給を停止させるか否かの判断基準となっているNVM25の基準SOC値を補正して、補正後の基準SOC値と現在のバッテリ13のSOC値との比較により暗電流負荷35に対するバッテリ13からの電力供給を停止するか否かを判断するようにしたので、バッテリ13の劣化の進行に伴う放電可能容量の低下がバッテリ13に生じていても、それを考慮に入れて暗電流負荷35に対するバッテリ13からの電力供給が停止されるようにして、モータジェネレータ5をスタータモータとして機能させるのに必要な電力を割り込むまでイグニッションスイッチのオフ中に暗電流負荷35に対してバッテリ13からの電力供給が継続されてしまうのを、確実に防止することができる。
【0188】
尚、割り出しの条件が整った際に求められたバッテリ13のSOC値や純抵抗値を、その時点において温度センサ18により測定されるバッテリ13の内部や周辺の温度と標準温度との差に応じて補正(温度補償)するための構成は、省略してもよいが、この構成を設けた方が、温度変化によるSOC値や純抵抗値の割出誤差をなくして、その影響を排除した状況でバッテリ13の暗電流負荷35に対する電力供給を停止させるべき状況にあるのか否かを判断することができるので、有利である。
【0189】
また、バッテリ13の純抵抗を割り出すタイミングは、本実施形態で説明したイグニッションスイッチのオン時等の突出電流が流れる際と、イグニッションスイッチのオフからの経過時間が所定時間に達する毎とのうち、いずれか一方だけでもよいが、これらの両方のタイミングでバッテリ13の純抵抗を割り出すようにすれば、より頻繁にバッテリ13の現在の純抵抗値を割り出してバッテリ13の劣化の進行度を反映した値、即ち、基準純抵抗値と現在の純抵抗値との比率を取得でき、バッテリ13の劣化の進行に伴う放電可能容量の減少を考慮に入れてバッテリ13のSOC値が暗電流負荷35に対するバッテリ13からの電力供給を停止させるべき状況に至っているかを判断させる上で、より判断時点に近い劣化状況を考慮に入れて判断することができるので、有利である。
【0190】
さらに、本実施形態の車載用バッテリの電力供給制御装置1では、暗電流負荷35に対するバッテリ13からの電力供給を停止させるべき状況に至っているか否かを判断する指標として、バッテリ13のSOC値を用いたが、SOC値と直線的な(或はそれに近い)関係があることから、バッテリ13の端子電圧(好ましくは平衡状態における開回路電圧)を、暗電流負荷35に対するバッテリ13からの電力供給を停止させるべき状況に至っているか否かを判断する指標として用いるようにしてもよい。
【0191】
その場合には、NVM25には、基準SOC値に代えて、モータジェネレータ5をスタータモータとして機能させるのに必要な電力が蓄えられている状態におけるバッテリ13の端子電圧の値を基準に定めた、暗電流負荷35に対する電力供給を停止させるリミットとしての基準端子電圧の、標準温度における値に関するデータ、即ち、基準端子電圧値が、予め格納されることになり、また、割り出しの条件が整った際に測定されるバッテリ13の端子電圧を温度補償する場合には、そのための、補正前と補正後の端子電圧値を対応づけたテーブルが格納されることになる。
【0192】
そして、図15のフローチャートに変更部分のみ抽出して示すように、図11のフローチャートにおけるステップS19に代えて、バッテリ13の現在の端子電圧値を割り出す処理が行われ(ステップS19A)、また、ステップS23に代えて、NVM25に格納されているバッテリ13の基準端子電圧値を、ステップS21で求めたバッテリ13の劣化度により除して、補正後基準端子電圧値を求める処理が行われ(ステップS23A)、ステップS25に代えて、RAM23bのデータエリアに格納されている最新のバッテリ13の端子電圧値が、ステップS23Aで求めた補正後基準端子電圧値以下となっているか否かを確認する処理が行われて(ステップS25A)、補正後基準端子電圧値以下となった場合に(ステップS25AでY)、ステップS27においてスイッチ37が開放されることになる。
【0193】
尚、ステップS19Aの具体的な処理の中身は、図14のフローチャートにおけるステップS19cが省略されて、ステップS19dの処理が端子電圧値について行われることになる他は、基本的に図14のフローチャートに示す処理と同様である。
【0194】
そして、この場合には、図15のフローチャートにおけるステップS23Aが、請求項中の補正手段23Bに対応する処理となる他は、請求項中の各手段等と実施形態中の処理、要素との対応関係に変更はない。
【0195】
また、暗電流負荷35に対するバッテリ13からの電力供給を停止させるべき状況に至っているか否かを判断する指標として、本実施形態の車載用バッテリの電力供給制御装置1のようなバッテリ13のSOC値や、上述した変形例のようなバッテリ13の端子電圧に代えて、イグニッションスイッチのオフからの連続経過時間を用いるようにしてもよい。
【0196】
その場合には、NVM25には、基準SOC値や基準端子電圧値に代えて、バッテリ13の自然放電や暗電流負荷35による単位時間当たりの電力消費量を参考に、モータジェネレータ5をスタータモータとして機能させるのに必要な電力が蓄えられている状態を維持することを基準に定めた、暗電流負荷35に対する電力供給を停止させるリミットとしての基準供給期間の、標準温度における値に関するデータ、即ち、基準供給期間値(例えば30日間)が、予め格納されることになる。
【0197】
そして、図16のフローチャートに変更部分のみ抽出して示すように、図11のフローチャートにおけるステップS19が省略されて、ステップS23に代えて、NVM25に格納されているバッテリ13の基準供給期間値を、ステップS21で求めたバッテリ13の劣化度に応じた期間短縮(例えば5日間短縮)して、補正後基準供給期間値を求める処理が行われ(ステップS23B)、ステップS25に代えて、イグニッションスイッチをオフしてからの連続経過期間が、ステップS23Bで求めた補正後基準供給期間値に達したか否かを確認する処理が行われて(ステップS25B)、補正後基準供給期間値に達した場合に(ステップS25BでY)、ステップS27においてスイッチ37が開放されることになる。
【0198】
尚、この場合には、図16のフローチャートにおけるステップS23Bが、請求項中の補正手段23Bに対応する処理となる。
【0199】
ちなみに、バッテリ13の純抵抗は、充放電の繰り返しによる劣化の進行に伴い上昇するのが通常であるが、SOCが100%に近い状態まで充電された場合に限っては、ガッシング状態の発生により劣化の進行度合いとは無関係に純抵抗の値が大きくなる傾向を示す。
【0200】
そして、ガッシング状態の発生により大きくなった純抵抗の値は、充電の終了に伴い、暗電流負荷35やモータジェネレータ5等の負荷に対する放電状態にバッテリ13が移行してSOCが低下すると、本来の、劣化の状態に応じた値に下がる。
【0201】
そのため、上述したいずれの実施形態についても、図11のフローチャートにおけるステップS11やステップS17において割り出される放電中のバッテリ13の純抵抗の値、或は、その温度補償後の値が、減少傾向にある間は、その時点での純抵抗の値と基準純抵抗値とのギャップに応じて、暗電流負荷35に対するバッテリ13からの電力供給を停止させるべき状況に至っているか否かの判断基準を、電力供給が相対的に早期に停止されるように補正しないようにすることを、必要に応じて実施してもよい。
