JP2004146430A - Organic thin film transistor, organic thin film transistor device, and their manufacturing methods - Google Patents

Organic thin film transistor, organic thin film transistor device, and their manufacturing methods Download PDF

Info

Publication number
JP2004146430A
JP2004146430A JP2002306861A JP2002306861A JP2004146430A JP 2004146430 A JP2004146430 A JP 2004146430A JP 2002306861 A JP2002306861 A JP 2002306861A JP 2002306861 A JP2002306861 A JP 2002306861A JP 2004146430 A JP2004146430 A JP 2004146430A
Authority
JP
Japan
Prior art keywords
electrode
thin film
organic
film transistor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002306861A
Other languages
Japanese (ja)
Inventor
Katsura Hirai
平井 桂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2002306861A priority Critical patent/JP2004146430A/en
Priority to EP03008889A priority patent/EP1361619A3/en
Priority to US10/428,479 priority patent/US7018872B2/en
Publication of JP2004146430A publication Critical patent/JP2004146430A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/82Electrodes

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Thin Film Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic thin film transistor with which organic thin film semiconductor devices can be formed continuously on a flexible base, such as the polymer supporting body etc., and, accordingly, can significantly reduce the manufacturing costs of the transistor devices and, in addition, which is excellent in performance, and to provide an organic thin film transistor device and methods of manufacturing the transistor and device. <P>SOLUTION: The organic thin film transistor has a gate electrode, a gate insulating layer, and an organic semiconductor layer adjoining the insulating layer. The transistor also has a source electrode and a drain electrode both of which are brought into contact with the semiconductor layer. The source and the drain electrodes are respectively constituted of two layers containing different conductive materials. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、有機薄膜トランジスタ、有機TFT装置およびそれらの製造方法に関する。
【0002】
【従来の技術】
近年、有機半導体による種々の有機薄膜トランジスタが提案されている。有機薄膜トランジスタ(TFT)はプラスチック回路、とりわけ携帯用コンピュータおよび携帯電話等の表示駆動およびキャッシュカード等のメモリーのキーデバイスとして期待されている。有機薄膜トランジスタとして、オールポリマー型有機TFT技術が開示されている(例えば、特許文献1参照。)。インクジェットや塗布による簡易プロセスを提案しているものの、ゲート電圧が高い、スイッチングON状態での電流値が低い、電流のON/OFF値が低いなどの問題がある。
【0003】
又、従来の有機薄膜トランジスタは、ソース電極、ドレイン電極と有機半導体層との接触抵抗を低く抑える必要があり、金や白金あるいは、重ドープが施された導電性ポリマー、例えばポリエチレンジオキシチオフェンとポリスチレンスルホン酸の錯体を用いるのが一般的である(例えば、特許文献2参照。)。しかしながらこれらの電極を用いた場合、支持体との接着性や機械的強度が低く、素子としての耐久性に問題があった。したがって、フレキシブルな基板上で安定に動作する有機TFT装置の実現は困難であった。又、導電性ポリマーを用いた場合は、接触抵抗を低く抑えられるものの、導電性ポリマー自身の抵抗率が高く実用に難点があった。
【0004】
【特許文献1】
国際公開01/47043号パンフレット
【0005】
【特許文献2】
特開2000−307172号公報
【0006】
【発明が解決しようとする課題】
上記問題が大幅に改善され、又、ポリマー支持体などのフレキシブルベース上に連続して有機TFT装置を形成することができ、したがって製造コストを大幅に低減でき、かつ性能の優れた有機薄膜トランジスタ、有機TFT装置およびそれらの製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明の上記目的は以下の手段により達成される。
【0008】
(1) ゲート電極と、ゲート絶縁層と、該ゲート絶縁層に隣接する有機半導体層と、該有機半導体層に接触するソース電極及びドレイン電極を有する有機薄膜トランジスタにおいて、前記ソース電極及びドレイン電極は、それぞれ異なる導電性材料を含む2層から構成されていることを特徴とする有機薄膜トランジスタ。
【0009】
(2) 前記異なる導電性材料は、仕事関数の異なる材料であり仕事関数のより大きい材料を含む少なくとも一方の層と有機半導体層が接合していることを特徴とする(1)記載の有機薄膜トランジスタ。
【0010】
(3) 前記有機半導体層は、前記ソース電極及びドレイン電極のそれぞれの少なくとも一方の層と電気的に接合し、かつゲート絶縁層に接することを特徴とする(1)又は(2)記載の有機薄膜トランジスタ。
【0011】
(4) 前記少なくとも一方の層は、他方の層に対して前記有機半導体層との接触抵抗がより小さいことを特徴とする(3)記載の有機薄膜トランジスタ。
【0012】
(5) 前記少なくとも一方の層は、ゲート電極側に設けられていることを特徴とする(3)又は(4)記載の有機薄膜トランジスタ。
【0013】
(6) 前記(1)乃至(5)のいずれか1項に記載の有機薄膜トランジスタを、信号線と走査線で構成したマトリックスに配列し、該信号線の一部をソース電極としたことを特徴とする有機TFT装置。
【0014】
(7) 前記走査線の一部をゲート電極としたことを特徴とする(6)記載の有機TFT装置。
【0015】
(8) 表示電極を有し、該表示電極の一部をドレイン電極としたことを特徴とする(6)又は(7)記載の有機TFT装置。
【0016】
(9) ポリマー支持体上に形成されたことを特徴とする(6)乃至(8)のいずれか1項に記載の有機TFT装置。
【0017】
(10) 支持体上に、ゲート電極、ゲート絶縁層、有機半導体層、ソース電極及びドレイン電極のそれぞれを形成する工程を含む(1)乃至(5)のいずれか1項に記載の有機薄膜トランジスタの製造方法であって、ソース電極とドレイン電極の起原となるそれぞれ異なる金属微粒子を含む2層の原電極層及びフォトレジスト層を順次又は同時に塗布する工程、フォトリソグラフ法により該2層の原電極層をエッチングしてソース電極及びドレイン電極を形成する工程を含むことを特徴とする有機薄膜トランジスタの製造方法。
【0018】
(11) 熱処理により前記ソース電極及びドレイン電極を融着する工程を含むことを特徴とする(10)記載の有機薄膜トランジスタの製造方法。
【0019】
(12) 支持体上に、走査線を兼ねるゲート電極、ゲート絶縁層、有機半導体層、信号線を兼ねるソース電極、表示電極を兼ねるドレイン電極のそれぞれを形成する工程を含む(6)記載の有機TFT装置の製造方法であって、ソース電極とドレイン電極の起原となるそれぞれ異なる金属微粒子を含む2層の原電極層及びフォトレジスト層を順次又は同時に塗布する工程、フォトリソグラフ法により該2層の原電極層をエッチングしてソース電極及びドレイン電極を形成する工程を含むことを特徴とする有機TFT装置の製造方法。
【0020】
(13) 熱処理により前記ソース電極及びドレイン電極を融着する工程を含むことを特徴とする(12)記載の有機TFT装置の製造方法。
【0021】
【発明の実施の形態】
以下に、本発明の有機薄膜トランジスタ、有機TFT装置およびそれらの製造方法について図面を参照しながら説明する。
【0022】
図1(a)、(b)、(c)は、本発明の有機薄膜トランジスタの構成例である。支持体上に、ゲート電極Gと、ゲート絶縁層Inと、該ゲート絶縁層Inに隣接する有機半導体層Cと、該有機半導体層Cに接触するソース電極S及びドレイン電極Dが設けられている。本発明の有機薄膜トランジスタは、ソース電極S及びドレイン電極Dが、それぞれ異なる導電性材料を含む2層から構成されていることを特徴とする。すなわち、ソース電極SはSとSから、ドレイン電極DはDとDからそれぞれ構成されている。本発明においては、異なる導電性材料は、仕事関数の異なる材料であることが好ましい。又、有機半導体層Cと接触する側の層が接触抵抗が小さいことが好ましい。図1で示せば、ソース電極SのSが、ドレイン電極DのDがそれぞれ有機半導体層Cと接触しており、Sの方がSより、又Dの方がDより接触抵抗が小さいことになる。
【0023】
以下に、有機半導体、ソース電極及びドレイン電極、ゲート電極、ゲート絶縁層のそれぞれについて説明するが本発明はこれらに限定されるものではない。
【0024】
〈有機半導体〉
π共役系材料が用いられる。たとえばポリピロール、ポリ(N−置換ピロール)、ポリ(3−置換ピロール)、ポリ(3,4−二置換ピロール)などのポリピロール類、ポリチオフェン、ポリ(3−置換チオフェン)、ポリ(3,4−二置換チオフェン)、ポリベンゾチオフェンなどのポリチオフェン類、ポリイソチアナフテンなどのポリイソチアナフテン類、ポリチェニレンビニレンなどのポリチェニレンビニレン類、ポリ(p−フェニレンビニレン)などのポリ(p−フェニレンビニレン)類、ポリアニリン、ポリ(N−置換アニリン)、ポリ(3−置換アニリン)、ポリ(2,3−置換アニリン)などのポリアニリン類、ポリアセチレンなどのポリアセチレン類、ポリジアセチレンなどのポリジアセチレン類、ポリアズレンなどのポリアズレン類、ポリピレンなどのポリピレン類、ポリカルバゾール、ポリ(N−置換カルバゾール)などのポリカルバゾール類、ポリセレノフェンなどのポリセレノフェン類、ポリフラン、ポリベンゾフランなどのポリフラン類、ポリ(p−フェニレン)などのポリ(p−フェニレン)類、ポリインドールなどのポリインドール類、ポリピリダジンなどのポリピリダジン類、ナフタセン、ペンタセン、ヘキサセン、ヘプタセン、ジベンゾペンタセン、テトラベンゾペンタセン、ピレン、ジベンゾピレン、クリセン、ペリレン、コロネン、テリレン、オバレン、クオテリレン、サーカムアントラセンなどのポリアセン類およびポリアセン類の炭素の一部をN、S、Oなどの原子、カルボニル基などの官能基に置換した誘導体(トリフェノジオキサジン、トリフェノジチアジン、ヘキサセン−6,15−キノンなど)、ポリビニルカルバゾール、ポリフェニレンスルフィド、ポリビニレンスルフィドなどのポリマーや特開平11−195790号に記載された多環縮合体などを用いることが出来る。また、これらのポリマーと同じ繰返し単位を有するたとえばチオフェン6量体であるα−セクシチオフェン、α,ω−ジヘキシル−α−セクシチオフェン、α,ω−ジヘキシル−α−キンケチオフェン、α,ω−ビス(3−ブトキシプロピル)−α−セクシチオフェン、スチリルベンゼン誘導体などのオリゴマーも好適に用いることが出来る。さらに銅フタロシアニンや特開平11−251601号に記載のフッ素置換銅フタロシアニンなどの金属フタロシアニン類、ナフタレン1,4,5,8−テトラカルボン酸ジイミド、N,N′−ビス(4−トリフルオロメチルベンジル)ナフタレン1,4,5,8−テトラカルボン酸ジイミドとともに、N,N′−ビス(1H,1H−ペルフルオロオクチル)、N,N′−ビス(1H,1H−ペルフルオロブチル)及びN,N′−ジオクチルナフタレン−1,4,5,8−テトラカルボン酸ジイミド誘導体、ナフタレン−2,3,6,7−テトラカルボン酸ジイミドなどのナフタレンテトラカルボン酸ジイミド類、及びアントラセン−2,3,6,7−テトラカルボン酸ジイミドなどのアントラセンテトラカルボン酸ジイミド類などの縮合環テトラカルボン酸ジイミド類、C60、C70、C76、C78、C84等フラーレン類、SWNTなどのカーボンナノチューブ、メロシアニン色素類、ヘミシアニン色素類などの色素などがあげられる。
【0025】
これらのπ共役系材料のうちでも、チオフェン、ビニレン、チェニレンビニレン、フェニレンビニレン、p−フェニレン、これらの置換体またはこれらの2種以上を繰返し単位とし、かつ該繰返し単位の数nが4〜10であるオリゴマーもしくは該繰返し単位の数nが20以上であるポリマー、ペンタセンなどの縮合多環芳香族化合物、フラーレン類、縮合環テトラカルボン酸ジイミド類、金属フタロシアニンよりなる群から選ばれた少なくとも1種が好ましい。
【0026】
また、その他の有機半導体材料としては、テトラチアフルバレン(TTF)−テトラシアノキノジメタン(TCNQ)錯体、ビスエチレンテトラチアフルバレン(BEDTTTF)−過塩素酸錯体、BEDTTTF−ヨウ素錯体、TCNQ−ヨウ素錯体、などの有機分子錯体も用いることが出来る。さらにポリシラン、ポリゲルマンなどのσ共役系ポリマーや特開2000−260999に記載の有機・無機混成材料も用いることが出来る。
【0027】
本発明においては、有機半導体層に、たとえば、アクリル酸、アセトアミド、ジメチルアミノ基、シアノ基、カルボキシル基、ニトロ基などの官能基を有する材料や、ベンゾキノン誘導体、テトラシアノエチレンおよびテトラシアノキノジメタンやそれらの誘導体などのように電子を受容するアクセプターとなる材料や、たとえばアミノ基、トリフェニル基、アルキル基、水酸基、アルコキシ基、フェニル基などの官能基を有する材料、フェニレンジアミンなどの置換アミン類、アントラセン、ベンゾアントラセン、置換ベンゾアントラセン類、ピレン、置換ピレン、カルバゾールおよびその誘導体、テトラチアフルバレンとその誘導体などのように電子の供与体であるドナーとなるような材料を含有させ、いわゆるドーピング処理を施してもよい。
【0028】
前記ドーピングとは電子授与性分子(アクセクター)または電子供与性分子(ドナー)をドーパントとして該薄膜に導入することを意味する。従って,ドーピングが施された薄膜は、前記の縮合多環芳香族化合物とドーパントを含有する薄膜である。本発明に用いるドーパントとしてアクセプター、ドナーのいずれも使用可能である。このアクセプターとしてCl、Br、I、ICl、ICl、IBr、IFなどのハロゲン、PF、AsF、SbF、BF、BC1、BBr、SOなどのルイス酸、HF、HC1、HNO、HSO、HClO、FSOH、ClSOH、CFSOHなどのプロトン酸、酢酸、蟻酸、アミノ酸などの有機酸、FeCl、FeOCl、TiCl、ZrCl、HfCl、NbF、NbCl、TaCl、MoCl、WF、WCl、UF、LnCl(Ln=La、Ce、Nd、Pr、などのランタノイドとY)などの遷移金属化合物、Cl、Br、I、ClO 、PF 、AsF 、SbF 、BF 、スルホン酸アニオンなどの電解質アニオンなどを挙げることが出来る。またドナーとしては、Li、Na、K、Rb、Csなどのアルカリ金属、Ca、Sr、Baなどのアルカリ土類金属、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Ybなどの希土類金属、アンモニウムイオン、R、RAs、R(各Rはアルキル基、アリール基等を表す。)、アセチルコリンなどをあげることが出来る。これらのドーパントのドーピングの方法として予め有機半導体の薄膜を作製しておき、ドーパントを後で導入する方法、有機半導体の薄膜作製時にドーパントを導入する方法のいずれも使用可能である。前者の方法のドーピングとして、ガス状態のドーパントを用いる気相ドーピング、溶液あるいは液体のドーパントを該薄膜に接触させてドーピングする液相ドーピング、個体状態のドーパントを該薄膜に接触させてドーパントを拡散ドーピングする固相ドーピングの方法をあげることが出来る。また液相ドーピングにおいては電解を施すことによってドーピングの効率を調整することが出来る。後者の方法では、有機半導体化合物とドーパントの混合溶液あるいは分散液を同時に塗布、乾燥してもよい。たとえば真空蒸着法を用いる場合、有機半導体化合物とともにドーパントを共蒸着することによりドーパントを導入することが出来る。またスパッタリング法で薄膜を作製する場合、有機半導体化合物とドーパントの二元ターゲットを用いてスパッタリングして薄膜中にドーパントを導入させることが出来る。さらに他の方法として、電気化学的ドーピング、光開始ドーピング等の化学的ドーピングおよび例えば刊行物(工業材料、34巻、第4号、55頁、1986年)に示されたイオン注入法等の物理的ドーピングの何れも使用可能である。
【0029】
これら有機薄膜の作製法としては、真空蒸着法、分子線エピタキシャル成長法、イオンクラスタービーム法、低エネルギーイオンビーム法、イオンプレーティング法、CVD法、スパッタリング法、プラズマ重合法、電解重合法、化学重合法、スプレーコート法、スピンコート法、ブレードコート法、デイップコート法、キャスト法、ロールコート法、バーコート法、ダイコート法およびLB法等が挙げられ、材料に応じて使用出来る。ただし、この中で生産性の点で、有機半導体の溶液をもちいて簡単かつ精密に薄膜が形成出来るスピンコート法、ブレードコート法、デイップコート法、ロールコート法、バーコート法、ダイコート法等が好まれる。又、有機半導体の溶液あるいは分散液をインクジェットで吐出し、溶媒を乾燥、除去することにより有機半導体層を形成してもよい。
【0030】
これら有機半導体からなる薄膜の膜厚としては、特に制限はないが、得られたトランジスタの特性は、有機半導体からなる活性層の膜厚に大きく左右される場合が多く、その膜厚は、有機半導体により異なるが、一般に1μm以下、特に10〜300nmが好ましい。
【0031】
〈ソース電極、ドレイン電極〉
本発明においては、金属材料は白金、金、銀、ニッケル、クロム、銅、鉄、錫、アンチモン鉛、タンタル、インジウム、パラジウム、テルル、レニウム、イリジウム、アルミニウム、ルテニウム、ゲルマニウム、モリブデン、タングステン、亜鉛、公知の導電性ポリマー等を用いることが出来る。特に、少なくとも一部が有機半導体層に接する電極Dの材料としては、仕事関数が4.5eV以上の白金、金、銀、銅、コバルト、クロム、イリジウム、ニッケル、パラジウム、モリブデン、タングステンや、重ドープされた導電性ポリマーが好ましい。また、Dの材料としては、抵抗率が20μΩ・cm以下の銅、アルミニウム等の金属が好ましい。
【0032】
、D、すなわち、有機半導体層に接触する側の層の厚みはおおむね10〜50nmである。又、S、D、すなわち、有機半導体層と反対側の層の厚みはおおむね100〜300nmである。
【0033】
ソース電極S、ドレイン電極Dとしては、粒子径が1〜50nmの、より好ましくは1〜10nmの金属微粒子を含有する分散物を用い、加熱して金属微粒子を熱融着して形成された電極を用いることが好ましい。
【0034】
これらの金属からなる微粒子を、主に有機材料からなる分散安定剤を用いて、水や任意の有機溶剤である分散媒中に分散させた液、ペースト或いはインクを塗設してパターニングする。
【0035】
このような金属微粒子分散液の製造方法として、ガス中蒸発法、スパッタリング法、金属蒸気合成法などの物理的生成法や、コロイド法、共沈法などの、液相で金属イオンを還元して金属微粒子を生成する化学的生成法が挙げられるが、好ましくは、特開平11−76800号、同11−80647号、同11−319538号、特開2000−239853等に示されたコロイド法、特開2001−254185、同2001−53028、同2001−35255、同2000−124157、同2000−123634などに記載されたガス中蒸発法により製造された金属微粒子分散物である。これらの金属微粒子分散物を、下記に示す方法により層を成形した後、溶媒を乾燥させ、さらに100〜300℃、好ましくは150から200℃の範囲で熱処理することにより、金属微粒子を熱融着させることで電極形成する。
【0036】
本発明においては金属微粒子分散物を加熱して金属微粒子を熱融着する際に、それらの電極に接合する有機半導体層は既に形成されていることが望ましい。即ち、有機半導体材料と金属微粒子が同時に加熱されることで、両者の物理的接合が強化され、接触抵抗がより低減し、トランジスタをスイッチングさせたときの電流を大きくすることが出来る。尚、金属微粒子分散物層の形成と有機半導体層の形成の順は特に制限されるものではない。
【0037】
上記金属微粒子分散物を用いて加熱処理前にパターニングする方法、或いは金属微粒子分散物層を形成した後、電極形状様に加熱して金属微粒子を熱融着する方法等種々の方法を用いることが出来る。
【0038】
先ず、金属微粒子分散物のパターニングを印刷法により形成する方法が挙げられる。金属微粒子分散物をインクとして用いてパターニングするものであり、印刷法としては、凸版印刷、スクリーン印刷、平版印刷、凹版印刷、孔版印刷等任意の印刷法により金属微粒子分散物をパターニングすることが出来る。
【0039】
また、金属微粒子分散物をインクジェット法によりパターニングする方法がある。
【0040】
金属微粒子分散物をインクジェットヘッドより吐出し、金属微粒子の分散物をパターニングする方法であり、インクジェットヘッドからの吐出方式としては、ピエゾ方式、バブルジェット(R)方式等のオンデマンド型や静電吸引方式などの連続噴射型のインクジェット法等公知の方法によりパターニングすることが出来る。その後得られた金属微粒子分散物パターンを加熱処理することにより、金属微粒子は熱融着され、パターニングされたソース電極やドレイン電極となる。
【0041】
以下に、金属微粒子分散物層をレジスト像によりパターニングする方法を記す。リフトオフ法によれば、支持体上にレジスト像を形成し、その上に2層の金属微粒子分散物を塗布した後、レジスト像を除去することにより、レジスト像部分の金属微粒子分散物も同時に除去され、パターニングされた2層の金属微粒子分散物層が残存する。
【0042】
スキージ法によれば、支持体上にレジスト像13を形成し、その上に金属微粒子分散物4を塗布した後、スキーザー(ブレード又はスキージロールなど)によりレジスト像部分の過剰の金属微粒子分散物を除去して基体の露出部分にパターニングされた金属微粒子分散物層を形成し、乾燥後、レジスト像を除去することにより、パターニングされた2層の金属微粒子層が残存する。
【0043】
その後加熱処理することにより、2層の金属微粒子層中の金属微粒子は熱融着され、パターニングされた電極となる。レジスト像を除去する前に加熱処理して金属微粒子を熱融着させることもできる。
【0044】
金属微粒子分散物層をフォトリソグラフ法によりパターニングする方法でもよい。支持体上に2層の金属微粒子分散物層を形成した後、フォトレジスト層を塗布し、パターン露光、現像してレジスト像を形成し、フォトレジスト層が除去された部分の金属微粒子分散物層を溶剤等で除去してパターニングされた2層の金属微粒子分散物層を得た後、レジスト像を除去液で除去し、加熱してソース電極やドレイン電極を形成する。レジスト像を除去する前に加熱して金属微粒子を熱融着してもよい。
【0045】
フォトレジスト層としては、ポジ型、ネガ型の公知の材料を用いることができるが、レーザ光に感光性の材料を用いることが好ましい。このようなフォトレジスト材料として、(1)特開平11−271969号、特開2001−117219、特開平11−311859号、特開平11−352691号のような色素増感型の光重合感光材料、(2)特開平9−179292号、米国特許第5,340,699号、特開平10−90885号、特開2000−321780、同2001−154374のような赤外線レーザに感光性を有するネガ型感光材料、(3)特開平9−171254号、同5−115144号、同10−87733号、同9−43847号、同10−268512号、同11−194504号、同11−223936号、同11−84657号、同11−174681号、同7−285275号、特開2000−56452、WO97/39894、同98/42507のような赤外線レーザに感光性を有するポジ型感光材料が挙げられる。工程が暗所に限定されない点で、好ましいのは(2)と(3)であり、フォトレジスト層を除去する場合には、ポジ型である(3)が最も好ましい。
【0046】
上記のレジスト像を除去には、アルコール系、エーテル系、エステル系、ケトン系、グリコールエーテル系などフォトレジストの塗布溶媒に利用される広範囲の有機溶媒から、適宜選択し用いる。
【0047】
本発明の金属微粒子分散物を用いてパターニングし、熱融着することにより、ソース電極又はドレイン電極を容易に高精度に作製することが可能となり、種々の形態でパターニングすることが容易となり、有機薄膜トランジスタを容易に製造することが可能となる。
