JP2004045375A - バッテリ状態監視装置、飽和分極検出方法及び放電可能容量検出方法 - Google Patents

バッテリ状態監視装置、飽和分極検出方法及び放電可能容量検出方法 Download PDF

Info

Publication number
JP2004045375A
JP2004045375A JP2003097467A JP2003097467A JP2004045375A JP 2004045375 A JP2004045375 A JP 2004045375A JP 2003097467 A JP2003097467 A JP 2003097467A JP 2003097467 A JP2003097467 A JP 2003097467A JP 2004045375 A JP2004045375 A JP 2004045375A
Authority
JP
Japan
Prior art keywords
battery
polarization
discharge
voltage drop
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2003097467A
Other languages
English (en)
Inventor
Yoichi Arai
荒井 洋一
Shuji Satake
佐竹 周二
Michihito Enomoto
榎本 倫人
Tomohiro Kawaguchi
川口 智博
Takeshi Ito
伊藤 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2003097467A priority Critical patent/JP2004045375A/ja
Priority to US10/436,139 priority patent/US7034504B2/en
Priority to DE10321483A priority patent/DE10321483A1/de
Publication of JP2004045375A publication Critical patent/JP2004045375A/ja
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】バッテリの状態を正確に把握することができるバッテリ状態監視装置、バッテリの充電状態を正確に把握する上で役立つ飽和分極検出方法、及び、放電可能容量検出方法を提供する。
【解決手段】マイクロコンピュータ23が、電流センサ15及び電圧センサ17の出力に基づいて、バッテリの放電に応じて、当該放電時に生じる分極による端子電圧の降下分が飽和したときの内部抵抗による電圧降下分や、バッテリ13の充電容量から、上記電圧降下を減じた値に応じた放電可能容量を監視する。
【選択図】   図1