【0202】
そして、そのようにする場合には、図11のフローチャートにおけるステップS11やステップS17において割り出されるバッテリ13の純抵抗の値、或は、その温度補償後の値を、連続して複数RAM23bやNVM25に格納しておき、それらの連続して割り出された純抵抗の値が減少傾向を示している間については、最新の純抵抗の値(又はその温度補償後の純抵抗値)と基準純抵抗値とのギャップに応じて、補正後基準SOC値や補正後基準端子電圧値を高くしたり、補正後基準供給期間値を短縮しないように、図11のフローチャートにおけるステップS25、図15のフローチャートにおけるステップS25A、図16のフローチャートにおけるステップS25Bの、いずれの処理にも移行せず、ステップS3にリターンするステップを、それらステップS25、ステップS23A、ステップS25Bの前に設けるようにすればよい。
【0203】
その場合には、ステップS25、ステップS23A、ステップS25Bの前に設けるステップと、ステップS11やステップS17において割り出されるバッテリ13の純抵抗の値、或は、その温度補償後の値を、連続して複数RAM23bやNVM25に格納し、それらの連続して割り出された純抵抗の値が減少傾向を示しているか否かを確認するステップとによって、請求項中の内部抵抗値推移判別手段23Fが構成されることになる。
【0204】
ちなみに、上述した各実施形態ではいずれも、バッテリ13の放電電流を電流センサ15により測定してバッテリ13の純抵抗を求め、これを基にして求められるバッテリ13の劣化度を参照して、エンジン3の停止中におけるバッテリ13から暗電流負荷35に対する電力供給を停止させるタイミングを、必要に応じてデフォルトのタイミングよりも早い時期に変更させるか否かを判断する場合について説明した。
【0205】
しかし、例えば、スタータモータ(スタータモータとして機能するモータジェネレータ5)の駆動時の急激に変化する突入電流が予め経験的に分かっている場合に、その放電電流の値をNVM25に記憶させておく等して、その際に電圧センサ17の検出したバッテリ13の端子電圧VとNVM25に記憶させておいた放電電流の値とを用いて、活性化分極や濃度分極を含んだバッテリ13の内部抵抗を求め、これを基にしてエンジン3の停止中におけるバッテリ13から暗電流負荷35に対する電力供給を停止させるタイミングを決定するようにして、電流センサ15を省略する構成としてもよい。
【0206】
そのように構成すれば、活性化分極や濃度分極を含んだバッテリ13の内部抵抗を指標としてバッテリ13の劣化の度合いを求める分だけ、純抵抗を指標として求める上記の各実施形態に比べて精度が落ちるものの、その分、電流センサ15を省略できるので、構成及びコスト上有利である。
【0207】
また、上記の各実施形態では、エンジン3の停止中におけるバッテリ13から暗電流負荷35に対する電力供給を停止させるタイミングをデフォルトのタイミングよりも早い時期に変更させるか否かを、バッテリ13の劣化度を参照して判断する場合について説明した。
【0208】
しかし、それ以前に、エンジン3の停止中におけるバッテリ13がどのような状態にあるのかを知る指標となるバッテリ13のSOCを、上記の各実施形態で説明したような動作により求められるバッテリ13の純抵抗や内部抵抗と、NVM25に予め格納されているそれらの基準値とを用いて、バッテリ13から放出可能なクーロン量としてのSOCを求める方法及び装置としても利用可能である。
【0209】
ちなみに、そのように利用する場合には、マイコン23のROM23cに格納された制御プログラムに従いCPU23aが行う処理が、図11のフローチャートにおけるステップS5乃至ステップS9と、ステップS25乃至ステップS29とを省略した内容となる。
【0210】
最後に、発明の実施の形態の冒頭でも述べたように、上記の各実施形態では車両に搭載されたバッテリを例に取って説明したが、本発明は車両に搭載されたバッテリに限らず、負荷に電力を供給するバッテリ一般について広く適用可能であることは、言うまでもない。
【0211】
【発明の効果】
以上に説明したように請求項1に記載した本発明のバッテリのSOC検出方法と、請求項19に記載した本発明のバッテリのSOC検出装置とによれば、電源のオフ中におけるバッテリのSOC(state of charge )として、端子電圧測定条件の充足時点においてバッテリが現実に放電できるクーロン量の、満充電状態のバッテリが所定の標準状態にあるときに放電可能なクーロン量に対する割合を示す値が、予め定められた端子電圧測定条件が充足される毎に求められるバッテリの端子電圧に基づいて求められるようにして、バッテリの状態が変化して、バッテリが現実に放電できるクーロン量が所定の標準状態にあるときよりも低下していても、電源のオフ中におけるバッテリのSOCを精度良く検出することができる。
【0212】
また、請求項2に記載した本発明のバッテリのSOC検出方法によれば、請求項1に記載した本発明のバッテリのSOC検出方法において、請求項20に記載した本発明のバッテリのSOC検出装置によれば、請求項19に記載した本発明のバッテリのSOC検出装置において、いずれも、エンジンの動作中に充電される車載用のバッテリについて、充電が行われないエンジンの停止中におけるSOCが、バッテリの劣化による放電可能容量の減少の状況が反映されたバッテリの端子電圧の値を用いて求められるようにして、バッテリに劣化による放電可能容量の減少が発生していても、電源のオフ中におけるバッテリのSOCを精度良く検出することができる。
【0213】
請求項3に記載した本発明のバッテリのSOC検出方法によれば、請求項1に記載した本発明のバッテリのSOC検出方法において、請求項21に記載した本発明のバッテリのSOC検出装置によれば、請求項19に記載した本発明のバッテリのSOC検出装置において、いずれも、電源のオフ中におけるバッテリのSOCを求めるのに用いられるバッテリの端子電圧に、バッテリの劣化による放電可能容量の減少の状況が反映されるようにして、バッテリに劣化による放電可能容量の減少が発生していても、電源のオフ中におけるバッテリのSOCを精度良く検出することができる。
【0214】
また、請求項4に記載した本発明のバッテリのSOC検出方法によれば、請求項3に記載した本発明のバッテリのSOC検出方法において、請求項22に記載した本発明のバッテリのSOC検出装置によれば、請求項21に記載した本発明のバッテリのSOC検出装置において、いずれも、バッテリの劣化による放電可能容量の減少の状況を反映させたバッテリの端子電圧の値を用いての、バッテリのSOCの検出を、バッテリを消耗させることなく実施することができる。
【0215】
さらに、請求項5に記載した本発明のバッテリのSOC検出方法によれば、請求項3又は4に記載した本発明のバッテリのSOC検出方法において、請求項23に記載した本発明のバッテリのSOC検出装置によれば、請求項21又は22に記載した本発明のバッテリのSOC検出装置において、いずれも、バッテリのSOCを求めるのに用いるバッテリの端子電圧や、これにバッテリの劣化による放電可能容量の減少の状況を反映させるために求められるバッテリの最新の内部抵抗値を取得した時点におけるバッテリの内部又は周辺の温度が、基準内部抵抗値を定める際の前提としたバッテリの内部又は周辺の基準温度に対して、変化していても、その温度の変化によるバッテリの端子電圧や内部抵抗値の変動分を補償して、バッテリのSOCをより正確に検出することができる。
