JP2004153135A - 電磁波吸収体 - Google Patents

電磁波吸収体 Download PDF

Info

Publication number
JP2004153135A
JP2004153135A JP2002318280A JP2002318280A JP2004153135A JP 2004153135 A JP2004153135 A JP 2004153135A JP 2002318280 A JP2002318280 A JP 2002318280A JP 2002318280 A JP2002318280 A JP 2002318280A JP 2004153135 A JP2004153135 A JP 2004153135A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
wave absorber
matrix
scatterer
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002318280A
Other languages
English (en)
Inventor
Takeshi Narita
毅 成田
Yutaka Kagawa
豊 香川
Mitsuo Yamamoto
光雄 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP2002318280A priority Critical patent/JP2004153135A/ja
Publication of JP2004153135A publication Critical patent/JP2004153135A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

【課題】入射する電磁波の反射が少なく、しかも入射角度に関わらず優れた電磁波吸収性能を有する電磁波吸収体を提供する。
【解決手段】第1の誘電材料からなるマトリックス中に、第2の誘電材料からなる一定形状の散乱体が複数、周期的に配列していることを特徴とする電磁波吸収体。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、不要な電磁波を吸収するために用いられる電磁波吸収体に関する。
【0002】
【従来の技術】
高度道路通信システム(ITS)の一つある自動車走行支援システム(AHS)では、各車輌に搭載されたレーダ等の検出装置が道路の各所に設置されたレーンマーカを検出し、走行経路を予測し、行路からの逸脱時や障害物の出現時に運転者へ危険を知らせるなどして安全な走行を支援するものである。このようなAHSにおいては、走行中の車両が対象であるので比較的高い周波数(一般に30GHz)の電磁波が利用されるが、この比較的高周波の電磁波はビル壁や道路の防護壁、トンネルの内壁、ガードレール等によって乱反射しやすく、不要な電磁波が発生する。この不要な電磁波が車輌の受信器に受信されると、誤った発信源からの情報と誤認され、走行に危険を生じる可能性がある。
【0003】
そこで、誤動作の原因となる不要な電磁波を吸収する目的で、電磁波吸収体が用いられている。電磁波の吸収機構は、(A)抵抗損失、(B)誘電損失、(C)磁性損失に大別されるが、誘電損失により電磁波を吸収する誘電体を用いた電磁波吸収体が主流となっている。
【0004】
ところで、電磁波吸収体に電磁波が入射すると、図7に示すように、大気中から電磁波吸収体100に入射した電磁波の一部は電磁波吸収体100の表面101で反射する。この反射は電磁波が異なる物質間を通過する際に必ず生じる。一方、反射しなかった電磁波は電磁波吸収体100の内部に浸透し、減衰しながら電磁波吸収体100の裏面102に達する。そして、減衰せずに残った一部の電磁波は反射波となって電磁波吸収体100の内部を逆行し、電磁波吸収体100の表面101から外界に出る。また、残りの電磁波は電磁波吸収体100の裏面102を出て外界へ透過する。この電磁波吸収体100の裏面102からの透過は、裏面102に金属板110のような完全反射体を配置することで防止することが可能である。しかし、その一方で反射波が多くなり、電磁波吸収体100の表面101から外界に出る電磁波の量が多くなる。この電磁波吸収体100の表面101から出てくる電磁波を吸収する有効な方法はなく、裏面102で反射して表面101から外界に出てくる他の反射波によって干渉させる他にない。
【0005】
