JP2004153162A - 配線構造の形成方法 - Google Patents

配線構造の形成方法 Download PDF

Info

Publication number
JP2004153162A
JP2004153162A JP2002318674A JP2002318674A JP2004153162A JP 2004153162 A JP2004153162 A JP 2004153162A JP 2002318674 A JP2002318674 A JP 2002318674A JP 2002318674 A JP2002318674 A JP 2002318674A JP 2004153162 A JP2004153162 A JP 2004153162A
Authority
JP
Japan
Prior art keywords
sputtering
state
wiring
film
bias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002318674A
Other languages
English (en)
Other versions
JP4242136B2 (ja
Inventor
Yuzuru Ota
譲 大田
Hisaya Sakai
久弥 酒井
Noriyoshi Shimizu
紀嘉 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2002318674A priority Critical patent/JP4242136B2/ja
Publication of JP2004153162A publication Critical patent/JP2004153162A/ja
Application granted granted Critical
Publication of JP4242136B2 publication Critical patent/JP4242136B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

【課題】ビア孔の高アスペクト化に対応したバリアメタル膜の十分な被覆性(カバレッジ)を確実に得ることを可能とし、半導体装置の更なる微細化・高集積化に対応しつつも配線信頼性及び初期歩留りの向上を実現する。
【解決手段】バリアメタル膜7をスパッタ法により形成するに際して、バリアメタル膜7の材料を堆積させる条件で行う第1のスパッタ工程と、バリアメタル膜7の材料を堆積させる第1の状態と、堆積したバリアメタル膜7の材料をエッチングする第2の状態とが混在し、第2の状態が第1の状態よりも強度となる条件で行う第2のスパッタ工程と、バリアメタル膜7の材料を堆積させる条件で行う第3のスパッタ工程とを含む。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
主に半導体装置に用いられる配線構造の形成方法に関し、特に配線が少なくとも銅(Cu)を含有する材料からなる配線構造の形成時に適用される。
【0002】
【従来の技術】
近年では、半導体素子の高集積化とチップサイズの縮小化に伴い、配線の微細化及び多層配線化が加速的に進められている。こうした多層配線を有するロジックデバイスにおいては、配線遅延がデバイス信号遅延の支配的要因の1つになりつつある。デバイスの信号遅延は配線抵抗値と配線容量の積に比例しており、従って配線遅延の改善のためには、配線抵抗値や配線容量を軽減することが重要である。
【0003】
そこで、配線容量を低減するため、Cu配線を形成することが検討されている。Cuは加工が困難であり、従ってこれを配線に適用する場合の好適な構造として、層間絶縁膜に形成した接続孔(ビア孔)及び配線溝を、Cuの拡散防止及び密着性の向上のために形成する下地膜(バリアメタル膜)を介してCuで充填してなる、いわゆるダマシン構造が注目されている。
【0004】
この場合、バリアメタル膜を形成するには、その高被覆性を確保すべく、自己スパッタ法又はIMPなどに代表されるイオン化スパッタ法が用いられる。
【0005】
【特許文献1】
特許第3310608号明細書
【0006】
【発明が解決しようとする課題】
近時の要請である半導体装置の微細化・高集積化に対応するため、Cu配線構造にも更なる微細化が要求されており、それに伴いビア孔を高アスペクト化する必要がある。しかしながら、イオン化スパッタ法を用いても、ビア孔の高アスペクト化に対応したバリアメタル膜の十分な被覆性(カバレッジ)を得ることは困難である。そのため、ビア孔及び配線溝からなるパターンに対して、その側壁並びにビア孔底部に十分な膜厚のメタル成長を行った場合、その肩部に余分なメタルが付着する。そして、メッキ法により当該パターン内をCuで埋め込む際に、メッキ液のパターン内への進入を妨げ、埋め込み不良を発生させ、歩留りの低下並びに配線信頼性を著しく劣化させることになる。
【0007】
また、スパッタチャンバー内に装着されたステージ側にRFバイアスを印加してメタル成膜する(バイアス・スパッタ法)ことにより、バリアメタル膜の被覆性は向上されるが、配線溝及びビア孔の肩部をエッチングしてしまい、特に狭ピッチ配線において、隣接する配線間でショートを引き起こす懸念がある。
【0008】
具体的に、バイアス・スパッタ法は、スパッタチャンバー内に装着されたステージ側にRFバイアスを印加して、スパッタ粒子を引き込みながら成膜する手法である。これにより例えばビア孔及び配線溝内に入り込むスパッタ粒子を増加させる効果とともに、ビア孔及び配線溝の側壁に付着したスパッタ粒子を再度飛散させる効果(エッチング効果)を奏し、このエッチング効果を有効に利用すれば、ビア孔の底部付近の側壁のような本来 スパッタ粒子が付着し難くカバレッジが不足する箇所にも、優れたカバレッジで下地膜を成膜することができる。
【0009】
バリアメタル膜を形成する際のスパッタとしては、RFバイアスを印加しないノンバイアス・スパッタ法またはRFバイアスを印加するバイアス・スパッタ法によるスパッタ(以下、1ステップ・スパッタと記す。)と、ノンバイアスの1ステップ・スパッタに続いて、RFバイアスを印加するバイアス・スパッタ法を組み合わせて行うスパッタ(以下、2ステップ・スパッタと記す。)がある。