【0216】
さらに、請求項6に記載した本発明のバッテリのSOC検出方法によれば、請求項3、4又は5に記載した本発明のバッテリのSOC検出方法において、請求項24に記載した本発明のバッテリのSOC検出装置によれば、請求項21、22又は23に記載した本発明のバッテリのSOC検出装置において、いずれも、エンジンの動作中に充電される車載用のバッテリについて、充電が行われないエンジンの停止中におけるSOCが、バッテリの劣化による放電可能容量の減少の状況が反映されたバッテリの端子電圧の値を用いて求められるようにして、バッテリに劣化による放電可能容量の減少が発生していても、電源のオフ中におけるバッテリのSOCを精度良く検出し、かつ、分極の影響を含まないバッテリの純抵抗値を指標とし、バッテリの劣化による放電可能容量の減少の状況をより正確に反映させたバッテリの端子電圧の値を用いて、バッテリのSOCを検出させることができる。
【0217】
また、請求項7に記載した本発明のバッテリのSOC検出方法によれば、請求項3、4、5又は6に記載した本発明のバッテリのSOC検出方法において、請求項25に記載した本発明のバッテリのSOC検出装置によれば、請求項21、22、23又は24に記載した本発明のバッテリのSOC検出装置において、いずれも、満充電乃至その近傍の充電状態にあるために劣化の進行とは無関係に内部抵抗が高い状況にあるバッテリのSOCが、現実に発生している劣化による放電可能容量の減少以上に放電可能容量が減少しているものとして必要以上に低めの値として求められてしまうのを、防止することができる。
【0218】
さらに、請求項8に記載した本発明のバッテリの電力供給制御方法と、請求項26に記載した本発明のバッテリの電力供給制御装置とによれば、バッテリの充電状態が放電停止状態に至るまで低下したか否かの判断が、バッテリの劣化による放電可能容量の減少の状況が反映された値を用いて行われるようにして、バッテリに劣化による放電可能容量の減少が発生していても、暗電流負荷に対するバッテリの電力供給を、必要な充電状態を割り込む前に精度良く停止させることができる。
【0219】
また、請求項9に記載した本発明のバッテリの電力供給制御方法によれば、請求項8に記載した本発明のバッテリの電力供給制御方法において、請求項27に記載した本発明のバッテリの電力供給制御装置によれば、請求項26に記載した本発明のバッテリの電力供給制御装置において、いずれも、バッテリの劣化による放電可能容量の減少の状況が反映されたバッテリの内部抵抗値を用いての、バッテリの充電状態が放電停止状態に至るまで低下したか否かの判断を、バッテリを消耗させることなく実施することができる。
【0220】
さらに、請求項10に記載した本発明のバッテリの電力供給制御方法によれば、請求項8又は9に記載した本発明のバッテリの電力供給制御方法において、請求項28に記載した本発明のバッテリの電力供給制御装置によれば、請求項26又は27に記載した本発明のバッテリの電力供給制御装置において、いずれも、バッテリの最新の内部抵抗値やバッテリの端子電圧を取得した時点の温度が、放電停止状態を定める際の前提とした基準温度や、電源のオフ中におけるバッテリの充電状態が放電停止状態に至るまで低下したか否かの判断基準を定める際の前提としたバッテリの内部又は周辺の基準温度に対して、変化していても、その温度差に応じたバッテリの内部抵抗値や端子電圧の変動分を補償して、バッテリの充電状態が放電停止状態に至るまで低下したか否かをより正確に判断することができる。
【0221】
また、請求項11に記載した本発明のバッテリの電力供給制御方法によれば、請求項8、9又は10に記載した本発明のバッテリの電力供給制御方法において、請求項29に記載した本発明のバッテリの電力供給制御装置によれば、請求項26、27又は28に記載した本発明のバッテリの電力供給制御装置において、いずれも、バッテリの充電状態が予め定めた放電停止状態に至るまで低下して暗電流負荷に対する電力供給を停止させる状況に至ったか否かの判断を、電源のオフ中にも頻繁に行われるようにし、かつ、バッテリの劣化による放電可能容量の減少分だけ早めにバッテリから暗電流負荷に対する電力供給が停止されるようにして、バッテリに必要な電力をより確実に残すことができる。
【0222】
さらに、請求項12に記載した本発明のバッテリの電力供給制御方法によれば、請求項8、9又は10に記載した本発明のバッテリの電力供給制御方法において、請求項30に記載した本発明のバッテリの電力供給制御装置によれば、請求項26、27又は28に記載した本発明のバッテリの電力供給制御装置において、いずれも、バッテリの充電状態が予め定めた放電停止状態に至るまで低下して暗電流負荷に対する電力供給を停止させる状況に至ったか否かの判断を、電源のオフ中にも頻繁に行われるようにし、かつ、バッテリの劣化による放電可能容量の減少分だけ早めにバッテリから暗電流負荷に対する電力供給が停止されるようにして、バッテリに必要な電力をより確実に残すことができる。
【0223】
また、請求項13に記載した本発明のバッテリの電力供給制御方法によれば、請求項31に記載した本発明のバッテリの電力供給制御装置によれば、いずれも、バッテリの充電状態が放電停止状態に至るまで低下したか否かの判断が、バッテリの劣化による放電可能容量の減少の状況が反映された値を用いて行われるようにして、バッテリに劣化による放電可能容量の減少が発生していても、暗電流負荷に対するバッテリの電力供給を、必要な充電状態を割り込む前に精度良く停止させることができる。
【0224】
さらに、請求項14に記載した本発明のバッテリの電力供給制御方法によれば、請求項8、9、10、11、12又は13に記載した本発明のバッテリの電力供給制御方法において、請求項32に記載した本発明のバッテリの電力供給制御装置によれば、請求項26、27、28、29、30又は31に記載した本発明のバッテリの電力供給制御装置において、いずれも、電源がオンされて負荷に対する電力供給が必要となっても、先に停止された暗電流負荷に対する電力供給が引き続き停止されたままとなってしまうのを防止することができる。
【0225】
また、請求項15に記載した本発明のバッテリの電力供給制御方法によれば、請求項8、9、10、11、12、13又は14に記載した本発明のバッテリの電力供給制御方法において、請求項33に記載した本発明のバッテリの電力供給制御装置によれば、請求項26、27、28、29、30、31又は32に記載した本発明のバッテリの電力供給制御装置において、いずれも、エンジンの動作中に充電される車載用のバッテリについて、充電状態が放電停止状態に至るまで低下したか否かの判断が、バッテリの劣化による放電可能容量の減少の状況が反映された値を用いて行われるようにして、バッテリに劣化による放電可能容量の減少が発生していても、暗電流負荷に対するバッテリの電力供給を、必要な充電状態を割り込む前に精度良く停止させることができる。
【0226】