Description

【0001】
【発明の属する技術分野】
この発明は、バッテリ状態監視装置、飽和分極検出方法及び放電可能容量検出方法に係わり、特に、バッテリの状態を監視するバッテリ状態監視装置、バッテリの放電時に生じる分極による端子電圧の降下量の飽和値である飽和分極を検出する飽和分極検出方法、及び、バッテリの放電可能容量を検出する放電可能容量検出方法に関する。
【0002】
【従来の技術】
一般に、バッテリから電流が放電されるとバッテリの端子電圧に降下が生じる。この電圧降下は、バッテリの内部抵抗によるものである。このバッテリの内部抵抗による電圧降下は、バッテリの劣化により増大し、この増大によりバッテリの放電できる容量も変わってしまう。従って、バッテリの内部抵抗による電圧降下を検出することは、バッテリの状態を把握するために非常に重要である。
【0003】
そこで、従来では、例えば、車両に搭載されているバッテリ状態監視装置においては、スタータモータが駆動しているときに内部抵抗を検出して、バッテリの状態を把握していた。また、任意時点の内部抵抗を求めて、バッテリの状態を把握するものもあった。
【0004】
【発明が解決しようとする課題】
ところで、上述した内部抵抗による電圧降下は、バッテリの構造などに起因するIR損(純抵抗、すなわち、オーミック抵抗による電圧降下)と、化学的な反応に起因する分極抵抗成分(活性化分極、濃度分極)による電圧降下に分けることができる。
【0005】
上述したIR損は、バッテリの状態が同じであれば変化しない。一方、分極による電圧降下は、放電電流や、放電時間に比例して、大きくなるが、飽和値を超えて大きくなることはない。従って、この分極による電圧降下が飽和を迎える点を監視すれば、最も内部抵抗による電圧降下が大きくなる点を監視することができる。
【0006】
しかしながら、従来は、スタータ時に内部抵抗を検出していたり、任意の内部抵抗を検出していて、特に分極が飽和を迎える点を意識して監視するものはなかった。特に、スタータ時に流れる放電電流が流れる時間は非常に短いため、分極が飽和に達していない時点の内部抵抗を検出していることになる。このため、バッテリの状態を正確に把握しているとは言えないという問題があった。
【0007】
そこで、本発明は、上記のような問題点に着目し、バッテリの状態を正確に把握することができるバッテリ状態監視装置、バッテリの充電状態を正確に把握する上で役立つ飽和分極検出方法、及び、放電可能容量検出方法を提供することを課題とする。
【0008】
【課題を解決するための手段】
上記課題を解決するためになされた請求項1記載の発明は、バッテリの状態を監視するバッテリ状態監視装置であって、前記バッテリの放電に応じて、当該放電時に生じる分極による端子電圧の降下分が飽和したときの内部抵抗による電圧降下分を監視する内部抵抗監視手段を備えたことを特徴とするバッテリ状態監視装置に存する。
【0009】
請求項1記載の発明によれば、内部抵抗監視手段が、バッテリの放電に応じて、その放電時に生じる分極による端子電圧の降下分が飽和したときの内部抵抗による電圧降下分を監視する。従って、分極による電圧降下が最も大きくなる時点での内部抵抗による電圧降下を把握することができる。
【0010】
請求項2記載の発明は、バッテリの状態を監視するバッテリ状態監視装置であって、前記バッテリの放電に応じて、前記バッテリの充電容量に相当する開回路電圧から、前記放電時に生じる分極による端子電圧の降下分が飽和したときの内部抵抗による電圧降下分を減じた値に応じた放電可能容量を監視する放電可能容量監視手段を備えたことを特徴とするバッテリ状態監視装置に存する。
【0011】
請求項2記載の発明によれば、放電可能容量監視手段が、バッテリの放電に応じて、バッテリの充電容量に相当する開回路電圧から、放電時に生じる分極による端子電圧の降下分が飽和したときの内部抵抗による電圧降下分を減じた値に応じた放電可能容量を検出する。従って、分極による電圧降下が最も大きくなる時点での放電可能容量を把握することができる。
【0012】
請求項3記載の発明は、請求項1記載のバッテリ状態監視装置であって、前記内部抵抗監視手段は、前記放電におけるピーク電流が流れているときの前記バッテリの純抵抗による電圧降下分と、前記分極による端子電圧の降下分の飽和値とを加算して得た電圧降下分を監視することを特徴とするバッテリ状態監視装置に存する。
【0013】
請求項3記載の発明によれば、内部抵抗監視手段が、放電におけるピーク電流が流れているときのバッテリの純抵抗による電圧降下分と、分極による端子電圧の降下分の飽和値とを加算して得た電圧降下分を監視する。従って、その放電において、分極以外の内部抵抗成分である純抵抗による電圧降下が最も大きくなる時点の内部抵抗による電圧降下を把握することができる。
【0014】
請求項4記載の発明は、請求項2記載のバッテリ状態監視装置であって、前記放電可能容量監視手段は、前記バッテリの充電容量に相当する開回路電圧から、前記放電におけるピーク電流が流れているときの前記バッテリの純抵抗による電圧降下分と、前記分極による端子電圧の降下分の飽和値とを減じた値に基づいて求めた放電可能容量を監視することを特徴とするバッテリ状態監視装置に存する。
【0015】
請求項4記載の発明によれば、放電可能容量監視手段が、バッテリの充電容量に相当する開回路電圧から、放電におけるピーク電流が流れているときのバッテリの純抵抗による電圧降下分と、分極による端子電圧の降下分の飽和値とを減じた値に基づいて求めた放電可能容量を監視する。従って、その放電において、分極以外の内部抵抗成分である純抵抗による電圧降下が最も大きくなる時点の放電可能容量を把握することができる。
【0016】
請求項5記載の発明は、バッテリの放電時に生じる分極による端子電圧の降下分の飽和値である飽和分極を検出する方法であって、前記放電の所定期間中に検出された前記バッテリの放電電流及び端子電圧から求めた前記放電電流に対する前記端子電圧の近似式と、前記バッテリの純抵抗とに基づいて、前記飽和分極を検出することを特徴とする飽和分極検出方法に存する。
【0017】
請求項5記載の発明によれば、バッテリの放電が行われたとき、その放電の所定期間に検出したバッテリの放電電流及び端子電圧から、放電電流に対する端子電圧の近似式を求める。求めた近似式と、バッテリの純抵抗とに基づいて、飽和分極を検出する。従って、実際の放電のうち、所定期間に検出した放電電流及び端子電圧から求めた近似式と、実測又は推定した純抵抗とに基づいて、飽和分極を検出することができる。
【0018】
請求項6記載の発明は、請求項5記載の飽和分極検出方法であって、前記近似式と、前記純抵抗による電圧降下分と、前記分極による電圧降下分との関係式を、前記放電電流によって微分することにより、前記放電電流に対する前記分極による電圧降下分の変化量の式を求め、前記変化量の式から、当該変化量がゼロとなる時点の放電電流の値を前記バッテリの端子電圧降下飽和電流値として求め、前記求めた端子電圧降下飽和電流値を、前記関係式に代入することによって求められる、前記分極による電圧降下分を、前記飽和分極として検出することを特徴とする飽和分極検出方法に存する。
【0019】
請求項6記載の発明によれば、近似式と、純抵抗による電圧降下分と、分極による電圧降下分との関係式を、放電電流によって微分することにより、放電電流に対する分極による電圧降下分の変化量の式を求める。次に、変化量の式から、その変化量がゼロとなる時点の放電電流の値をバッテリの端子電圧降下飽和電流値として求める。そして、求めた端子電圧降下飽和電流値を、上記関係式に代入することによって求められる、分極による電圧降下分を、飽和分極として検出する。従って、放電電流に対する電圧降下の変化量がゼロとなるタイミングで、分極による電圧降下分が、最大値、即ち、飽和値を迎えることに着目して飽和分極を求めることができる。
【0020】
請求項7記載の発明は、請求項5記載の飽和分極検出方法であって、前記近似式から求めた放電電流ゼロのときの端子電圧が、当該放電開始時の開回路電圧より低いとき、前記近似式と、前記純抵抗による電圧降下分と、前記分極による電圧降下分との関係式を、前記放電電流によって微分することにより、前記放電電流に対する前記分極による電圧降下分の変化量の式を求め、前記変化量の式から、当該変化量がゼロとなる時点の放電電流の値を前記バッテリの端子電圧降下飽和電流値として求め、前記求めた端子電圧降下飽和電流値を、前記関係式に代入することによって求められる、前記分極による電圧降下分に、前記近似式から求めた放電電流ゼロのときの端子電圧と、当該放電開始時の開回路電圧との差分を加算した値を、前記飽和分極として検出することを特徴とする飽和分極検出方法に存する。
【0021】
請求項7記載の発明によれば、近似式から求めた放電電流ゼロのときの端子電圧が、その放電開始時の開回路電圧より低いとき、近似式と、純抵抗による電圧降下分と、分極による電圧降下分との関係式を放電電流によって微分することにより、放電電流に対する分極による電圧降下分の変化量の式を求める。次に、変化量の式から、その変化量がゼロとなる時点の放電電流の値をバッテリの端子電圧降下飽和電流値として求める。そして、求めた端子電圧降下飽和電流値を、上記関係式に代入することによって求められる、分極による電圧降下分に、近似式から求めた放電電流ゼロのときの端子電圧と、その放電開始時の開回路電圧との差分を加算した値を、飽和分極として検出する。
【0022】
従って、放電電流に対する電圧降下の変化量がゼロとなるタイミングで、分極による電圧降下分が、最大値、即ち、飽和値を迎えることに着目して飽和分極を求めることができる。しかも、近似式から求めた放電電流ゼロのときの端子電圧と、その放電開始時の開回路電圧との差分を加算することにより、放電開始時にバッテリが平衡状態になくても正確に飽和分極を求めることができる。
【0023】
請求項8記載の発明は、請求項6又は7記載の飽和分極検出方法であって、前記関係式は、前記近似式が表す端子電圧を、前記純抵抗による電圧降下分と前記分極による電圧降下分とによって表した式であることを特徴とする飽和分極検出方法に存する。
【0024】
請求項8記載の発明によれば、関係式は、近似式が表す端子電圧を、純抵抗による電圧降下分と分極による電圧降下分とによって表した式である。従って、簡単な関係式から飽和分極を求めることができる。
【0025】
請求項9記載の発明は、請求項5〜8何れか1項記載の飽和分極検出方法であって、充電分極が発生している前記バッテリの放電時は、放電開始から所定時間経過後の所定期間中に検出された前記バッテリの放電電流及び端子電圧から前記放電電流に対する端子電圧の近似式を求めることを特徴とする飽和分極検出方法に存する。
【0026】
請求項9記載の発明によれば、充電分極が発生している期間に検出したバッテリの放電電流及び端子電流から求めた放電電流に対する端子電圧の近似式は、平衡状態から放電した結果、実際に得ることができる放電電流−端子電圧特性に対する相関性があまりない。そこで、充電分極が発生しているバッテリの放電時は、放電開始から所定時間経過後の充電分極がほぼ解消されている所定期間中に検出されたバッテリの放電電流及び端子電圧から放電電流に対する端子電圧の近似式を求める。従って、充電分極がほぼ解消されている所定期間中に検出されたバッテリの放電電流及び端子電圧から放電電流に対する端子電圧の近似式を求めることにより、正確な放電分極を求めることができる。
