JP2004164590A - デジタル制御を適用したダイレクト・ドライブ・バルブと、当該バルブから予め設定された流量を出力する方法及びシステム - Google Patents

デジタル制御を適用したダイレクト・ドライブ・バルブと、当該バルブから予め設定された流量を出力する方法及びシステム Download PDF

Info

Publication number
JP2004164590A
JP2004164590A JP2003209657A JP2003209657A JP2004164590A JP 2004164590 A JP2004164590 A JP 2004164590A JP 2003209657 A JP2003209657 A JP 2003209657A JP 2003209657 A JP2003209657 A JP 2003209657A JP 2004164590 A JP2004164590 A JP 2004164590A
Authority
JP
Japan
Prior art keywords
direct drive
drive valve
flow rate
valve
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003209657A
Other languages
English (en)
Other versions
JP2004164590A5 (ja
Inventor
Kim L Coakley
エル. コークレイ キム
Russell R Bessinger
アール.ベッシンガー ラッセル
Rex J Blake
ジェイ.ブレイク レックス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Woodward HRT Inc
Original Assignee
Woodward HRT Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Woodward HRT Inc filed Critical Woodward HRT Inc
Publication of JP2004164590A publication Critical patent/JP2004164590A/ja
Publication of JP2004164590A5 publication Critical patent/JP2004164590A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • F15B19/002Calibrating
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0324With control of flow by a condition or characteristic of a fluid
    • Y10T137/0368By speed of fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86574Supply and exhaust
    • Y10T137/86622Motor-operated

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Flow Control (AREA)
  • Servomotors (AREA)

Abstract

【課題】デジタルコントローラを利用して、ダイレクト・ドライブ・バブルへの制御信号を僅かに制御することにより予め設定された所望の流量が得られるようにする。
【解決手段】ダイレクト・ドライブ・バルブへの電気指令信号22はデジタル・シグナル・プロセサー24により補償されることにより、バルブからの出力流量を予め設定された所望の流量に一致させる。前記補償は、標準のダイレクト・ドライブ・バルブコードを用いてバルブからの流量を測定することにより実現される。前記流量は所望の流量と比較され、両者の間の差がポイントごとに計算される。そして、出力流量が所望流量に従うように指令信号を変更させる補償が計算される。
【選択図】図1