さらに、請求項16に記載した本発明のバッテリの電力供給制御方法によれば、請求項15に記載した本発明のバッテリの電力供給制御方法において、請求項34に記載した本発明のバッテリの電力供給制御装置によれば、請求項33に記載した本発明のバッテリの電力供給制御装置において、いずれも、暗電流負荷に対するバッテリからの電力供給を停止させるか否かを決定するための、バッテリの充電状態が予め定めた放電停止状態に至るまで低下したか否かの判断を、分極の影響を含まないバッテリの純抵抗値を指標として、バッテリの劣化による放電可能容量の減少の状況をより正確に反映させて行わせることができる。
【0227】
また、請求項17に記載した本発明のバッテリの電力供給制御方法によれば、請求項15又は16に記載した本発明のバッテリの電力供給制御方法において、請求項35に記載した本発明のバッテリの電力供給制御装置によれば、請求項33又は34に記載した本発明のバッテリの電力供給制御装置において、いずれも、エンジンの停止中におけるバッテリを、エンジンを始動させるための電動始動装置を少なくとも1回以上駆動するために必要な電力が蓄えられた状態に保つことができる。
【0228】
さらに、請求項18に記載した本発明のバッテリの電力供給制御方法によれば、請求項8、9、10、11、12、13、14、15、16又は17に記載した本発明のバッテリの電力供給制御方法において、請求項36に記載した本発明のバッテリの電力供給制御装置によれば、請求項26、27、28、29、30、31、32、33、34又は35に記載した本発明のバッテリの電力供給制御装置において、いずれも、満充電乃至その近傍の充電状態にあるために劣化の進行とは無関係に内部抵抗が高い状況にあるバッテリからの、暗電流負荷に対する電力供給が、実際にはまだ停止させる程の充電状態に低下していないにも拘わらず停止されてしまうのを、防止することができる。
【図面の簡単な説明】
【図1】本発明のバッテリの電力供給制御装置の基本構成図である。
【図2】本発明のバッテリの電力供給制御装置の基本構成図である。
【図3】スタータモータ駆動開始時の突入電流を伴う放電電流の一例を示すグラフである。
【図4】2次近似式で表したI−V特性の一例を示すグラフである。
【図5】増加方向の近似式から濃度分極の除き方の一例を説明するためのグラフである。
【図6】減少方向の近似式から濃度分極の除き方の一例を説明するためのグラフである。
【図7】増加方向を一次近似式で表したI−V特性の一例を示すグラフである。
【図8】減少方向の近似式から濃度分極の除き方の他の例を説明するためのグラフである。
【図9】減少方向の近似式から濃度分極の除き方の別の例を説明するためのグラフである。
【図10】本発明のバッテリの電力供給制御方法を適用した本発明の一実施形態に係る車載用バッテリの電力供給制御装置の概略構成を一部ブロックにて示す説明図である。
【図11】図10のマイクロコンピュータのCPUがROMに格納された制御プログラムに従い行う処理を示すメインルーチンのフローチャートである。
【図12】図11の始動時純抵抗割出処理を示すサブルーチンのフローチャートである。
【図13】図11の駐車時純抵抗割出処理を示すサブルーチンのフローチャートである。
【図14】図11のSOC割出処理を示すサブルーチンのフローチャートである。
【図15】本発明のバッテリの電力供給制御方法を適用した本発明の他の実施形態に係る車載用バッテリの電力供給制御装置において、マイクロコンピュータのCPUがROMに格納された制御プログラムに従い行う処理を示すメインルーチンの一部のフローチャートである。
【図16】本発明のバッテリの電力供給制御方法を適用した本発明のさらに他の実施形態に係る車載用バッテリの電力供給制御装置において、マイクロコンピュータのCPUがROMに格納された制御プログラムに従い行う処理を示すメインルーチンの一部のフローチャートである。
【符号の説明】
3 エンジン
5 電動始動装置
13 バッテリ
18 温度測定手段
23 マイクロコンピュータ
23a CPU
23b RAM
23c ROM
23A 内部抵抗値割出手段
23B 補正手段
23C 第1温度変化割出手段
23D 第2温度変化割出手段
23E 電力供給再開手段
23F 内部抵抗値推移判別手段
35 暗電流負荷
A 端子電圧測定手段
B 端子電圧降下量測定手段
C 電流測定手段
D 電圧測定手段

Claims (36)

  1. 電源のオフ中におけるバッテリのSOC(state of charge )を検出するに当たり、
    予め定められた端子電圧測定条件が充足される毎に前記バッテリの端子電圧を測定し、
    前記測定したバッテリの端子電圧に基づいて、前記端子電圧測定条件の充足時点において前記バッテリが現実に放電できるクーロン量の、満充電状態の前記バッテリが所定の標準状態にあるときに放電可能なクーロン量に対する割合を示す値を、電源のオフ中における前記バッテリのSOCとして間欠的に検出するようにした、
    ことを特徴とするバッテリのSOC検出方法。
  2. 前記バッテリはエンジンの動作中に充電される車載用のバッテリであり、前記エンジンの停止により電源がオフされる請求項1記載のバッテリのSOC検出方法。
  3. 予め定められた内部抵抗測定条件が充足される毎に前記バッテリの内部抵抗値を求め、該バッテリの予め定められた基準内部抵抗値に対する、前記求めたバッテリの最新の内部抵抗値の変化の度合いに応じて、前記測定したバッテリの端子電圧を補正し、該補正したバッテリの端子電圧に基づいて、電源のオフ中における前記バッテリのSOCを間欠的に検出するようにした請求項1記載のバッテリのSOC検出方法。
  4. 電源のオフからの連続経過期間が所定時間に達する毎に前記内部抵抗測定条件が充足されるものとし、該所定時間に達する毎に、前記バッテリに予め定められた交流電流を流れさせつつ該バッテリの端子電圧の降下量を測定し、該測定した端子電圧の降下量と前記交流電流の電流値とから前記バッテリの内部抵抗を求めるようにした請求項3記載のバッテリのSOC検出方法。
  5. 前記内部抵抗測定条件が充足される毎に、前記基準内部抵抗値を定める際の前提とした予め定めた前記バッテリの内部又は周辺の基準温度に対する、該バッテリの内部又は周辺の現在の温度の変化の度合いを求めて、該求めたバッテリの内部又は周辺の温度の変化の度合いに応じて前記求めたバッテリの内部抵抗値を補正した補正後内部抵抗値を求めると共に、前記端子電圧測定条件が充足される毎に、前記基準温度に対する、前記バッテリの内部又は周辺の現在の温度の変化の度合いを求めて、該求めたバッテリの内部又は周辺の温度の変化の度合いに応じて前記測定したバッテリの端子電圧を補正した補正後端子電圧を求め、前記補正後内部抵抗値の前記基準内部抵抗値に対する変化の度合いに応じて前記補正後端子電圧を補正した再補正後端子電圧に基づいて、電源のオフ中における前記バッテリのSOCを検出するようにした請求項3又は4記載のバッテリのSOC検出方法。
  6. 前記バッテリはエンジンの動作中に充電される車載用のバッテリであり、前記エンジンの停止により電源がオフされ、該エンジンを始動させるための電動始動装置の駆動時に前記内部抵抗測定条件が充足されるものとし、該電動始動装置の駆動時に、そのために前記バッテリが行う放電の放電電流と端子電圧とを周期的に測定して、それらの周期的に測定した端子電圧と放電電流とから、分極成分を含まない前記バッテリの純抵抗値を該バッテリの内部抵抗値として求め、前記基準内部抵抗値としての、前記バッテリの予め定められた基準純抵抗値に対する、前記求めたバッテリの最新の純抵抗値の変化の度合いに応じて、前記測定したバッテリの端子電圧を補正するようにした請求項3、4又は5記載のバッテリのSOC検出方法。