そこで、材料から電磁波の吸収性能を改善することも行われており、通常は、誘電損失の大きな材料を用いて電磁波吸収体内部での電磁波の減衰量を高めることが行われている。また、誘電損失粉体と繊維とをバインダーで結着した複合材料で形成した電磁波吸収体も知られている(例えば、特許文献1参照)。この複合材料からなる電磁波吸収体は、誘電損失体粉末の誘電損失作用と、繊維間に形成される複雑な空隙による電磁波散乱吸収作用とにより、電磁波の吸収性能を高めている。
【特許文献1】
特開平8−181482号公報
【0006】
【本発明が解決しようとする課題】
しかしながら、上記の複合体からなる電磁波吸収体では、繊維と誘電損失粉体とがランダムで、空隙の大きさも一様ではないため、電磁波の散乱効果にムラがある。また、構造骨格を形成する繊維は一般に誘電率が低いため、電磁波が透過しやすく、電磁波の散乱そのものが起こり難い。一般に、誘電率が高い材料からなる電磁波吸収体では、表面で反射しやすく、電磁波が内部に浸透し難いため、上記の複合体からなる電磁波吸収体でも反射が起こり電磁波の散乱が更に起こり難くなる。このような反射は、電磁波が電磁波吸収体に対して斜めに入射した場合により顕著となる。更には、AHS等に用いられる比較的高い周波数の電磁波に対する吸収性能にも劣っている。
【0007】
本発明はこのような状況に鑑みてなされたものであり、入射する電磁波の反射が少なく、しかも入射角度に関わらず優れた電磁波吸収性能を有する電磁波吸収体を提供することを目的とする。
【0008】
【問題を解決するための手段】
上記の目的を達成するために、本発明は、第1の誘電材料からなるマトリックス中に、第2の誘電材料からなる一定形状の散乱体が複数、周期的に配列していることを特徴とする電磁波吸収体を提供する。
【0009】
【発明の実施の形態】
以下、本発明の電磁波吸収体に関して図面を参照して詳細に説明する。尚、以降の説明において、断面図は何れも電磁波の入射面と直交する面を示してある。
【0010】
図1に斜視図にて示すように、本発明の電磁波吸収体は、第1の誘電材料からなるマトリックス10に、第2の誘電材料からなる一定形状の散乱体20が複数、周期的に、即ちある特定の間隔で規則的に配列されている。散乱体20の配列方法は制限されるものではなく、同図(a)に示すように、平板状のマトリックス10と平板状の散乱体20とが交互に積層した配列(一次元配列)、同図(b)に示すように、マトリックス10に、円筒状の散乱体20が複数、等間隔で層状に形成された配列(二次元配列)、同図(c)に示すように、マトリックス10に、球状の散乱体20が複数、等間隔で分散した配列(三次元配列)等が可能である。尚、図1(a)の電磁波吸収体では、マトリックス10の平面部分が電磁波の入射面11となり、図1(b)の電磁波吸収体では、分散体20の軸線と対面する面が電磁波の入射面11となる。また、図1(c)の電磁波吸収体では、入射面は特定されない。これらの電磁波吸収体の中では、各方向からの入射波に対しても散乱効果が同様であり、且つ、一方向からの入射波に対して当る箇所で散乱方向が異なり、複雑な散乱効果が望める球形状(三次元配列)、円柱形状(二次元配列)が好ましい。
【0011】
また、図1(b)の電磁波吸収体における散乱体20は円筒状の他に、断面形状が楕円、半円、三角形、四角形、多角形、不定形等の柱状体とすることができる。図1(c)の電磁波吸収体における散乱体20も、球状の他に楕円球、半円球、三角錐、立方体、多面体、不定形の立体等とすることもできる。更に、図1(b)及び図1(c)の各電磁波吸収体における散乱体20の配列様式は、図2(a)に示すような三角格子や、図2(b)に示すような四角格子とすることができ、更には図示は省略するが、蜂の巣格子等とすることも可能である。
【0012】
これらの電磁波吸収体の中では、散乱体20が円柱状である図1(b)に示した電磁波吸収体及び散乱体20が球状である図1(c)に示した電磁波吸収体が、各方向からの入射電磁波に対しても散乱効果が同様であり、且つ、一方向からの入射電磁波に対して複雑な散乱効果が望めることから、特に好ましい。
【0013】
マトリックス10及び散乱体20を形成する材料は誘電材料であれば、その種類(複素比誘電率)は特に制限されない。また、マトリックス10及び散乱体20は緻密質であっても多孔質であっても構わない。但し、多孔質である場合は多孔質を構成する骨格材料及び気孔のサイズが、吸収対象の電磁波によって散乱効果を持たないサイズであることが必要である。吸収対象の電磁波の波長のおよそ1/10〜1/100以下である物質はほとんど散乱に寄与しないことがわかっている。
【0014】