Description

【0001】
発明の属する技術分野
本発明は、一般に、ソースから負荷まで流れる水力の流体の流量を制御するバルブ、特にダイレクト・ドライブ・バルブ(Direct Drive Valve)に関し、更に詳しく、デジタル・シグナル・プロセッサにより生成したモーター制御信号に制御されるダイレクト・ドライブ・バルブに関する。
【0002】
発明の背景
ダイレクト・ドライブ・バルブは、ソースから負荷へ流れる流体の流量を制御するスプールを駆動する機構を有する。駆動モーターは、ソレノイドコイル、或いは音声コイルのような制限アングル回転式モーター(limited angle rotary motor)であるか、リアルドライブモーター(linear drive motor)であるかに係らず、その駆動機構がその行程(travel)の中に制限されている。このような装置の中に、ダイレクト・ドライブ・バルブからの出力流量が設定されたパラメータに従うことは望ましい。例えば、ダイレクト・ドライブ・バルブからの出力流量がダイレクト・ドライブ・バルブに加えた指令信号に対して線形であることはしばしば要求される。しかしながら、場合によって、流量は他の予め設定された流量パターンに従うことも要求される。所望の出力流量を実現するために、先行技術では、一般的に、流体が通過するポートを細くすることにより所望の流量パターンを作り出す。流量の通路の部分を線形化し、かつ指令値を増幅するように、さらなる線形化の流量を実現することを図って、出力流量を制御する例もある。本出願者が出願した米国特許第5,285,715号に開示した構成を例として参照できる。又、ダイレクト・ドライブ・バルブから所望の出力流量を得るための他の方法は本出願者が出願した米国特許第5,551,481号にも記載されている。これらの公報によると、完全に包まれた駆動モーターは水圧ステージ(hydraulic stage)の上に配置され、予め設定された所望の流量を出力するための適切な制御信号が駆動モーターに加えられる。水圧ステージの出力が測定される。そして、水圧ステージから所望の出力を得るように、駆動モーターを回転、又は移動させることにより駆動モーターは水圧ステージに対応して配置される。先行技術として、米国特許第4,513,782号に、伝統的な電気油圧式サーボバルブが開示される。この電気油圧式サーボバルブはダイレクト・ドライブ・バルブと異なり、入力指令信号とサーボバルブ制御コイルとの間でマッチィング回路が設けられている。当該マッチィング回路は、電気油圧式サーボバルブの出力応答を線形化するのに役に立つ。これは参照テーブル(look-up table)を生成することによって実現される。当該参照テーブルは、メモリに内蔵され、各有効なアドレスにおいて、水力出力の大きさが所望値になるように入力指令信号値を修正するのに使われる。このような先行技術は、狙う目的に合った適切な処理と構成を開示しているが、これらの装置には大量な附加作業が必要であり、各ダイレクト・ドライブ・バルブに対して、製造の時点で相当な手動調整が必要であるため、製造時間とコストが増加することになる。
【0003】
従って、デジタルコントローラーを利用してダイレクト・ドライブ・バルブへの制御信号を僅かに操作することにより、予め設定された所望の流量が得られるようなダイレクト・ドライブ・バルブを提供することが望ましい。
【0004】
発明の概要
ダイレクト・ドライブ・バルブは、ソースから負荷まで流れる流体の流量を制御する制御手段(例えば、スプール)と、前記制御手段を駆動する駆動手段と、前記駆動手段へ制御信号を提供するデジタル・シグナル・プロセッサとを備える。
【0005】