  7. 前記求めたバッテリの内部抵抗値の推移が減少傾向にある間、前記補正を行わないようにした請求項3、4、5又は6記載のバッテリのSOC検出方法。
  8. バッテリの充電状態が予め定めた放電停止状態に至るまで低下したと前記バッテリの端子電圧に基づいて判断した際に、電源のオフ中に暗電流を暗電流負荷に流れさせるための、前記バッテリから前記暗電流負荷に対する電力供給を停止させるに当たり、
    予め定められた内部抵抗測定条件が充足される毎に前記バッテリの内部抵抗値を求めると共に、
    予め定められた端子電圧測定条件が充足される毎に前記バッテリの端子電圧を測定し、
    前記バッテリの予め定められた基準内部抵抗値に対する、前記求めたバッテリの最新の内部抵抗値の変化の度合いに応じて、前記測定したバッテリの端子電圧と、電源のオフ中における前記バッテリの充電状態が前記放電停止状態に至るまで低下したか否かの予め定めた判断基準とのうち、いずれか一方を補正するようにした、
    ことを特徴とするバッテリの電力供給制御方法。
  9. 電源のオフからの連続経過期間が所定時間に達する毎に前記内部抵抗測定条件が充足されるものとし、該所定時間に達する毎に、前記バッテリに予め定められた交流電流を流れさせつつ該バッテリの端子電圧の降下量を測定し、該測定した端子電圧の降下量と前記交流電流の電流値とから前記バッテリの内部抵抗を求めるようにした請求項8記載のバッテリの電力供給制御方法。
  10. 前記内部抵抗測定条件が充足される毎に、前記放電停止状態を定める際の前提とした予め定めた前記バッテリの内部又は周辺の基準温度に対する、該バッテリの内部又は周辺の現在の温度の変化の度合いを求めて、該求めたバッテリの内部又は周辺の温度の変化の度合いに応じて前記求めたバッテリの内部抵抗値を補正した補正後内部抵抗値を求めると共に、前記端子電圧測定条件が充足される毎に、前記判断基準を定める際の前提とした予め定めた前記バッテリの内部又は周辺の基準温度に対する、該バッテリの内部又は周辺の現在の温度の変化の度合いを求めて、該求めたバッテリの内部又は周辺の温度の変化の度合いに応じて前記測定したバッテリの端子電圧を補正した補正後端子電圧を求め、前記補正後内部抵抗値の前記基準内部抵抗値に対する変化の度合いに応じて前記補正後端子電圧を補正した再補正後端子電圧と、前記補正後内部抵抗値の前記基準内部抵抗値に対する変化の度合いに応じて前記判断基準を補正した補正後判断基準とのうち、いずれか一方に基づいて、前記バッテリの充電状態が前記放電停止状態に至るまで低下したか否かを判断するようにした請求項8又は9記載のバッテリの電力供給制御方法。
  11. 電源のオフ中に所定周期毎に前記端子電圧測定条件が充足されるものとし、該所定周期毎に測定した前記バッテリの端子電圧の値が基準電圧値に至るまで低下した際に、電源のオフ中における前記バッテリの充電状態が前記放電停止状態に至るまで低下したと判断するようにし、予め定められた所定電圧値に設定されている前記基準電圧値を、前記基準内部抵抗値と前記求めたバッテリの最新の内部抵抗値との相違に応じた量だけ高くすることで、前記判断基準の補正を行うようにした請求項8、9又は10記載のバッテリの電力供給制御方法。
  12. 電源のオフ中に所定周期毎に前記端子電圧測定条件が充足されるものとし、該所定周期毎に測定したバッテリの端子電圧の値から電源のオフ中における前記バッテリのSOC(state of charge )を求め、該求めたバッテリのSOCの値が基準SOC値に至るまで低下した際に、電源のオフ中における前記バッテリの充電状態が前記放電停止状態に至るまで低下したと判断するようにし、予め定められた所定SOC値に設定されている前記基準SOC値を、前記基準内部抵抗値と前記求めたバッテリの最新の内部抵抗値との相違に応じた量だけ高くすることで、前記判断基準の補正を行うようにした請求項8、9又は10記載のバッテリの電力供給制御方法。
  13. 電源のオフ中に暗電流を暗電流負荷に流れさせるための、バッテリから前記暗電流負荷に対する電力供給を、電源のオフからの連続経過期間が基準期間に達した際に停止させるに当たり、
    予め定められた内部抵抗測定条件が充足される毎に前記バッテリの内部抵抗値を求め、
    予め定められた所定期間に設定されている前記基準期間を、前記バッテリの予め定められた基準内部抵抗値と前記求めたバッテリの最新の内部抵抗値との相違に応じた量だけ短縮するように補正するようにした、
    ことを特徴とするバッテリの電力供給制御方法。
  14. 電源のオフ中における前記バッテリから前記暗電流負荷に対する電力供給を停止させた後、電源がオンされた際に、前記バッテリから前記暗電流負荷に対する電力供給を再開させるようにした請求項8、9、10、11、12又は13記載のバッテリの電力供給制御方法。
  15. 前記バッテリはエンジンの動作中に充電される車載用のバッテリであり、前記エンジンの停止により電源がオフされる請求項8、9、10、11、12、13又は14記載のバッテリの電力供給制御方法。
  16. 前記エンジンを始動させるための電動始動装置の駆動時に前記内部抵抗測定条件が充足されるものとし、該電動始動装置の駆動時に、そのために前記バッテリが行う放電の放電電流と端子電圧とを周期的に測定して、それらの周期的に測定した端子電圧と放電電流とから、分極成分を含まない前記バッテリの純抵抗値を該バッテリの内部抵抗値として求め、前記基準内部抵抗値としての、前記バッテリの予め定められた基準純抵抗値に対する、前記求めたバッテリの最新の純抵抗値の変化の度合いに応じて、前記測定したバッテリの端子電圧と前記判断基準とのうちいずれか一方を補正するようにした請求項15記載のバッテリの電力供給制御方法。
  17. 前記放電停止状態を、前記エンジンを始動させるために電動始動装置を少なくとも1回以上駆動するのに必要な電力を蓄えた前記バッテリの充電状態とするようにした請求項15又は16記載のバッテリの電力供給制御方法。
  18. 前記求めたバッテリの内部抵抗値の推移が減少傾向にある間、前記補正を行わないようにした請求項8、9、10、11、12、13、14、15、16又は17記載のバッテリの電力供給制御方法。
  19. 電源のオフ中におけるバッテリのSOC(state of charge )を検出するバッテリのSOC検出装置であって、
    予め定められた端子電圧測定条件が充足される毎に、前記バッテリの端子電圧を測定する端子電圧測定手段を備え、
    前記端子電圧測定手段が測定した前記バッテリの端子電圧に基づいて、前記端子電圧測定条件の充足時点において前記バッテリが現実に放電できるクーロン量の、満充電状態の前記バッテリが所定の標準状態にあるときに放電可能なクーロン量に対する割合を示す値を、電源のオフ中における前記バッテリのSOCとして間欠的に検出する、
    ことを特徴とするバッテリのSOC検出装置。
  20. 前記バッテリはエンジンの動作中に充電される車載用のバッテリであり、前記エンジンの停止により電源がオフされる請求項19記載のバッテリのSOC検出装置。