【0010】
ところがこのとき、以下で説明するような不都合が生じる。図10に1ステップ・スパッタの場合を、図11に2ステップ・スパッタの場合をそれぞれ示す。図10,図11では、下層配線101を覆う層間絶縁膜102に形成された配線溝104及びビア孔103の内壁に当該スパッタ法によりバリアメタル膜105を形成した後、メッキ法によりCu材料106を埋め込む。
【0011】
ノンバイアスの1ステップ・スパッタでは、図10(a)に示すように、バリアメタル膜105は特にビア孔103の側壁部でその膜厚が薄くなり、カバレッジの低下を来す。これにより、Cu材料106を充填した際に、カバレッジ不足に起因して空隙(ボイド)107が発生する。
【0012】
また、RFバイアスを印加する1ステップ・スパッタでは、図10(b)に示すように、ビア孔103の側壁部ではカバレッジが確保されるものの、ビア孔103の底部のカバレッジが低下するとともに、ビア孔103の側壁上部(肩部)でオーバーハングが強くなり、Cu材料106を充填した際に、前記底部または前記肩部に空隙(ボイド)108が発生する。
【0013】
他方、2ステップ・スパッタでは、前記底部のカバレッジを確保しつつ前記肩部のオーバーハングを増加させない成膜が可能となる。しかしながら、2ステップ・スパッタでは、面内分布の悪化や、バリアメタル膜の前記底部における膜厚のバラツキにより電気特性のバラツキが生じやすい。更に、下層配線101とビア孔103との接続部位において、バリアメタル膜105が部分的に残った状態になると、配線ストレスの不均一化によるボイド発生にを引き起こす危険性がある 。また、下層配線101とビア孔103のCu材料106がバリアメタル膜105を介さずにに接合する場合、接合部位では両者の膜質の違いによる結晶欠陥が生じ、EM(エレクトロ・マイグレーション)耐性を損なうおそれもある。
【0014】
かかる観点から、配線信頼性を確保するためには前記底部におけるバリアメタル膜105の膜厚がある程度確保されなければならず、かつ高アスペクト比のビア孔においてボイドの発生しないCu埋め込みを達成しようとすると、1ステップ・スパッタや2ステップ・スパッタではプロセス・ウィンドウが狭すぎて プロセス適用が困難である。
【0015】
本発明は、上記の課題に鑑みてなされたものであり、ビア孔の高アスペクト化に対応したバリアメタル膜の十分な被覆性(カバレッジ)を確実に得ることを可能とし、半導体装置の更なる微細化・高集積化に対応しつつも配線信頼性及び初期歩留りの向上を実現する配線構造の形成方法を提供することを目的とする。
【0016】
【課題を解決するための手段】
本発明の配線構造の形成方法は、基板上方の絶縁膜内に下地膜を介してなる配線構造を形成する方法であって、前記下地膜をスパッタ法により形成するに際して、以下の2ステップ・スパッタを実行する。
前記下地膜の材料を堆積させる状態による条件で行う第1のスパッタ工程と、前記下地膜の材料を堆積させる第1の状態と、堆積した前記下地膜の材料をエッチングする第2の状態とが混在し、前記第1の状態が前記第2の状態よりも強度となる条件で行う第2のスパッタ工程とを含む。
【0017】
本発明の配線構造の形成方法は、前記下地膜をスパッタ法により形成するに際して、以下の3ステップ・スパッタを実行する。
前記下地膜の材料を堆積させる条件で行う第1のスパッタ工程と、前記下地膜の材料を堆積させる第1の状態と、堆積した前記下地膜の材料をエッチングする第2の状態とが混在し、前記第2の状態が前記第1の状態よりも強度となる条件で行う第2のスパッタ工程と、前記下地膜の材料を堆積させる条件で行う第3のスパッタ工程とを含む。
【0018】
【発明の実施の形態】
−本発明の基本骨子−
初めに、本発明の作用原理に基づく基本骨子について説明する。
【0019】
(基本原理1)
本発明者は、本発明の第1の手法として、上述した2ステップ・スパッタのメリットを生かしつつ、ビア孔及び配線溝の全体にわたってカバレッジに優れたバリアメタル膜の成膜技術を模索した。
【0020】
バイアス・スパッタ法では、バイアス・パワーに応じて、スパッタ材料を堆積させる第1の状態と堆積されたスパッタ材料をエッチングする第2の状態とが存する。一般的に、RFバイアス(例えばバイアス密度(W/cm))が低い場合、第2の状態よりも第1の状態の方が強度により、エッチング・レートよりも堆積レートが高くなる。他方、RFバイアスをこれよりも高くすれば、第2の状態の相対的強度が増加し、堆積レートよりもエッチング・レートが高くなる。
【0021】
図1に本発明の2ステップ・スパッタの概略構成を示す。ここでは、下層配線101を覆う層間絶縁膜102に形成された配線溝104及びビア孔103の内壁に当該スパッタ法によりバリアメタル膜105を形成した後、メッキ法によりCu材料106を埋め込む。なお、バリアメタル膜105の材料としては、高融点金属、高融点金属の窒素化合物、及び珪素化合物のうちから選ばれた少なくとも高1種を含み、Cu材料の拡散防止機能及び密着機能を有するものであり、ここでは融点金属のTaとする。
【0022】
本発明では、バイアス・スパッタにおける上記の性質に着目し、先ず、配線溝104及びビア孔103の内壁が露出した状態(図1(a))に対して、低いRFバイアス、望ましくはノンバイアスで1回目のスパッタを行いメタル材料を堆積した後(図1(b))、第1の状態の相対的強度を第2の状態よりも高く、即ちエッチング・レートよりも堆積レートを高く設定して2回目のスパッタを行う(図1(c))。
【0023】