また、マトリックス10、散乱体20の一方が空気であっても良い。マトリックス10が空気のときは、図1(a)及び図1(b)に示した電磁波吸収体が可能であり、具体的には図1(a)に従えば板状の散乱体20を並べたフィン状の電磁波吸収体となり、図1(b)に従えば散乱体20が櫛状に並んだ電磁波吸収体となる。一方、散乱体20が空気である場合には図1(a)〜(c)に示した電磁波吸収体が可能であり、具体的には図1(a)に従えば板状のマトリックス10を並べたフィン状の電磁波吸収体なり、図1(b)に従えば貫通気孔が形成された電磁波吸収体となり、図1(c)に従えば独立気孔が形成された電磁波吸収体となる。このように、散乱体20を空気とする場合は、軽量化及びコストの削減が図られる。
【0015】
上記の如く構成される本発明の電磁波吸収体では、図3に示すように、入射した電磁波がマトリックス10に浸透すると、入射面近傍の散乱体20により散乱され、更に他の散乱体20により散乱され、散乱を重ねる間に減衰していく。従って、電磁波が散乱体20に確実に衝突するように、電磁波の波長(周波数)に応じて、単位周期配列Aにおける各散乱体20の大きさ(径)や間隔(図2のa,b)、単位周期配列Aの厚み方向における繰り返し数、マトリックス10及び散乱体20の各誘電材料(特に、複素比誘電率)等を適宜調整、選択する必要がある。
【0016】
例えば、散乱体20のサイズを大きくしていくと、吸収対象の電磁波の波長になるまで散乱率が大きくなり、それ以後はあまり変化がない。従って、電磁波吸収体全体のサイズ、特にその厚さを小さくするためには、散乱体20のサイズを吸収対象の電磁波の波長と同等とすることが好ましい。尚、散乱体20のサイズと電磁波の波長が同等な場合の散乱の挙動は「ミー散乱」と呼ばれ、本発明においてもこのミー散乱によって散乱を繰り返すことによる減衰も可能である。
【0017】
また、単位周期配列Aの繰り返し数は多いほど良いが、3ないし4周期で十分であり、これを越しても電磁波の吸収性能の更なる向上は少なく、むしろ電磁波吸収体の厚みが厚くなるだけで設置に支障を来たすようになる。
【0018】
また、マトリックス10及び散乱体20の複素比誘電率の調整は、吸収対象の電磁波の波長に比べてはるかに小さいサイズの誘電体や気孔を分散することで達成できる。
【0019】
本発明の電磁波吸収体では、図3に示した吸収機構から理解されるように、入射する電磁波の反射がより少なく、マトリックス10に浸透し易くさせることが好ましい。そのためには、電磁波吸収体の電磁波入射面近傍のマトリックス10を他の部分よりも複素比誘電率を低くすることが有効である。あるいは、マトリックス10の全体を複素比誘電率の低い材料で形成してもよい。また、この複素比誘電率の低い材料を用いることにより、マトリックス10の内部での散乱がより起こりやすくなり、電磁波吸収効果が更に高まるという利点もある。具体的な材料としては、複素比誘電率(εr=R−jX)の比誘電率(R)で10以下、更には4以下、あるいは比誘電損失(X)が1以下の誘電材料でも使用することができる。一般的に、通常の電磁波吸収体では複素比誘電率が低くなると電磁波の吸収効果が低下するが、本発明のように一定形状の散乱体20を複数、周期的に配列することで、例えばマトリックス10に使用される材料の比誘電率(R)が10以下でも十分な電磁波の吸収能力を得ることができ、更には4以下であっても電磁波の吸収効果に大きな低減が見られない。比誘電率と同様に比誘電損失(X)が1以下という電磁波の吸収能力が低い材料を使用した場合でも電磁波の吸収効果の低減が小さい。従って、本発明においては、電磁波の吸収能力が低い比誘電率が4以下という汎用的な材料であっても電磁波吸収体として使用することができ、材料の選択の自由度を向上させることができる。但し、マトリックス10の複素比誘電率が低くなるほど電磁波の減衰効果が低下するため、散乱体20の単位周期配列Aの繰り返し数を増すなどの対処が必要になる場合もある。
【0020】
更に、入射する電磁波の反射を抑えるために、図4に示すように、電磁波吸収体の電磁波入射面に凹部30を形成することが有効である。この凹部30は、散乱体20が空気の場合には、電磁波入射面に最も近い散乱体20を二分するようにマトリックス10を水平に切断すればよい。
【0021】
また、散乱体20が空気で無い場合には、入射する電磁波の反射を抑えるために、図示は省略するが、電磁波吸収体の電磁波入射面に凸部を形成することも有効である。この凸部は、マトリックス10に散乱体20を収容できる空孔を形成した後、電磁波入射面に最も近い空孔を二分するようにマトリックス10を水平に切断し、形成された凹部及びその他の空孔に散乱体20を設置すればよい。
【0022】
また、散乱体20の配列様式において、隣接する散乱体20の面方向の間隔aと厚み方向の間隔bとを変える(a≠b)ことも有効である(図2参照)、電磁波が斜め方向から入射しても、マトリックス10に浸透した電磁波が散乱体20により電磁波入射面の方向に反射された場合でも、隣接する散乱体20によりマトリックス10の内部側へと反射される可能性が高くなり、結果として反射される電磁波が少なくなる。