  21. 予め定められた内部抵抗測定条件が充足される毎に前記バッテリの内部抵抗値を求める内部抵抗値割出手段と、前記バッテリの予め定められた基準内部抵抗値に対する、前記内部抵抗値割出手段が求めた前記バッテリの最新の内部抵抗値の変化の度合いに応じて、前記端子電圧測定手段が測定した前記バッテリの端子電圧を補正する補正手段とをさらに備え、前記補正したバッテリの端子電圧に基づいて、電源のオフ中における前記バッテリのSOCを間欠的に検出する請求項19記載のバッテリのSOC検出装置。
  22. 電源のオフからの連続経過期間が所定時間に達する毎に、前記バッテリに予め定められた交流電流を流れさせつつ該バッテリの端子電圧の降下量を測定する端子電圧降下量測定手段をさらに備えており、前記内部抵抗値割出手段は、前記連続経過期間が所定時間に達する毎に前記内部抵抗測定条件が充足されたものとして、前記端子電圧降下量測定手段により測定した前記バッテリの端子電圧の降下量と前記交流電流の電流値とから前記バッテリの内部抵抗を求める請求項21記載のバッテリのSOC検出装置。
  23. 前記バッテリの内部又は周辺の温度を測定する温度測定手段と、前記内部抵抗測定条件が充足される毎に、前記基準内部抵抗値を定める際の前提とした予め定めた前記バッテリの内部又は周辺の基準温度に対する、前記温度測定手段が測定した前記バッテリの内部又は周辺の現在の温度の変化の度合いを求める第1温度変化割出手段と、前記端子電圧測定条件が充足される毎に、前記基準温度に対する、前記温度測定手段が測定した前記バッテリの内部又は周辺の現在の温度の変化の度合いを求める第2温度変化割出手段とをさらに備えており、前記補正手段は、前記端子電圧測定手段が測定した前記バッテリの端子電圧に、前記第2温度変化割出手段が求めた前記バッテリの内部又は周辺の温度の変化の度合いに応じた補正がなされた補正後端子電圧を、前記内部抵抗値割出手段が求めた前記バッテリの最新の内部抵抗値に、前記第1温度変化割出手段が求めた前記バッテリの内部又は周辺の温度の変化の度合いに応じた補正がなされた補正後内部抵抗値の、前記基準内部抵抗値に対する変化の度合いに応じて補正するか、あるいは、前記判断基準を、前記補正後内部抵抗値の前記基準内部抵抗値に対する変化の度合いに応じて補正する請求項21又は22記載のバッテリのSOC検出装置。
  24. 前記バッテリはエンジンの動作中に充電される車載用のバッテリであり、前記エンジンの停止により電源がオフされ、前記内部抵抗値割出手段は、前記エンジンを始動させるための電動始動装置の駆動時に、前記内部抵抗測定条件が充足されたものとして、該電動始動装置の駆動のために前記バッテリが行う放電の放電電流と端子電圧とを周期的に測定する電流測定手段及び電圧測定手段を有していて、それら電流測定手段及び電圧測定手段により周期的に測定した端子電圧と放電電流とから、分極成分を含まない前記バッテリの純抵抗値を該バッテリの内部抵抗値として求めるように構成されており、前記補正手段は、前記基準内部抵抗値としての、前記バッテリの予め定められた基準純抵抗値に対する、前記内部抵抗値割出手段が求めたバッテリの最新の純抵抗値の変化の度合いに応じて、前記端子電圧測定手段が測定した前記バッテリの端子電圧を補正するように構成されている請求項21、22又は23記載のバッテリのSOC検出装置。
  25. 前記補正手段は、前記内部抵抗値割出手段が求めた連続する前記バッテリの内部抵抗値の推移が減少傾向にあるか否かを判別する内部抵抗値推移判別手段を有していて、前記バッテリの内部抵抗値の推移が減少傾向にあると前記内部抵抗値推移判別手段が判別している間、前記補正を行わないように構成されている請求項21、22、23又は24記載のバッテリのSOC検出装置。
  26. バッテリの充電状態が予め定めた放電停止状態に至るまで低下したと前記バッテリの端子電圧に基づいて判断した際に、電源のオフ中に暗電流を暗電流負荷に流れさせるための、前記バッテリから前記暗電流負荷に対する電力供給を停止させるバッテリの電力供給制御装置であって、
    予め定められた内部抵抗測定条件が充足される毎に前記バッテリの内部抵抗値を求める内部抵抗値割出手段と、
    予め定められた端子電圧測定条件が充足される毎に、前記バッテリの端子電圧を測定する端子電圧測定手段と、
    前記バッテリの予め定められた基準内部抵抗値に対する、前記内部抵抗値割出手段が求めた前記バッテリの最新の内部抵抗値の変化の度合いに応じて、前記端子電圧測定手段が測定した前記バッテリの端子電圧と、電源のオフ中における前記バッテリの充電状態が前記放電停止状態に至るまで低下したか否かの予め定めた判断基準とのうち、いずれか一方を補正する補正手段と、
    を備えることを特徴とするバッテリの電力供給制御装置。
  27. 電源のオフからの連続経過期間が所定時間に達する毎に、前記バッテリに予め定められた交流電流を流れさせつつ該バッテリの端子電圧の降下量を測定する端子電圧降下量測定手段をさらに備えており、前記内部抵抗値割出手段は、前記連続経過期間が所定時間に達する毎に前記内部抵抗測定条件が充足されたものとして、前記端子電圧降下量測定手段により測定した前記バッテリの端子電圧の降下量と前記交流電流の電流値とから前記バッテリの内部抵抗を求める請求項26記載のバッテリの電力供給制御装置。
  28. 前記バッテリの内部又は周辺の温度を測定する温度測定手段と、前記内部抵抗測定条件が充足される毎に、前記放電停止状態を定める際の前提とした予め定めた前記バッテリの内部又は周辺の基準温度に対する、前記温度測定手段が測定した前記バッテリの内部又は周辺の現在の温度の変化の度合いを求める第1温度変化割出手段と、前記端子電圧測定条件が充足される毎に、前記判断基準を定める際の前提とした予め定めた前記バッテリの内部又は周辺の基準温度に対する、前記温度測定手段が測定した前記バッテリの内部又は周辺の現在の温度の変化の度合いを求める第2温度変化割出手段とをさらに備えており、前記補正手段は、前記端子電圧測定手段が測定した前記バッテリの端子電圧に、前記第2温度変化割出手段が求めた前記バッテリの内部又は周辺の温度の変化の度合いに応じた補正がなされた補正後端子電圧を、前記内部抵抗値割出手段が求めた前記バッテリの最新の内部抵抗値に、前記第1温度変化割出手段が求めた前記バッテリの内部又は周辺の温度の変化の度合いに応じた補正がなされた補正後内部抵抗値の、前記基準内部抵抗値に対する変化の度合いに応じて補正するか、あるいは、前記判断基準を、前記補正後内部抵抗値の前記基準内部抵抗値に対する変化の度合いに応じて補正する請求項26又は27記載のバッテリの電力供給制御装置。
  29. 電源のオフ中における前記バッテリの充電状態が前記放電停止状態に至るまで低下したとの判断は、電源のオフ中に前記端子電圧測定手段が測定した前記バッテリの端子電圧の値が基準電圧値に至るまで低下した際になされ、前記補正手段は、前記判断基準の補正を、前記基準内部抵抗値と前記内部抵抗値割出手段が求めた前記バッテリの最新の内部抵抗値との相違に応じた量だけ、予め定められた所定電圧値に設定されている前記基準電圧値を高くすることで行う請求項26、27又は28記載のバッテリの電力供給制御装置。
  30. 電源のオフ中における前記バッテリの充電状態が前記放電停止状態に至るまで低下したとの判断は、電源のオフ中に前記端子電圧測定手段が測定した前記バッテリの端子電圧の値から求めたバッテリのSOC(state ofcharge )の値が基準SOC値に至るまで低下した際になされ、前記補正手段は、前記判断基準の補正を、前記基準内部抵抗値と前記内部抵抗値割出手段が求めた前記バッテリの最新の内部抵抗値との相違に応じた量だけ、予め定められた所定SOC値に設定されている前記基準SOC値を高くすることで行う請求項26、27又は28記載のバッテリの電力供給制御装置。