ダイレクト・ドライブ・バルブからの出力流量を予め設定された流量に一致させるように前記ダイレクト・ドライブ・バルブへの指令信号を補償するシステムは、補償されていない前記ダイレクト・ドライブ・バルブからの原流量データを作成する手段と、前記バルブの原流量データと予め設定された所望の流量とを比較して、両者の差を決める手段と、前記原流量データと予め設定された所望の流量との差に相関する流量補償変数を計算する手段と、前記ダイレクト・ドライブ・バルブに加える指令信号を生成するデジタル・シグナル・プロセッサを提供する手段と、予め設定された所望の流量が得られるように前記バルブを制御する前記指令信号を生成するために、前記補償変数を前記デジタル・シグナル・プロセッサに適用する手段とを備える。
【0006】
ダイレクト・ドライブ・バルブから予め設定された流量を出力する方法は、前記ダイレクト・ドライブ・バルブの原流量データを作成するステップと、前記ダイレクト・ドライブ・バルブの前記原流量データと予め設定された所望の流量データとを比較するステップと、前記原流量データと予め設定された所望の流量との差に相関する補償変数を計算するステップと、前記ダイレクト・ドライブ・バルブを制御するデジタル・シグナル・プロセッサを提供するステップと、前記補償変数を前記デジタル・シグナル・プロセッサにロードするステップとを備える。
【0007】
好ましい実施形態の詳細な説明
各図面、特に図1を参照すれば、本発明の原理に基づいて構成されたダイレクト・ドライブ・バルブの簡易概略構成が図1に示される。図1に示すように、胴体14の中で形成されたシリンダ12の中で滑動できるように取り付けられているスプール10がある。スプール10はシリンダ12の中で往復移動するように、ソース16から負荷18へ流れる流体の流量を制御する。スプール10を駆動するためのモーター20が提供される。図1に示すように、モーター20は、連結手段22によりスプール10と機械的に連結され、スプール10をシリンダ12の中で往復移動させる。駆動モーター20は、駆動モーター20に加えられた指令信号により制御される。当該指令信号は、応用例によって異なる任意の特定のソースからの入力或いは指令信号22に基づいた信号である。前記入力信号に制御されるデジタル・シグナル・プロセッサ24は、モーター20に加えるモーター制御信号を生成する。センサー26は、モーター制御信号を生成する時に使われるスプール10の位置或いはモーター20の位置のような情報をデジタル・シグナル・プロセッサへフィードバックするために提供されることがある。
【0008】
本発明の原理に基づいて、デジタル・シグナル・プロセッサ24は、PWM(pulse width modulated)形式のデジタル信号を駆動モーター20に与える。そして、駆動モーター20は、指令信号22に従った予め設定された位置へスプール10を移動させることにより、予め設定された所望の流量パラメーターに従った出力流量C1とC2を提供する。例えば、ダイレクト・ドライブ・バルブからの流量は線形パターン、或いは非常に低い初期流量から非常に高い流量に変わるような特別な用途に応じた予め設定された流量パターンであることが要求される可能性がある。それに対して、デジタル・シグナル・プロセッサは指令信号に補償変数を加える処理を行った上でモーター20へ制御信号を提供する機能を有するため、ダイレクト・ドライブ・バルブから任意の予め設定された所望の流量パターンを出力することが実現できる。
【0009】