【0048】
なお、詳細については、本発明者等の平成14年5月9日出願に係る特願2002−134056を参照することが出来る。
【0049】
また、少なくとも一部が有機半導体層に接する電極Dの材料としては、仕事関数が4.5eV以上の、重ドープされた導電性ポリマーが好ましい。具体例としては、前記の有機半導体材料をドープした材料が用いられ、特に好ましくは、ポリ(エチレンジオキシチオフェン)とポリスチレンスルホン酸の錯体(例えば、バイエル社製のBaytron P)を好適に用いることができる。Dを形成するためのプロセスとしては前記した金属微粒子分散物に準ずることができる。
【0050】
〈ゲート電極〉
ゲート電極としては導電性材料であれば特に限定されず、任意の材料を用いることが出来る。ゲート電極の形成方法としては、蒸着やスパッタリング等の方法を用いて形成した導電性薄膜を、公知のフォトリソグラフ法やリフトオフ法を用いて電極形成する方法、アルミニウムや銅などの金属箔上に熱転写、インクジェット等によるレジストを用いてエッチングする方法がある。また導電性ポリマーの溶液あるいは分散液、導電性微粒子分散液を直接インクジェットによりパターニングしてもよいし、塗工膜からリソグラフやレーザアブレーションなどにより形成してもよい。さらに導電性ポリマーや導電性微粒子を含むインク、導電性ペーストなどを凸版、凹版、平版、スクリーン印刷などの印刷法でパターニングする方法も用いることが出来る。又、前述したソース電極及びドレイン電極の形成方法を用いてもよい。
【0051】
〈ゲート絶縁層〉
種々の絶縁材料を用いることが出来るが、特に、比誘電率の高い無機酸化物皮膜が好ましい。無機酸化物としては、酸化ケイ素、酸化アルミニウム、酸化タンタル、酸化チタン、酸化スズ、酸化バナジウム、チタン酸バリウムストロンチウム、ジルコニウム酸チタン酸バリウム、ジルコニウム酸チタン酸鉛、チタン酸鉛ランタン、チタン酸ストロンチウム、チタン酸バリウム、フッ化バリウムマグネシウム、チタン酸ビスマス、チタン酸ストロンチウムビスマス、タンタル酸ストロンチウムビスマス、タンタル酸ニオブ酸ビスマス、トリオキサイドイットリウムなどが挙げられる。それらのうち好ましいのは、酸化ケイ素、酸化アルミニウム、酸化タンタル、酸化チタンである。窒化ケイ素、窒化アルミニウムなどの無機窒化物も好適に用いることが出来る。
【0052】
無機酸化皮膜の形成方法としては、真空蒸着法、分子線エピタキシャル成長法、イオンクラスタービーム法、低エネルギーイオンビーム法、イオンプレーティング法、CVD法、スパッタリング法、大気圧プラズマ法などのドライプロセスや、スプレーコート法、スピンコート法、ブレードコート法、デイップコート法、キャスト法、ロールコート法、バーコート法、ダイコート法などの塗布による方法、印刷やインクジェットなどのパターニングによる方法などのウェットプロセスが挙げられ、材料に応じて使用出来る。ウェットプロセスは、無機酸化物の微粒子を、任意の有機溶剤あるいは水に必要に応じて界面活性剤などの分散補助剤を用いて分散した液を塗布、乾燥する方法や、酸化物前駆体、例えばアルコキシド体の溶液を塗布、乾燥する、いわゆるゾルゲル法が用いられる。これらのうち好ましいのは、大気圧プラズマ法とゾルゲル法である。
【0053】
大気圧下でのプラズマ製膜処理とは、大気圧または大気圧近傍の圧力下で放電し、反応性ガスをプラズマ励起し、基材上に薄膜を形成する処理を指し、その方法については特開平11−133205号、特開2000−185362、特開平11−61406号、特開2000−147209、同2000−121804等に記載されている(以下、大気圧プラズマ法とも称する)。これによって高機能性の薄膜を、生産性高く形成することが出来る。
【0054】
また有機化合物皮膜としては、ポリイミド、ポリアミド、ポリエステル、ポリアクリレート、光ラジカル重合系、光カチオン重合系の光硬化性樹脂、あるいはアクリロニトリル成分を含有する共重合体、ポリビニルフェノール、ポリビニルアルコール、ノボラック樹脂、およびシアノエチルプルラン、ポリマー体、エラストマー体を含むホスファゼン化合物、等を用いることも出来る。
【0055】
有機化合物皮膜の形成法としては、前記ウェットプロセスが好ましい。無機酸化物皮膜と有機酸化物皮膜は積層して併用することが出来る。またこれら絶縁膜の膜厚としては、一般に50nm〜3μm、好ましくは、100nm〜1μmである。
【0056】
〈支持体〉
支持体はガラスやフレキシブルなポリマーシート等で構成される。本発明においては、ポリマーを支持体として用いることがガラス基板を用いる場合に比べて軽量化を図ることができ、可搬性を高めることが出来るとともに、衝撃に対する耐性を向上出来るので好ましい。例えばポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルスルホン(PES)、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリイミド、ボリカーボネート(PC)、セルローストリアセテート(TAC)、セルロースアセテートプロピオネート(CAP)等からなるフィルム等が挙げられる。
【0057】
本発明に係る有機薄膜トランジスタの製造方法は、基本的に次の工程S1〜S7を有する。
【0058】
S1・・・・・支持体上に走査線及びゲート電極を形成する工程
S2・・・・・ゲート電極を覆うゲート絶縁層を形成する工程
S3・・・・・ゲート絶縁層上に有機半導体層を形成する工程
S4・・・・・有機半導体層上にフォトレジストの現像液により除去可能な原電極層を形成する工程
S5・・・・・原電極層上にフォトレジスト層を形成する工程
S6・・・・・フォトレジスト層を露光する工程
S7・・・・・露光されたフォトレジスト層を現像することにより、原電極層の一部を除去してソース電極、ドレイン電極、信号線、表示電極を形成する工程これらの工程を図2〜8を参照して図1(c)に示す有機薄膜トランジスタの製造工程を以下に説明する。なお、図2〜8において(a)は断面模式図、(b)は平面模式図である。
【0059】
S1・・・・・支持体上に走査線及びゲート電極を形成する工程
図2に示すように、支持体上にゲート電極Gを形成する。電極の形成方法としては、例えば、150μmのポリイミドフィルム上に蒸着やスパッタリング、CVD法等の方法を用いて形成した導電性薄膜(アルミニウム、銀、銅、ITO等)を公知のフォトリソグラフ法やリフトオフ法を用いて電極形成する方法、アルミニウムや銅などの金属箔上に熱転写、インクジェット等により、レジストを形成しエッチングする方法がある。また導電性ポリマーの溶液あるいは分散液、導電性微粒子分散液等を直接インクジェット法によりパターニングしてもよいし、塗工膜からリソグラフやレーザーアブレーションなどにより形成してもよい。さらに導電性ポリマーや導電性微粒子を含むインク、導電性ペーストなどを凸版、凹版、平版、スクリーン印刷などの印刷法でパターニングする方法も用いることができる。
【0060】
S2・・・・・ゲート電極Gを覆うゲート絶縁層Inを形成する工程
図3に示すようにゲート電極Gが形成された支持体の全面にゲート絶縁層Inを形成する。例えば、蒸着、スパッタリング、CVD法、大気圧プラズマ法などのドライプロセスで、好ましくは大気圧グロー放電プラズマ処理で無機酸化物や無機窒化物を成膜することが出来る。又、ポリビニルアルコール、フェノール樹脂、エポキシ樹脂、アクリル樹脂などの有機絶縁材料を塗布して形成することも出来る。
【0061】
S3・・・・・ゲート絶縁層上に有機半導体層を形成する工程
図4に示すようにゲート絶縁層Inの全面を覆う有機半導体層Cを形成する。任意の有機半導体を公知の方法で形成することが出来る。好ましくは、良く精製されたポリ−(3−ヘキシルチオフェン)のregioregular体のクロロホルム溶液を、例えば、乾燥膜厚が20nmになるように塗布する。
【0062】
S4・・・・・有機半導体層上に原電極層を形成する工程
図5に示すように、金属微粒子の水分散液を用いて重層塗布し100℃3分で予備乾燥し、原電極層O(O,O)を有機半導体層C上に形成する。原電極層O(O,O)を形成する方法としては、スプレーコート法、スピンコート法、ブレードコート法、デイップコート法、キャスト法、ロールコート法、バーコート法、ダイコート法などの塗布による方法が用いられる。具体的には、ソース電極、ドレイン電極の項に記載した金属微粒子または導電性ポリマーの水分散液を用いて2層同時塗布し、おおむね100℃3分で予備乾燥して、ソース電極とドレイン電極の起原となるそれぞれ異なる金属微粒子を含む2層の原電極層を形成することができる。
【0063】
S5・・・・・原電極層上にフォトレジスト層を形成する工程
図6に示すように、原電極層O(O,O)上の全面に光感応性樹脂(一般にフォトレジストと呼ばれており、以下の説明ではフォトレジストと言う)の溶液を塗布し、フォトレジスト層Rを形成する。フォトレジスト層としては、ポジ型、ネガ型の公知の材料を用いることができるが、レーザー感光性の材料を用いることが好ましい。また、明室でのプロセスを可能とするため、50mW以上の出力で波長700nm以上の赤外線レーザーに感光性を有する感光材料が好適に用いられる。さらに、最終的に感光層レジストの除去を行う場合は、ポジ型感光材料が好適に用いられる。
【0064】
S6・・・・・フォトレジスト層を露光する工程
図7に示すように、フォトレジスト層Rをパターニング露光する。インライン中で露光を行うことが好ましい。露光を行う光源としては、Arレーザー、半導体レーザー、He−Neレーザー、YAGレーザー、炭酸ガスレーザー等が挙げられ、好ましくは赤外に発振波長があるもので、半導体レーザーである。出力は50mW以上が適当であり、好ましくは100mW以上である。
【0065】
S7・・・・・現像によりソース電極及びドレイン電極を形成する工程
図8に示すように、フォトレジスト層Rを露光した後アルカリ現像してフォトレジスト層Rと原電極層O(O,O)を同時に除去することにより、ソース電極S(S,S)とドレイン電極D(D,D)を形成する。原電極層O(O,O)は、水で再分散されるため除去可能である。金属微粒子に有機溶剤分散物を使用した場合は再分散可能なエッチング液を用いればよい。原電極層O(O,O)を金属微粒子で構成する場合には、フォトレジスト層Rの露光及び現像後に乾燥し、更に、100〜300℃、好ましくは150〜200℃の範囲で熱処理することにより、金属微粒子を融着させ、ソース電極、ドレイン電極、信号線、表示電極を一度に形成することができる。ここでの例として、好ましくは、ソース電極及びドレイン電極の有機半導体層に接触する側の層は30nmの金またはポリ(エチレンジオキシチオフェン)とポリスチレンスルホン酸の錯体(例えば、バイエル社製のBaytron P)であり、反対側は200nmの銅とした。
【0066】
必要に応じて、図9に示すフォトレジスト層Rの除去する工程S8を加えることができる。フォトレジスト層Rを除去する工程を実施する場合には、金属微粒子を加熱により融着させる工程は除去する工程S8の後に実施される。
【0067】
なお、ゲート絶縁層、有機半導体層、原電極層、フォトレジスト層の各素材、及び溶剤を適宜選択することにより、上記S2〜S5の工程を同時に、すなわち、同時重層塗布により形成することが出来る。また、大気圧プラズマ法により、酸化ケイ素、窒化ケイ素、酸化チタンの薄膜を形成し、有機薄膜トランジスタを封止してもよい。
【0068】
図1の(a)、(b)に示す有機薄膜トランジスタについても、上記方法を適用することにより、容易に製造することが出来る。
【0069】
上記のようにして形成された信号機と表示電極の3つのパターン例(画素あたり)を図10に示す。
【0070】
製造した有機薄膜トランジスタの特性は図11に示すような回路構成により評価することが出来る。
【0071】
図12は本発明の有機TFT装置を用いた表示装置を示す図である。マトリクス配置されたセルの各々は、有機薄膜トランジスタ10、表示電極11、蓄積コンデンサ12及び表示素子17を有する。信号線13は有機薄膜トランジスタ10のソース電極に接続され、走査線14は有機薄膜トランジスタ10のゲート電極に接続され、表示電極11は有機薄膜トランジスタ10のドレイン電極に接続される。15は垂直駆動回路、16は水平駆動回路、17は液晶、電気泳動素子等の表示素子である。なお、表示素子17は等価回路で示されている。
【0072】
水平駆動回路16により走査線14を順次オン状態にし、垂直駆動回路15からデータ信号を供給することにより、有機薄膜トランジスタ10を介して蓄積コンデンサ12に電荷を注入して表示電極11に駆動電圧を発生させ表示素子17を駆動する。蓄積コンデンサ12に蓄積された電荷は、有機薄膜トランジスタ10のスイッチング機能により次のフレームが選択されるまで保持される。
【0073】
次に、有機TFT装置の製造について説明する。本発明の実施の形態に係る有機TFT装置は、ロールトゥロール(Roll to ROLL)工程により製造するのに適しており、低コストの大量生産が可能になる。
【0074】
【発明の効果】
ポリマー支持体などのフレキシブルベース上に連続して有機TFT装置を形成することができ、したがって製造コストを大幅に低減でき、かつ性能の優れた有機薄膜トランジスタ、有機TFT装置およびそれらの製造方法を提供することができた。
【図面の簡単な説明】
【図1】本発明の有機薄膜トランジスタの構成例である。
【図2】本発明の一実施形態に係る有機薄膜トランジスタの製造工程を示す図である。
【図3】本発明の一実施形態に係る有機薄膜トランジスタの製造工程を示す図である。
【図4】本発明の一実施形態に係る有機薄膜トランジスタの製造工程を示す図である。
【図5】本発明の一実施形態に係る有機薄膜トランジスタの製造工程を示す図である。
【図6】本発明の一実施形態に係る有機薄膜トランジスタの製造工程を示す図である。
【図7】本発明の一実施形態に係る有機薄膜トランジスタの製造工程を示す図である。
【図8】本発明の一実施形態に係る有機薄膜トランジスタの製造工程を示す図である。
【図9】本発明の一実施形態に係る有機薄膜トランジスタの製造工程を示す図である。
【図10】本発明の一実施形態に係る有機薄膜トランジスタの表示電極と信号線のパターン例を示す図である。
【図11】有機薄膜トランジスタの特性を評価するための回路構成図である。
【図12】本発明の一実施形態に係る有機TFT装置を用いた表示装置を示す図である。
【符号の説明】
G ゲート電極
In ゲート絶縁層
C 有機半導体層
S ソース電極
D ドレイン電極
R フォトレジスト層
11 表示電極
13 信号線
14 走査線
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an organic thin film transistor, an organic TFT device, and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, various organic thin film transistors using an organic semiconductor have been proposed. 2. Description of the Related Art Organic thin film transistors (TFTs) are expected to be used as key devices for display circuits for plastic circuits, especially portable computers and mobile phones, and memories such as cash cards. As an organic thin film transistor, an all-polymer type organic TFT technology has been disclosed (for example, see Patent Document 1). Although a simple process using ink jet or coating has been proposed, there are problems such as a high gate voltage, a low current value in the switching ON state, and a low ON / OFF value of the current.
[0003]
In addition, conventional organic thin film transistors need to keep the contact resistance between the source electrode, the drain electrode and the organic semiconductor layer low, and may be made of gold, platinum, or a heavily doped conductive polymer, such as polyethylene dioxythiophene and polystyrene. It is common to use a sulfonic acid complex (see, for example, Patent Document 2). However, when these electrodes are used, the adhesion to the support and the mechanical strength are low, and there is a problem in durability as an element. Therefore, it has been difficult to realize an organic TFT device that operates stably on a flexible substrate. Further, when a conductive polymer is used, although the contact resistance can be kept low, the resistivity of the conductive polymer itself is high and there is a problem in practical use.
[0004]
[Patent Document 1]
International Publication No. 01/47043 pamphlet
[0005]
[Patent Document 2]
JP 2000-307172 A
[0006]
[Problems to be solved by the invention]
The above problems are greatly improved, and an organic TFT device can be continuously formed on a flexible base such as a polymer support. Therefore, the production cost can be greatly reduced, and an organic thin film transistor having excellent performance can be obtained. An object of the present invention is to provide a TFT device and a method for manufacturing the same.
[0007]
[Means for Solving the Problems]
The above object of the present invention is achieved by the following means.
[0008]
(1) In an organic thin film transistor having a gate electrode, a gate insulating layer, an organic semiconductor layer adjacent to the gate insulating layer, and a source electrode and a drain electrode in contact with the organic semiconductor layer, the source electrode and the drain electrode are: An organic thin-film transistor comprising two layers each containing a different conductive material.
[0009]
(2) The organic thin-film transistor according to (1), wherein the different conductive materials are materials having different work functions and at least one layer containing a material having a higher work function is joined to the organic semiconductor layer. .
[0010]
(3) The organic semiconductor device according to (1) or (2), wherein the organic semiconductor layer is electrically connected to at least one of the source electrode and the drain electrode and is in contact with a gate insulating layer. Thin film transistor.
[0011]
(4) The organic thin film transistor according to (3), wherein the at least one layer has a smaller contact resistance with the organic semiconductor layer than the other layer.
[0012]
(5) The organic thin film transistor according to (3) or (4), wherein the at least one layer is provided on a gate electrode side.
[0013]
(6) The organic thin-film transistors according to any one of (1) to (5) are arranged in a matrix including signal lines and scanning lines, and a part of the signal lines is used as a source electrode. Organic TFT device.
[0014]
(7) The organic TFT device according to (6), wherein a part of the scanning line is used as a gate electrode.
[0015]
(8) The organic TFT device according to (6) or (7), further comprising a display electrode, wherein a part of the display electrode is a drain electrode.
[0016]
(9) The organic TFT device according to any one of (6) to (8), which is formed on a polymer support.
[0017]
(10) The organic thin-film transistor according to any one of (1) to (5), including a step of forming a gate electrode, a gate insulating layer, an organic semiconductor layer, a source electrode, and a drain electrode on the support. A method of sequentially or simultaneously applying two layers of a source electrode layer and a photoresist layer each containing different metal fine particles to be a source of a source electrode and a drain electrode, and a photolithographic method. A method for manufacturing an organic thin film transistor, comprising a step of forming a source electrode and a drain electrode by etching a layer.
[0018]
(11) The method for producing an organic thin film transistor according to (10), further comprising a step of fusing the source electrode and the drain electrode by heat treatment.
[0019]
(12) The organic method according to (6), including the step of forming, on the support, a gate electrode also serving as a scanning line, a gate insulating layer, an organic semiconductor layer, a source electrode also serving as a signal line, and a drain electrode also serving as a display electrode. A method for manufacturing a TFT device, comprising sequentially or simultaneously applying two original electrode layers and a photoresist layer each containing different metal fine particles to be a source of a source electrode and a drain electrode, wherein the two layers are formed by a photolithographic method. Forming a source electrode and a drain electrode by etching the original electrode layer.
[0020]
(13) The method of manufacturing an organic TFT device according to (12), further comprising a step of fusing the source electrode and the drain electrode by heat treatment.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an organic thin film transistor, an organic TFT device, and a method of manufacturing the same according to the present invention will be described with reference to the drawings.
[0022]
1A, 1B, and 1C show examples of the configuration of the organic thin film transistor of the present invention. A gate electrode G, a gate insulating layer In, an organic semiconductor layer C adjacent to the gate insulating layer In, and a source electrode S and a drain electrode D in contact with the organic semiconductor layer C are provided over the support. . The organic thin-film transistor of the present invention is characterized in that the source electrode S and the drain electrode D are formed of two layers each containing a different conductive material. That is, the source electrode S is S1And S2Therefore, the drain electrode D is D1And D2, Respectively. In the present invention, the different conductive materials are preferably materials having different work functions. Further, it is preferable that the layer on the side in contact with the organic semiconductor layer C has a small contact resistance. As shown in FIG. 1, S of the source electrode S1Is the D of the drain electrode D1Are in contact with the organic semiconductor layer C, respectively, and S1Is S2Than D1Is D2The contact resistance is smaller.
[0023]
Hereinafter, each of the organic semiconductor, the source electrode and the drain electrode, the gate electrode, and the gate insulating layer will be described, but the present invention is not limited thereto.
[0024]
<Organic semiconductor>
A π-conjugated material is used. For example, polypyrroles such as polypyrrole, poly (N-substituted pyrrole), poly (3-substituted pyrrole), poly (3,4-disubstituted pyrrole), polythiophene, poly (3-substituted thiophene), poly (3,4- Poly (diphenylthiophene), polythiophenes such as polybenzothiophene, polyisothianaphthenes such as polyisothianaphthene, polyphenylenevinylenes such as polyphenylenevinylene, poly (p-phenylenevinylene) such as poly (p-phenylenevinylene) (Phenylenevinylenes), polyaniline, poly (N-substituted aniline), poly (3-substituted aniline), polyaniline such as poly (2,3-substituted aniline), polyacetylene such as polyacetylene, polydiacetylene such as polydiacetylene , Polyazulene such as polyazulene, polypyrene etc. Polypyrenes, polycarbazoles, polycarbazoles such as poly (N-substituted carbazole), polyselenophenes such as polyselenophene, polyfurans such as polyfuran and polybenzofuran, and poly (p-) such as poly (p-phenylene) Phenylenes), polyindoles such as polyindole, polypyridazines such as polypyridazine, naphthacene, pentacene, hexacene, heptacene, dibenzopentacene, tetrabenzopentacene, pyrene, dibenzopyrene, chrysene, perylene, coronene, terylene, ovalene, Polyacenes such as quaterylene and circum anthracene, and derivatives in which some of the carbons of the polyacenes are substituted with a functional group such as an atom such as N, S or O, or a carbonyl group (triphenodioxazine, triphenodithiazine Hexacene-6,15-quinone, etc.), polyvinylcarbazole, polyphenylene sulfide, vinyl sulfide, etc. of the polymer and is described in JP-A-11-195790 a polycyclic condensation or the like can be used. Further, for example, thiophene hexamer α-sexithiophene, α, ω-dihexyl-α-sexithiophene, α, ω-dihexyl-α-quinkethiophene, α, ω-bis having the same repeating unit as these polymers Oligomers such as (3-butoxypropyl) -α-sexithiophene and styrylbenzene derivatives can also be suitably used. Further, metal phthalocyanines such as copper phthalocyanine and fluorine-substituted copper phthalocyanine described in JP-A-11-251601, naphthalene 1,4,5,8-tetracarboxylic diimide, N, N'-bis (4-trifluoromethylbenzyl) ) N, N'-bis (1H, 1H-perfluorooctyl), N, N'-bis (1H, 1H-perfluorobutyl) and N, N 'together with naphthalene 1,4,5,8-tetracarboxylic diimide Naphthalenetetracarboxylic diimides such as dioctylnaphthalene-1,4,5,8-tetracarboxylic diimide derivative, naphthalene-2,3,6,7-tetracarboxylic diimide and anthracene-2,3,6 Condensed rings such as anthracenetetracarboxylic diimides such as 7-tetracarboxylic diimide Tetracarboxylic acid diimides, C60, C70, C76, C78, C84 etc. fullerenes, carbon nanotubes such as SWNT, merocyanine dyes, etc. dyes such hemicyanine dyes and the like.
[0025]
Among these π-conjugated materials, thiophene, vinylene, chenylene vinylene, phenylene vinylene, p-phenylene, a substituted product thereof, or two or more of these are used as a repeating unit, and the number n of the repeating unit is 4 to 4. At least one selected from the group consisting of oligomers having 10 or a polymer in which the number n of the repeating units is 20 or more, condensed polycyclic aromatic compounds such as pentacene, fullerenes, condensed ring tetracarboxylic diimides, and metal phthalocyanines Species are preferred.
[0026]
Other organic semiconductor materials include tetrathiafulvalene (TTF) -tetracyanoquinodimethane (TCNQ) complex, bisethylenetetrathiafulvalene (BEDTTTTF) -perchloric acid complex, BEDTTTF-iodine complex, and TCNQ-iodine complex. , Etc. can also be used. Further, σ-conjugated polymers such as polysilane and polygermane, and organic / inorganic hybrid materials described in JP-A-2000-260999 can also be used.
[0027]
In the present invention, for example, a material having a functional group such as acrylic acid, acetamido, dimethylamino group, cyano group, carboxyl group, or nitro group in the organic semiconductor layer, a benzoquinone derivative, tetracyanoethylene, and tetracyanoquinodimethane And materials that have an electron acceptor such as derivatives thereof and materials having functional groups such as amino group, triphenyl group, alkyl group, hydroxyl group, alkoxy group and phenyl group, and substituted amines such as phenylenediamine , Anthracene, benzoanthracene, substituted benzoanthracenes, pyrene, substituted pyrene, carbazole and its derivatives, tetrathiafulvalene and its derivatives, etc. Process Good.
[0028]
The doping means that an electron donating molecule (acsector) or an electron donating molecule (donor) is introduced as a dopant into the thin film. Therefore, the doped thin film is a thin film containing the condensed polycyclic aromatic compound and the dopant. Either an acceptor or a donor can be used as the dopant used in the present invention. Cl as the acceptor2, Br2, I2, ICl, ICl3, IBr, IF and other halogens, PF5, AsF5, SbF5, BF3, BC13, BBr3, SO3Lewis acids such as HF, HC1, HNO3, H2SO4, HClO4, FSO3H, ClSO3H, CF3SO3H or other protonic acids, acetic acid, formic acid, organic acids such as amino acids, FeCl3, FeOCl, TiCl4, ZrCl4, HfCl4, NbF5, NbCl5, TaCl5, MoCl5, WF5, WCl6, UF6, LnCl3(Ln = La, Ce, Nd, Pr, etc. lanthanoid and Y) and transition metal compound such as Cl, Br, I, ClO4 , PF6 , AsF5 , SbF6 , BF4 And electrolyte anions such as sulfonic acid anions. Examples of the donor include alkali metals such as Li, Na, K, Rb, and Cs; alkaline earth metals such as Ca, Sr, and Ba; Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, and Dy. , Ho, Er, Yb and other rare earth metals, ammonium ions, R4P+, R4As+, R3S+(Each R represents an alkyl group, an aryl group, etc.), acetylcholine and the like. As a method of doping these dopants, any of a method of preparing a thin film of an organic semiconductor in advance and introducing the dopant later, and a method of introducing a dopant at the time of forming the thin film of the organic semiconductor can be used. As the doping of the former method, gas-phase doping using a dopant in a gas state, liquid-phase doping in which a solution or liquid dopant is brought into contact with the thin film, and diffusion doping by bringing a solid-state dopant into contact with the thin film Solid doping method. In liquid phase doping, the efficiency of doping can be adjusted by performing electrolysis. In the latter method, a mixed solution or dispersion of an organic semiconductor compound and a dopant may be simultaneously applied and dried. For example, when a vacuum evaporation method is used, the dopant can be introduced by co-evaporating the dopant together with the organic semiconductor compound. When a thin film is formed by a sputtering method, a dopant can be introduced into the thin film by sputtering using a binary target of an organic semiconductor compound and a dopant. Still other methods include chemical doping such as electrochemical doping and photo-initiated doping and physical doping such as ion implantation described in a publication (Industrial Materials, Vol. 34, No. 4, p. 55, 1986). Any of the conventional dopings can be used.
[0029]
These organic thin films can be formed by vacuum deposition, molecular beam epitaxy, ion cluster beam, low energy ion beam, ion plating, CVD, sputtering, plasma polymerization, electrolytic polymerization, chemical polymerization, etc. Examples include a synthesizing method, a spray coating method, a spin coating method, a blade coating method, a dip coating method, a casting method, a roll coating method, a bar coating method, a die coating method, and an LB method, which can be used depending on the material. However, in terms of productivity, spin coating, blade coating, dip coating, roll coating, bar coating, die coating, etc., which can easily and accurately form a thin film using an organic semiconductor solution, are used. Preferred. Alternatively, the organic semiconductor layer may be formed by discharging a solution or dispersion of the organic semiconductor by inkjet, and drying and removing the solvent.
[0030]
The thickness of the organic semiconductor thin film is not particularly limited, but the characteristics of the obtained transistor are often greatly influenced by the thickness of the active layer made of the organic semiconductor. Although it differs depending on the semiconductor, it is generally preferably 1 μm or less, particularly preferably 10 to 300 nm.
[0031]
<Source electrode, drain electrode>
In the present invention, the metal material is platinum, gold, silver, nickel, chromium, copper, iron, tin, antimony lead, tantalum, indium, palladium, tellurium, rhenium, iridium, aluminum, ruthenium, germanium, molybdenum, tungsten, zinc. A known conductive polymer or the like can be used. In particular, the electrode D at least partially in contact with the organic semiconductor layer1Is preferably platinum, gold, silver, copper, cobalt, chromium, iridium, nickel, palladium, molybdenum, tungsten, or a heavily doped conductive polymer having a work function of 4.5 eV or more. Also, D2Is preferably a metal such as copper or aluminum having a resistivity of 20 μΩ · cm or less.
[0032]
S1, D1That is, the thickness of the layer in contact with the organic semiconductor layer is about 10 to 50 nm. Also, S2, D2That is, the thickness of the layer on the side opposite to the organic semiconductor layer is approximately 100 to 300 nm.
[0033]
As the source electrode S and the drain electrode D, an electrode formed by using a dispersion containing metal fine particles having a particle diameter of 1 to 50 nm, more preferably 1 to 10 nm, and heat-fusing the metal fine particles by heating. It is preferable to use
[0034]
Fine particles composed of these metals are patterned by using a dispersion stabilizer mainly composed of an organic material, applying a liquid, paste or ink dispersed in water or a dispersion medium that is any organic solvent.
[0035]
As a method for producing such a metal fine particle dispersion, a metal ion is reduced in a liquid phase, such as a physical generation method such as a gas evaporation method, a sputtering method, a metal vapor synthesis method, a colloid method, and a coprecipitation method. A chemical production method for producing metal fine particles may be mentioned, and preferably, a colloid method described in JP-A-11-76800, JP-A-11-80647, JP-A-11-319538, JP-A-2000-239853, etc. It is a metal fine particle dispersion produced by the in-gas evaporation method described in JP 2001-254185, JP 2001-53028, JP 2001-35255, JP 2000-124157, JP 2000-123634 and the like. These metal fine particle dispersions are formed into a layer by the method described below, then the solvent is dried, and further heat-treated at 100 to 300 ° C., preferably 150 to 200 ° C., to thereby thermally fuse the metal fine particles. Then, an electrode is formed.
[0036]
In the present invention, when the metal fine particle dispersion is heated and the metal fine particles are thermally fused, it is preferable that the organic semiconductor layer to be bonded to those electrodes is already formed. That is, by heating the organic semiconductor material and the metal fine particles at the same time, the physical junction between the two is strengthened, the contact resistance is further reduced, and the current when the transistor is switched can be increased. The order of formation of the metal fine particle dispersion layer and formation of the organic semiconductor layer is not particularly limited.
[0037]
Various methods such as a method of patterning before the heat treatment using the metal fine particle dispersion, or a method of forming a metal fine particle dispersion layer and then heat-fusing the metal fine particles by heating to an electrode shape may be used. I can do it.
[0038]
First, there is a method of forming a pattern of the metal fine particle dispersion by a printing method. The metal fine particle dispersion is patterned using ink as an ink, and as a printing method, the metal fine particle dispersion can be patterned by any printing method such as letterpress printing, screen printing, lithographic printing, intaglio printing, stencil printing and the like. .
[0039]
In addition, there is a method of patterning a metal fine particle dispersion by an inkjet method.
[0040]
This is a method of discharging a metal fine particle dispersion from an ink jet head and patterning the metal fine particle dispersion. The discharge method from the ink jet head is an on-demand type such as a piezo method or a bubble jet (R) method, or electrostatic suction. Patterning can be performed by a known method such as a continuous jet type ink jet method such as a method. Thereafter, the obtained metal fine particle dispersion pattern is subjected to a heat treatment, whereby the metal fine particles are thermally fused to form a patterned source electrode or drain electrode.
[0041]
Hereinafter, a method of patterning the metal fine particle dispersion layer using a resist image will be described. According to the lift-off method, a resist image is formed on a support, two layers of the fine metal particle dispersion are applied thereon, and then the resist image is removed, thereby simultaneously removing the fine metal particle dispersion in the resist image portion. As a result, two patterned fine metal particle dispersion layers remain.
[0042]
According to the squeegee method, a resist image 13 is formed on a support, and a metal fine particle dispersion 4 is applied thereon. Then, an excess metal fine particle dispersion in the resist image portion is removed by a squeezer (such as a blade or a squeegee roll). After removal, a patterned metal fine particle dispersion layer is formed on the exposed portion of the substrate, and after drying, the resist image is removed, so that two patterned metal fine particle layers remain.
[0043]
Thereafter, by performing a heat treatment, the metal fine particles in the two metal fine particle layers are thermally fused to form a patterned electrode. Before removing the resist image, heat treatment may be performed to thermally fuse the metal fine particles.
[0044]
A method in which the metal fine particle dispersion layer is patterned by a photolithographic method may be used. After forming two metal fine particle dispersion layers on the support, a photoresist layer is applied, and pattern exposure and development are performed to form a resist image, and the metal fine particle dispersion layer where the photoresist layer is removed is formed. Is removed with a solvent or the like to obtain a patterned two-layered metal fine particle dispersion layer, the resist image is removed with a removing solution, and heated to form a source electrode and a drain electrode. Before removing the resist image, the metal fine particles may be thermally fused by heating.
[0045]
As the photoresist layer, known positive and negative materials can be used, but it is preferable to use a material that is sensitive to laser light. Examples of such a photoresist material include: (1) a dye-sensitized photopolymerizable photosensitive material as disclosed in JP-A-11-271969, JP-A-2001-117219, JP-A-11-311859 and JP-A-11-352691; (2) Negative-type photosensitive photosensitive to infrared laser as disclosed in JP-A-9-179292, U.S. Pat. No. 5,340,699, JP-A-10-90885, JP-A-2000-321780 and JP-A-2001-154374. Materials, (3) JP-A-9-171254, JP-A-5-115144, JP-A-10-87733, JP-A-9-43847, JP-A-10-268512, JP-A-11-194504, JP-A-11-223936, JP-A-11 -84657, 11-174681, 7-285275, JP-A-2000-56452, WO97 / 39894, Positive photosensitive material having photosensitivity to infrared lasers such as 98/42507 and the like. Since the process is not limited to a dark place, (2) and (3) are preferable, and when the photoresist layer is removed, the positive type (3) is most preferable.
[0046]
In order to remove the resist image, an appropriate solvent is selected from a wide range of organic solvents used as a photoresist coating solvent such as an alcohol, an ether, an ester, a ketone, and a glycol ether.
[0047]
By patterning using the metal fine particle dispersion of the present invention and performing heat fusion, a source electrode or a drain electrode can be easily manufactured with high precision, and patterning can be easily performed in various forms. A thin film transistor can be easily manufactured.
[0048]
For details, reference can be made to Japanese Patent Application No. 2002-134056 filed on May 9, 2002 by the present inventors.
[0049]
Further, an electrode D at least partially in contact with the organic semiconductor layer1Is preferably a heavily doped conductive polymer having a work function of 4.5 eV or more. As a specific example, a material doped with the above organic semiconductor material is used. Particularly preferably, a complex of poly (ethylenedioxythiophene) and polystyrenesulfonic acid (for example, Baytron @ P manufactured by Bayer AG) is preferably used. Can be. D1Can be based on the above-described metal fine particle dispersion.
[0050]
<Gate electrode>
The gate electrode is not particularly limited as long as it is a conductive material, and any material can be used. As a method of forming a gate electrode, a method of forming a conductive thin film using a known photolithographic method or a lift-off method on a conductive thin film formed using a method such as vapor deposition or sputtering, or thermal transfer onto a metal foil such as aluminum or copper And a method of etching using a resist by an ink jet or the like. Further, a solution or dispersion of a conductive polymer or a dispersion of conductive fine particles may be directly patterned by ink jet, or may be formed from a coating film by lithography or laser ablation. Further, a method of patterning an ink containing a conductive polymer or conductive fine particles, a conductive paste, or the like by a printing method such as letterpress, intaglio, lithographic, or screen printing can also be used. Alternatively, the above-described method for forming the source electrode and the drain electrode may be used.
[0051]
<Gate insulating layer>
Although various insulating materials can be used, an inorganic oxide film having a high relative dielectric constant is particularly preferable. As the inorganic oxide, silicon oxide, aluminum oxide, tantalum oxide, titanium oxide, tin oxide, vanadium oxide, barium strontium titanate, barium zirconate titanate, lead zirconate titanate, lead lanthanum titanate, strontium titanate, Examples include barium titanate, barium magnesium fluoride, bismuth titanate, strontium bismuth titanate, strontium bismuth tantalate, bismuth tantalate bismuth, and yttrium trioxide. Among them, preferred are silicon oxide, aluminum oxide, tantalum oxide and titanium oxide. Inorganic nitrides such as silicon nitride and aluminum nitride can also be suitably used.
[0052]
Examples of the method for forming the inorganic oxide film include dry processes such as a vacuum deposition method, a molecular beam epitaxial growth method, an ion cluster beam method, a low energy ion beam method, an ion plating method, a CVD method, a sputtering method, and an atmospheric pressure plasma method. Wet processes such as spray coating, spin coating, blade coating, dip coating, casting, roll coating, bar coating, die coating, and other coating methods, and printing and inkjet patterning methods. , Can be used depending on the material. The wet process is a method in which fine particles of an inorganic oxide are dispersed in an optional organic solvent or water using a dispersing aid such as a surfactant, if necessary, and a method of drying, or a method of drying an oxide precursor, for example, A so-called sol-gel method of applying and drying a solution of the alkoxide compound is used. Of these, the atmospheric pressure plasma method and the sol-gel method are preferred.
[0053]
Plasma deposition under atmospheric pressure refers to a process of discharging under atmospheric pressure or a pressure close to atmospheric pressure, exciting a reactive gas into plasma, and forming a thin film on a base material. These are described in Kaihei 11-133205, JP-A-2000-185362, JP-A-11-61406, JP-A-2000-147209, and 2000-121804 (hereinafter also referred to as atmospheric pressure plasma method). Thereby, a highly functional thin film can be formed with high productivity.
[0054]
As the organic compound film, polyimide, polyamide, polyester, polyacrylate, photo-radical polymerization type, photo-cationic polymerization type photo-curable resin, or copolymer containing acrylonitrile component, polyvinyl phenol, polyvinyl alcohol, novolak resin, And phosphazene compounds including cyanoethyl pullulan, polymers and elastomers, and the like.
[0055]
As the method for forming the organic compound film, the wet process is preferable. The inorganic oxide film and the organic oxide film can be laminated and used together. The thickness of these insulating films is generally 50 nm to 3 μm, preferably 100 nm to 1 μm.
[0056]
<Support>
The support is made of glass or a flexible polymer sheet. In the present invention, it is preferable to use a polymer as a support, because it is possible to reduce the weight, to improve portability, and to improve impact resistance, as compared with the case of using a glass substrate. For example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyether sulfone (PES), polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, polyimide, polycarbonate (PC), cellulose triacetate (TAC), Examples of the film include cellulose acetate propionate (CAP).
[0057]
The method for manufacturing an organic thin film transistor according to the present invention basically includes the following steps S1 to S7.
[0058]
S1 ... Step of forming scanning line and gate electrode on support
S2: Step of forming gate insulating layer covering gate electrode
S3: Step of forming organic semiconductor layer on gate insulating layer
S4: Step of forming original electrode layer on organic semiconductor layer that can be removed with a photoresist developer
S5: Step of forming a photoresist layer on original electrode layer
S6: Step of exposing photoresist layer
S7: Step of removing a part of the original electrode layer by developing the exposed photoresist layer to form a source electrode, a drain electrode, a signal line, and a display electrode. The manufacturing process of the organic thin film transistor shown in FIG. 1C will be described below with reference to FIG. 2 to 8, (a) is a schematic cross-sectional view, and (b) is a schematic plan view.
[0059]
S1 ... Step of forming scanning line and gate electrode on support
As shown in FIG. 2, a gate electrode G is formed on a support. As a method for forming an electrode, for example, a conductive thin film (aluminum, silver, copper, ITO, or the like) formed on a 150-μm polyimide film by a method such as vapor deposition, sputtering, or a CVD method is known by a known photolithography method or lift-off method. There is a method of forming an electrode using a method, and a method of forming a resist on a metal foil such as aluminum or copper by thermal transfer, inkjet, or the like and etching the resist. A conductive polymer solution or dispersion, a conductive fine particle dispersion, or the like may be directly patterned by an inkjet method, or may be formed from a coating film by lithography or laser ablation. Further, a method of patterning an ink, a conductive paste, or the like containing a conductive polymer or conductive fine particles by a printing method such as letterpress, intaglio, lithographic, or screen printing can also be used.
[0060]
S2: Step of forming gate insulating layer In covering gate electrode G
As shown in FIG. 3, a gate insulating layer In is formed on the entire surface of the support on which the gate electrode G is formed. For example, an inorganic oxide or an inorganic nitride can be formed by a dry process such as evaporation, sputtering, a CVD method, or an atmospheric pressure plasma method, preferably by an atmospheric pressure glow discharge plasma treatment. Alternatively, an organic insulating material such as polyvinyl alcohol, a phenol resin, an epoxy resin, or an acrylic resin can be applied.
[0061]
S3: Step of forming organic semiconductor layer on gate insulating layer
As shown in FIG. 4, an organic semiconductor layer C covering the entire surface of the gate insulating layer In is formed. Any organic semiconductor can be formed by a known method. Preferably, a well-purified chloroform solution of a poly- (3-hexylthiophene) in the form of a ligand is applied, for example, so as to have a dry film thickness of 20 nm.
[0062]
S4: Step of forming original electrode layer on organic semiconductor layer
As shown in FIG. 5, multi-layer coating was performed using an aqueous dispersion of metal fine particles, and preliminarily dried at 100 ° C. for 3 minutes.1, O2) Is formed on the organic semiconductor layer C. Original electrode layer O (O1, O2As a method for forming (2), a coating method such as spray coating, spin coating, blade coating, dip coating, casting, roll coating, bar coating, and die coating is used. Specifically, two layers are simultaneously coated using an aqueous dispersion of the fine metal particles or the conductive polymer described in the section of the source electrode and the drain electrode, and preliminarily dried at about 100 ° C. for 3 minutes to form the source electrode and the drain electrode. It is possible to form two layers of original electrode layers each containing different metal fine particles as the origin of the above.
[0063]
S5: Step of forming a photoresist layer on original electrode layer
As shown in FIG. 6, the original electrode layer O (O1, O2A solution of a photosensitive resin (generally referred to as a photoresist, hereinafter referred to as a photoresist) is applied to the entire upper surface to form a photoresist layer R. As the photoresist layer, known positive-type and negative-type materials can be used, but it is preferable to use a laser-sensitive material. In order to enable a process in a bright room, a photosensitive material having an output of 50 mW or more and being sensitive to an infrared laser having a wavelength of 700 nm or more is preferably used. Further, when the resist of the photosensitive layer is finally removed, a positive photosensitive material is preferably used.
[0064]
S6: Step of exposing photoresist layer
As shown in FIG. 7, the photoresist layer R is subjected to patterning exposure. Exposure is preferably performed in-line. As a light source for the exposure, an Ar laser, a semiconductor laser, a He-Ne laser, a YAG laser, a carbon dioxide laser, and the like can be given, and a semiconductor laser having an oscillation wavelength in the infrared is preferable. The output is suitably 50 mW or more, preferably 100 mW or more.
[0065]
S7: Step of forming source and drain electrodes by development
As shown in FIG. 8, the photoresist layer R is exposed and then alkali-developed, and the photoresist layer R and the original electrode layer O (O1, O2) At the same time, the source electrode S (S1, S2) And the drain electrode D (D1, D2) Is formed. Original electrode layer O (O1, O2) Can be removed because they are redispersed in water. When an organic solvent dispersion is used for the metal fine particles, a redispersible etching solution may be used. Original electrode layer O (O1, O2In the case of comprising metal fine particles, the photoresist layer R is dried after exposure and development, and further heat-treated at 100 to 300 ° C., preferably 150 to 200 ° C. to fuse the metal fine particles. , A source electrode, a drain electrode, a signal line, and a display electrode can be formed at one time. As an example here, preferably, a layer of the source electrode and the drain electrode in contact with the organic semiconductor layer is 30 nm of gold or a complex of poly (ethylenedioxythiophene) and polystyrenesulfonic acid (for example, Baytron manufactured by Bayer AG). P) and the other side was 200 nm copper.
[0066]
If necessary, a step S8 for removing the photoresist layer R shown in FIG. 9 can be added. When performing the step of removing the photoresist layer R, the step of fusing the metal fine particles by heating is performed after the removing step S8.
[0067]
By appropriately selecting the materials for the gate insulating layer, the organic semiconductor layer, the original electrode layer, and the photoresist layer, and the solvent, the steps S2 to S5 can be performed simultaneously, that is, by simultaneous multi-layer coating. . Alternatively, a thin film of silicon oxide, silicon nitride, or titanium oxide may be formed by an atmospheric pressure plasma method to seal the organic thin film transistor.
[0068]
The organic thin film transistor shown in FIGS. 1A and 1B can be easily manufactured by applying the above method.
[0069]
FIG. 10 shows three pattern examples (per pixel) of the traffic light and the display electrode formed as described above.
[0070]
The characteristics of the manufactured organic thin film transistor can be evaluated by a circuit configuration as shown in FIG.
[0071]
FIG. 12 is a diagram showing a display device using the organic TFT device of the present invention. Each of the cells arranged in a matrix has an organic thin film transistor 10, a display electrode 11, a storage capacitor 12, and a display element 17. The signal line 13 is connected to the source electrode of the organic thin film transistor 10, the scanning line 14 is connected to the gate electrode of the organic thin film transistor 10, and the display electrode 11 is connected to the drain electrode of the organic thin film transistor 10. Reference numeral 15 denotes a vertical drive circuit, 16 denotes a horizontal drive circuit, and 17 denotes a display element such as a liquid crystal or an electrophoretic element. Note that the display element 17 is shown by an equivalent circuit.
[0072]
The scanning lines 14 are sequentially turned on by the horizontal driving circuit 16 and data signals are supplied from the vertical driving circuit 15 to inject electric charges into the storage capacitor 12 through the organic thin film transistor 10 to generate a driving voltage on the display electrode 11. Then, the display element 17 is driven. The charge stored in the storage capacitor 12 is held by the switching function of the organic thin film transistor 10 until the next frame is selected.
[0073]
Next, the manufacture of the organic TFT device will be described. The organic TFT device according to the embodiment of the present invention is suitable for manufacturing by a roll-to-roll (ROLL-to-ROLL) process, and enables low-cost mass production.
[0074]
【The invention's effect】
Provided are an organic thin-film transistor, an organic TFT device, and a method for manufacturing the same, which can continuously form an organic TFT device on a flexible base such as a polymer support, thereby greatly reducing the manufacturing cost and having excellent performance. I was able to.
[Brief description of the drawings]
FIG. 1 is a configuration example of an organic thin film transistor of the present invention.
FIG. 2 is a diagram illustrating a manufacturing process of an organic thin film transistor according to an embodiment of the present invention.
FIG. 3 is a diagram illustrating a manufacturing process of an organic thin film transistor according to an embodiment of the present invention.
FIG. 4 is a diagram illustrating a manufacturing process of an organic thin film transistor according to an embodiment of the present invention.
FIG. 5 is a diagram showing a manufacturing process of the organic thin film transistor according to one embodiment of the present invention.
FIG. 6 is a diagram showing a manufacturing process of the organic thin film transistor according to one embodiment of the present invention.
FIG. 7 is a view illustrating a process of manufacturing an organic thin film transistor according to an embodiment of the present invention.
FIG. 8 is a diagram showing a manufacturing process of the organic thin film transistor according to one embodiment of the present invention.
FIG. 9 is a diagram showing a manufacturing process of the organic thin film transistor according to one embodiment of the present invention.
FIG. 10 is a diagram showing a pattern example of a display electrode and a signal line of an organic thin film transistor according to an embodiment of the present invention.
FIG. 11 is a circuit configuration diagram for evaluating characteristics of an organic thin film transistor.
FIG. 12 is a diagram showing a display device using an organic TFT device according to one embodiment of the present invention.
[Explanation of symbols]
G gate electrode
In gate insulating layer
C Organic semiconductor layer
S source electrode
D Drain electrode
R @ photoresist layer
11 display electrode
13 signal line
14 scanning line

Claims (13)

ゲート電極と、ゲート絶縁層と、該ゲート絶縁層に隣接する有機半導体層と、該有機半導体層に接触するソース電極及びドレイン電極を有する有機薄膜トランジスタにおいて、
前記ソース電極及びドレイン電極は、それぞれ異なる導電性材料を含む2層から構成されていることを特徴とする有機薄膜トランジスタ。
A gate electrode, a gate insulating layer, an organic semiconductor layer adjacent to the gate insulating layer, and an organic thin film transistor having a source electrode and a drain electrode in contact with the organic semiconductor layer;
An organic thin film transistor, wherein the source electrode and the drain electrode are formed of two layers each containing a different conductive material.
前記異なる導電性材料は、仕事関数の異なる材料であり仕事関数のより大きい材料を含む少なくとも一方の層と有機半導体層が接合していることを特徴とする請求項1記載の有機薄膜トランジスタ。2. The organic thin film transistor according to claim 1, wherein the different conductive materials are materials having different work functions, and at least one layer containing a material having a higher work function is joined to the organic semiconductor layer. 前記有機半導体層は、前記ソース電極及びドレイン電極のそれぞれの少なくとも一方の層と電気的に接合し、かつゲート絶縁層に接することを特徴とする請求項1又は2記載の有機薄膜トランジスタ。3. The organic thin film transistor according to claim 1, wherein the organic semiconductor layer is electrically connected to at least one of the source electrode and the drain electrode, and is in contact with a gate insulating layer. 4. 前記少なくとも一方の層は、他方の層に対して前記有機半導体層との接触抵抗がより小さいことを特徴とする請求項3記載の有機薄膜トランジスタ。The organic thin film transistor according to claim 3, wherein the at least one layer has a smaller contact resistance with the organic semiconductor layer than the other layer. 前記少なくとも一方の層は、ゲート電極側に設けられていることを特徴とする請求項3又は4記載の有機薄膜トランジスタ。The organic thin film transistor according to claim 3, wherein the at least one layer is provided on a gate electrode side. 請求項1乃至5のいずれか1項記載の有機薄膜トランジスタを、信号線と走査線で構成したマトリックスに配列し、該信号線の一部をソース電極としたことを特徴とする有機TFT装置。6. An organic TFT device, wherein the organic thin film transistors according to claim 1 are arranged in a matrix composed of signal lines and scanning lines, and a part of the signal lines is used as a source electrode. 前記走査線の一部をゲート電極としたことを特徴とする請求項6記載の有機TFT装置。7. The organic TFT device according to claim 6, wherein a part of the scanning line is a gate electrode. 表示電極を有し、該表示電極の一部をドレイン電極としたことを特徴とする請求項6又は7記載の有機TFT装置。8. The organic TFT device according to claim 6, further comprising a display electrode, wherein a part of the display electrode is a drain electrode. ポリマー支持体上に形成されたことを特徴とする請求項6乃至8のいずれか1項記載の有機TFT装置。9. The organic TFT device according to claim 6, wherein the organic TFT device is formed on a polymer support. 支持体上に、ゲート電極、ゲート絶縁層、有機半導体層、ソース電極及びドレイン電極のそれぞれを形成する工程を含む請求項1乃至5のいずれか1項記載の有機薄膜トランジスタの製造方法であって、
ソース電極とドレイン電極の起原となるそれぞれ異なる金属微粒子を含む2層の原電極層及びフォトレジスト層を順次又は同時に塗布する工程、フォトリソグラフ法により該2層の原電極層をエッチングしてソース電極及びドレイン電極を形成する工程を含むことを特徴とする有機薄膜トランジスタの製造方法。
The method for manufacturing an organic thin film transistor according to claim 1, further comprising a step of forming a gate electrode, a gate insulating layer, an organic semiconductor layer, a source electrode, and a drain electrode on a support,
A step of sequentially or simultaneously applying two layers of a source electrode layer and a photoresist layer each containing different metal fine particles that are the source of the source electrode and the drain electrode, and etching the two source electrode layers by a photolithographic method to form a source. A method for manufacturing an organic thin film transistor, comprising a step of forming an electrode and a drain electrode.
熱処理により前記ソース電極及びドレイン電極を融着する工程を含むことを特徴とする請求項10記載の有機薄膜トランジスタの製造方法。The method according to claim 10, further comprising a step of fusing the source electrode and the drain electrode by heat treatment. 支持体上に、走査線を兼ねるゲート電極、ゲート絶縁層、有機半導体層、信号線を兼ねるソース電極、表示電極を兼ねるドレイン電極のそれぞれを形成する工程を含む請求項6記載の有機TFT装置の製造方法であって、
ソース電極とドレイン電極の起原となるそれぞれ異なる金属微粒子を含む2層の原電極層及びフォトレジスト層を順次又は同時に塗布する工程、フォトリソグラフ法により該2層の原電極層をエッチングしてソース電極及びドレイン電極を形成する工程を含むことを特徴とする有機TFT装置の製造方法。
7. The organic TFT device according to claim 6, further comprising a step of forming a gate electrode also serving as a scanning line, a gate insulating layer, an organic semiconductor layer, a source electrode also serving as a signal line, and a drain electrode also serving as a display electrode on the support. A manufacturing method,
A step of sequentially or simultaneously applying two layers of a source electrode layer and a photoresist layer each containing different metal fine particles that are the source of the source electrode and the drain electrode, and etching the two source electrode layers by a photolithographic method to form a source. A method for manufacturing an organic TFT device, comprising a step of forming an electrode and a drain electrode.
熱処理により前記ソース電極及びドレイン電極を融着する工程を含むことを特徴とする請求項12記載の有機TFT装置の製造方法。13. The method according to claim 12, further comprising a step of fusing the source electrode and the drain electrode by heat treatment.
JP2002306861A 2002-05-09 2002-10-22 Organic thin film transistor, organic thin film transistor device, and their manufacturing methods Pending JP2004146430A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002306861A JP2004146430A (en) 2002-10-22 2002-10-22 Organic thin film transistor, organic thin film transistor device, and their manufacturing methods
EP03008889A EP1361619A3 (en) 2002-05-09 2003-04-30 Organic thin-film transistor, organic thin-film transistor sheet and manufacturing method thereof
US10/428,479 US7018872B2 (en) 2002-05-09 2003-05-02 Organic thin-film transistor, organic thin-film transistor sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002306861A JP2004146430A (en) 2002-10-22 2002-10-22 Organic thin film transistor, organic thin film transistor device, and their manufacturing methods

Publications (1)

Publication Number Publication Date
JP2004146430A true JP2004146430A (en) 2004-05-20

Family

ID=32453488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002306861A Pending JP2004146430A (en) 2002-05-09 2002-10-22 Organic thin film transistor, organic thin film transistor device, and their manufacturing methods

Country Status (1)

Country Link
JP (1) JP2004146430A (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041487A (en) * 2004-06-21 2006-02-09 Matsushita Electric Ind Co Ltd Field-effect transistor and its manufacturing method
JP2006049577A (en) * 2004-08-04 2006-02-16 Sony Corp Field effect transistor
JP2006059896A (en) * 2004-08-18 2006-03-02 Sony Corp Field effect transistor
JP2006148050A (en) * 2004-10-21 2006-06-08 Seiko Epson Corp Thin film transistor, electro-optical device and electronic equipment
JP2006190815A (en) * 2005-01-06 2006-07-20 Nec Corp Dopant material, method of manufacturing the same, and semiconductor device using the same
JP2006195142A (en) * 2005-01-13 2006-07-27 Future Vision:Kk Substrate with wiring pattern and liquid crystal display apparatus using the same
JP2006253381A (en) * 2005-03-10 2006-09-21 Seiko Epson Corp Organic ferroelectric memory and its fabrication method
JP2006286719A (en) * 2005-03-31 2006-10-19 Toppan Printing Co Ltd Process for fabricating thin film transistor
JP2006302925A (en) * 2005-04-15 2006-11-02 Sony Corp Semiconductor device, optical device, and sensor device
JP2006324655A (en) * 2005-04-22 2006-11-30 Semiconductor Energy Lab Co Ltd Semiconductor element, organic transistor, light emitting device and electrical apparatus
WO2007026781A1 (en) * 2005-08-31 2007-03-08 Sumitomo Chemical Company, Limited Transistor, method for manufacturing same, and semiconductor device comprising such transistor
WO2007026778A1 (en) * 2005-08-31 2007-03-08 Sumitomo Chemical Company, Limited Transistor, organic semiconductor device, and method for manufacture of the transistor or device
JP2007066925A (en) * 2005-08-29 2007-03-15 Sony Corp Semiconductor device
JP2007096288A (en) * 2005-08-31 2007-04-12 Sumitomo Chemical Co Ltd Transistor and method of manufacturing same, and semiconductor device having the same
JP2007096289A (en) * 2005-08-31 2007-04-12 Sumitomo Chemical Co Ltd Transistor, organic semiconductor device, and method of manufacturing same
JP2007095828A (en) * 2005-09-27 2007-04-12 Dainippon Printing Co Ltd Pattern forming assembly
WO2007065363A1 (en) * 2005-12-07 2007-06-14 The University Of Hong Kong Materials for organic thin film transistors
JP2007173812A (en) * 2005-12-21 2007-07-05 Palo Alto Research Center Inc Thin-film transistor backplane circuit, and method of manufacturing same
US7253433B2 (en) * 2000-11-02 2007-08-07 Seiko Epson Corporation Organic electroluminescent device, method of manufacturing the same, and electronic apparatus
JP2007281416A (en) * 2006-03-17 2007-10-25 Seiko Epson Corp Metal wiring forming method and method of manufacturing active matrix substrate
JP2007305839A (en) * 2006-05-12 2007-11-22 Hitachi Ltd Wiring, organic transistor and its manufacturing method
JP2008243911A (en) * 2007-03-26 2008-10-09 Nippon Hoso Kyokai <Nhk> Organic thin-film transistor and display
US7622738B2 (en) 2005-12-13 2009-11-24 Samsung Electronics Co., Ltd. Display device having a multi-layer conductive layer and manufacturing method therefore
KR100941298B1 (en) * 2008-04-11 2010-02-11 엘지이노텍 주식회사 Display device and method fabricating the same
US7781759B2 (en) 2005-11-17 2010-08-24 Samsung Electronics Co., Ltd. Display device and method for manufacturing the same
US7842943B2 (en) 2005-08-11 2010-11-30 Samsung Mobile Display Co., Ltd. Organic thin film transistor and flat panel display device using the same
JP2011035411A (en) * 2010-10-06 2011-02-17 Sony Corp Field effect transistor
JP2011134965A (en) * 2009-12-25 2011-07-07 Sony Corp Semiconductor device
JP2012074504A (en) * 2010-09-28 2012-04-12 Toppan Printing Co Ltd Thin-film transistor, and method of manufacturing the same
JPWO2010061823A1 (en) * 2008-11-28 2012-04-26 ソニー株式会社 Thin film transistor manufacturing method, thin film transistor, and electronic device
WO2012057194A1 (en) * 2010-10-27 2012-05-03 住友化学株式会社 Method of manufacturing organic thin film transistor, and organic thin film transistor manufactured by said method
WO2012066087A1 (en) * 2010-11-17 2012-05-24 Imec Method for fabricating thin-film bottom-contact transistors and bottom-contact transistors thus obtained
JP2012109561A (en) * 2010-10-27 2012-06-07 Sumitomo Chemical Co Ltd Organic thin-film transistor having source and drain electrodes with laminate structure
JP2012516560A (en) * 2009-01-30 2012-07-19 ケンブリッジ ディスプレイ テクノロジー リミテッド Method for forming source and drain electrodes of organic thin film transistor by electroless plating
KR101221761B1 (en) * 2006-12-01 2013-01-11 삼성전자주식회사 Producing method of high-performance organic thin film transistor using oxidation and selective reduction of organic semiconductor materials
US8592821B2 (en) 2005-04-22 2013-11-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element, organic transistor, light-emitting device, and electronic device
WO2015141138A1 (en) * 2014-03-19 2015-09-24 Sony Corporation Film and film structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59124162A (en) * 1982-12-29 1984-07-18 Sharp Corp Thin film transistor
JPS61135164A (en) * 1984-12-06 1986-06-23 Canon Inc Thin-film transistor element
JP2001094107A (en) * 1999-09-20 2001-04-06 Hitachi Ltd Organic semiconductor device and liquid crystal display device
JP2002204012A (en) * 2000-12-28 2002-07-19 Toshiba Corp Organic transistor and its manufacturing method
JP2004103905A (en) * 2002-09-11 2004-04-02 Pioneer Electronic Corp Organic semiconductor element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59124162A (en) * 1982-12-29 1984-07-18 Sharp Corp Thin film transistor
JPS61135164A (en) * 1984-12-06 1986-06-23 Canon Inc Thin-film transistor element
JP2001094107A (en) * 1999-09-20 2001-04-06 Hitachi Ltd Organic semiconductor device and liquid crystal display device
JP2002204012A (en) * 2000-12-28 2002-07-19 Toshiba Corp Organic transistor and its manufacturing method
JP2004103905A (en) * 2002-09-11 2004-04-02 Pioneer Electronic Corp Organic semiconductor element

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7951627B2 (en) 2000-11-02 2011-05-31 Seiko Epson Corporation Organic electroluminescent device, method of manufacturing the same, and electronic apparatus
US7718453B2 (en) 2000-11-02 2010-05-18 Seiko Epson Corporation Organic electroluminescent device, method of manufacturing the same, and electronic apparatus
US7253433B2 (en) * 2000-11-02 2007-08-07 Seiko Epson Corporation Organic electroluminescent device, method of manufacturing the same, and electronic apparatus
JP2006041487A (en) * 2004-06-21 2006-02-09 Matsushita Electric Ind Co Ltd Field-effect transistor and its manufacturing method
KR101182883B1 (en) 2004-08-04 2012-09-14 소니 주식회사 Field-effect transistor
JP2006049577A (en) * 2004-08-04 2006-02-16 Sony Corp Field effect transistor
US7863600B2 (en) 2004-08-04 2011-01-04 Sony Corporation Field-effect transistor
JP2006059896A (en) * 2004-08-18 2006-03-02 Sony Corp Field effect transistor
JP2006148050A (en) * 2004-10-21 2006-06-08 Seiko Epson Corp Thin film transistor, electro-optical device and electronic equipment
JP2006190815A (en) * 2005-01-06 2006-07-20 Nec Corp Dopant material, method of manufacturing the same, and semiconductor device using the same
JP2006195142A (en) * 2005-01-13 2006-07-27 Future Vision:Kk Substrate with wiring pattern and liquid crystal display apparatus using the same
JP4632034B2 (en) * 2005-03-10 2011-02-16 セイコーエプソン株式会社 Manufacturing method of organic ferroelectric memory
JP2006253381A (en) * 2005-03-10 2006-09-21 Seiko Epson Corp Organic ferroelectric memory and its fabrication method
JP2006286719A (en) * 2005-03-31 2006-10-19 Toppan Printing Co Ltd Process for fabricating thin film transistor
JP2006302925A (en) * 2005-04-15 2006-11-02 Sony Corp Semiconductor device, optical device, and sensor device
US8592821B2 (en) 2005-04-22 2013-11-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element, organic transistor, light-emitting device, and electronic device
JP2006324655A (en) * 2005-04-22 2006-11-30 Semiconductor Energy Lab Co Ltd Semiconductor element, organic transistor, light emitting device and electrical apparatus
US7842943B2 (en) 2005-08-11 2010-11-30 Samsung Mobile Display Co., Ltd. Organic thin film transistor and flat panel display device using the same
JP2007066925A (en) * 2005-08-29 2007-03-15 Sony Corp Semiconductor device
JP2007096289A (en) * 2005-08-31 2007-04-12 Sumitomo Chemical Co Ltd Transistor, organic semiconductor device, and method of manufacturing same
US8247264B2 (en) 2005-08-31 2012-08-21 Sumitomo Chemical Company, Limited Transistor, method for manufacturing same, and semiconductor device comprising such transistor
GB2444439A (en) * 2005-08-31 2008-06-04 Sumitomo Chemical Co Transistor, organic semiconductor device, amd method for manufacture of the transistor or device
GB2445487A (en) * 2005-08-31 2008-07-09 Sumitomo Chemical Co Transistor, method for manufacturing same, and semiconductor device comprising such transistor
GB2444439B (en) * 2005-08-31 2012-04-25 Sumitomo Chemical Co Method for manufacture of a transistor and organic semiconductor device
GB2445487B (en) * 2005-08-31 2011-11-02 Sumitomo Chemical Co Transistor, method for manufacturing same, and semiconductor device comprising such transistor
US7977149B2 (en) 2005-08-31 2011-07-12 Sumitomo Chemical Company, Limited Transistor, organic semiconductor device, and method for manufacture of the transistor or device
TWI447980B (en) * 2005-08-31 2014-08-01 Sumitomo Chemical Co A transistor, an organic semiconductor element, and the like
JP2007096288A (en) * 2005-08-31 2007-04-12 Sumitomo Chemical Co Ltd Transistor and method of manufacturing same, and semiconductor device having the same
WO2007026778A1 (en) * 2005-08-31 2007-03-08 Sumitomo Chemical Company, Limited Transistor, organic semiconductor device, and method for manufacture of the transistor or device
WO2007026781A1 (en) * 2005-08-31 2007-03-08 Sumitomo Chemical Company, Limited Transistor, method for manufacturing same, and semiconductor device comprising such transistor
JP2007095828A (en) * 2005-09-27 2007-04-12 Dainippon Printing Co Ltd Pattern forming assembly
US7781759B2 (en) 2005-11-17 2010-08-24 Samsung Electronics Co., Ltd. Display device and method for manufacturing the same
US8044392B2 (en) 2005-11-17 2011-10-25 Samsung Electronics Co., Ltd. Display device and method for manufacturing the same
WO2007065363A1 (en) * 2005-12-07 2007-06-14 The University Of Hong Kong Materials for organic thin film transistors
US7622738B2 (en) 2005-12-13 2009-11-24 Samsung Electronics Co., Ltd. Display device having a multi-layer conductive layer and manufacturing method therefore
JP2007173812A (en) * 2005-12-21 2007-07-05 Palo Alto Research Center Inc Thin-film transistor backplane circuit, and method of manufacturing same
JP2007281416A (en) * 2006-03-17 2007-10-25 Seiko Epson Corp Metal wiring forming method and method of manufacturing active matrix substrate
JP2007305839A (en) * 2006-05-12 2007-11-22 Hitachi Ltd Wiring, organic transistor and its manufacturing method
KR101287680B1 (en) * 2006-05-12 2013-07-24 가부시키가이샤 히타치세이사쿠쇼 Wiring and organic transistor and fabrication method thereof
KR101221761B1 (en) * 2006-12-01 2013-01-11 삼성전자주식회사 Producing method of high-performance organic thin film transistor using oxidation and selective reduction of organic semiconductor materials
JP2008243911A (en) * 2007-03-26 2008-10-09 Nippon Hoso Kyokai <Nhk> Organic thin-film transistor and display
KR100941298B1 (en) * 2008-04-11 2010-02-11 엘지이노텍 주식회사 Display device and method fabricating the same
US8742409B2 (en) 2008-11-28 2014-06-03 Sony Corporation Thin film transistor and method for producing the same
JPWO2010061823A1 (en) * 2008-11-28 2012-04-26 ソニー株式会社 Thin film transistor manufacturing method, thin film transistor, and electronic device
JP5652207B2 (en) * 2008-11-28 2015-01-14 ソニー株式会社 Thin film transistor manufacturing method, thin film transistor, and electronic device
JP2012516560A (en) * 2009-01-30 2012-07-19 ケンブリッジ ディスプレイ テクノロジー リミテッド Method for forming source and drain electrodes of organic thin film transistor by electroless plating
JP2011134965A (en) * 2009-12-25 2011-07-07 Sony Corp Semiconductor device
JP2012074504A (en) * 2010-09-28 2012-04-12 Toppan Printing Co Ltd Thin-film transistor, and method of manufacturing the same
JP2011035411A (en) * 2010-10-06 2011-02-17 Sony Corp Field effect transistor
JP2012109561A (en) * 2010-10-27 2012-06-07 Sumitomo Chemical Co Ltd Organic thin-film transistor having source and drain electrodes with laminate structure
JP2012109560A (en) * 2010-10-27 2012-06-07 Sumitomo Chemical Co Ltd Organic thin-film transistor manufacturing method, and organic thin-film transistor manufactured by the method
WO2012057194A1 (en) * 2010-10-27 2012-05-03 住友化学株式会社 Method of manufacturing organic thin film transistor, and organic thin film transistor manufactured by said method
WO2012066087A1 (en) * 2010-11-17 2012-05-24 Imec Method for fabricating thin-film bottom-contact transistors and bottom-contact transistors thus obtained
WO2015141138A1 (en) * 2014-03-19 2015-09-24 Sony Corporation Film and film structure

Similar Documents

Publication Publication Date Title
JP2004146430A (en) Organic thin film transistor, organic thin film transistor device, and their manufacturing methods
US6740900B2 (en) Organic thin-film transistor and manufacturing method for the same
US7018872B2 (en) Organic thin-film transistor, organic thin-film transistor sheet and manufacturing method thereof
JP4572501B2 (en) Method for producing organic thin film transistor
JP2004031933A (en) Method for manufacturing organic thin-film transistor, and organic thin-film transistor and organic transistor sheet manufactured using the same
JP4860101B2 (en) Organic thin film transistor and organic thin film transistor sheet manufacturing method
JP2003309265A (en) Organic thin-film transistor and method for manufacturing the organic thin-film transistor
JPWO2005098927A1 (en) TFT sheet and manufacturing method thereof
JP2004055649A (en) Organic thin-film transistor and method of manufacturing the same
JP2003258256A (en) Organic tft device and its manufacturing method
JP4419425B2 (en) Organic thin film transistor element
JP2004165427A (en) Organic thin film transistor element
JP4281324B2 (en) ORGANIC THIN FILM TRANSISTOR DEVICE, ITS MANUFACTURING METHOD, AND ORGANIC THIN FILM TRANSISTOR SHEET
JP4396109B2 (en) Thin film transistor element manufacturing method, thin film transistor element, and thin film transistor element sheet
JP2005183889A (en) Thin film transistor (tft) sheet and its manufacturing method, and thin film transistor element formed by it
JP4419383B2 (en) Thin film transistor sheet manufacturing method
JP4453252B2 (en) Organic thin film transistor element and organic thin film transistor element sheet
JP2004103638A (en) Organic transistor element
JP2004200365A (en) Organic thin film transistor element
JP2004281477A (en) Organic thin film transistor and its fabricating method
JP2004067862A (en) Organic semiconductor material and field effect transistor using the same
JP4581423B2 (en) Thin film transistor element, element sheet and method for manufacturing the same
JP2004253681A (en) Thin film transistor element and its manufacturing method
JP4507513B2 (en) Method for producing organic thin film transistor
JP4423870B2 (en) Image driving element sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090623