ここで、1回目のスパッタでは堆積モードである第1の状態のみ、又はこれが支配的であるため、バリアメタル膜105のビア孔103の底部におけるカバレッジが確保される。そして、2回目のスパッタでは堆積モードである第1の状態とエッチングモードである第2の状態が混在するものの、第1の状態が優位であるため、ビア孔103の底部ではバリアメタル膜105のエッチングによる欠損を抑止してカバレッジ保持を図るとともに、第2の状態の存在によりビア孔103の肩部のオーバーハングを抑えつつも、バリアメタル膜105の側壁部におけるカバレッジを確保する。従って、配線溝104のみならずビア孔103の内壁で全体にわたってバリアメタル膜105の優れたカバレッジが得られ、ボイド等を発生させることなくCu材料106の良好な埋め込みが実現する(図1(d))。
【0024】
本発明者は、2回目のスパッタで、堆積レート>エッチング・レートを実現する具体的条件について考察した。第1,第2の状態の相対的優劣を決定するパラメータはRFバイアスの高低のみではない。例えば、RFバイアスをある一定値としてバイアス・スパッタを実行した場合、第1,第2の状態の強弱は一定ではなく、ある時刻を過ぎると第2の状態が第1の状態よりも強くなることが見出された。
【0025】
そこで、1ステップ・スパッタ(ノンバイアス)、及び従来の2ステップ・スパッタ(ノンバイアス+350W、バイアス印加時間15秒のRFバイアス)との比較に基づき、本発明の2ステップ・スパッタ(ノンバイアス+350W、バイアス印加時間10秒のRFバイアス)におけるチェーン抵抗の初期歩留りについて調べた。
【0026】
実験結果を図2に示す。このように、1ステップ・スパッタや従来の2ステップ・スパッタに比べて、本発明の2ステップ・スパッタでは、2回目のスパッタでバイアス印加時間を短時間(従来の15秒に比して短時間である3秒〜12秒、ここでは10秒)とすることにより、十分な初期歩留りが得られることが判る。
【0027】
更に、1ステップ・スパッタ(ノンバイアス)、及び従来の2ステップ・スパッタ(ノンバイアス+350W、バイアス印加時間15秒のRFバイアス)との比較に基づき、本発明の2ステップ・スパッタ(ノンバイアス+350W、バイアス印加時間10秒のRFバイアス)における配線信頼性について調べた。
【0028】
実験結果を図3に示す。ここでは、200℃の条件で高温放置試験を行った。このように、1ステップ・スパッタや従来の2ステップ・スパッタでは不良発生が見られるのに対して、本発明の2ステップ・スパッタでは不良は全く認められなかった。
【0029】
更に、従来の2ステップ・スパッタ(ノンバイアス+350W、バイアス印加時間15秒のRFバイアス)との比較に基づき、本発明の2ステップ・スパッタ(ノンバイアス+350W、バイアス印加時間10秒のRFバイアス)を実行した場合のビア孔内壁の肩部A,側壁部B,底部Cにおけるバリアメタル膜の各膜厚について調べた。
【0030】
実験結果を図4に示す。従来の2ステップ・スパッタでは、2回目のスパッタにより底部Cにえぐれが生じて成膜不良(バリアメタル膜の部分的欠如)となる。これに対して、本発明の2ステップ・スパッタでは、2回目のスパッタにより肩部Aに若干のオーバーハングが見られるものの、底部Cにえぐれが生じることなく、十分な膜厚(2〜3(nm)程度)が確保されている。
【0031】
以上説明したように、本発明の第1の手法によれば、2ステップ・スパッタにより、配線溝のみならずビア孔の内壁に被覆性に優れたバリアメタル膜を形成することが可能となり、配線の信頼性並びに初期歩留りを向上させることができる。
【0032】
(基本原理2)
本発明者は、本発明の第2の手法として、上述した2ステップ・スパッタに加え、更に3回目のスパッタを行うことにより、ビア孔及び配線溝の全体にわたってカバレッジに優れたバリアメタル膜が得られることに想到した。
【0033】
図5に本発明の3ステップ・スパッタの概略構成を示す。ここでは、図1と同様に、下層配線101を覆う層間絶縁膜102に形成された配線溝104及びビア孔103の内壁に当該スパッタ法によりバリアメタル膜105を形成した後、メッキ法によりCu材料106を埋め込む。
【0034】
バリアメタル膜105の材料としては、Ta,Ti,W,Zrから選ばれた少なくとも1種、Ta,Ti,W,Zrから選ばれた少なくとも1種の窒化物、又はTa,Ti,W,Zrから選ばれた少なくとも1種の化合物を材料として含むものが良い。具体的に、図6に示すように、3回のスパッタにおけるTa,TaNの組み合わせ(図6(a))、Ti,TiNの組み合わせ(図6(b))、W,WNの組み合わせ(図6(c))、Zr,ZrNの組み合わせ(図6(d))について調べた。以下、本例では、バリアメタル膜105の材料としてTaを用いた場合について述べる。
【0035】
本発明では、先ず、配線溝104及びビア孔103の内壁が露出した状態(図5(a))に対して、低いRFバイアスまたはノンバイアスで1回目のスパッタを行いメタル材料を堆積した後(図5(b))、堆積モードである第1の状態とエッチングモードである第2の状態が混在し、第2の状態が優位となる条件で、例えば1回目のスパッタよりも高いRFバイアスで2回目のスパッタを行いメタル材料を堆積する(図5(c))。このとき、図10,図11と同様に、ビア孔103の底部で成膜不良(メタル材料の部分的欠如)が生じた状態となる。そして、2回目よりも低いRFバイアスまたはノンバイアスで3回目のスパッタを行う(図5(d))。これにより、ビア孔103の肩部でオーバーハングを増加させることなくビア孔103の底部におけるバリアメタル膜105を厚く形成される。従って、配線溝104のみならずビア孔103の内壁で全体にわたってバリアメタル膜105の優れたカバレッジが得られ、ボイド等を発生させることなくCu材料106の良好な埋め込みが実現する(図5(e))。
【0036】
ここで、3回のスパッタにおけるRFバイアスの高低は、具体的には、一例として、ターゲット・パワーが10kWの場合、
▲1▼0.96(W/cm)より小の場合では、エッチング・レート>堆積レート
▲2▼0.96(W/cm)より大の場合では、堆積レート>エッチング・レート
となる。なお、両モードが切替わるバイアス・パワーは、スパッタのDCパワーに依存して変化する。
即ち、これを基準として、1,3回目の低いRFバイアスとしてはバイアス▲1▼を採用し、2回目の高いRFバイアスとしてはバイアス▲2▼を採用すれば良い。
【0037】