【0023】
本発明の電磁波吸収体は、電磁波一般(3×1018Hz以下)に適用でき、吸収対象の電磁波の波長に合わせてマトリックス10や散乱体20(空気以外)を形成する誘電材料を選択する。マトリックス10や散乱体20(空気以外)を形成する誘電材料は市場から入手可能であるが、極端に高い周波数の電磁波を吸収するには特殊な加工が必要になるため、加工の容易さを考慮すると電波(3THz以下)の領域を対象とすることが有効である。
【0024】
また、高周波数の電磁波には小さいサイズの散乱体20が配置され、低周波数の電磁波には大きなサイズの散乱体20が配置されることから、電磁波入射面から順次サイズが大きくなるように散乱体20を配置することにより、広い周波数にわたり電磁波を吸収できるようになる。
【0025】
尚、本発明の電磁波吸収体の製造方法には制限がないが、例えば以下のようにして製造することができる。図1(a)に示した電磁波吸収体は、マトリックス10を形成する板状の誘電材料と、分散体20を形成する板状の誘電材料とを交互に積層することにより得られる。また、図1(b)に示した電磁波吸収体は、マトリックス10を形成する誘電材料からなるブロックに、ドリル等の切削工具により等間隔で貫通孔を設けることにより得られる。また、図1(c)に示した電磁波吸収体は、マトリックス10を形成する板状の誘電材料からなり、面上に半球状の凹部が形成されたブロック同士を複数層に重ね合わせることにより得られる。
【0026】
【実施例】
以下に実施例及び比較例を挙げて本発明を更に説明するが、本発明はこれにより何ら制限されるものではない。
【0027】
(実施例1)
エポキシ樹脂に炭化ケイ素(SiC)をその配合量を変えて配合し、下記に示す複素比誘電率となるように調整した誘電材料をブロック状に加工し、ドリルにより直径10mmの貫通孔を等間隔で平行に複数個開け、図1(b)に示した構造を有し、空気(複素比誘電率εr=1.0−j0.00)を散乱体とした電磁波吸収体Aを作製した。尚、貫通孔(分散体)の単位周期配列は、図2(a)に示したa=14.0mm、b=14.8mmの三角格子とし、厚み方向に3列とした。
Figure 2004153135
【0028】
(比較例2)
実施例1と同様の誘電材料のブロックを用い、貫通孔を形成せずに電磁波吸収体Bとした。
【0029】
(電磁波吸収試験)
電磁波吸収体A,Bについて、電磁波の吸収を自由空間法によって測定した。即ち、平面波を放出する一組のアンテナの間に電磁波吸収体A,Bを置き、ネットワークアナライザーを用いてSパラメータ法によって測定した。尚、電磁波の波長は10mm(周波数30GHz)とし、電磁波の入射角度を0°とした。
【0030】
測定結果を図5に示すが、実線が実施例1の電磁波吸収体Aであり、破線が比較例例1の電磁波吸収体Bによる結果である。同図から明らかなように、分散体を形成することにより、マトリックスの誘電率に関わらず優れた電磁波吸収性能が得られることがわかる。
【0031】
(実施例2)
実施例1で作製した電磁波吸収体Aの中で、複素比誘電率εrが2.5−j1.4×10−2の誘電材料をマトリックスとしたものを用い、同様の電磁波吸収試験を行った。但し、電磁波の入射角度を0°、15°、30°、45°、60°、75°とした。
【0032】
測定結果を図6に示すが、入射角度の変化による吸収率の変化が少ないことがわかる。
【0033】
以上の結果から、本発明によれば、入射する電磁波の反射を抑える上で有利な、複素比誘電率の低い誘電材料を用いることができ、しかも入射角度に関わらず十分な電磁波吸収性能が得られることがわかる。
【0034】
【発明の効果】
以上説明したように、本発明によれば、入射する電磁波の反射が少なく、また入射角度に関わらず優れた電磁波吸収性能を有する電磁波吸収体が得られる。
【図面の簡単な説明】
【図1】本発明の電磁波吸収体の実施形態を示す模式図であり、(a)は分散体を一次元的に配置した例、(b)は分散体を二次元的に配置した例、(c)は分散体を三次元的に配置した例を示す。
【図2】二次元配列及び三次元配列における散乱体の配置様式を示す図である。
【図3】本発明の電磁波吸収体における電磁波吸収機構を説明するための図である。
【図4】本発明の電磁波吸収体の他の例を示す断面図である。
【図5】実施例1及び比較例1の各電磁波吸収体について電磁波吸収試験を行った結果を示すグラフである。
【図6】実施例2の電磁波吸収体について電磁波吸収試験を行った結果を示すグラフである。
【図7】電磁波吸収体による電磁波の吸収機構を説明するための図である。
【符号の説明】
10 マトリックス
11 電磁波入射面
20 分散体
30 凹部