  31. 電源のオフ中に暗電流を暗電流負荷に流れさせるための、バッテリから前記暗電流負荷に対する電力供給を、電源のオフからの連続経過期間が基準期間に達した際に停止させるバッテリの電力供給制御装置であって、
    予め定められた内部抵抗測定条件が充足される毎に前記バッテリの内部抵抗値を求める内部抵抗値割出手段と、
    予め定められた所定期間に設定されている前記基準期間を、前記バッテリの予め定められた基準内部抵抗値と前記求めたバッテリの最新の内部抵抗値との相違に応じた量だけ短縮するように補正する補正手段と、
    を備えることを特徴とするバッテリの電力供給制御装置。
  32. 電源のオフ中における前記バッテリから前記暗電流負荷に対する電力供給を停止させた後、電源がオンされた際に、前記バッテリから前記暗電流負荷に対する電力供給を再開させる電力供給再開手段をさらに備えている請求項26、27、28、29、30又は31記載のバッテリの電力供給制御装置。
  33. 前記バッテリはエンジンの動作中に充電される車載用のバッテリであり、前記エンジンの停止により電源がオフされる請求項26、27、28、29、30、31又は32記載のバッテリの電力供給制御装置。
  34. 前記内部抵抗値割出手段は、前記エンジンを始動させるための電動始動装置の駆動時に、前記内部抵抗測定条件が充足されたものとして、該電動始動装置の駆動のために前記バッテリが行う放電の放電電流と端子電圧とを周期的に測定する電流測定手段及び電圧測定手段を有していて、それら電流測定手段及び電圧測定手段により周期的に測定した端子電圧と放電電流とから、分極成分を含まない前記バッテリの純抵抗値を該バッテリの内部抵抗値として求めるように構成されており、前記補正手段は、前記基準内部抵抗値としての、前記バッテリの予め定められた基準純抵抗値に対する、前記内部抵抗値割出手段が求めたバッテリの最新の純抵抗値の変化の度合いに応じて、前記端子電圧測定手段が測定した前記バッテリの端子電圧と、電源のオフ中における前記バッテリの充電状態が前記放電停止状態に至るまで低下したか否かの判断基準とのうち、いずれか一方を補正するように構成されている請求項33記載のバッテリの電力供給制御装置。
  35. 前記放電停止状態は、前記エンジンを始動させるための電動始動装置を少なくとも1回以上駆動するために必要な電力を蓄えた前記バッテリの充電状態である請求項33又は34記載のバッテリの電力供給制御装置。
  36. 前記補正手段は、前記内部抵抗値割出手段が求めた連続する前記バッテリの内部抵抗値の推移が減少傾向にあるか否かを判別する内部抵抗値推移判別手段を有していて、前記バッテリの内部抵抗値の推移が減少傾向にあると前記内部抵抗値推移判別手段が判別している間、前記補正を行わないように構成されている請求項26、27、28、29、30、31、32、33、34又は35記載のバッテリの電力供給制御装置。
JP2002339477A 2002-11-22 2002-11-22 バッテリのsoc検出方法及びその装置、バッテリの電力供給制御方法及びその装置 Abandoned JP2004168263A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002339477A JP2004168263A (ja) 2002-11-22 2002-11-22 バッテリのsoc検出方法及びその装置、バッテリの電力供給制御方法及びその装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002339477A JP2004168263A (ja) 2002-11-22 2002-11-22 バッテリのsoc検出方法及びその装置、バッテリの電力供給制御方法及びその装置

Publications (1)

Publication Number Publication Date
JP2004168263A true JP2004168263A (ja) 2004-06-17

Family

ID=32702418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002339477A Abandoned JP2004168263A (ja) 2002-11-22 2002-11-22 バッテリのsoc検出方法及びその装置、バッテリの電力供給制御方法及びその装置

Country Status (1)

Country Link
JP (1) JP2004168263A (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210554A (ja) * 2006-02-13 2007-08-23 Toyota Motor Corp 車両用電源装置及びバッテリ状態検知装置
US7562731B2 (en) 2005-02-08 2009-07-21 Denso Corporation Electric power generation system for vehicle
US7576512B2 (en) 2005-01-28 2009-08-18 Denso Corporation Secondary battery charging system capable of preventing drop of charged electric power
US7788925B2 (en) 2006-03-24 2010-09-07 Denso Corporation Vehicle power supply system
CN103723098A (zh) * 2012-10-11 2014-04-16 株式会社杰士汤浅国际 蓄电装置
JP2015220863A (ja) * 2014-05-16 2015-12-07 トヨタ自動車株式会社 車両制御装置
KR20160073901A (ko) * 2014-12-17 2016-06-27 주식회사 실리콘마이터스 배터리 제어장치 및 방법
KR20160107709A (ko) * 2015-03-05 2016-09-19 주식회사 인터엠 전자 기기용 배터리 관리 장치 및 그 방법
CN108349403A (zh) * 2015-12-21 2018-07-31 宝马股份公司 用于对电驱动车辆的牵引储能器充电的方法和充电器
CN108602479A (zh) * 2016-02-02 2018-09-28 株式会社杰士汤浅国际 电池装置、车辆、自动车辆
US20210159711A1 (en) * 2018-10-31 2021-05-27 Japan Tobacco Inc. Power supply unit for aerosol inhaler, aerosol inhaler, power supply control method of aerosol inhaler, and power supply control program of aerosol inhaler
CN113978311A (zh) * 2021-10-15 2022-01-28 潍柴动力股份有限公司 一种电池温度修正方法、装置及电子设备