このような補償変数を提供するために、補償されていないダイレクト・ドライブ・バルブを調水弁試験スタンドに取り付ける必要がある。調水弁試験スタンドは広く知られている技術であり、その中の一例は本出願申請者が出願した米国特許第4,480,464号に開示され、本発明に取り入れられている。図2はこのような調水弁試験スタンドの一例(本発明に適用されている)の概略構成を示すブロック図である。図2に示すように、調水弁試験スタンドは、デジタイザー32をその一部分として有するコンピューター30を備える。34で示す操作されるバルブは、試験スタンドからの水力流体がバルブを通過することが可能であり、かつその出力部分からの流量を測定できるように、試験スタンドに適切に取り付けられている。コンピューター30とバルブ34の間でインターフェース36が提供されている。インターフェース36は他の手段とともに、モーター制御信号を生成し、かつ当該信号を結合部38によりバルブ34に与える処理に用いられる。流量補償されていない標準のダイレクト・ドライブ・バルブアルゴリズム或いはコードに従って、通常バルブ34に関連する制御信号のスペクトルを通してモーター制御信号をバルブ34に加えると、バルブ34の中のスプールはモーター制御信号に従って動作して、バルブ34から流体を管路40へ排出する。管路40はバルブ34からの流体を流量変換器42へ送る。周知のように、流量変換器は流体の流量をアナログ信号に変換することができるため、流量変換器42はバルブ34からの流量を表すアナログ信号を生成する。生成された信号は、44によりインターフェース36へ伝送され、そしてインターフェース36からデジタイザー32へ出力される。デジタイザ32はアナログ信号(A)をデジタル信号(D)に変換する変換器であり、任意のこのようなA/D変換器を用いることが可能であることがよく知られている。
【0010】
デジタイザー32により生成されたデジタル信号は、モーター制御信号の適用に応じたバルブ34からの補償されていない出力流量パターンを表す。この出力流量データは原流量データであり、即ち、補償がまだ行われていないバルブ34からの出力流量データである。当該原流量データのデジタル信号は、さらにコンピューター30の内部でデータ比較器33により、特定なダイレクト・ドライブ・バルブの応用目的における予め設定された所望の流量パターンと比較される。比較の結果として、実際の原流量データと予め設定された所望の流量パターンとの差が決められる。コンピュータ30は、各データポイント逐一に原流量データと予め設定された流量パターンとの差に相関する補償変数を計算する。計算された補償変数はバルブ34を駆動するために使われるダイレクト・ドライブ・バルブコード(以下、DDVコードと称する)にロードされる。DDVコードは例えばバルブ34の中に内蔵されるE2PROMメモリのようなメモリ39に保存される。結果として、特定の応用目的において予め設定された所望の流量をバルブ34から出力するように、バルブ34の出力流量が補償されることになる。バルブ34の起動時、補償操作プログラムがメモリ39からデジタル・シグナル・プロセッサ24にダウンロードされる。ダイレクト・ドライブ・バルブの運転中、デジタル・シグナル・プロセッサ24は駆動モーターにモーター制御信号を提供する。
【0011】
さらに詳しく、図3を参照すれば、本発明の原理に基づいてダイレクト・ドライブ・バルブから予め設定された流量を出力する方法の各ステップを示すフローチャートが示されている。処理50において、ダイレクト・ドライブ・バルブの駆動モーターに適切なモーター制御信号を提供すると同時に、バルブからの出力流量を適切な流量変換器へ送り、アナログ信号に変換するように、補償されていないバルブを適切に試験スタンドに取り付けることが行われる。処理52において、バルブ34が試験スタンドに取り付けられた後、その原流量データの作成が行われる。処理54において、作成された原流量データを試験スタンドのコンピューターに記録することが行われる。処理56において、原流量データが予め設定された所望の流量データパターンと比較されることにより、原流量データと所望の流量データとの差が検出され、そして、コンピューターは、適切なアルゴリズムあるいは計算式を用いて、予め設定された所望の流量パターンを出力するために流量を適切に補償する補償変数を計算することが行われる。処理58において、計算された補償変数をダイレクト・ドライブ・バルブの駆動に使われるDDVコードにロードすることが行われる。処理60において、補償されたDDVコードをダイレクト・ドライブ・バルブの一部分であるデジタル・シグナル・プロセッサにダウンロードすることが行われる。
【0012】
図4を参照すれば、所望の出力流量は線形流量である場合に流量補償の実施に用いられたグラフが示されている。縦軸は流量を表し、横軸は入力指令電流を表す図4において、バルブにおける2分の1の電流対流量のカーブだけが示されていることがよく分かる。カーブ70は、試験スタンドに取り付けられたバルブから測定した原流量パターンを示している。図4に示すように、原流量データカーブ70は非線型である。カーブ72は、提供された特定の応用目的におけるバルブの予め設定された所望の流量パターンを示している。本実施形態において、所望の流量パターンは線形である。カーブ70とカーブ72との差は、コンピューターの中で両者を比較することにより決められる。そして、カーブ74に示す補償変数を算出し、DDVコードに挿入することにより、原流量カーブにおける各ポイントでの流量はカーブ72に示す所望の線形流量に変更される。これは、Y=-0.0295X3+0.4322X2-2.1198X+4.5837のような多項式を生成することにより実現される。前記多項式を利用して、原流量データカーブにおける各データポイントを前記多項式の未知数(X)に代入すれば、前記の多項式が解ける。前記多項式を解いた時に、原流量データカーブにおけるこの特定のポイントに対する補償変数が変更されて、流量パターンをカーブ72に示す所望の流量に移る。従って、ダイレクト・ドライブ・バルブからの出力流量が線形化される。
【0013】
さらに詳しく、図5を参照すれば、本発明の原理に基づいた流量補償の実現に関するさらなる詳細な説明がブロック図に示されている。図5に示すように、モーター80は、機械連結手段84を通してスプール82を駆動することにより、スプール82を86の矢印に示す方向へ往復移動させる。その結果、圧力下の水力流体はバルブから負荷(図に示されていない)へ排出されることになる。モーターの一部分として提供された位置センサー88は、アンギュラーモーター回転子(angular motor rotor)の位置情報を提供するホールセンサーのようなものである。位置センサー88に生成された電気信号は連結手段90によりアナログ/デジタル変換器92へフィードバックされる。連結手段94によりアナログ/デジタル変換器92へフィードバックされるのはモーター電流である。又、アナログ/デジタル変換器92に加える信号は、特定の応用例におけるソースから端子96に加える指令信号である。
【0014】
アナログ/デジタル変換器92は内部で指令信号と、フィードバック位置信号と、電流信号とを比較し、これらの信号を統合した上、デジタル信号を出力する。当該出力信号は、連結手段98を通してデジタル・シグナル・プロセッサ100へ伝送される。前の説明から分かるように、デジタル・シグナル・プロセッサ100にはDDVコードがロードされている。このアルゴリズム(DDVコード)は、通常モーター80を駆動することによりスプール82を往復移動させるのに用いられる。バルブから所望の流量パターンを出力するために、多項式、又は多項式の組み合わせにより決められた流量補償が現在デジタル・シグナル・プロセッサ100の中に存在し、DDVコードにロードされている。即ち、指定信号が加えられた時に、デジタル・シグナル・プロセッサは、モーターがDDVコードに従って予め設定された位置へ移動することを認識する。そして、流量補償処理はDDVコードを変更して、バルブからの出力流量が所望の流量に変わることを実現させるような位置にモーターを移動させるようにする。DDVコードの操作結果として、デジタル・シグナル・プロセッサ100は連続のPWM形式の制御信号を電源切替えブリッジ102へ出力する。電源切替えブリッジ102は104を通して電源をモーター80のコイルに接続して、モーター80を所望の位置へ駆動することにより、予め設定された所望の流量パターンを提供する。図5のブロック図において、システムの各構成要素はそれぞれの独立のブロックで表示されているが、特定の応用例によって、それらの構成要素はモーター80と一体になる場合、又、胴体の中に配置される場合がある。
【0015】
場合によって、モーター制御回路が正しく動作できなくなる程、所望の流量を出力するためにシステムに設置した通常の補償信号が指令信号より遅れる状況を引き起こすような変化率の高い指令信号が発生する。従って、一部の実施形態において、指令信号値の変化量を検出し、補償変数の効果を最小、又は完全無効にして、デジタル・シグナル・プロセッサにロードされている普通のDDVコードのみによるモーター制御を行うことが望まれる。これを実現するための処理仕組みを図6に示す。図6に示すデジタル入力指令信号は図5に示すA/D(アナログ/デジタル)変換器92からデジタル・シグナル・プロセッサ100へ出力する信号であり、前記信号がブロック110に入力される。ブロック110は、A/D変換器92からの出力を連続時間間隔において比較し、指令信号の時間関数の1次微分を有効的に取る。ブロック110はデジタル入力指令信号、即ち指令信号の変化率に比例した出力信号を提供する。発明の目的に応じて、変化率の大きさのみが必要となるので、前記変化率の絶対値が112により出力される。この出力信号は乗算器114の一つの入力として用いられる。116に示す正常補償信号Hは乗算器114のもう一つの入力信号として乗算器114に加えられる。乗算器114は、デジタル入力信号の変化率の大きさが十分に大きくなったら、補償信号Hを完全に無効させるように働く。結果として、デジタル入力信号は連結手段118及びアンプ120とアンプ120とを通して、直接加算ネットワーク124に入力され、そのまま出力として126によりモーター制御回路へ伝送されることになる。運転中に、図6に示す回路は、デジタル入力信号の変化率がモーター操作の過度の遅れを引き起こすような値ではなく、即ち低い或いは適度の値であれば、126からの出力信号は完全に補償された信号となるように働く。即ち、補償信号はH(X)+U0(X)の式により生成される。乗算器114へ出力するデジタル入力信号の時間に関する1次微分が零或いは非常に低い値になったら、補償Hは低減されずに、デジタル入力信号とともに加算ネットワーク124に完全に適用され、モーター制御に補償入力信号を提供することになる。
【0016】
本実施形態において、バルブの出力流量パターンを線形化することを例示したが、これに限らず、デジタル・シグナル・プロセッサにより生成されるダイレクト・ドライブ・バルブを制御する指令信号を簡単に補償することにより、任意の所望流量パターンをバルブから出力するようにバルブの流量を補償することが可能であることが理解されるべきである。
【図面の簡単な説明】
【図1】図1は本発明の原理に基づいて構成されたダイレクト・ドライブ・バルブの概要図である。
【図2】図2は本発明の方法に関連して用いる試験スタンドの簡易ブロック図である。
【図3】図3は本発明の方法を説明するフローチャットとブロックフォームである。
【図4】図4は本発明の方法とシステムの実現に用いられるカーブを示すグラフである。
【図5】図5はモーター制御回路を非常に詳しく示す簡易ブロック図である。
【図6】図6は、入力指令信号の速い変化率に引き起こされるエラーを克服するための更なる補償処理の簡易ブロック図である。

Claims (16)

  1. ダイレクト・ドライブ・バルブ(Direct Drive Valve)から予め設定された流量を出力する方法であって、
    前記ダイレクト・ドライブ・バルブの原流量データを作成する第1のステップと、
    前記ダイレクト・ドライブ・バルブの前記原流量データと予め設定された所望の流量データとを比較する第2のステップと、
    前記原流量データと予め設定された所望の流量との差に相関する補償変数を計算する第3のステップと、
    前記ダイレクト・ドライブ・バルブを制御するデジタル・シグナル・プロセッサを提供する第4のステップと、
    前記補償変数を前記デジタル・シグナル・プロセッサにロードする第5のステップとを備えることを特徴とする方法。
  2. 前記原流量データを作成するステップは、
    調水弁試験(Hydraulic valve test)スタンドを提供するステップと、
    前記ダイレクト・ドライブ・バルブを前記試験スタンドに取り付けるステップと、
    ダイレクト・ドライブ・バルブアルゴリズムにより生成された指令信号を前記ダイレクト・ドライブ・バルブに加えるステップと、
    前記指令信号に応じて前記バルブからの流量を測定するステップとを備えることを特徴とする請求項1に記載のダイレクト・ドライブ・バルブから予め設定された流量を出力する方法。
  3. 前記計算ステップは、
    予め設定された原流量データポイントに乗算器を近似するための処理式を提供することを備え、前記近似処理式が前記原流量データポイントに応用されると予め設定された流量が生成されることを特徴とする請求項1に記載のダイレクト・ドライブ・バルブから予め設定された流量を出力する方法。
  4. 前記ダイレクト・ドライブ・バルブからの出力流量の測定は、前記流量を表す電気アナログ信号を生成することを特徴とする請求項2に記載のダイレクト・ドライブ・バルブから予め設定された流量を出力する方法。
  5. さらに、前記予め設定された流量を出力する方法は、前記アナログ信号をデジタル化にするステップを備えることを特徴とする請求項4に記載のダイレクト・ドライブ・バルブから予め設定された流量を出力する方法。
  6. 前記補償変数を計算するステップは、多項式を解く、さらにその解をダイレクト・ドライブ・バルブアルゴリズムに入力することを備えることを特徴とする請求項5に記載のダイレクト・ドライブ・バルブから予め設定された流量を出力する方法。
  7. ダイレクト・ドライブ・バルブからの出力流量を予め設定された流量に一致させるように、前記ダイレクト・ドライブ・バルブへの指令信号を補償するシステムであって、
    補償されていない前記ダイレクト・ドライブ・バルブからの原流量データを作成する手段と、
    前記バルブの原流量データと予め設定された所望の流量とを比較して、両者の差を決める手段と、
    前記原流量データと予め設定された所望の流量との差に相関する流量補償変数を計算する手段と、
    前記ダイレクト・ドライブ・バルブに加える指令信号を生成するデジタル・シグナル・プロセッサを提供する手段と、
    予め設定された所望の流量が得られるように前記バルブを制御する前記指令信号を生成するために、前記補償変数を前記デジタル・シグナル・プロセッサに適用する手段とを備えることを特徴とするシステム。
  8. 前記原流量データを作成する手段は、
    調水弁試験スタンドを具備することを特徴とする請求項7に記載のシステム。
  9. 前記試験スタンドは、前記バルブに指令信号を加える手段と、前記バルブからの流量を表すアナログ電気信号を生成する変換手段と、前記アナログ信号をデジタル化する手段とを具備することを特徴とする請求項8に記載のシステム。
  10. 一体化した流量補償されたダイレクト・ドライブ・バルブであって、
    ソースから負荷まで流れる流体の流量を制御する制御手段と、
    前記制御手段を駆動する駆動手段と、
    前記駆動手段へ制御信号を提供するデジタル・シグナル・プロセッサとを備えることを特徴とするダイレクト・ドライブ・バルブ。
  11. 前記制御手段はスプールであり、前記スプールを駆動する駆動手段は制限アングル回転式モーター(limited angle rotary motor)であることを特徴とする請求項10に記載のダイレクト・ドライブ・バルブ。
  12. 前記制御手段はスプールであり、前記スプールを駆動する駆動手段はリニアドライブモーター(linear drive motor)であることを特徴とする請求項10に記載のダイレクト・ドライブ・バルブ。
  13. 前記デジタル・シグナル・プロセッサは、前記ダイレクト・ドライブ・バルブから測定した原流量データから算出された流量補償を有することを特徴とするする請求項10に記載のダイレクト・ドライブ・バルブ。
  14. さらに、前記ダイレクト・ドライブ・バルブは、アナログ信号をデジタル信号に変換する変換器と、前記駆動手段の位置を検出して、前記位置を表すアナログ電気信号を生成手段と、前記信号を前記アナログ/デジタル変換器に伝送する手段と、前記アナログ/デジタル変換器の出力を前記デジタル・シグナル・プロセッサへ伝送する手段とを備えることを特徴とする請求項13に記載のダイレクト・ドライブ・バルブ。
  15. さらに、前記ダイレクト・ドライブ・バルブは、前記制御信号を前記アナログ/デジタル変換器へ伝送する手段を備えることを特徴とする請求項14に記載のダイレクト・ドライブ・バルブ。
  16. さらに、前記ダイレクト・ドライブ・バルブは、指令信号を前記デジタル・シグナル・プロセッサへ伝送する手段と、前記指令信号の変化率を決める手段と、前記指令信号の変化率が増加すると前記流量補償の効果を抑える手段とを備えることを特徴とする請求項13に記載のダイレクト・ドライブ・バルブ。
JP2003209657A 2002-09-04 2003-08-29 デジタル制御を適用したダイレクト・ドライブ・バルブと、当該バルブから予め設定された流量を出力する方法及びシステム Pending JP2004164590A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/236,258 US6789558B2 (en) 2002-09-04 2002-09-04 Digitally controlled direct drive valve and system and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2004164590A true JP2004164590A (ja) 2004-06-10
JP2004164590A5 JP2004164590A5 (ja) 2005-06-23