Claims (3)

  1. 第1の誘電材料からなるマトリックス中に、第2の誘電材料からなる一定形状の散乱体が複数、周期的に配列していることを特徴とする電磁波吸収体。
  2. 散乱体が空気であることを特徴とする請求項1記載の電磁波吸収体。
  3. 電磁波入射面に多数の凹部が形成されていることを特徴とする請求項1または2記載の電磁波吸収体。
JP2002318280A 2002-10-31 2002-10-31 電磁波吸収体 Pending JP2004153135A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002318280A JP2004153135A (ja) 2002-10-31 2002-10-31 電磁波吸収体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002318280A JP2004153135A (ja) 2002-10-31 2002-10-31 電磁波吸収体

Publications (1)

Publication Number Publication Date
JP2004153135A true JP2004153135A (ja) 2004-05-27

Family

ID=32461447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002318280A Pending JP2004153135A (ja) 2002-10-31 2002-10-31 電磁波吸収体

Country Status (1)

Country Link
JP (1) JP2004153135A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138947A1 (ja) 2020-12-25 2022-06-30 日東電工株式会社 電波散乱体及び電波散乱体を備える電波を減衰させるための部材
WO2022181774A1 (ja) * 2021-02-25 2022-09-01 住友金属鉱山株式会社 電磁波吸収体を備えたシステム、及び電磁波吸収体を用いた電磁波の吸収方法
WO2022181772A1 (ja) * 2021-02-25 2022-09-01 住友金属鉱山株式会社 電磁波吸収体、電磁波吸収体を備えたシステム、及び電磁波吸収体を用いた電磁波の吸収方法
WO2023003035A1 (ja) 2021-07-21 2023-01-26 日東電工株式会社 電磁波シールド
WO2023003033A1 (ja) 2021-07-21 2023-01-26 日東電工株式会社 電磁波シールド及びレーダ用カバー
WO2023003034A1 (ja) 2021-07-21 2023-01-26 日東電工株式会社 電磁波シールド
WO2023033011A1 (ja) 2021-09-03 2023-03-09 日東電工株式会社 電磁波シールド
WO2023054639A1 (ja) 2021-09-30 2023-04-06 日東電工株式会社 電波散乱体を設計するための方法、電波散乱体の設計装置、及び電波散乱体を設計するためのプログラム
EP4294141A1 (en) * 2022-06-15 2023-12-20 Nitto Denko Corporation Electromagnetic shield