【0027】
請求項10記載の発明は、請求項1記載のバッテリ状態監視装置であって、前記内部抵抗監視手段は、請求項5〜9何れか1項記載の飽和分極検出方法を用いて検出した飽和分極に基づいて求めた前記内部抵抗による電圧降下分を検出することを特徴とするバッテリ状態監視装置に存する。
【0028】
請求項10記載の発明によれば、内部抵抗監視手段が、請求項5〜9何れか1項記載の飽和分極検出方法を用いて検出した飽和分極に基づいて求めた内部抵抗による電圧降下分を監視する。従って、より正確に分極による電圧降下が飽和する時点での内部抵抗による電圧降下を検出することができる。
【0029】
請求項11記載の発明は、請求項5〜9何れか1項記載のバッテリの飽和分極検出方法により検出したバッテリの前記飽和分極を用いて該バッテリの放電可能容量を検出する方法であって、前記バッテリが放電を行う毎に、当該放電の開始時における開回路電圧から、前記バッテリの純抵抗に対応する電圧降下分と、請求項5〜9何れか1項記載の飽和分極検出方法により検出した前記飽和分極とを減じた値に基づき、前記放電可能容量を求めることを特徴とする放電可能容量検出方法に存する。
【0030】
請求項11記載の発明によれば、放電の開始時におけるバッテリの開回路電圧から、バッテリの放電開始時の純抵抗に対応する電圧降下分と、請求項5〜9記載の飽和分極検出方法により検出した飽和分極とを減じると、それにより求まる電圧値は、バッテリの分極が飽和したときの放電可能容量に対応する電圧値ということになる。
【0031】
尚、放電の開始時におけるバッテリの開回路電圧から減じる、バッテリの純抵抗に対応する電圧降下分には、バッテリの個体間の特性差が反映され、また、請求項5〜8記載の飽和分極検出方法により検出したバッテリの飽和分極には、放電電流が流れ続けたことによる放電可能容量の減少度の相違や温度変化による内部抵抗変化に起因する放電可能容量の減少度の相違が反映される。
【0032】
よって、上記のようにして求めた、バッテリが放電を行った際の実際の放電可能容量は、バッテリの個体間の特性差による影響と、放電電流が流れ続けたことによる放電可能容量の減少度の相違や温度変化による内部抵抗変化に起因する放電可能容量の減少度の相違による影響が、誤差として存在しない正確な放電可能容量ということになる。
【0033】
請求項12記載の発明は、請求項6記載の飽和分極検出方法により検出したバッテリの前記飽和分極を用いて該バッテリの放電可能容量を検出する方法であって、前記バッテリが放電を行う毎に、前記近似式から求めた放電電流ゼロのときの端子電圧が、当該放電開始時の開回路電圧より低いとき、当該放電の開始時における開回路電圧から、請求項6記載の飽和分極検出方法により検出したバッテリの前記飽和分極と、前記近似式から求めた放電電流ゼロのときの端子電圧、及び、当該放電開始時の開回路電圧の差分とを減じた値に基づいて、放電可能容量を検出するようにしたことを特徴とする放電可能容量検出方法に存する。
【0034】
請求項12記載の発明によれば、近似式から求めた放電電流ゼロのときの端子電圧が、当該放電開始時の開回路電圧より低いとき、放電の開始時におけるバッテリの開回路電圧から、バッテリの放電開始時の純抵抗に対応する電圧降下分と、請求項6記載の飽和分極検出方法により検出した飽和分極と、近似式から求めた放電電流ゼロのときの端子電圧、及び、当該放電開始時の開回路電圧の差分とを減じると、それにより求まる電圧値は、バッテリの分極が飽和したときの放電可能容量に対応する電圧値ということになる。
【0035】
尚、放電の開始時におけるバッテリの開回路電圧から減じる、バッテリの純抵抗に対応する電圧降下分には、バッテリの個体間の特性差が反映され、また、請求項6記載の飽和分極検出方法により検出したバッテリの飽和分極には、放電電流が流れ続けたことによる放電可能容量の減少度の相違や温度変化による内部抵抗変化に起因する放電可能容量の減少度の相違が反映される。
【0036】
よって、上記のようにして求めた、バッテリが放電を行った際の実際の放電可能容量は、バッテリの個体間の特性差による影響と、放電電流が流れ続けたことによる放電可能容量の減少度の相違や温度変化による内部抵抗変化に起因する放電可能容量の減少度の相違による影響が、誤差として存在しない正確な放電可能容量ということになる。さらに、近似式から求めた放電電流ゼロのときの端子電圧、及び、当該放電開始時の開回路電圧の差分を減じることにより、放電開始時にバッテリが平衡状態になくても正確に飽和分極を求めることができる。
【0037】
請求項13記載の発明は、請求項11又は12記載の放電可能容量検出方法であって、劣化により生じる前記バッテリの充電状態−前記開回路電圧特性の変動分を考慮して、前記放電可能容量を求めるようにしたことを特徴とする放電可能容量検出方法に存する。
【0038】
請求項13記載の発明によれば、劣化により生じるバッテリの充電状態−開回路電圧特性の変動分を考慮して、放電可能容量を求めるようにした。従って、バッテリの開回路電圧及び内部抵抗による電圧降下分といったバッテリの端子電圧に基づいて放電可能容量を求める際に、劣化が生じてバッテリの充電状態−開回路電圧特性の変化分を考慮することができる。
【0039】
請求項14記載の発明は、請求項13記載の放電可能容量検出方法であって、前記バッテリが放電を行う毎に、当該放電によるバッテリの充電状態の減少に対する新品バッテリの開回路電圧の第1変化量、及び、当該放電による充電状態の減少に対する前記バッテリの開回路電圧の第2変化量の両変化量の比と、前記減じた値に基づいて、前記放電可能容量を求めることを特徴とする放電可能容量検出方法に存する。
【0040】
請求項14記載の発明によれば、第1変化量が、放電によって減少した充電状態に相当する、新品バッテリの開回路電圧の計算上の変化量となる。一方、第2変化量は、放電によって減少した充電状態に相当する、バッテリの開回路電圧の推定又は実測した変化量となる。
【0041】
そして、バッテリの電解液内で電荷の移動を司る活物質の量と水(HO)の比が新品時に比べて変化し、充電状態の変化に対する開回路電圧の変化の度合いが大きくなっていると、第1変化量と第2変化量との比に変化が生じる。
【0042】
よって、第1変化量と第2変化量との比と、上記減じた値とに基づいて、放電可能容量を求めることにより、バッテリの活物質に不活性化を考慮した、放電可能容量が求まることになる。
【0043】
請求項15記載の発明は、請求項2記載のバッテリ状態監視装置であって、前記放電可能容量監視手段は、請求項12〜14何れか1項記載の放電可能容量検出方法を用いて検出した放電可能容量を監視することを特徴とするバッテリ状態監視装置に存する。
【0044】
請求項15記載の発明によれば、放電可能容量検出手段が、請求項12〜14何れか1項記載の放電可能容量検出方法を用いて放電可能容量を検出する。従って、より正確に分極による電圧降下が飽和する時点での放電可能容量を検出することができる。
【0045】
【発明の実施の形態】
以下、本発明によるバッテリ状態監視装置、飽和分極検出方法及び放電可能容量検出方法を、図面に基づいて説明するが、その前に、図2〜図8を参照して車両用バッテリの純抵抗測定方法を説明する。
【0046】
ところで、バッテリが搭載され、バッテリから電力供給されて動作する車両負荷として、12V車、42V車、EV車、HEV車には、スタータモータ、モータジェネレータ、走行用モータなどの大電流を必要とする定負荷が搭載されている。例えば、スタータモータ又はこれに類する大電流定負荷をオンしたとき、定負荷には、その駆動開始の初期の段階で突入電流が流れた後、負荷の大きさに応じた定常値の電流が流れるようになる。因みに、負荷がランプである場合には、突入電流に相当するものをラッシュ電流と呼ぶこともある。
【0047】
スタータモータとして直流モータを使用している場合、界磁コイルに流れる突入電流は、図2に示すように、定負荷駆動開始直後の例えば3ミリ秒という短時間内に、ほぼ0から定常電流に比べて何倍も大きなピーク値、例えば500(A)まで単調増加した後、このピーク値から例えば150ミリ秒という短時間内に定負荷の大きさに応じた定常値まで単調減少するような流れ方をし、バッテリから放電電流として供給される。したがって、定負荷に突入電流が流れる状況で、バッテリの放電電流とこれに対応する端子電圧を測定することによって、0からピーク値に至る広い範囲の電流変化に対する端子電圧の変化を示すバッテリの放電電流(I)−端子電圧(V)特性を測定することができる。
【0048】
そこで、スタータモータをオンしたときに流れる突入電流に相当する模擬的な放電として、0からほぼ200Aまで0.25秒かけて増加し、同じ時間をかけてピーク値から0まで減少する放電を電子負荷を使用してバッテリに行わせ、そのときのバッテリの放電電流と端子電圧とを対にして短い一定周期で測定し、これによって得た測定データ対を横軸に放電電流、縦軸に端子電圧をそれぞれ対応させてプロットして図3に示すグラフを得た。図3のグラフに示す放電電流の増加時と減少時の電流−電圧特性は、最小二乗法を用いて以下のような二次式に近似できる。
V=a1I2 +b1I+c1 ……(1)
V=a2I2 +b2I+c2 ……(2)
なお、図中には、二次の近似式の曲線も重ねて描かれている。
【0049】
図3中において、電流増加方向の近似曲線の切片と電流減少方向の近似曲線の切片の電圧差(c1−c2)は、電流が流れていない0(A)の時の電圧差であるため、純抵抗と活性化分極による電圧降下を含まない、放電によって新たに発生した濃度分極成分のみによる電圧降下と考えられる。従って、この電圧差(c1−c2)は、濃度分極のみによるものであり、この電流0(A)点の濃度分極をVpolc0 とする。また、任意の濃度分極は、電流の大きさに電流の流れた時間を乗じて積算したもの、すなわちAh(短時間なので、以下Asec で表す)に比例すると考えられる。
【0050】
次に、この電流0(A)点の濃度分極Vpolc0を利用して電流ピーク値の濃度分極を算出する方法を説明する。今、電流ピーク値の濃度分極をVpolcpとすると、Vpolcpは次式のように表される。
Figure 2004045375
なお、放電全体のAsecは次式で表される。
放電全体のAsec=(電流増加時のAsec+電流減少時のAsec)
【0051】
上述のようにして求めたピーク値における濃度分極Vpolcpを式(1)の電流増加方向のピーク値における電圧に加算して、図4に示すように、ピーク値における濃度分極成分を削除する。なお、ピーク値における濃度分極成分を削除した後の電圧をV1とすると、V1は次式で表される。
V1=a1Ip+b1Ip+c1+Vpolcp
Ipはピーク値における電流値である。
【0052】
次に、増加方向時の図4で示すような純抵抗と活性化分極だけの電流−電圧特性の近似式を仮に次式で表す。
V=a3I+b3I+c3 ……(4)
【0053】
放電開始前である電流が0(A)の点は、活性化分極も濃度分極もc1を基準にして分極を考えているため、式(1)より、c3=c1である。また、電流増加の初期状態から電流は急激に増加するが、濃度分極の反応は遅く、反応がほとんど進行していないとすると、式(1)および(4)の電流が0(A)の点の微分値は等しくなるので、b3=b1である。従って、c3=c1、b3=b1を代入することで、式(4)は