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7576512B2 (en) 2005-01-28 2009-08-18 Denso Corporation Secondary battery charging system capable of preventing drop of charged electric power
US7562731B2 (en) 2005-02-08 2009-07-21 Denso Corporation Electric power generation system for vehicle
JP4654932B2 (ja) * 2006-02-13 2011-03-23 トヨタ自動車株式会社 車両用電源装置及びバッテリ状態検知装置
JP2007210554A (ja) * 2006-02-13 2007-08-23 Toyota Motor Corp 車両用電源装置及びバッテリ状態検知装置
US7788925B2 (en) 2006-03-24 2010-09-07 Denso Corporation Vehicle power supply system
CN103723098A (zh) * 2012-10-11 2014-04-16 株式会社杰士汤浅国际 蓄电装置
JP2015220863A (ja) * 2014-05-16 2015-12-07 トヨタ自動車株式会社 車両制御装置
KR101706115B1 (ko) * 2014-12-17 2017-02-22 주식회사 실리콘마이터스 배터리 제어장치 및 방법
KR20160073901A (ko) * 2014-12-17 2016-06-27 주식회사 실리콘마이터스 배터리 제어장치 및 방법
KR20160107709A (ko) * 2015-03-05 2016-09-19 주식회사 인터엠 전자 기기용 배터리 관리 장치 및 그 방법
KR101658461B1 (ko) * 2015-03-05 2016-09-22 주식회사 인터엠 전자 기기용 배터리 관리 장치 및 그 방법
CN108349403A (zh) * 2015-12-21 2018-07-31 宝马股份公司 用于对电驱动车辆的牵引储能器充电的方法和充电器
CN108349403B (zh) * 2015-12-21 2021-10-29 宝马股份公司 用于对电驱动车辆的牵引储能器充电的方法和充电器
US11192459B2 (en) 2015-12-21 2021-12-07 Bayerische Motoren Werke Aktiengesellschaft Method and charging apparatus for charging a traction energy storage device of an electrically driven vehicle
CN108602479A (zh) * 2016-02-02 2018-09-28 株式会社杰士汤浅国际 电池装置、车辆、自动车辆
US20210159711A1 (en) * 2018-10-31 2021-05-27 Japan Tobacco Inc. Power supply unit for aerosol inhaler, aerosol inhaler, power supply control method of aerosol inhaler, and power supply control program of aerosol inhaler
US11862997B2 (en) * 2018-10-31 2024-01-02 Japan Tobacco Inc. Power supply unit for aerosol inhaler, aerosol inhaler, power supply control method of aerosol inhaler, and power supply control program of aerosol inhaler
CN113978311A (zh) * 2021-10-15 2022-01-28 潍柴动力股份有限公司 一种电池温度修正方法、装置及电子设备
CN113978311B (zh) * 2021-10-15 2024-05-17 潍柴动力股份有限公司 一种电池温度修正方法、装置及电子设备

Similar Documents

Publication Publication Date Title
EP3107146B1 (en) Secondary battery internal temperature estimation device and secondary battery internal temperature estimation method
JP2010270747A (ja) エンジン自動制御装置
JP2005019019A (ja) バッテリの劣化判定方法およびその装置
WO2008026476A1 (fr) Procédé et dispositif pour estimer une valeur d'état de charge de batterie secondaire et procédé et dispositif de jugement de dégradation
JP2002222668A (ja) バッテリの充電状態を決定するための方法及びこの方法を実施するための装置
JP2002234408A (ja) 車両用バッテリの開回路電圧推定方法及び装置
JP5644190B2 (ja) 電池状態推定装置および電池情報報知装置
JP2004168263A (ja) バッテリのsoc検出方法及びその装置、バッテリの電力供給制御方法及びその装置
JP6672743B2 (ja) 満充電容量算出装置、コンピュータプログラム及び満充電容量算出方法
JP2004045375A (ja) バッテリ状態監視装置、飽和分極検出方法及び放電可能容量検出方法
US20070170892A1 (en) Method and apparatus for estimating remaining capacity of electric storage
JP2001023699A (ja) バッテリ管理装置
JPH11206028A (ja) 電池の残存容量検出装置
JP3432463B2 (ja) バッテリ容量計測装置
JP3930777B2 (ja) バッテリの劣化度演算方法及びその装置
JP2002243814A (ja) 車両用バッテリ純抵抗測定方法及び装置
JP5554310B2 (ja) 内部抵抗測定装置および内部抵抗測定方法
JP3397187B2 (ja) バッテリ充電状態判定装置
JP2002303658A (ja) バッテリの充電容量状態検出用補正係数算出方法及びその装置
JP2004301779A (ja) バッテリ状態監視装置及びその方法
JP3976645B2 (ja) バッテリ充電状態測定方法及び装置
JP2005274214A (ja) 車両用バッテリの残存容量検出装置
JP2004325263A (ja) 電池の自己放電量検出装置
JPH1138107A (ja) 二次電池の残存容量推定方法
JP4383020B2 (ja) 車載バッテリ純抵抗測定方法及び装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20071204