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138947A1 (ja) 2020-12-25 2022-06-30 日東電工株式会社 電波散乱体及び電波散乱体を備える電波を減衰させるための部材
KR20230124917A (ko) 2020-12-25 2023-08-28 닛토덴코 가부시키가이샤 전파 산란체 및 전파 산란체를 구비하는 전파를 감쇠시키기 위한 부재
WO2022181774A1 (ja) * 2021-02-25 2022-09-01 住友金属鉱山株式会社 電磁波吸収体を備えたシステム、及び電磁波吸収体を用いた電磁波の吸収方法
WO2022181772A1 (ja) * 2021-02-25 2022-09-01 住友金属鉱山株式会社 電磁波吸収体、電磁波吸収体を備えたシステム、及び電磁波吸収体を用いた電磁波の吸収方法
KR20240035573A (ko) 2021-07-21 2024-03-15 닛토덴코 가부시키가이샤 전자파 실드
WO2023003035A1 (ja) 2021-07-21 2023-01-26 日東電工株式会社 電磁波シールド
WO2023003033A1 (ja) 2021-07-21 2023-01-26 日東電工株式会社 電磁波シールド及びレーダ用カバー
WO2023003034A1 (ja) 2021-07-21 2023-01-26 日東電工株式会社 電磁波シールド
KR20240035376A (ko) 2021-07-21 2024-03-15 닛토덴코 가부시키가이샤 전자파 실드
KR20240035572A (ko) 2021-07-21 2024-03-15 닛토덴코 가부시키가이샤 전자파 실드 및 레이더용 커버
WO2023033011A1 (ja) 2021-09-03 2023-03-09 日東電工株式会社 電磁波シールド
KR20240049606A (ko) 2021-09-03 2024-04-16 닛토덴코 가부시키가이샤 전자파 실드
WO2023054639A1 (ja) 2021-09-30 2023-04-06 日東電工株式会社 電波散乱体を設計するための方法、電波散乱体の設計装置、及び電波散乱体を設計するためのプログラム
EP4294141A1 (en) * 2022-06-15 2023-12-20 Nitto Denko Corporation Electromagnetic shield

Similar Documents

Publication Publication Date Title
JP2004153135A (ja) 電磁波吸収体
EP1962377A1 (en) Antenna device
JP4833571B2 (ja) 電磁波吸収体
JP5741432B2 (ja) 超音波探触子
EP1911530A1 (de) Ultraschallwandler mit akustischer Impedanzanpassung
WO2009075449A1 (en) Frequency selective surface structure for multi frequency bands
US11557271B2 (en) Degenerative sound isolation device
CN109937512B (zh) 组合的全向和定向天线
JP7321484B2 (ja) 電波吸収構造
JP5085026B2 (ja) 電磁波吸収体
WO2014065723A1 (en) Multiscale circuit-analog absorbers
CN114865327A (zh) 一种谐振环阵列构成的衰减器
US5642118A (en) Apparatus for dissipating electromagnetic waves
Motevasselian et al. Partially Transparent Jaumann‐Like Absorber Applied to a Curved Structure
FI128369B (en) Absorber for electromagnetic waves and process
CN114039212A (zh) 一种低通宽阻的透波结构
WO2021181872A1 (ja) アンテナ装置及びレーダ装置
JP2020009923A (ja) 電磁波制御体及びレーダーシステム
JP2002151882A (ja) 電波吸収パネル
JPS5829472B2 (ja) ムセンコウクウエンジヨソウチ
WO2004079862A1 (en) Electromagnetic wave absorbent panel
JP2001244686A (ja) 電波吸収体、電波暗箱、電波暗室、電波吸収パネルおよび電波吸収衝立
JP4283064B2 (ja) 電波音波吸収体、電波音波吸収パネル及び不要電波音波抑制方法
JP2006140352A (ja) 電磁波吸収体
RU2526741C1 (ru) Радиолокационная антенна с уменьшенной эффективной площадью рассеяния

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051014

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060325

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081001

A521 Written amendment

Effective date: 20081126

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20090602

Free format text: JAPANESE INTERMEDIATE CODE: A02