Family

ID=31715309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003209657A Pending JP2004164590A (ja) 2002-09-04 2003-08-29 デジタル制御を適用したダイレクト・ドライブ・バルブと、当該バルブから予め設定された流量を出力する方法及びシステム

Country Status (3)

Country Link
US (1) US6789558B2 (ja)
EP (1) EP1396773A1 (ja)
JP (1) JP2004164590A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120149A (ja) * 2004-10-21 2006-05-11 Minebea Co Ltd 流体媒体の配量システム及び流体媒体の配量方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080099705A1 (en) * 2006-10-25 2008-05-01 Enfield Technologies, Llc Retaining element for a mechanical component
FR3038741B1 (fr) 2015-07-09 2019-03-22 Continental Automotive France Procede et dispositif de determination d'un modele de debit au travers d'une vanne
GB201514575D0 (en) * 2015-08-17 2015-09-30 Norgren Ltd C A DC canceller adaptive filter for attenuating noise in a feedback path of a flow controller
JP7478105B2 (ja) * 2021-01-13 2024-05-02 住友重機械工業株式会社 流体アクチュエータ、流体アクチュエータの制御方法、流体アクチュエータの制御プログラム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2512977A1 (fr) 1981-09-11 1983-03-18 Thomson Csf Dispositif a servovalve electrohydraulique
US4480464A (en) 1983-02-28 1984-11-06 Hr Textron Inc. General purpose hydraulic test station
US4790233A (en) * 1984-09-04 1988-12-13 South Bend Lathe, Inc. Method and apparatus for controlling hydraulic systems
US4674323A (en) 1985-07-31 1987-06-23 The Dow Chemical Company Self-diagnostic gel permeation/size exclusion chromatograph
DE3734955A1 (de) * 1987-10-15 1989-04-27 Rexroth Mannesmann Gmbh Elektrische messwertaufbereitung fuer ein regelventil
US5065695A (en) 1989-06-16 1991-11-19 Nordson Corporation Apparatus for compensating for non-linear flow characteristics in dispensing a coating material
US5012722A (en) * 1989-11-06 1991-05-07 International Servo Systems, Inc. Floating coil servo valve
US5285715A (en) 1992-08-06 1994-02-15 Hr Textron, Inc. Electrohydraulic servovalve with flow gain compensation
US5551481A (en) 1994-01-27 1996-09-03 Hr Textron Inc. Method of manufacturing direct drive servovalve and direct drive servovalve resulting therefrom
US5720313A (en) 1996-05-24 1998-02-24 Weiss Construction Co. Flow rate control system
US5911238A (en) 1996-10-04 1999-06-15 Emerson Electric Co. Thermal mass flowmeter and mass flow controller, flowmetering system and method
US6119710A (en) 1999-05-26 2000-09-19 Cyber Instrument Technologies Llc Method for wide range gas flow system with real time flow measurement and correction
US6389364B1 (en) * 1999-07-10 2002-05-14 Mykrolis Corporation System and method for a digital mass flow controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120149A (ja) * 2004-10-21 2006-05-11 Minebea Co Ltd 流体媒体の配量システム及び流体媒体の配量方法

Also Published As

Publication number Publication date
EP1396773A1 (en) 2004-03-10
US6789558B2 (en) 2004-09-14
US20040040605A1 (en) 2004-03-04

Similar Documents

Publication Publication Date Title
JP4864280B2 (ja) 質量流量コントローラのシステムおよび方法
JP2010271854A (ja) デュアル位置フィードバック制御を行うサーボ制御装置
US20110054702A1 (en) Multi-mode control loop with improved performance for mass flow controller
US7224141B2 (en) Position controller of motor
JP2004164590A (ja) デジタル制御を適用したダイレクト・ドライブ・バルブと、当該バルブから予め設定された流量を出力する方法及びシステム
US7265511B2 (en) Motor control device
US6202680B1 (en) Positioner and its setting method
JPH06166078A (ja) 射出成形機の制御方法
JP6010354B2 (ja) ポジショナ
JPH10198431A (ja) 比例電磁弁の制御方法及び装置
JPH09328785A (ja) 建設機械の作業機制御装置
JP3570056B2 (ja) 材料試験機
JP2002149204A (ja) 制御装置
JP2007177635A (ja) 傾転制御信号の補正方法、傾転制御装置、建設機械および傾転制御信号補正用プログラム
JPH08254202A (ja) パイロット信号を制御するための方法及び弁組立体
JP2004164590A5 (ja)
JP2758493B2 (ja) アクチュエータの駆動制御装置
JP2006018431A (ja) サーボ制御装置
JP2576627B2 (ja) 流体アクチュエータの制御装置
JP2001221201A (ja) 電空ポジショナ
JP3850381B2 (ja) 電流制御装置
CN111043377B (zh) 一种气动调节阀控制方法
JP4241747B2 (ja) サーボ制御装置
JP2006067713A (ja) 電磁アクチュエータの駆動制御装置
JP2006067713A5 (ja)

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040929

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070511

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070806

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070809

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070904

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090227

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090526

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090529

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090625

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090630

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090715

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090721

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091023