以上説明したように、本発明の第2の手法によれば、3ステップ・スパッタにより、ビア孔の肩部におけるオーバーハングを増加させることなく、ビア孔の底部におけるバリアメタル膜の膜厚を厚く確保することができる。従って、2回目のスパッタまでに生じたビア孔の底部におけるバリアメタル膜の膜厚バラツキを最終的には有効に補正することが可能となり、プロセス・マージンの拡大及び配線信頼性の向上を達成することが可能となる。
【0038】
−具体的な諸実施形態−
以下、上記した本発明の基本骨子を踏まえた具体的な諸実施形態について説明する。ここでは、本発明をダマシン法(ここではいわゆるデュアルダマシン法)によるCu配線の形成方法に適用した具体的な実施形態について、図面を参照しながら詳細に説明する。本実施形態では、半導体装置として一般的なMOSトランジスタを例に採り、その配線構造の形成に本発明を適用する。
【0039】
(第1の実施形態)
図7は、本実施形態による配線構造の形成方法を工程順に示す概略断面図である。
この配線構造を形成するにあたり、シリコン半導体基板上にゲート電極、ソース/ドレインを備えたMOSトランジスタ構造(不図示)を形成する。そして、このMOSトランジスタ構造の例えばゲート電極と電気的に接続される配線構造に本発明が適用される。
【0040】
先ず、図7(a)に示すように、シリコン半導体基板(不図示)の上方に、いわゆるダマシン法により下層Cu配線1を形成する。
【0041】
続いて、下層Cu配線1とビア孔を介して電気的に接続される上層Cu配線を形成する。
具体的には、下層Cu配線1の表面を覆うようにエッチングストッパーとなるシリコンカーバイド膜2を膜厚数十(nm)程度に形成した後、層間絶縁膜として例えば有機SOD膜、ここではポリアリールエーテル系の低誘電率膜3を膜厚数百(nm)程度に塗布し、更にハードマスクとなるシリコンカーバイド膜4を膜厚数十(nm)程度に形成する。
【0042】
続いて、フォトリソグラフィー及びこれに続くエッチングにより、先ずシリコンカーバイド膜4に配線パターンとなる部分を形成し、ハードマスクとする。続いて、下層Cu配線1の表面の一部を露出させるように、低誘電率膜3にビア孔5を形成する。このとき、下層Cu配線1の表面の一部を完全には露出させることなく、下層Cu配線1上でシリコンカーバイド膜2を極薄に残し、言わば前記表面の一部をほぼ露出させた状態となるようにしても良い。
【0043】
そして、シリコンカーバイド膜4をハードマスクとして用いて低誘電率膜3をエッチングし、ハードマスクの配線パターンの形状に倣った配線溝6を形成する。ここで、前記エッチングは、CF系ガス、NH系ガス、及びN/H系ガスを用いたプラズマエッチングとして行う。
【0044】
続いて、図7(b)に示すように、本発明の2ステップ・スパッタにより、配線溝6及びビア孔5の内壁を覆うバリアメタル膜を形成する。
なお、当該2ステップ・スパッタは2回のスパッタを同一チャンバー内で連続的に行う。スパッタチャンバーとしては、図8に示すように、自己スパッタ法又は自己スパッタ法を主としたチャンバーを用いる。このチャンバーでは、基板ステージ21には、半導体基板にRFバイアスを印加するためのステージバイアス電源が接続されており、基板ステージ21と対向するようにターゲット22が設けられ、このターゲット22には回転磁気アセンブリ23を介してターゲット電源24が接続されている。チャンバー内の側面にはシールド25が設けられ、チャンバー内にスパッタガス(ここではAr及びN)を供給するためのガス供給ライン26及び排気ポート27が設けられている。
【0045】
具体的には、先ず工程▲1▼の1回目のスパッタ、ここではノンバイアス・スパッタとして、DCパワーを10(kW)〜15(kW)、放電圧力を5×10−2(Pa)程度、シールド25に対して正電位、例えば100(V)程度を印加し、Ar流量を5(sccm)〜50(sccm)として、Taターゲットを用いてスパッタする。
【0046】
次に、工程▲1▼と同一のチャンバー内で連続した工程▲2▼の2回目のスパッタ、ここではバイアス・スパッタを行う。この場合、堆積モードである第1の状態とエッチングモードである第2の状態が混在するものの、第1の状態が優位となる条件、具体的にはバイアスパワーを350W、バイアス印加時間を10秒とし、Ar流量を5(sccm)〜50(sccm)として、Taターゲットを用いてスパッタする。
以上の2ステップ・スパッタにより膜厚10(nm)〜35(nm)程度のバリアメタル膜7を形成する。
【0047】
続いて、図7(c)に示すように、バリアメタル膜7を覆うように、シード金属膜としてCu膜8をスパッタ法により膜厚40(nm)〜200(nm)程度に堆積形成する。スパッタの条件としては、ターゲットパワーを5(kW)〜30(kW)、RFバイアスを0.32(W/cm)〜1.6(W/cm)、Ar流量を5(sccm)〜50(sccm)とする。
この場合、Cu膜8もバリアメタル膜7と同様、本発明の2ステップ・スパッタにより形成するようにしても良い。
【0048】
続いて、図7(d)に示すように、Cu膜8を電極として、電解メッキ法により、硫酸銅浴で電流密度を7(A/cm)〜30(A/cm)として配線溝6内及びビア孔5内を埋め込む膜厚、ここでは500(nm)〜2000(nm)程度にCu膜9を形成する。
【0049】
そして、図7(e)に示すように、有機酸スラリーを用いてCMP法によりCu膜8,9及びバリアメタル膜7を研磨して、配線溝6内及びビア孔5内のみにCu膜8,9及びバリアメタル膜7を残し、上層Cu配線11を形成する。
【0050】
以上により、ビア孔5を介して下層Cu配線1と上層Cu配線11とが電気的に接続されてなる配線構造が完成する。更に、上述したダマシン法を繰り返し、上層Cu配線11と接続される配線構造を形成する場合もある。
【0051】
しかる後、更なる層間絶縁膜やビア孔、配線等の形成を経て、前記配線構造を備えてなるMOSトランジスタを完成させる。
【0052】
(第2の実施形態)
図9は、本実施形態による配線構造の形成方法を工程順に示す概略断面図である。