V=a3I+b1I+c1 ……(5)
と書き直され、未知数はa3のみとなる。
【0054】
次に、式(5)に電流増加のピーク値の座標(Ip、V1)を代入してa3について整理すると、次式が求められる。
a3=(V1−b1Ip−c1)/Ip
従って、純抵抗と活性化分極成分だけの電流−電圧特性の近似式(4)が式(5)によって決定される。
【0055】
一般に、純抵抗は化学反応にて生じるものでないので、バッテリの充電状態(SOC)、温度などが変わらなければ一定であるので、1回のスタータモータ作動の間は一定であるといえる。これに対し、活性化分極抵抗は、イオン、電子の受渡しの際の化学反応に伴って生じる抵抗であるので、濃度分極と相互に影響し合うこともあって、活性化分極の電流増加曲線と電流減少曲線は完全に一致しないことから、式(5)は濃度分極成分を除いた純抵抗と活性化分極の電流増加方向の曲線であるということができる。
【0056】
続いて、電流減少曲線からの濃度分極成分の削除の仕方を、以下説明する。純抵抗と活性化分極の電流減少方向の関係式は、電流ピーク値における濃度分極の削除と同様の方法で可能である。ピーク値以外の2点をA点およびB点とし、各点における濃度分極VpolcA 、VpolcB を次式のようにして求める。
Figure 2004045375
【0057】
上式(6)および(7)によって、ピーク値以外に濃度分極成分を削除した2点が求まったら、この2点とピーク値との3点の座標を利用して次式で表される、図5に示すような、純抵抗と活性化分極の電流減少方向曲線が求められる。
V=a4I +b4I+c4 ……(8)
なお、式(8)の係数a4、b4、c4は、2点A及びBとピーク点の電流値と電圧値とを、式(8)にそれぞれ代入して立てた3点の連立方程式を解くことによって決定できる。
【0058】
次に、バッテリの純抵抗の算出の仕方を説明する。上式(5)で表される濃度分極成分を削除した純抵抗と活性化分極の電流増加方向の曲線と、式(8)で表される同じく濃度分極成分を削除した純抵抗と活性化分極の電流減少方向の曲線との相違は、活性化分極成分の相違によるものであるので、活性化分極成分を除けば純抵抗が求められる。
【0059】
ところで、活性化分極が互いに等しい値となる両曲線のピーク値に着目し、ピーク値での電流増加の微分値R1と電流減少の微分値R2とを次式によって求める。
R1=2×a3×Ip +b3 ……(10)
R2=2×a4×Ip +b4 ……(11)
【0060】
上式によって求められる微分値R1およびR2の差は、一方が活性化分極の増加方向でのピーク値であるのに対し、他方が減少方向でのピーク値であることに起因する。そして、突入電流に相当する模擬的な放電として、0から200Aまで0.25秒かけて増加し、同じ時間をかけてピーク値から0まで減少する放電を電子負荷を使用してバッテリに行わせた場合には、ピーク値近傍での両者の変化率が等しく、両者の中間に純抵抗による電流−電圧特性が存在すると理解できるので、両微分値を加算して2で割ることによって、純抵抗Rを次式によって求めることができる(この例では、両微分値を時間比率で案分した値と2で割った値は等しい)。
R=(R1+R2)/2
【0061】
以上は、突入電流に相当する模擬的な放電を電子負荷を使用してバッテリに行わせた場合について説明したが、実車両の場合には、上述したようにスタータモータとして直流モータを使用しているとき、界磁コイルに突入電流が流れている間に電流はピークに達し、クランキングはピークに達した後ピーク電流の半分以下に低下した電流で作動している。
【0062】
従って、電流増加方向は3ミリ秒(msec)という短時間で終了してしまい、電流増加ピーク値ではほとんど濃度分極が発生しない早い電流の変化であるが、電流減少方向は電流増加方向に比べて150msecという長い時間電流が流れるので、減少方向とはいえ、大きな濃度分極が発生する。ただし、クランキング期間については、突入電流の流れている期間とは異質の現象が生じているので、この期間のバッテリの放電電流と端子電圧については、電流減少方向の電流−電圧特性を決定するためのデータとしては使用しないようにする。
【0063】
このような状況で、実車両では、図6に示すように、電流増加方向は電流増加開始点とピーク値の2点間を結ぶ直線にて近似することができ、しかもこのピーク値500(A)での濃度分極の発生は0(A)と近似することも可能である。この場合には、電流増加方向については、ピーク値の微分値としては、電流増加方向の近似直線の傾きを使用することになる。
【0064】
ただし、このような場合には、電流増加方向の近似直線の傾きと、電流減少方向の二次の近似式のピーク点における接線の傾きとを単純に加算平均することはできない。何故ならば、このような状況では、ピーク点までとそれ以降で、活性化分極の発生度合いが全く異なり、ピーク値近傍での両者の変化率が等しくなるという前提が成立しなくなるからである。
【0065】
このような場合には、純抵抗を求めるに当たって、濃度分極による電圧降下を除いた第1及び第2の近似式のピーク値に対応する点における単位電流変化当たりの2つの端子電圧変化の値、すなわち、傾きに、突入電流が流れている総時間に占める単調増加期間及び単調減少期間の時間の割合をそれぞれ乗じた上で加算すればよい。すなわち、総時間を単調増加及び単調減少にそれぞれ要した時間で比例按分した按分率を各傾きに乗じた上で加算することになる。このようにすることによって、活性化分極と濃度分極とが相互に影響し合うことを考慮して純抵抗を求めることができる。
【0066】
すなわち、活性化分極は原則電流値に応じた大きさのものが生じるが、その時々の濃度分極量に左右され、原則通りには生じることにならず、濃度分極が小さければ活性化分極も小さくなり、大きければ大きくなる。何れにしても、濃度分極成分による電圧降下を除いた2つの近似式のピーク値に対応する点における単位電流変化当たりの2つの端子電圧変化の値の中間の値をバッテリの純抵抗の値として測定することができる。
【0067】
また、最近の車両では、モータとしては、マグネットモータなどのDCブラッシレスなどの三相入力を必要とする交流モータが使用されることが増えてきている。このようなモータの場合、突入電流はそれ程早く短時間にピーク値に達することがなく、100msecほどの時間を要し、電流増加方向においても濃度分極の発生が起こるので、上述した模擬的な放電の場合と同様に、電流増加方向の電流変化曲線は曲線近似することが必要になる。
【0068】
また、純抵抗と活性化分極の電流減少方向の近似をする場合、ピーク値とこれ以外の2点を定める際、図7に示すように、B点として電流0(A)の点を使用すると、近似式を求める際の計算を簡略化することができる。
【0069】
さらに、例えば、ピーク電流の1/2程度の電流値に対応する点に濃度分極の削除した点を定めた場合、図8に示すように、この点とピーク値の2点を結ぶ直線に一次近似してもよい。この場合、電流減少方向については、ピーク値の微分値としては、電流減少方向の近似直線の傾きを使用することになるが、二次曲線を使用したものと変わらない、精度のよい純抵抗が求められる。
【0070】
以上要するに、濃度分極成分による電圧降下を除いた2つの近似式のピーク値に対応する点における単位電流変化当たりの2つの端子電圧変化の値の中間の値をバッテリの純抵抗の値として測定することができる。
【0071】
そこで、車載バッテリ純抵抗測定方法を、定負荷として、増加する放電電流及び減少する放電電流のいずれにおいても濃度分極の発生を伴う突入電流が流れる例えばスタータモータが使用されている場合について具体的に説明する。
【0072】
定負荷が動作されると、バッテリからは定常値を越えて単調増加しピーク値から定常値に単調減少する放電電流が流れる。このときのバッテリの放電電流と端子電圧とを、例えば100マイクロ秒(μsec)の周期にてサンプリングすることで周期的に測定し、バッテリの放電電流と端子電圧との組が多数得られる。
【0073】
このようにして得られたバッテリの放電電流と端子電圧との組の最新のものを、所定時間分、例えばRAMなどの書換可能な記憶手段としてのメモリに格納、記憶して収集する。メモリに格納、記憶して収集した放電電流と端子電圧との組を用いて、最小二乗法により、端子電圧と放電電流との相関を示す増加する放電電流及び減少する放電電流に対する電流−電圧特性について式(1)及び(2)に示すような2つの曲線近似式を求める。次に、この2つの近似式から濃度分極成分による電圧降下を削除し、濃度分極成分を含まない修正した曲線近似式を求める。
【0074】
このために、まず、式(1)及び(2)の近似式の電流が流れていない0(A)の時の電圧差を、純抵抗と活性化分極による電圧降下はなく、濃度分極によるものであるとして求める。また、この電圧差を利用して、増加する放電電流についての電流−電圧特性の近似式(1)上の電流ピーク値での濃度分極成分による電圧降下を求める。このために、濃度分極は、電流の大きさに電流の流れた時間を乗じた電流時間積によって変化していることを利用する。
【0075】
増加する放電電流についての電流−電圧特性の近似式上の電流ピーク値での濃度分極成分による電圧降下が求まったら次に、濃度分極成分の含まない近似式と含む近似式のいずれも定数及び一次係数が等しいとして、含まない近似式の二次係数を定め、増加する放電電流についての電流−電圧特性の近似式について修正した曲線近似式(5)を求める。
【0076】
次に、減少する放電電流に対する電流−電圧特性について近似式(2)から濃度分極成分を含まない近似式を求める。このために、ピーク値以外に濃度分極成分を削除した2点を求める。この際に、濃度分極は、電流の大きさに電流の流れた時間を乗じた電流時間積によって変化していることを利用する。そして、ピーク値以外に濃度分極成分を削除した2点が求まったら、この2点とピーク値との3点の座標を利用して、減少する放電電流についての電流−電圧特性の近似式(2)について修正した曲線近似式(8)を求める。
【0077】
上式(5)で表される濃度分極成分を削除した純抵抗と活性化分極の電流増加方向の修正曲線近似式と、式(8)で表される濃度分極成分を削除した純抵抗と活性化分極の電流減少方向の修正曲線近似式は、活性化分極成分の相違によるものであるので、活性化分極成分を除けば純抵抗が求められる。このために、両近似式のピーク値に着目し、ピーク値での電流増加の微分値と電流減少の微分値との差は、一方が活性化分極の増加方向であるのに対し、他方が減少方向であることに基因するものであるが、ピーク値近傍での両者の変化率の中間に純抵抗による電流−電圧特性が存在するとし、両微分値に突入電流が流れている総時間に占める単調増加期間及び前記単調減少期間の時間の割合をそれぞれ乗じた上で加算することによって、純抵抗を求める。
【0078】
例えば、電流増加時間が3msec、電流減少時間が100msecとし、ピーク値での電流増加の微分値をRpolk1 、と電流減少の微分値をRpolk2 とすると、以下のようなようにして純抵抗Rnを算出することができる。
Rn=Rpolk1 ×100/103+Rpolk2 ×3/103
この純抵抗Rnは、スタータモータの駆動時等、突入電流が発生する高効率放電が行われる毎に、算出され、更新される。
【0079】
また、バッテリの平衡状態における車両用バッテリの開回路電圧は、それ以前の充放電によってバッテリ内に発生している分極の影響が完全に解消し、分極によるバッテリ端子電圧の低下或いは上昇が無くなっている平衡状態にあるときのバッテリ端子電圧を実測するか、又は、充放電停止直後のバッテリ端子電圧の変化を短時間観測した結果によって推定されるものが利用される。
【0080】
次に、バッテリの飽和分極検出方法と、本発明の放電可能容量検出方法とについて説明する。
【0081】
まず、バッテリが実際に負荷に放出できるエネルギは、バッテリの開回路電圧の値に相当する充電容量(電流時間積)から、放電中にバッテリの内部で発生する電圧降下分に相当する容量、すなわち、バッテリの内部抵抗により放電できない容量を減じた容量と言うことになる。
【0082】
そして、放電中におけるバッテリの内部で発生する電圧降下は、図9に示すように、バッテリの純抵抗の成分による電圧降下分(図中IR降下と表記)と、純抵抗の成分以外の内部抵抗成分による電圧降下分、即ち、分極による電圧降下分(図中飽和分極と表記)とに分けて考えることができる。
【0083】
上述したIR降下は、バッテリの状態が同じであれば変化しない。一方、分極による電圧降下は、放電電流や、放電時間に比例して、大きくなるが、飽和分極を超えて大きくなることはない。従って、この飽和分極を迎える点を監視すれば、最も内部抵抗による電圧降下が大きくなる点を監視することができる。
【0084】
まず、平衡状態、又は、放電開始時の端子電圧が放電開始時の開回路電圧OCV0より低い放電分極が残っている状態のバッテリが放電したときは、図9中の太線の曲線で示す部分のように、放電開始からの所定期間(分極の挙動が現れる程度であり、かつ、1秒以内程度)の放電の際に周期的に測定されたバッテリの放電電流と端子電圧から、式(12)に示す放電電流Iに対する端子電圧Vの近似式を求める。
【0085】
一方、放電開始時の端子電圧が放電開始時の開回路電圧OCV0より高い充電分極が残っている状態のバッテリが放電したときは、図10中の太線の曲線で示すように、放電開始から所定時間経過して充電分極がほぼ解消されている所定期間の放電の際に周期的に測定されたバッテリの放電電流と端子電圧から、式(12)に示す放電電流Iに対する端子電圧Vの近似式を求める。これは、充電分極が残っている期間に検出したバッテリの放電電流及び端子電流から求めた近似式は、平衡状態から放電した結果、実際に得られる放電電流(I)−端子電圧(V)特性との相関性があまりないからである。
V=aI+bI+c …(12)
【0086】
上記バッテリの端子電圧Vは、バッテリの純抵抗Rnの成分による電圧降下分と純抵抗の成分以外の内部抵抗成分による電圧降下分V (=分極による電圧降下)との合計によって、下記に示すようにも表される。
V=c−(Rn×I+V ) …(13)
【0087】
式(12)及び(13)から下記に示す近似式と、純抵抗による電圧降下と、分極による電圧降下との関係式を求めることができる。
aI2 +bI=−(Rn×I+V ) …(14)
上記式(14)を微分して、バッテリの純抵抗成分以外の内部抵抗成分による電圧降下の変化率dV /dIを求める。
dV /dI=−2aI−b−Rn …(15)
【0088】
上記変化率dV /dIがゼロとなったときの放電電流が、バッテリの純抵抗の成分以外の内部抵抗成分による電圧降下分が最大値(飽和値)を迎えたときの、端子電圧降下飽和電流値Ipol(=−(Rn+b)/2a)に相当する。
【0089】
そして、平衡状態からの放電であるとき、求めた端子電圧降下飽和電流値Ipol を、バッテリの純抵抗Rnの値と共に、上述した式(14)の放電電流Iとして代入して、求められる分極による電圧降下分V (=−aIpol 2 −bIpol −Rn×Ipol)を、飽和分極V pol とする。
【0090】
一方、充電分極又は放電分極が残っている状態からの放電であるときは、求めた端子電圧降下飽和電流値Ipol を、バッテリの純抵抗Rnの値と共に、上述した式(14)の放電電流Iとして代入して、求められる分極による電圧降下分V に、式(12)により求めた放電電流ゼロのときの端子電圧c、及び、推測により求めた放電開始時の開回路電圧OCV0との差分を加算した値(=−aIpol 2 −bIpol −Rn×Ipol+(OCV0−c))を飽和分極Vpol とする。
【0091】
上述した(OCV0−c)を加算する理由について以下説明する。充電分極又は放電分極が残っている状態から上述した所定期間における実測した放電電流及び端子電圧に基づき、求めた式(12)の近似式から放電電流ゼロのときの端子電圧cを求めると、図11に示すようになる。同図に示すように、求めた近似式の電圧降下量の飽和値と、平衡状態から放電した結果、実際に得られる電流(I)−電圧(V)特性における電圧降下量の飽和値は等しい。
【0092】
なお、充電分極が残っているときの放電であっても、放電から所定時間経過後を所定期間とすれば、求めた近似式が示す放電電流ゼロのときの端子電圧cは、放電開始時の開回路電圧OCV0より低い値となる。
【0093】
このとき、式(14)にIpolを代入して求めた分極による電圧降下V (=−aIpol 2 −bIpol −Rn×Ipol)は、図11に示すように、端子電圧cを基準にした電圧降下から、純抵抗による降下分Rn×Ipolを減じた値である。従って、開回路電圧OCV0からバッテリの電圧降下から、純抵抗による降下分Rn×Ipolを減じた値である飽和分極Vpolを求めるためには、上記電圧降下V (=−aIpol 2 −bIpol −Rn×Ipol)に(OCV0−c)を加算する必要がある。なお、この飽和分極V pol は、バッテリが放電を行う毎に、算出され、更新される。
【0094】
このようにして、飽和分極V pol を求めたならば、その飽和分極V pol を用いて、例えば、バッテリが放電可能容量を検出し直す必要のある程度の放電が行われる毎に、以下に説明するような放電可能容量の検出が行われることになる。
【0095】
まず、放電が行われると、その放電の際に、上記のようにして飽和分極V pol を求め、次式を解く。
ADC =OCV0−Rn×Ip−V pol …(16)
但し、上式においてVADC は現在の放電可能容量の指標となる電圧値、Ipはこの放電のピーク電流値である。
【0096】
即ち、上式を解くということは、図12に示すように、放電の開始時におけるバッテリの開回路電圧OCV0から、バッテリの純抵抗Rnの値に対応する電圧降下分と、飽和分極V pol を減じて、バッテリの現在の放電可能容量ADCに対応する電圧値VADC を求めていることになる。
【0097】
そして、上記のようにして求めた現在の放電可能容量の指標となる電圧値VADC から、以下に示す電圧方式の換算式によって放電可能容量ADCを求める。
ADC=SOC×{(VADC −Ve)/(Vf−Ve)}×100(%)
但し、SOC={(OCVn−Ve)/(Vf−Ve)}×100(%)
また、上式においてVfは満充電電圧、Veは放電終止電圧である。
【0098】
ここで、図13に示すように、バッテリに満充電電圧Vfは、新品時のバッテリの満充電時(SOC:State Of Charge =100%)における開回路電圧OCVfから、新品時のバッテリの満充電時(SOC=100%)における純抵抗Rnf0の値に相当する電圧降下分を減じた、
Vf=OCVf−Rnf0×Ip
なる式から求めることができる。
【0099】
また、バッテリの放電最終電圧Veは、新品時のバッテリの放電最終時(SOC=0%)における開回路電圧OCVeから、新品時のバッテリの放電終止時(SOC=0%)における純抵抗Rne0(>Rnf0)の値に対応する電圧降下分を減じた、
Ve=OCVe−Rne0×Ip
なる式から求めることができる。
【0100】
また、上記のようにして求めた現在の放電可能容量の指標となる電圧値VADC から、以下に示す電圧方式の換算式によって放電可能容量ADCを求めてもよい。
ADC=SOC×{(VADC−OCVe)/(OCV0−Rne0×Ip−OCVe)}×100%
【0101】
放電開始時におけるバッテリの開回路電圧OCVnから減じた、バッテリの純抵抗Rnに対応する電圧降下分には、バッテリの個体間の特性差が反映され、また、バッテリの現在の飽和分極V pol には、放電電流を流し続けたことによる放電可能容量ADCの減少度の相違や温度変化による内部抵抗変化に起因する放電可能容量ADCの減少度の相違が反映される。
【0102】
よって、上記のようにして求めた、放電を行った際に求められる放電可能容量ADCは、バッテリの固体間の特性差による影響と、放電電流を流し続けたことによる放電可能容量ADCの減少度の相違や温度変化による内部抵抗変化に起因する放電可能容量ADCの減少度の相違による影響が、誤差として存在しない、正確な放電可能容量ADCということになる。
【0103】
上述したように、その放電中のピーク電流における内部抵抗による電圧降下分、つまり、その放電において、分極以外の内部抵抗成分である純抵抗による電圧降下が最も大きくなる時点の内部抵抗による電圧降下を把握することができる。
【0104】
ところで、図14に示すように、放電前に任意の開回路電圧OCV0にあるバッテリから放電が行われたとき、新品時バッテリでは、開回路電圧は放電が進むにつれて直線Nに沿って低下し、放電が停止して任意の電気量が放電された時点で、開回路電圧OCVnまで低下する。これに対して、劣化バッテリでは、直線Mに沿って、低下し、同じ任意の電気量が放電された時点で、開回路電圧OCVmまで低下する。
【0105】
一般に、放電が繰り返されても、電流時間積によって充電状態SOCが推定出来る。これは、次式によって放電時の電流時間積を積算することによって計算することができる。
放電直前のSOC0−Σ(放電電流×時間)
上式により、バッテリが放電中であっても、常にバッテリのSOCが推定できる。
【0106】
上述したように、充放電中に常時その推定SOCnを求め、放電が停止したときには、停止時の最終のSOCnを推定し、この値を推定OCVnに変換しておく。このSOCn及びOCVnの換算は、新品時バッテリについて予め定められた満充電時開回路電圧と放電終止電圧との間で蓄積可能な総電気量である初期電気量に基づいて行われる。
【0107】
そして、放電前の開回路電圧OCV0と上述した推定OCVnとの差である変化量ΔOCVn(=OCV0−推定OCVn)は、バッテリが放電を行った際に、その放電によるバッテリの充電状態の減少に対する新品バッテリの開回路電圧の計算上の変化量となる。
【0108】
一方、放電前の開回路電圧OCV0と放電後に実測又は推定して求めたOCVmとの差である変化量ΔOCVm(=OCV0−OCVm)は、その放電によるバッテリの充電状態の減少に対する現バッテリの開回路電圧の変化量となる。
【0109】
よって、平衡状態にあってもなくても、上記した現在の放電可能容量の指標となる電圧値VADC から放電可能容量ADCを求める電圧方式の換算式の右辺に、この変化量ΔOCVnと変化量ΔOCVmとの比ΔOCVn/ΔOCVmを乗じて、現在の放電可能容量の指標となる電圧値VADC から放電可能容量ADCを求める換算式を、
ADC={(VADC −Ve)/(Vf−Ve)}×
(ΔOCVn/ΔOCVm)×100(%)
又は
ADC=SOC×{(VADC−OCVe)/(OCVn−Rne0×Ip−OCVe)}×(ΔOCVn/ΔOCVm)×100%
とすれば、バッテリの活物質に不活性化が生じていても、それによる充電状態の変化に対する開回路電圧OCVnの変化の度合いの変化分が考慮された、より正確な放電可能容量が求まることになる。
【0110】
尚、上記した、バッテリの活物質の量とHOとの比の変化に対応するための、現在の放電可能容量の指標となる電圧値VADC から放電可能容量ADCを求める換算式の変更は、省略してもよい。
【0111】
また、上述した説明では、充電分極又は放電分極が残っている状態からの放電の際に、飽和分極を求めとき、式(14)にIpolを代入して求めた分極による電圧降下V (=−aIpol 2 −bIpol −Rn×Ipol)に、(OCV0−c)を加算した値を飽和分極としていた。しかしながら、例えば、分極が残っていても、平衡状態であってもなくても全て、式(14)にIpolを代入して求めた分極による電圧降下V (=−aIpol 2 −bIpol −Rn×Ipol)を飽和分極として求め、電圧VADCを算出する時点で開回路電圧OCV0からOCV0−cを減算するようにしてもよい。
【0112】
以上に説明した本発明の車両用バッテリの放電可能容量算出方法や、バッテリ状態監視方法は、図1に示す構成によって実施することができる。
【0113】
図1は本発明の飽和分極検出方法、放電可能容量算出方法及びバッテリ状態監視方法を実施したバッテリ状態監視装置の一実施形態を示すブロック図である。図1中引用符号1で示す本実施形態のバッテリ状態監視装置は、エンジン3に加えてモータジェネレータ5を有するハイブリッド車両に搭載されている。
【0114】
そして、このハイブリッド車両は、通常時はエンジン3の出力のみをドライブシャフト7からディファレンシャルケース9を介して車輪11に伝達して走行させ、高負荷時には、バッテリ13からの電力によりモータジェネレータ5をモータとして機能させて、エンジン3の出力に加えてモータジェネレータ5の出力をドライブシャフト7から車輪11に伝達し、アシスト走行を行わせるように構成されている。
【0115】
また、このハイブリッド車両は、減速時や制動時にモータジェネレータ5をジェネレータ(発電機)として機能させ、運動エネルギを電気エネルギに変換して、各種の負荷に対して電力を供給するためにハイブリッド車両に搭載されたバッテリ13を充電させるように構成されている。
【0116】
尚、モータジェネレータ5はさらに、不図示のスタータスイッチのオンに伴うエンジン3の始動時に、エンジン3のフライホイールを強制的に回転させるセルモータとして用いられる。
【0117】
また、バッテリ状態監視装置1は、アシスト走行用のモータやセルモータとして機能するモータジェネレータ5等に対するバッテリ13の放電電流Iや、ジェネレータとして機能するモータジェネレータ5からのバッテリ13に対する充電電流を検出する電流センサ15と、バッテリ13に並列接続した無限大抵抗を有し、バッテリ13の端子電圧Vを検出する電圧センサ17とを備えている。
【0118】
尚、上述した電流センサ15及び電圧センサ17は、イグニッションスイッチのオン状態によって閉回路状態となる回路上に配置されている。
【0119】
また、本実施形態の車載用バッテリ充電電気量検出装置1は、上述した電流センサ15や電圧センサ17の出力がインタフェース回路(以下、「I/F」と略記する。)21におけるA/D変換後に取り込まれるマイクロコンピュータ(以下、「マイコン」と略記する。)23、及び、不図示の不揮発性メモリ(NVM)をさらに備えている。
【0120】
そして、前記マイコン23は、CPU23a、RAM23b、及び、ROM23cを有しており、このうち、CPU23aには、RAM23b及びROM23cの他、前記I/F21が接続されており、また、上述した不図示のイグニッションスイッチのオンオフ状態を示す信号が入力される。
【0121】
前記RAM23bは、各種データ記憶用のデータエリア及び各種処理作業に用いるワークエリアを有しており、前記ROM23cには、CPU23aに各種処理動作を行わせるための制御プログラムが格納されている。
【0122】
従って、上記した放電時の各種の検出を、電流センサ15や電圧センサ17の出力に基づいてマイクロコンピュータ23が行うことで、バッテリ13の分極が飽和したときの内部抵抗による電圧降下や、ADCが検出され、監視されることになる。このことから、マイクロコンピュータ23が内部抵抗監視手段及び放電可能容量監視手段として働くことがわかる。
【0123】
また、以上述べたように、分極による電圧降下が最も大きくなる時点での内部抵抗による電圧降下や、放電可能容量を把握することができるので、バッテリの状態を正確に把握することができる。
【0124】
なお、上述した実施形態では、分極による電圧降下が飽和する時点での内部抵抗による電圧降下を求め、求めた電圧降下をバッテリの開回路電圧から減じることによりADCを求めていた。しかしながら、ADCを求めずに単に純抵抗による電圧降下と、飽和分極とを加算して、電圧降下が飽和する時点での内部抵抗のみを監視するものであってもよい。
【0125】
【発明の効果】
以上説明したように、請求項1記載の発明によれば、分極による電圧降下が最も大きくなる時点での内部抵抗による電圧降下を把握することができるので、バッテリの状態を正確に把握することができるバッテリ状態監視装置を得ることができる。
【0126】
請求項2記載の発明によれば、分極による電圧降下が最も大きくなる時点での放電可能容量を把握することができるので、バッテリの状態を正確に把握することができるバッテリ状態監視装置を得ることができる。
【0127】
請求項3記載の発明によれば、その放電において、分極以外の内部抵抗成分である純抵抗による電圧降下が最も大きくなる時点の内部抵抗による電圧降下を把握することができるので、より一層、バッテリの状態を正確に把握することができるバッテリ状態監視装置を得ることができる。
【0128】
請求項4記載の発明によれば、その放電において、分極以外の内部抵抗成分である純抵抗による電圧降下が最も大きくなる時点の放電可能容量を把握することができるので、より一層、バッテリの状態を正確に把握することができるバッテリ状態監視装置を得ることができる。
【0129】
請求項5記載の発明によれば、実際の放電のうち、所定期間に検出した放電電流及び端子電圧から求めた近似式と、実測又は推定した純抵抗とに基づいて、飽和分極を検出することができるので、分極が実際に飽和するまで放電電流を流し続けたり、放電電流のピーク値の違いや温度変化といった要因によるバラツキを膨大なデータテーブルを用いることなく、飽和分極を求めることができる飽和分極検出方法を得ることができる。
【0130】
請求項6記載の発明によれば、放電電流に対する電圧降下の変化量がゼロとなるタイミングで、分極による電圧降下分が、最大値、即ち、飽和値を迎えることに着目して飽和分極を求めることができるので、正確な飽和分極を求めることができる飽和分極検出方法を得ることができる。
【0131】
請求項7記載の発明によれば、放電電流に対する電圧降下の変化量がゼロとなるタイミングで、分極による電圧降下分が、最大値、即ち、飽和値を迎えることに着目して飽和分極を求めることができる。しかも、近似式から求めた放電電流ゼロのときの端子電圧と、その放電開始時の開回路電圧との差分を加算することにより、放電開始時にバッテリが平衡状態になくても正確に飽和分極を求めることができる飽和分極検出方法を得ることができる。
【0132】
請求項8記載の発明によれば、簡単な関係式から飽和分極を求めることができる放電分極検出方法を得ることができる。
【0133】
請求項9記載の発明によれば、充電分極がほぼ解消されている所定期間中に検出されたバッテリの放電電流及び端子電圧から放電電流に対する端子電圧の近似式を求めることにより、正確な飽和分極を求めることができる飽和分極検出方法を得ることができる。
【0134】
請求項10記載の発明によれば、より正確に分極による電圧降下が飽和する時点での内部抵抗による電圧降下を検出することができるので、より一層、バッテリの状態を正確に把握することができるバッテリ状態監視装置を得ることができる。
【0135】
請求項11記載の発明によれば、バッテリが放電を行った際の実際の放電可能容量を、バッテリの個体間の特性差による影響と、放電電流が流れ続けたことによる放電可能容量の減少度の相違や温度変化による内部抵抗変化に起因する放電可能容量の減少度の相違による影響とが、誤差として存在しない、正確な値として検出することができる放電可能容量検出方法を得ることができる。
【0136】
請求項12記載の発明によれば、バッテリが放電を行った際の実際の放電可能容量を、バッテリの個体間の特性差による影響と、放電電流が流れ続けたことによる放電可能容量の減少度の相違や温度変化による内部抵抗変化に起因する放電可能容量の減少度の相違による影響とが、誤差として存在せず、しかも、バッテリが平衡状態になくても正確な飽和分極を求めることができる放電可能容量検出方法を得ることができる。
【0137】
請求項13及び14記載の発明によれば、バッテリの活物質に不活性化を考慮した、より正確な放電可能容量を求めることができる放電可能容量検出方法を得ることができる。
【0138】
請求項15記載の発明によれば、より正確に分極による電圧降下が飽和する時点での放電可能容量を検出することができるので、より一層、バッテリの状態を正確に把握することができるバッテリ状態監視装置を得ることができる。
【図面の簡単な説明】
【図1】本発明の飽和分極検出方法及び放電可能容量検出方法を実施したバッテリ状態監視装置の一実施形態を示すブロック図である。
【図2】スタータモータ駆動開始時の突入電流を伴う放電電流の一例を示すグラフである。
【図3】二次近似式で表したI−V特性の一例を示すグラフである。
【図4】増加方向の近似式から濃度分極成分の除き方の一例を説明するためのグラフである。
【図5】減少方向の近似式から濃度分極成分の除き方の一例を説明するためのグラフである。
【図6】増加方向を一次近似式で表したI−V特性の一例を示すグラフである。
【図7】減少方向の近似式から濃度分極成分の除き方の他の例を説明するためのグラフである。
【図8】減少方向の近似式から濃度分極成分の除き方の別の例を説明するためのグラフである。
【図9】平衡状態又は放電分極が発生している状態での放電中に飽和分極を求める方法を説明するためのグラフである。
【図10】充電分極が発生している状態での放電中に飽和分極を求める方法を説明するためのグラフである。
【図11】放電分極又は充電分極が発生した状態での放電中に飽和分極を求める方法を説明するための図である。
【図12】放電中におけるバッテリの内部で発生する電圧降下の内容を説明するためのグラフである。
【図13】バッテリの満充電電圧と放電終止電圧を説明するためのグラフである。
【図14】放電により、新品時バッテリに対する任意時点のバッテリの任意の充電状態の変化に伴う開回路電圧の変化の割合を求めて劣化を考慮した放電可能容量を算出する方法を説明するためのグラフである。
【符号の説明】
5 モータジェネレータ
13 バッテリ
15 電流センサ
17 電圧センサ
23 マイクロコンピュータ(内部抵抗監視手段、放電可能容量監視手段)

Claims (15)

  1. バッテリの状態を監視するバッテリ状態監視装置であって、前記バッテリの放電に応じて、当該放電時に生じる分極による端子電圧の降下分が飽和したときの内部抵抗による電圧降下分を監視する内部抵抗監視手段を
    備えたことを特徴とするバッテリ状態監視装置。
  2. バッテリの状態を監視するバッテリ状態監視装置であって、前記バッテリの放電に応じて、前記バッテリの充電容量に相当する開回路電圧から、前記放電時に生じる分極による端子電圧の降下分が飽和したときの内部抵抗による電圧降下分を減じた値に応じた放電可能容量を監視する放電可能容量監視手段を
    備えたことを特徴とするバッテリ状態監視装置。
  3. 請求項1記載のバッテリ状態監視装置であって、
    前記内部抵抗監視手段は、前記放電におけるピーク電流が流れているときの前記バッテリの純抵抗による電圧降下分と、前記分極による端子電圧の降下分の飽和値とを加算して得た電圧降下分を監視する
    ことを特徴とするバッテリ状態監視装置。
  4. 請求項2記載のバッテリ状態監視装置であって、
    前記放電可能容量監視手段は、前記バッテリの充電容量に相当する開回路電圧から、前記放電におけるピーク電流が流れているときの前記バッテリの純抵抗による電圧降下分と、前記分極による端子電圧の降下分の飽和値とを減じた値に基づいて求めた放電可能容量を監視する
    ことを特徴とするバッテリ状態監視装置。
  5. バッテリの放電時に生じる分極による端子電圧の降下分の飽和値である飽和分極を検出する方法であって、
    前記放電の所定期間中に検出された前記バッテリの放電電流及び端子電圧から求めた前記放電電流に対する前記端子電圧の近似式と、前記バッテリの純抵抗とに基づいて、前記飽和分極を検出する
    ことを特徴とする飽和分極検出方法。
  6. 請求項5記載の飽和分極検出方法であって、
    前記近似式と、前記純抵抗による電圧降下分と、前記分極による電圧降下分との関係式を、前記放電電流によって微分することにより、前記放電電流に対する前記分極による電圧降下分の変化量の式を求め、
    前記変化量の式から、当該変化量がゼロとなる時点の放電電流の値を前記バッテリの端子電圧降下飽和電流値として求め、
    前記求めた端子電圧降下飽和電流値を、前記関係式に代入することによって求められる、前記分極による電圧降下分を、前記飽和分極として検出する
    ことを特徴とする飽和分極検出方法。
  7. 請求項5記載の飽和分極検出方法であって、
    前記近似式から求めた放電電流ゼロのときの端子電圧が、当該放電開始時の開回路電圧より低いとき、
    前記近似式と、前記純抵抗による電圧降下分と、前記分極による電圧降下分との関係式を、前記放電電流によって微分することにより、前記放電電流に対する前記分極による電圧降下分の変化量の式を求め、
    前記変化量の式から、当該変化量がゼロとなる時点の放電電流の値を前記バッテリの端子電圧降下飽和電流値として求め、
    前記求めた端子電圧降下飽和電流値を、前記関係式に代入することによって求められる、前記分極による電圧降下分に、前記近似式から求めた放電電流ゼロのときの端子電圧と、当該放電開始時の開回路電圧との差分を加算した値を、前記飽和分極として検出する
    ことを特徴とする飽和分極検出方法。
  8. 請求項6又は7記載の飽和分極検出方法であって、
    前記関係式は、前記近似式が表す端子電圧を、前記純抵抗による電圧降下分と前記分極による電圧降下分とによって表した式である
    ことを特徴とする飽和分極検出方法。
  9. 請求項5〜8何れか1項記載の飽和分極検出方法であって、充電分極が発生している前記バッテリの放電時は、放電開始から所定時間経過後の所定期間中に検出された前記バッテリの放電電流及び端子電圧から前記放電電流に対する端子電圧の近似式を求める
    ことを特徴とする飽和分極検出方法。
  10. 請求項1記載のバッテリ状態監視装置であって、
    前記内部抵抗監視手段は、請求項5〜9何れか1項記載の飽和分極検出方法を用いて検出した飽和分極に基づいて求めた前記内部抵抗による電圧降下分を検出する
    ことを特徴とするバッテリ状態監視装置。
  11. 請求項5〜9何れか1項記載のバッテリの飽和分極検出方法により検出したバッテリの前記飽和分極を用いて該バッテリの放電可能容量を検出する方法であって、
    前記バッテリが放電を行う毎に、
    当該放電の開始時における開回路電圧から、前記バッテリの純抵抗に対応する電圧降下分と、請求項5〜9何れか1項記載の飽和分極検出方法により検出した前記飽和分極とを減じた値に基づき、前記放電可能容量を求める
    ことを特徴とする放電可能容量検出方法。
  12. 請求項6記載の飽和分極検出方法により検出したバッテリの前記飽和分極を用いて該バッテリの放電可能容量を検出する方法であって、
    前記バッテリが放電を行う毎に、前記近似式から求めた放電電流ゼロのときの端子電圧が、当該放電開始時の開回路電圧より低いとき、
    当該放電の開始時における開回路電圧から、請求項6記載の飽和分極検出方法により検出したバッテリの前記飽和分極と、前記近似式から求めた放電電流ゼロのときの端子電圧、及び、当該放電開始時の開回路電圧の差分とを減じた値に基づいて、放電可能容量を検出するようにした
    ことを特徴とする放電可能容量検出方法。
  13. 請求項11又は12記載の放電可能容量検出方法であって、
    劣化により生じる前記バッテリの充電状態−前記開回路電圧特性の変動分を考慮して、前記放電可能容量を求めるようにした
    ことを特徴とする放電可能容量検出方法。
  14. 請求項13記載の放電可能容量検出方法であって、
    前記バッテリが放電を行う毎に、当該放電によるバッテリの充電状態の減少に対する新品バッテリの開回路電圧の第1変化量、及び、当該放電による充電状態の減少に対する前記バッテリの開回路電圧の第2変化量の両変化量の比と、
    前記減じた値に基づいて、前記放電可能容量を求める
    ことを特徴とする放電可能容量検出方法。
  15. 請求項2記載のバッテリ状態監視装置であって、
    前記放電可能容量監視手段は、請求項12〜14何れか1項記載の放電可能容量検出方法を用いて検出した放電可能容量を監視する
    ことを特徴とするバッテリ状態監視装置。
JP2003097467A 2002-05-13 2003-03-31 バッテリ状態監視装置、飽和分極検出方法及び放電可能容量検出方法 Abandoned JP2004045375A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003097467A JP2004045375A (ja) 2002-05-13 2003-03-31 バッテリ状態監視装置、飽和分極検出方法及び放電可能容量検出方法
US10/436,139 US7034504B2 (en) 2002-05-13 2003-05-13 Battery status monitoring apparatus which monitors internal battery resistance, saturation polarization detecting method and dischargeable capacity detecting method
DE10321483A DE10321483A1 (de) 2002-05-13 2003-05-13 Batteriezustands-Überwachungsvorrichtung, Sättigungspolarisations-Erfass-Verfahren und Entladekapazitäts-Erfass-Verfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002137820 2002-05-13
JP2003097467A JP2004045375A (ja) 2002-05-13 2003-03-31 バッテリ状態監視装置、飽和分極検出方法及び放電可能容量検出方法

Publications (1)

Publication Number Publication Date
JP2004045375A true JP2004045375A (ja) 2004-02-12

Family

ID=29405336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003097467A Abandoned JP2004045375A (ja) 2002-05-13 2003-03-31 バッテリ状態監視装置、飽和分極検出方法及び放電可能容量検出方法

Country Status (3)

Country Link
US (1) US7034504B2 (ja)
JP (1) JP2004045375A (ja)
DE (1) DE10321483A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251291A (ja) * 2007-03-29 2008-10-16 Ngk Insulators Ltd ナトリウム−硫黄電池の制御方法
US7459884B2 (en) 2004-04-27 2008-12-02 Sony Corporation Remaining capacity calculation method for secondary battery, and battery pack
US8330468B2 (en) 2009-02-24 2012-12-11 Denso Corporation Vehicle control system having automatic engine stop function selectively enabled/disabled based on estimated charge amount in battery

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7317300B2 (en) * 2003-06-23 2008-01-08 Denso Corporation Automotive battery state monitor apparatus
WO2005013409A1 (en) * 2003-07-02 2005-02-10 Eaton Power Quality Limited Battery float management
EP1712924A1 (en) * 2004-01-21 2006-10-18 Yazaki Corporation Battery pure resistance measuring method and apparatus
JP4364279B2 (ja) * 2004-06-30 2009-11-11 フォード モーター カンパニー 車両情報表示装置及び、情報表示方法
US8386104B2 (en) * 2009-06-01 2013-02-26 Ford Global Technologies, Llc System and method for displaying power flow in a hybrid vehicle
US8612168B2 (en) 2010-09-22 2013-12-17 GM Global Technology Operations LLC Method and apparatus for estimating battery capacity of a battery
CN104541175B (zh) * 2012-12-04 2018-06-22 株式会社Lg化学 用于估计二次电池的参数的设备和方法
JP2014115088A (ja) * 2012-12-06 2014-06-26 Sony Corp 電池残容量検出装置、電動車両および電力供給装置
JP2015155859A (ja) * 2014-02-21 2015-08-27 ソニー株式会社 電池残量推定装置、電池パック、蓄電装置、電動車両および電池残量推定方法
US9535129B2 (en) * 2014-06-17 2017-01-03 GM Global Technology Operations LLC Systems and methods for estimating battery pack capacity during charge sustaining use
US9533598B2 (en) * 2014-08-29 2017-01-03 Ford Global Technologies, Llc Method for battery state of charge estimation
KR101610530B1 (ko) * 2014-10-24 2016-04-07 현대자동차주식회사 배터리의 내부 저항 측정 방법
US9676288B2 (en) * 2015-03-20 2017-06-13 Ford Global Technologies, Llc Battery open-circuit voltage measurement using reverse current pulse
US10436850B2 (en) 2016-06-22 2019-10-08 Kabushiki Kaisha Toyota Jidoshokki Power storage apparatus and controlling method for the same
CN108254690A (zh) * 2016-12-29 2018-07-06 天津安源科技发展有限公司 一种电池极化活性饱和度检测装置及方法
KR102258821B1 (ko) 2018-04-30 2021-05-31 주식회사 엘지에너지솔루션 이차 전지 테스트 장치 및 방법
KR20200101754A (ko) * 2019-02-20 2020-08-28 삼성에스디아이 주식회사 배터리 제어 장치 및 배터리 제어 방법
CN111736025B (zh) * 2020-06-30 2023-06-23 梅州市量能新能源科技有限公司 电池极片断裂检测方法及系统
DE102022201505A1 (de) 2022-01-12 2023-07-13 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum (Tief-) Entladen von (Fahrzeug-) Batterieeinheiten

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281919A (en) * 1988-10-14 1994-01-25 Alliedsignal Inc. Automotive battery status monitor
US5680050A (en) * 1994-03-07 1997-10-21 Nippondenso Co., Ltd. Battery condition detection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7459884B2 (en) 2004-04-27 2008-12-02 Sony Corporation Remaining capacity calculation method for secondary battery, and battery pack
JP2008251291A (ja) * 2007-03-29 2008-10-16 Ngk Insulators Ltd ナトリウム−硫黄電池の制御方法
US8330468B2 (en) 2009-02-24 2012-12-11 Denso Corporation Vehicle control system having automatic engine stop function selectively enabled/disabled based on estimated charge amount in battery

Also Published As

Publication number Publication date
US20030210056A1 (en) 2003-11-13
DE10321483A1 (de) 2003-12-11
US7034504B2 (en) 2006-04-25

Similar Documents

Publication Publication Date Title
JP2004045375A (ja) バッテリ状態監視装置、飽和分極検出方法及び放電可能容量検出方法
JP2005019019A (ja) バッテリの劣化判定方法およびその装置
US20050073315A1 (en) Method and apparatus for estimating state of charge of secondary battery
WO2006019005A1 (ja) 放電可能容量検出方法
JP2010019595A (ja) 蓄電デバイスの残存容量演算装置
JP2004301780A (ja) バッテリ状態監視装置及びその方法、並びに、放電可能容量検出方法
JP3986992B2 (ja) バッテリの放電可能容量推定方法及び装置
JPH0659003A (ja) 電池残存容量計
US20070170892A1 (en) Method and apparatus for estimating remaining capacity of electric storage
EP3371613A1 (en) A system and a method for determining state-of-charge of a battery
US20020053910A1 (en) Method and apparatus for measuring pure resistance of in-vehicle battery
JP3930777B2 (ja) バッテリの劣化度演算方法及びその装置
JP2004301779A (ja) バッテリ状態監視装置及びその方法
JP3986991B2 (ja) 放電可能容量検出方法
JP2002303658A (ja) バッテリの充電容量状態検出用補正係数算出方法及びその装置
CN104950181A (zh) 基于充电电流变化的蓄电池内阻测量方法和装置
JP2005147987A (ja) 飽和分極推定方法及び装置、並びに、放電可能容量推定方法
JP4383020B2 (ja) 車載バッテリ純抵抗測定方法及び装置
JP2005077128A (ja) バッテリ状態検出装置及びその方法
JP2002236157A (ja) バッテリの端子電圧推定方法及びその装置、バッテリの開回路電圧演算方法及びその装置、バッテリ容量演算方法及びその装置
JP2004301784A (ja) バッテリの放電可能容量推定方法及び装置
KR20070020322A (ko) 배터리의 열화 판정 방법 및 장치
JP4017936B2 (ja) バッテリの純抵抗測定方法及び装置
JP3976633B2 (ja) バッテリにおける放電時電圧降下成分算出方法、並びに、放電時電圧降下成分分離算出方法及び装置
JP3825660B2 (ja) 車載用バッテリの開回路電圧演算方法及びその装置、車載用バッテリの充電容量状態検出方法及びその装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20070326