この配線構造を形成するにあたり、シリコン半導体基板上にゲート電極、ソース/ドレインを備えたMOSトランジスタ構造(不図示)を形成する。そして、このMOSトランジスタ構造の例えばゲート電極と電気的に接続される配線構造に本発明が適用される。
【0053】
先ず、図9(a)に示すように、シリコン半導体基板(不図示)の上方に、いわゆるダマシン法により下層Cu配線1を形成する。
【0054】
続いて、下層Cu配線1とビア孔を介して電気的に接続される上層Cu配線を形成する。
具体的には、下層Cu配線1の表面を覆うようにエッチングストッパーとなるシリコンカーバイド膜2を膜厚数十(nm)程度に形成した後、層間絶縁膜として例えば有機SOD膜、ここではポリアリールエーテル系の低誘電率膜3を膜厚数百(nm)程度に塗布し、更にハードマスクとなるシリコンカーバイド膜4を膜厚数十(nm)程度に形成する。
【0055】
続いて、フォトリソグラフィー及びこれに続くエッチングにより、先ずシリコンカーバイド膜4に配線パターンとなる部分を形成し、ハードマスクとする。続いて、下層Cu配線1の表面の一部を露出させるように、低誘電率膜3にビア孔5を形成する。このとき、下層Cu配線1の表面の一部を完全には露出させることなく、下層Cu配線1上でシリコンカーバイド膜2を極薄に残し、言わば前記表面の一部をほぼ露出させた状態となるようにしても良い。
【0056】
そして、シリコンカーバイド膜4をハードマスクとして用いて低誘電率膜3をエッチングし、ハードマスクの配線パターンの形状に倣った配線溝6を形成する。ここで、前記エッチングは、CF系ガス、NH系ガス、及びN/H系ガスを用いたプラズマエッチングとして行う。
【0057】
続いて、図9(b)に示すように、本発明の3ステップ・スパッタにより、配線溝6及びビア孔5の内壁を覆うバリアメタル膜を形成する。なお、当該3ステップ・スパッタは3回のスパッタを同一チャンバー内で連続的に行い、スパッタ時の基板温度を−30℃〜200℃、チャンバー内圧力5.0×10−3Pa〜1.0Pa、チャンバー内における半導体基板とカソード電極との距離を150mm以上とすることが望ましい。
【0058】
具体的には、先ず工程▲1▼の1回目のスパッタ、ノンバイアスまたはバイアス・スパッタを行う。この場合、Taターゲットを用い、ターゲットパワーを5(kW)〜30(kW)、RFバイアスを0(W/cm)〜0.96(W/cm)、Ar流量を5(sccm)〜50(sccm)として、膜厚10(nm)〜20(nm)程度にスパッタする。
【0059】
次に、工程▲1▼と同一のチャンバー内で連続した工程▲2▼の2回目のスパッタ、ここではバイアス・スパッタを行う。ここでは、Taターゲットを用い、ターゲットパワーを5(kW)〜30(kW)、RFバイアスを0.96(W/cm)〜1.6(W/cm)、Ar流量を5(sccm)〜50(sccm)として、局所的なエッチングを伴う膜厚(−5(nm)〜5(nm))程度にスパッタする。
【0060】
工程▲3▼の3回目のスパッタ、ノンバイアスまたはバイアス・スパッタを行う。この場合、Taターゲットを用い、ターゲットパワーを5(kW)〜30(kW)、RFバイアスを0(W/cm)〜0.96(W/cm)、Ar流量を5(sccm)〜50(sccm)として、膜厚5(nm)〜10(nm)程度にスパッタする。
以上の3ステップ・スパッタにより膜厚10(nm)〜35(nm)程度のバリアメタル膜7を形成する。
【0061】
続いて、図9(c)に示すように、バリアメタル膜7を覆うように、シード金属膜としてCu膜8をスパッタ法により膜厚40(nm)〜200(nm)程度に堆積形成する。スパッタの条件としては、ターゲットパワーを5(kW)〜30(kW)、RFバイアスを0.32(W/cm)〜1.6(W/cm)、Ar流量を5(sccm)〜50(sccm)とする。
この場合、Cu膜8もバリアメタル膜7と同様、本発明の2ステップ・スパッタにより形成するようにしても良い。
【0062】
続いて、図9(d)に示すように、Cu膜8を電極として、電解メッキ法により、硫酸銅浴で電流密度を7(A/cm)〜30(A/cm)として配線溝6内及びビア孔5内を埋め込む膜厚、ここでは500(nm)〜2000(nm)程度にCu膜9を形成する。
【0063】
そして、図9(e)に示すように、有機酸スラリーを用いてCMP法によりCu膜8,9及びバリアメタル膜7を研磨して、配線溝6内及びビア孔5内のみにCu膜8,9及びバリアメタル膜7を残し、上層Cu配線11を形成する。
【0064】
以上により、ビア孔5を介して下層Cu配線1と上層Cu配線11とが電気的に接続されてなる配線構造が完成する。更に、上述したダマシン法を繰り返し、上層Cu配線11と接続される配線構造を形成する場合もある。
【0065】
しかる後、更なる層間絶縁膜やビア孔、配線等の形成を経て、前記配線構造を備えてなるMOSトランジスタを完成させる。
【0066】
以下、本発明の諸態様を付記としてまとめて記載する。
【0067】
(付記1)基板上方の絶縁膜内に下地膜を介してなる配線構造を形成する方法であって、
前記下地膜をスパッタ法により形成するに際して、
前記下地膜の材料を堆積させる状態による条件で行う第1のスパッタ工程と、
前記下地膜の材料を堆積させる第1の状態と、堆積した前記下地膜の材料をエッチングする第2の状態とが混在し、前記第1の状態が前記第2の状態よりも強度となる条件で行う第2のスパッタ工程と
を含むことを特徴とする配線構造の形成方法。
【0068】
(付記2)前記第1のスパッタ工程を低バイアスで行い、前記第2のスパッタ工程を高バイアス且つ短時間で行うことを特徴とする付記1に記載の配線構造の形成方法。
【0069】
(付記3)前記第1のスパッタ工程をバイアス無印加の条件で行うことを特徴とする付記2に記載の配線構造の形成方法。
【0070】
(付記4)前記第1及び第2のスパッタ工程を同一のチャンバー内で連続的に行うことを特徴とする付記1又は2に記載の配線構造の形成方法。
【0071】
(付記5)前記第1及び第2のスパッタ工程を、自己スパッタ法又は自己スパッタ法を主としたチャンバー構造を有し、チャンバーシールド側面に対して正電位となる正電極を備えたスパッタ装置を用いて行うことを特徴とする付記1〜4のいずれか1項に記載の配線構造の形成方法。
【0072】
(付記6)前記第1及び第2のスパッタ工程を、前記基板を保持する基板保持手段がRFバイアスを印加する機構を有してなるスパッタ装置を用いて行うことを特徴とする付記1〜5のいずれか1項に記載の配線構造の形成方法。
【0073】
(付記7)前記配線構造は、前記絶縁膜に形成された接続孔及び配線溝を前記下地膜を介して銅を含有する材料により充填してなるダマシン構造を有することを特徴とする付記1〜6のいずれか1項に記載の配線構造の形成方法。
【0074】
(付記8)前記下地膜は、高融点金属、高融点金属の窒素化合物、及び珪素化合物のうちから選ばれた少なくとも1種を含み、前記銅を含有する材料の拡散防止機能及び密着機能を有することを特徴とする付記7に記載の配線構造の形成方法。
【0075】
(付記9)前記下地膜は、少なくとも銅を含み、前記銅を含有する材料をメッキ形成する際のシード層として機能することを特徴とする付記7又は8に記載の配線構造の形成方法。
【0076】
(付記10)基板上方の絶縁膜内に下地膜を介してなる配線構造を形成する方法であって、
前記下地膜をスパッタ法により形成するに際して、
前記下地膜の材料を堆積させる条件で行う第1のスパッタ工程と、
前記下地膜の材料を堆積させる第1の状態と、堆積した前記下地膜の材料をエッチングする第2の状態とが混在し、前記第2の状態が前記第1の状態よりも強度となる条件で行う第2のスパッタ工程と、
前記下地膜の材料を堆積させる条件で行う第3のスパッタ工程と
を含むことを特徴とする配線構造の形成方法。
【0077】
(付記11)前記第1及び第3のスパッタ工程を低バイアスで行い、前記第2のスパッタ工程を高バイアスで行うことを特徴とする付記10に記載の配線構造の形成方法。
【0078】
(付記12)前記第1及び第3のスパッタ工程をバイアス無印加の条件で行うことを特徴とする付記10に記載の配線構造の形成方法。
【0079】
(付記13)前記第1のスパッタ工程をバイアス無印加の条件、前記第3のスパッタ工程を前記第1の状態が前記第2の状態よりも強度となる条件でそれぞれ行うことを特徴とする付記10に記載の配線構造の形成方法。
【0080】
(付記14)前記第1のスパッタ工程を前記第1の状態が前記第2の状態よりも強度となる条件、前記第3のスパッタ工程をバイアス無印加の条件でそれぞれ行うことを特徴とする付記10に記載の配線構造の形成方法。
【0081】
(付記15)前記第1及び第3のスパッタ工程を前記第1の状態が前記第2の状態よりも強度となる条件でそれぞれ行うことを特徴とする付記10に記載の配線構造の形成方法。
【0082】
(付記16)前記第1、第2及び第3のスパッタ工程を同一のチャンバー内で連続的に行うことを特徴とする付記10〜15のいずれか1項に記載の配線構造の形成方法。
【0083】
(付記17)前記下地膜は、Ta,Ti,W,Zrから選ばれた少なくとも1種、Ta,Ti,W,Zrから選ばれた少なくとも1種の窒化物、又はTa,Ti,W,Zrから選ばれた少なくとも1種の化合物を材料として含むことを特徴とする付記10〜16のいずれか1項に記載の配線構造の形成方法。
【0084】
(付記18)前記下地膜を、基板温度−30℃〜200℃で形成することを特徴とする付記10〜17のいずれか1項に記載の配線構造の形成方法。
【0085】
(付記19)前記下地膜を、チャンバー内圧力5.0×10−3Pa〜1.0Paで形成することを特徴とする付記10〜18のいずれか1項に記載の配線構造の形成方法。
【0086】
(付記20)前記下地膜を形成する際に、チャンバー内における前記基板とカソード電極との距離を150mm以上とすることを特徴とする付記10〜19のいずれか1項に記載の配線構造の形成方法。
【0087】
(付記21)前記配線構造は、前記絶縁膜に形成された接続孔及び配線溝を前記下地膜を介して銅を含有する材料により充填してなるダマシン構造を有することを特徴とする付記10〜20のいずれか1項に記載の配線構造の形成方法。
【0088】
(付記22)前記第1のスパッタ工程を前記接続孔の底部位に前記下地膜の材料が堆積する条件で、前記第2のスパッタ工程を前記底部位に堆積した前記下地膜の材料をエッチングする条件で、前記第3のスパッタ工程を前記底部位に前記下地膜の材料が堆積する条件でそれぞれ行うことを特徴とする付記21に記載の配線構造の形成方法。
【0089】
【発明の効果】
本発明の配線構造の形成方法によれば、ビア孔の高アスペクト化に対応したバリアメタル膜の十分な被覆性(カバレッジ)を確実に得ることを可能とし、半導体装置の更なる微細化・高集積化に対応しつつも配線信頼性及び初期歩留りの向上を実現することができる。
【図面の簡単な説明】
【図1】本発明の2ステップ・スパッタの構成を説明するための概略断面図である。
【図2】本発明の2ステップ・スパッタにおけるチェーン抵抗の初期歩留りを示す特性図である。
【図3】本発明の2ステップ・スパッタにおける配線信頼性を示す特性図である。
【図4】ビア孔内壁の肩部A,側壁部B,底部Cにおけるバリアメタル膜の各膜厚について調べた結果を示す模式図である。
【図5】本発明の3ステップ・スパッタの構成を説明するための概略断面図である。
【図6】本発明の3ステップ・スパッタにおけるバリアメタル膜材料の組み合わせを示す模式図である。
【図7】第1の実施形態による配線構造の形成方法を工程順に示す概略断面図である。
【図8】諸実施形態で用いるスパッタチャンバーの概略構成を示す模式図である。
【図9】第2の実施形態による配線構造の形成方法を工程順に示す概略断面図である。
【図10】従来の1ステップ・スパッタの構成を説明するための概略断面図である。
【図11】従来の2ステップ・スパッタの構成を説明するための概略断面図である。
【符号の説明】
1,101 下層Cu配線
2,4 シリコンカーバイド膜
3 低誘電率膜
5,103 ビア孔
6,104 配線溝
7 バリアメタル膜
8,9 Cu膜
11 上層Cu配線
102 層間絶縁膜
106 Cu材料
107,108 空隙(ボイド)

Claims (10)

  1. 基板上方の絶縁膜内に下地膜を介してなる配線構造を形成する方法であって、
    前記下地膜をスパッタ法により形成するに際して、
    前記下地膜の材料を堆積させる状態による条件で行う第1のスパッタ工程と、前記下地膜の材料を堆積させる第1の状態と、堆積した前記下地膜の材料をエッチングする第2の状態とが混在し、前記第1の状態が前記第2の状態よりも強度となる条件で行う第2のスパッタ工程と
    を含むことを特徴とする配線構造の形成方法。
  2. 前記第1のスパッタ工程をバイアス無印加の条件で行うことを特徴とする請求項1に記載の配線構造の形成方法。
  3. 前記配線構造は、前記絶縁膜に形成された接続孔及び配線溝を前記下地膜を介して銅を含有する材料により充填してなるダマシン構造を有することを特徴とする請求項1又は2に記載の配線構造の形成方法。
  4. 基板上方の絶縁膜内に下地膜を介してなる配線構造を形成する方法であって、
    前記下地膜をスパッタ法により形成するに際して、
    前記下地膜の材料を堆積させる条件で行う第1のスパッタ工程と、
    前記下地膜の材料を堆積させる第1の状態と、堆積した前記下地膜の材料をエッチングする第2の状態とが混在し、前記第2の状態が前記第1の状態よりも強度となる条件で行う第2のスパッタ工程と、
    前記下地膜の材料を堆積させる条件で行う第3のスパッタ工程と
    を含むことを特徴とする配線構造の形成方法。
  5. 前記第1及び第3のスパッタ工程をバイアス無印加の条件で行うことを特徴とする請求項4に記載の配線構造の形成方法。
  6. 前記第1のスパッタ工程をバイアス無印加の条件、前記第3のスパッタ工程を前記第1の状態が前記第2の状態よりも強度となる条件でそれぞれ行うことを特徴とする請求項4に記載の配線構造の形成方法。
  7. 前記第1のスパッタ工程を前記第1の状態が前記第2の状態よりも強度となる条件、前記第3のスパッタ工程をバイアス無印加の条件でそれぞれ行うことを特徴とする請求項4に記載の配線構造の形成方法。
  8. 前記第1及び第3のスパッタ工程を前記第1の状態が前記第2の状態よりも強度となる条件でそれぞれ行うことを特徴とする請求項4に記載の配線構造の形成方法。
  9. 前記配線構造は、前記絶縁膜に形成された接続孔及び配線溝を前記下地膜を介して銅を含有する材料により充填してなるダマシン構造を有することを特徴とする請求項4〜8のいずれか1項に記載の配線構造の形成方法。
  10. 前記第1のスパッタ工程を前記接続孔の底部位に前記下地膜の材料が堆積する条件で、前記第2のスパッタ工程を前記底部位に堆積した前記下地膜の材料をエッチングする条件で、前記第3のスパッタ工程を前記底部位に前記下地膜の材料が堆積する条件でそれぞれ行うことを特徴とする請求項9に記載の配線構造の形成方法。
JP2002318674A 2002-10-31 2002-10-31 配線構造の形成方法 Expired - Fee Related JP4242136B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002318674A JP4242136B2 (ja) 2002-10-31 2002-10-31 配線構造の形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002318674A JP4242136B2 (ja) 2002-10-31 2002-10-31 配線構造の形成方法

Publications (2)

Publication Number Publication Date
JP2004153162A true JP2004153162A (ja) 2004-05-27
JP4242136B2 JP4242136B2 (ja) 2009-03-18

Family

ID=32461750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002318674A Expired - Fee Related JP4242136B2 (ja) 2002-10-31 2002-10-31 配線構造の形成方法

Country Status (1)

Country Link
JP (1) JP4242136B2 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007001022A1 (ja) * 2005-06-28 2007-01-04 Tokyo Electron Limited 金属膜の成膜方法及び成膜装置
JP2007214387A (ja) * 2006-02-09 2007-08-23 Tokyo Electron Ltd 成膜方法、プラズマ成膜装置及び記憶媒体
JP2007250624A (ja) * 2006-03-14 2007-09-27 Fujitsu Ltd 半導体装置の製造方法
WO2008016004A1 (en) * 2006-08-01 2008-02-07 Tokyo Electron Limited Method for film formation, apparatus for film formation, computer program, and storage medium
US7358180B2 (en) 2004-03-08 2008-04-15 Fujitsu Limited Method of forming wiring structure and semiconductor device
US7381643B2 (en) 2004-01-08 2008-06-03 Fujitsu Limited Wiring structure forming method and semiconductor device
KR100857968B1 (ko) * 2006-09-20 2008-09-10 후지쯔 가부시끼가이샤 반도체 장치의 제조 방법
JP2008277531A (ja) * 2007-04-27 2008-11-13 Fujitsu Microelectronics Ltd 半導体装置の製造方法および半導体装置
US7666782B2 (en) 2005-05-20 2010-02-23 Sharp Kabushiki Kaisha Wire structure and forming method of the same
US7816279B2 (en) 2008-02-12 2010-10-19 Fujitsu Semiconductor Limited Semiconductor device and method for manufacturing the same
WO2011081202A1 (ja) * 2009-12-29 2011-07-07 キヤノンアネルバ株式会社 電子部品の製造方法、電子部品、プラズマ処理装置、制御プログラム及び記録媒体
JP2012212909A (ja) * 2012-06-18 2012-11-01 Fujitsu Semiconductor Ltd 半導体装置の製造方法および半導体装置
US8641358B2 (en) 2007-04-11 2014-02-04 Tbs Engineering Limited Apparatus for placing battery plates in a line
US20190148223A1 (en) * 2017-11-15 2019-05-16 Taiwan Semiconductor Manufacturing Co., Ltd. Contact metallization process
US10763163B2 (en) 2018-07-19 2020-09-01 Samsung Electronics Co., Ltd. Integrated circuit device and method of manufacturing the same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7381643B2 (en) 2004-01-08 2008-06-03 Fujitsu Limited Wiring structure forming method and semiconductor device
US7358180B2 (en) 2004-03-08 2008-04-15 Fujitsu Limited Method of forming wiring structure and semiconductor device
US8373274B2 (en) 2004-03-08 2013-02-12 Fujitsu Semiconductor Limited Method of forming wiring structure and semiconductor device comprising underlying refractory metal layers
US7666782B2 (en) 2005-05-20 2010-02-23 Sharp Kabushiki Kaisha Wire structure and forming method of the same
JP2007043038A (ja) * 2005-06-28 2007-02-15 Tokyo Electron Ltd 金属膜の成膜方法、成膜装置及び記憶媒体
WO2007001022A1 (ja) * 2005-06-28 2007-01-04 Tokyo Electron Limited 金属膜の成膜方法及び成膜装置
US8029873B2 (en) * 2005-06-28 2011-10-04 Tokyo Electron Limited Film deposition method and film deposition apparatus of metal film
KR101291917B1 (ko) * 2005-06-28 2013-07-31 도쿄엘렉트론가부시키가이샤 금속막의 성막 방법 및 성막 장치
JP2007214387A (ja) * 2006-02-09 2007-08-23 Tokyo Electron Ltd 成膜方法、プラズマ成膜装置及び記憶媒体
JP2007250624A (ja) * 2006-03-14 2007-09-27 Fujitsu Ltd 半導体装置の製造方法
WO2008016004A1 (en) * 2006-08-01 2008-02-07 Tokyo Electron Limited Method for film formation, apparatus for film formation, computer program, and storage medium
KR100857968B1 (ko) * 2006-09-20 2008-09-10 후지쯔 가부시끼가이샤 반도체 장치의 제조 방법
US8641358B2 (en) 2007-04-11 2014-02-04 Tbs Engineering Limited Apparatus for placing battery plates in a line
JP2008277531A (ja) * 2007-04-27 2008-11-13 Fujitsu Microelectronics Ltd 半導体装置の製造方法および半導体装置
US7816279B2 (en) 2008-02-12 2010-10-19 Fujitsu Semiconductor Limited Semiconductor device and method for manufacturing the same
US8497208B2 (en) 2008-02-12 2013-07-30 Fujitsu Semiconductor Limited Semiconductor device and method for manufacturing the same
WO2011081202A1 (ja) * 2009-12-29 2011-07-07 キヤノンアネルバ株式会社 電子部品の製造方法、電子部品、プラズマ処理装置、制御プログラム及び記録媒体
JP2012212909A (ja) * 2012-06-18 2012-11-01 Fujitsu Semiconductor Ltd 半導体装置の製造方法および半導体装置
US20190148223A1 (en) * 2017-11-15 2019-05-16 Taiwan Semiconductor Manufacturing Co., Ltd. Contact metallization process
US10964590B2 (en) * 2017-11-15 2021-03-30 Taiwan Semiconductor Manufacturing Co., Ltd. Contact metallization process
US10763163B2 (en) 2018-07-19 2020-09-01 Samsung Electronics Co., Ltd. Integrated circuit device and method of manufacturing the same
US11488860B2 (en) 2018-07-19 2022-11-01 Samsung Electronics Co., Ltd. Integrated circuit device and method of manufacturing the same

Also Published As

Publication number Publication date
JP4242136B2 (ja) 2009-03-18

Similar Documents

Publication Publication Date Title
US9508593B1 (en) Method of depositing a diffusion barrier for copper interconnect applications
US7994055B2 (en) Method of manufacturing semiconductor apparatus, and semiconductor apparatus
US6949461B2 (en) Method for depositing a metal layer on a semiconductor interconnect structure
US6768203B1 (en) Open-bottomed via liner structure and method for fabricating same
US6429519B1 (en) Wiring structures containing interconnected metal and wiring levels including a continuous, single crystalline or polycrystalline conductive material having one or more twin boundaries
US6607977B1 (en) Method of depositing a diffusion barrier for copper interconnect applications
JP4658808B2 (ja) 配線構造の形成方法
US6506668B1 (en) Utilization of annealing enhanced or repaired seed layer to improve copper interconnect reliability
JP4242136B2 (ja) 配線構造の形成方法
JP2004063556A (ja) 半導体装置の製造方法
JP2001185553A (ja) 電気めっき充填を改善する方法
US6303498B1 (en) Method for preventing seed layer oxidation for high aspect gap fill
US7615489B1 (en) Method for forming metal interconnects and reducing metal seed layer overhang
US6387800B1 (en) Method of forming barrier and seed layers for electrochemical deposition of copper
US8039390B2 (en) Method of manufacturing semiconductor device
JP4339152B2 (ja) 配線構造の形成方法
JP2003163266A (ja) 半導体装置の製造方法および半導体装置
JP2570139B2 (ja) 半導体装置の埋め込み配線の形成方法
JP3269490B2 (ja) 半導体集積回路装置およびその製造方法
JP3780204B2 (ja) バリアメタル膜又は密着層形成方法及び配線形成方法
US20050142854A1 (en) Methods for preventing copper oxidation in a dual damascene process
JP2001023925A (ja) 半導体装置及びその製造方法
JP2000353703A (ja) 半導体装置の製造方法
JP2003179133A5 (ja)
JPH11297699A (ja) 拡散バリア層およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061228

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4242136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees