JP2004144975A - パターン転写マスク、半導体装置の製造方法、及び、マスクパターン作成用コンピュータプログラム - Google Patents
パターン転写マスク、半導体装置の製造方法、及び、マスクパターン作成用コンピュータプログラム Download PDFInfo
- Publication number
- JP2004144975A JP2004144975A JP2002309416A JP2002309416A JP2004144975A JP 2004144975 A JP2004144975 A JP 2004144975A JP 2002309416 A JP2002309416 A JP 2002309416A JP 2002309416 A JP2002309416 A JP 2002309416A JP 2004144975 A JP2004144975 A JP 2004144975A
- Authority
- JP
- Japan
- Prior art keywords
- pattern
- trench
- mask
- resist
- hole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000012546 transfer Methods 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 15
- 239000004065 semiconductor Substances 0.000 title claims description 36
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000004590 computer program Methods 0.000 title claims description 8
- 230000009977 dual effect Effects 0.000 claims abstract description 29
- 238000004513 sizing Methods 0.000 claims abstract description 17
- 239000011229 interlayer Substances 0.000 claims description 26
- 230000005540 biological transmission Effects 0.000 claims description 20
- 238000012545 processing Methods 0.000 claims description 9
- 239000010410 layer Substances 0.000 claims description 8
- 238000000638 solvent extraction Methods 0.000 claims description 6
- 239000004020 conductor Substances 0.000 claims description 5
- 238000000605 extraction Methods 0.000 claims description 5
- 238000000059 patterning Methods 0.000 claims description 5
- 238000002834 transmittance Methods 0.000 claims description 5
- 238000005530 etching Methods 0.000 claims description 2
- 229920002120 photoresistant polymer Polymers 0.000 abstract description 8
- 238000013461 design Methods 0.000 description 17
- 230000007547 defect Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 239000002184 metal Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000010949 copper Substances 0.000 description 8
- 239000000758 substrate Substances 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 229910016006 MoSi Inorganic materials 0.000 description 3
- 238000011960 computer-aided design Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000008571 general function Effects 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76802—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
- H01L21/76807—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
- H01L21/76808—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures involving intermediate temporary filling with material
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31144—Etching the insulating layers by chemical or physical means using masks
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
Abstract
【課題】デュアルダマシン構造の形成時にトレンチ形成用のレジストパターン(レジストマスク)に生じるビアホール付近のパターン不具合を抑制する。
【解決手段】パターン転写マスク101のマスクパターン110は、遮光パターン111と光透過パターン112とで形成されている。遮光パターン111は、ビアホール51Hに対応する部分付近にアンダーサイジングが施された形状(パターン)を有している。アンダーサイジングはビアホール51Hの占有率が高い領域ほど大きく施すのが望ましい。なお、マスク101はネガ型レジスト用であるが、ポジ型レジストに対して用いるマスクでは遮光パターン111と光透過パターン112を互いに入れ替えれば良い。
【選択図】 図8
【解決手段】パターン転写マスク101のマスクパターン110は、遮光パターン111と光透過パターン112とで形成されている。遮光パターン111は、ビアホール51Hに対応する部分付近にアンダーサイジングが施された形状(パターン)を有している。アンダーサイジングはビアホール51Hの占有率が高い領域ほど大きく施すのが望ましい。なお、マスク101はネガ型レジスト用であるが、ポジ型レジストに対して用いるマスクでは遮光パターン111と光透過パターン112を互いに入れ替えれば良い。
【選択図】 図8
Description
【0001】
【発明の属する技術分野】
この発明は、デュアルダマシン(Dual Damascene)構造を含んだ半導体装置の製造に用いられるパターン転写マスクに関し、更に当該パターン転写マスクを用いた半導体装置の製造方法、及び、当該パターン転写マスクのマスクパターンを作成するためのコンピュータプログラムに関する。
【0002】
【従来の技術】
従来より半導体装置の多層配線に銅(Cu)デュアルダマシン構造が用いられており、かかる構造は次のようにして形成される。まず、基板の酸化膜にビアホールを形成する。その後、酸化膜上にレジストを全面的に塗布し、露光及び現像によって当該レジストをトレンチ(溝)に対応したパターンにパターニングする。ビアホール用又はトレンチ用のレジストを塗布する前に反射防止膜を塗布等の方法により成膜する場合もある。次に、パターニングされたレジストをマスクとして用いて酸化膜をエッチングすることによりトレンチを形成する。なお、トレンチはビアホール上に形成される。そして、ビアホール及びトレンチ内にCu膜をメッキ処理することによって、デュアルダマシン構造が形成される。
【0003】
なお、かかるデュアルダマシン構造は例えば特許文献1において紹介されている。
【0004】
【特許文献1】
特開2000−58647号公報 (図4)
【0005】
【発明が解決しようとする課題】
上述の従来の形成方法ではレジストをビアホールが形成された酸化膜上又は反射防止膜上に全面的に塗布するので、ビアホール内にもレジストが配置される(たまる)。このとき、レジストの厚さ(酸化膜のうちでビアホールが形成されていない部分の表面を基準にした厚さ)はビアホール上で薄くなりやすい。しかも、ビアホールの配置形態に起因してビアホール内へのレジストのたまり具合が異なるので、ビアホールが形成されていない箇所、ビアホールが数多く開口している箇所、及び、ビアホールがまばらに開口している箇所、でレジストの厚さが異なる。
【0006】
また、ビアホールが形成された酸化膜上に塗布型の反射防止膜を形成した場合には、同様に、ビアホールの配置に起因して反射防止膜の厚さが異なる。
【0007】
光転写ではレジストの厚さが異なると、同一露光量であっても、定在波効果(干渉効果)及びバルク効果(吸収効果)によって、現像後のレジストパターンの仕上がり寸法が異なってしまう。すなわち、ビアホールの存在や配置形態に起因して、所望の寸法のトレンチパターンが得られないという問題がある。
【0008】
また、反射防止膜の膜厚が異なる場合、反射率が異なることにより、同様に、所望の寸法が得られない。
【0009】
また、一般的にビアホールが在る場所と無い場所とでは露光光の反射率が異なるので、同一露光量でも実効の露光量が異なることになり、かかる場合にも上述の場合と同様に所望のパターン寸法が得られない。
【0010】
その結果、出来上がったトレンチが所望よりも細いと配線の抵抗上昇や断線が発生しやすくなるし、逆に太いと設計値よりも配線抵抗が低くなったり隣接する配線同士がショートしてしまう。つまり、半導体装置において設計どおりの動作が得られない。
【0011】
この発明は、かかる点に鑑みてなされたものであり、現像後のレジストパターンにおいて上述のホール付近のパターン不具合を抑制可能なパターン転写マスクを提供することを目的とし、更に当該パターン転写マスクを用いた半導体装置の製造方法、及び、当該パターン転写マスクのマスクパターンを作成するためのコンピュータプログラムを提供することを目的とする。
【0012】
【課題を解決するための手段】
この発明に係るパターン転写マスクは、半導体装置の製造時にレジストにパターンを転写するために用いられる。ここで、前記半導体装置は、少なくとも1つのホールと、前記少なくとも1つのホール上に延在するトレンチと、前記少なくとも1つのホール内及び前記トレンチ内に埋め込まれた導電体と、を含んだデュアルダマシン構造を同一レイヤに複数含んでいる。このとき、前記パターン転写マスクは、前記トレンチを形成するために前記レジストをパターニングする際に用いられる。前記パターン転写マスクは、遮光パターンと、前記遮光パターンよりも光透過率が高い光透過パターンと、を含んでおり、前記遮光パターンは、各ホールに対応する部分付近にアンダーサイジング又はオーバーサイジングが施されている。
【0013】
【発明の実施の形態】
実施の形態1.
まず、図1の設計レイアウト図及び図2の断面図を参照しつつ、デュアルダマシン構造50を含んだ半導体装置50Aを説明する。なお、図1の設計レイアウト図ではビアホール51Hを×印を四角(□)で囲んだ記号で図示しており、図2は図1中の2−2線での断面図に相当する。
【0014】
半導体装置50Aは同一レイヤに2つのデュアルダマシン構造50を含んでおり、各デュアルダマシン構造50は、基板60と、ビアホール51Hと、トレンチ(溝)51Tと、ビアホール51H内及びトレンチ51T内に埋め込まれた金属(ないしは導電体)52とを含んでいる。トレンチ51Tはビアホール51H上に延在しており(平面視上重なっており)、ビアホール51Hに連結している。換言すると、上記埋め込み金属52において、トレンチ51T内の配線部52Tはビアホール51H内のビア部52H上に延在し、ビア部52Hに接している。なお、半導体装置50Aではデュアルダマシン構造50が1つのビアホール51H及び1つのトレンチ51Tを有する場合を説明するが、1つのトレンチ51Tに複数のビアホール51Hが設けられる場合もある(後述の図14を参照)。
【0015】
図1及び図2に示すように、デュアルダマシン構造50は基板60内に形成されており、ここでは基板60が、層間絶縁膜61と、下層配線62と、層間絶縁膜63とを含む場合を例に挙げる。具体的には、下層配線62は層間絶縁膜61の表面内に配置されており、層間絶縁膜61の表面上には層間絶縁膜63が配置されている。なお、説明の簡単のため図2では層間絶縁膜63を1層で図示しているが、当該層間絶縁膜63はストッパ膜又はハードマスクを含む多層膜の場合もある。
【0016】
そして、層間絶縁膜63内にデュアルダマシン構造50が作り込まれている。
詳細には、層間絶縁膜63において、下層配線62の側にビアホール51Hが設けられており、下層配線62から遠い側にトレンチ51Tが設けられている。トレンチ51Tは層間絶縁膜63の表面(下層配線62から遠い側の表面)において開口していると共に、層間絶縁膜63内でビアホール51Hと連結している。
ビアホール51Hは下層配線62へ至っている。
【0017】
かかるビアホール51H及びトレンチ51Tは埋め込み金属52によって埋められている。埋め込み金属52は、例えば銅(Cu)から成り、或いは更にトレンチ51T及びビアホール51H内において層間絶縁膜63及び下層配線62に接して配置されたバリアメタル膜を含む場合もある。これにより、トレンチ51T内の配線部52T及びビアホール51H内のビア部52Hから成る埋め込み金属52が構成され、配線部52Tはビア部52Hを介して下層配線62に電気的に接続される。
【0018】
図1に示すように、半導体装置50Aでは、2つの配線部52T(換言すれば2つのトレンチ51T)は平行に延在しており、各配線部52Tをライン部Lとして且つ層間絶縁膜63のうちで配線部52T間に在る部分をスペース部Sとしてライン・アンド・スペース・パターンが形成されている。なお、平面視上、2つのビアホール51Hはスペース部Sを挟んでトレンチ51Tの延在方向と垂直な方向に並んでいる。ここでは、設計上、スペース部Sの幅Swが0.20μm、トレンチ51Tの幅(換言すれば配線部52T又はライン部Lの幅)Twが0.22μm、ビアホール51の直径Hrが0.22μmの場合を一例に挙げる。
このとき、設計上は幅Twはトレンチ51T全体に渡って均一であり、幅Swも同様である。なおここでは、図1に示すようにトレンチ51Tの幅Twがビアホール51Hの直径Hrに等しい場合を説明するが、幅Twが直径Hrと異なる場合もある。
【0019】
次に、図1及び図2に加えて図3〜図5を参照して、半導体装置50Aの製造方法、特にデュアルダマシン構造50の形成方法を説明する。まず、下層配線62を有する層間絶縁膜61上に層間絶縁膜63を全面的に形成する。次に、層間絶縁膜63上に全面的にレジストを塗布し、写真製版法によって当該レジストにビアホール51Hのパターンを転写し、当該レジストをパターニングする。そして、パターニングされたレジストをマスクにして層間絶縁膜63をエッチングし、層間絶縁膜63内にビアホール51Hを形成する(図3の平面図を参照)。その後、レジストを除去する。
【0020】
次に、図4の断面図(図3中の4−4線における断面に相当)に示すように、ビアホール51H内を埋めるようにネガ型のレジスト71を全面的に塗布し、このレジスト71を写真製版法によりパターニングする。具体的には、パターン転写マスク(以下、単に「マスク」とも呼ぶ)100越しにレジスト71に露光光(例えば波長248nmのKrF光)を照射して当該レジスト71にトレンチ51Tに対応するパターンを転写し、その後、レジスト71を現像する。そして、パターニングされたレジスト71をマスク(レジストマスク)にして層間絶縁膜63をエッチングして、図5の断面図に示すようにトレンチ51Tを形成する。
その後、レジスト71を除去する。このように、パターン転写マスク100は、レジスト71をトレンチ51Tの形成用にパターニングするために用いられる。
【0021】
そして、例えば銅(Cu)の膜をメッキ処理によりトレンチ51T内及びビアホール51H内に埋め込み、かかる銅膜のうちで層間絶縁膜63上の部分を例えばCMP(Chemical Mechanical Polishing)法によって除去する。これにより、埋め込み金属52が形成される。
【0022】
ここで、図4のマスク100として、図6の平面図に示す比較用のマスク501を用いた場合を説明する。なお、説明を分かりやすくするため、図6及び後述の図では半導体装置50Aの上記ライン部L及びスペース部Sに対応する部分に符号”L”及び”S”をそれぞれ付している。
【0023】
マスク501のマスクパターン510は、露光光が十分に透過可能な光透過パターン512と、この光透過パターン512よりも露光光の透過率が低い遮光パターン511と、を平面視上有している。マスク501はネガ型レジスト71に対して用いられ、光透過パターン512を透過した露光光がネガ型レジスト71(本来現像液に溶解する)に照射され(換言すればマスクパターン510がレジスト71に転写され)、当該被照射部分が現像液に対して不溶化する。従って、レジスト71のうちで光透過パターン512に対応したパターンが現像後に残り、レジストパターン(レジスト像)になる。
【0024】
マスク501では、遮光パターン511においてトレンチ51Tに対応する各部分(換言すれば上記ライン部Lに対応する各部分)は、図1に図示されるトレンチ51Tの設計上のパターンと同様、均一な幅の帯状をしている。これに伴い、光透過パターン512において上記スペース部Sに対応する部分も均一な幅の帯状をしている。
【0025】
このとき、スペース部Sに対応する部分の幅がスペース部Sの設計値と同じ0.20μmに設定されたマスク501を用いた場合、現像後のレジストパターンにおいてスペース部Sに対応する部分の幅は、近くにビアホール51Hが無い箇所では設計値通りの0.20μmであったが、ビアホール51Hの横では0.17μmであった。つまり、図7の平面図(SEM像)に示すようにレジストパターンにおいてスペース部Sに対応する部分はビアホール51H付近でスペース部Sの設計値よりも細く仕上がっている。換言すれば、トレンチ51Tに対応する各部分はビアホール51H付近でトレンチ51Tの設計値よりも太くなっている。
【0026】
これに対して、図8の平面図に示す実施の形態1に係るパターン転写マスク101によれば、上述のパターン不具合(形状不具合)を抑制することができる。
以下に、図8及びこれの一部拡大図である図9を参照しつつマスク101を詳述するが、図8及び図9には説明のためにビアホール51Hの設計レイアウトを併せて図示している。
【0027】
マスク101のマスクパターン110は、露光光が十分に透過可能な光透過パターン112と、光透過パターン112よりも露光光の透過率が低い遮光パターン(例えばCrやMoSiで形成される)111と、で平面視上、形成されているが、後述のように、図6の比較用マスク501とはパターンの形状が異なる。
なお、比較用マスク501と同様に、マスク101はネガ型レジスト71に対して用いられ、光透過パターン112を透過した露光光がネガ型レジスト71に照射され(すなわちマスクパターン110がレジスト71に転写され)、レジスト71のうちで光透過パターン112に対応したパターンが現像後のレジストパターンになる。
【0028】
特に、マスク101の遮光パターン111は、図6の比較用マスク501の遮光パターン511においてビアホール51Hに対応する部分付近にアンダーサイジングが施された形状(パターン)を有している。すなわち、図9に示すように、遮光パターン111は、トレンチ51T(換言すれば配線部52T又はライン部L)の設計上の幅Twを有する基部111Bと、ビアホール51Hに対応する部分に設けられ基部111Bよりも幅が狭い(平面視上、基部111Bに対して凹んだ又は後退した)アンダーサイジング部111Hと、を含んでいる。
【0029】
逆に言えば、マスク101の光透過パターン112は、図6の比較用マスク501の光透過パターン512においてビアホール51Hに対応する部分付近にオーバーサイジングが施された形状(パターン)を有している。すなわち、図9に示すように、光透過パターン112は、図6の光透過パターン512と同様の寸法を有する基部112Bと、基部112Bよりも遮光パターン111の側に張り出したオーバーサイジング部112Hと、を含んでいる。なお、基部111B及びアンダーサイジング部111Hは基部112B及びオーバーサイジング部112Hにそれぞれ隣接している。
【0030】
具体的に、遮光パターン111において基部111Bのエッジに対するアンダーサイジング部111Hのエッジの凹み寸法又は後退量としてのアンダーサイジング量H(図9参照)を0.01μmに設定し、アンダーサイジング部111Hにおいて遮光パターン111の延在方向に沿った寸法としてのアンダーサイジング量W(図9参照)を0.20μmに設定した場合、レジストパターンにおいてスペース部Sに対応する部分の幅を0.186μmにすることができた(図10の平面図(SEM像)を参照)。なお、このとき、アンダーサイジングは遮光パターン111においてビアホール51H(の中央)に対応する部分を介して対向する2つのエッジの双方に施すことにより、アンダーサイジング部111Hの幅を0.20μmに設定し、光透過パターン112においてスペース部Sに対応する部分のオーバーサイジング部112Hの幅を0.22μmに設定した。
【0031】
なお、上述のサイジング量Hは光透過パターン112において基部112Bのエッジに対するオーバーサイジング部112Hのエッジの張り出し寸法でもあり、又、上述のサイジング量Wはオーバーサイジング部112Hにおいて遮光パターン111の延在方向に沿った寸法でもある。
【0032】
このように、マスク101によればレジストパターンにおいてビアホール51H付近のパターン不具合を抑制することができる。従って、トレンチ51T及びトレンチ51T内の配線部52Tの形状不具合、具体的には幅の増大を抑制できるので、配線部52Tの抵抗が設計値よりも低かったり、隣接する配線部52T同士がショートするといった問題が改善される。つまり、半導体装置50Aでは設計どおりの動作が得られる。
【0033】
ここで、マスク101において上記サイジング量H,Wについて種々の組み合わせを検討した結果を、図11のグラフに示す。図11によれば、サイジング量H,Wが大きいほど、レジストパターンのうちでスペース部Sに対応する部分のビアホール51H付近の幅は大きくなり、サイジング量Wの増大に伴いその変化は飽和傾向を示すことがわかる。このとき、例えばH=0.02μm、W=0.26μmの場合、レジストパターンにおいて上述のビアホール51H付近で設計値通り0.20μmの幅が得られ、従って設計値通りの寸法のスペース部Sが得られた。
【0034】
更に、発明者の実験によれば、設計レイアウト図(図1参照)上でビアホール51Hのエッジとトレンチ51T(又は配線部52T)のエッジe(図12の模式図を参照)との間隔d(図12参照)が70nm以下の箇所にサイジングを施すことにより、上述のパターン不具合が実用的なレベルにまで改善されることが分かった。
【0035】
さて、上述の説明ではレジスト71がネガ型の場合を述べたが、ポジ型のレジストには図13の平面図に示すマスク102を適用すれば良い。具体的には、図13と図8とを比較すれば分かるように、マスク102はマスク101において遮光パターン111と光透過パターン112とを互いに入れ替えたマスクパターン110を有しており、マスク102の遮光パターン111はホール51Hに対応する部分付近にオーバーサイジングが施されており、逆に言えばマスク102の光透過パターン112はホール51Hに対応する部分にアンダーサイジングが施されている。なお、図13には説明のためビアホール51Hの設計レイアウトを併せて図示している。
【0036】
このようなマスク102よってもマスク101と同様の効果が得られるので、トレンチ51T及びトレンチ51T内の配線部52Tの形状不具合、具体的には幅の減少を抑制できる。従って、配線部52Tの抵抗増大や断線が改善される。
つまり、半導体装置50Aでは設計どおりの動作が得られる。
【0037】
実施の形態2.
まず、図14の設計レイアウト図を参照しつつ、デュアルダマシン構造50を含んだ半導体装置50Bを説明する。図14に示すように半導体装置50Bは同一レイヤに複数のデュアルダマシン構造50を含んでおり、半導体装置50Bでは各デュアルダマシン構造50は1つのトレンチ51Tに対して複数のビアホール51Hを有している。更に、半導体装置50Bはデュアルダマシン構造50のトレンチ51Tと同じレイヤにトレンチ51Tと平行に延在する複数のトレンチ53Tを含んでおり、各トレンチ53T内に配線53が配置されている。具体的には、20μm四方の領域内に、配線部52T及び配線53(換言すればトレンチ51T,53T)に当たる0.20μmのライン部Lと0.20μmのスペース部Sとが交互に配置されたライン・アンド・スペース領域120が形成されている。なお、トレンチ53Tはライン・アンド・スペース領域120の領域端に設けられている。そして、デュアルダマシン構造50を成す0.20μm径のビアホール51Hが縦横に0.40μmピッチで並んでいる。このとき、隣接するビアホール51Hはスペース部Sを挟んで、トレンチ51Tの延在方向と垂直な方向に並んでいる。
【0038】
ここで、上述のトレンチ51T,53Tを形成するにあたり、ネガ型のレジスト71(図4及び図5参照)を、比較用のマスク501(図6参照)と同様にサイジングが施されていない比較用マスクを用いてパターニングしたところ、図15のグラフに示す結果が得られた。すなわち、比較用マスクで形成したレジストパターン(半導体装置50Bにおけるスペース部Sに対応する)の幅は、ビアホール51Hが無い、領域120の端付近では設計値どおり0.20μmになったが、ビアホール51Hが在る、領域120の中央へ向かうに従って細くなる、という傾向が得られた。これは、塗布したレジスト71がビアホール51H中に埋め込まれるのでビアホール51Hが在る中央領域内では層間絶縁膜63上でのレジスト71の膜厚が薄くなり(図4参照)、レジスト71のバルク効果によって実効露光量が変動することが原因であると考えられる。
【0039】
このような実験結果に基づいて、実施の形態2に係るマスク103には図16〜図18の平面図(それぞれマスク103の一部拡大図である)に示すようなマスクパターン110を与えている。なお、図16〜図18には説明のためビアホール51Hの設計レイアウトを併せて図示している。
【0040】
詳細には、マスク103の遮光パターン111は、基本的には既述のマスク101(図8及び図9参照)と同様に、半導体装置50Bにおけるライン部L(すなわちトレンチ51T,53T)に対応したパターンを有し、ビアホール51Hに対応する部分付近にアンダーサイジングが施されている。特に、平面視上(図14参照)半導体装置50Bを、より具体的にはトレンチ51T,53Tのレイヤを複数の領域120Aに区画した場合に、ビアホール51Hの占有率(領域120Aの面積に対する該領域120A内のビアホール51Hの総面積の割合)が高い領域120Aほどアンダーサイジングを大きく施している。例えば、上述の20μm四方のライン・アンド・スペース領域120を2μm四方の複数の領域120Aに区画し、各領域120A内のビアホール51Hの占有率を計算する。
そして、例えば、占有率が0〜10%の領域120Aに対しては図16に示すようにサイジングを施さず、占有率が10〜18%の領域120Aに対しては図17に示すようにH(図9参照)=0.01μmのアンダーサイジングを施し、占有率が18〜25%の領域120Aに対しては図18に示すようにH=0.02μmのアンダーサイジングを施す。このとき、遮光パターン111に呼応して光透過パターン112がオーバーサイジングされるのは言うまでもない。なお、図16〜図18の例では各トレンチ51Tに対して設けられた複数のサイジング部分を一体化している(一続きにしている)。
【0041】
このようなマスクパターン110を有するマスク103を図4中のマスク100として用いてネガ型のレジスト71をパターニングしたところ、図19のグラフに示すように、レジストパターンの上記幅をライン・アンド・スペース領域120内の全箇所で0.20±0.02μmにすることができた。つまり、マスク102によれば、ビアホール51Hの配置形態(例えば粗密)に依存したレジストパターンのパターン不具合を抑制することができる。
【0042】
なお、図14の設計レイアウトとは異なる場合、例えばトレンチ53Tがデュアルダマシン構造50のトレンチ51Tと交互に配置されている場合等にも、マスク103と同様の手法が適用可能である。
【0043】
ところで、上述の図15のグラフによれば比較用マスクで形成したレジストパターンの幅は、0.02μm程度で振幅しながら(振動しながら)細くなっていることが分かる。また、図19のグラフでの同様の振動が見られる。これは、上述のようにビアホール51Hが在る領域内では層間絶縁膜63上でのレジスト71の膜厚が薄くなるので、膜厚変動による定在波効果及びバルク効果によって実効露光量が異なることが原因であると考えられる。
【0044】
そこで、図20の断面図に示すように、レジスト71の露出表面上に反射防止膜72を形成した後にマスク103でレジスト71を露光したところ、上述の振動的なパターン不具合は抑制され、図21のグラフに示すようにレジスト71の上記幅をライン・アンド・スペース領域120内の全箇所で0.20±0.01μmの寸法を得ることができた。反射防止膜72はマスク101,102と組み合わせても良く、マスク103の場合と同様に、レジストパターンの寸法精度を向上させることができる。
【0045】
なお、図8及び図13のマスク101,102と同様に、マスク103において遮光パターン111と光透過パターン112とを入れ替えることにより、ポジ型レジスト用のマスクを得ることができる。
【0046】
実施の形態1,2の変形例.
さて、図2の下層配線62が半導体基板内に形成された不純物領域(例えばMISFET(Metal Insulator Semiconductor Field Effect Transistor)のソース/ドレイン領域)の場合にもデュアルダマシン構造50は適用可能であり、実施の形態1,2の説明を当てはめることができる。かかる場合ビアホールはコンタクトホールとも呼ばれるので、ビアホール及びコンタクトホールを総称して「ホール」と呼ぶことにする。
【0047】
また、露光光は上述のKrFに限られず他の波長の露光光であっても良く、例えばi線、ArF、F2による露光に対してもマスク101〜103を応用可能である。
【0048】
更に、マスク101〜103では遮光パターン111をCrやMoSiで形成する場合を述べたが、CrやMoSiに比して露光光の透過率が高い材料、例えばMoSiONやCrONで遮光パターン111を形成することによって、マスク101〜103をいわゆるハーフトーン型位相シフトマスクにすることも可能である。なお、いずれの場合も遮光パターン111を多層膜で構成しても良い。
【0049】
実施の形態3.
実施の形態3では、マスク101〜103のマスクパターン110を作成するためのコンピュータプログラムないしはCAD(Computer Aided Design)ソフトウェアを説明する。ここでは、マスク103(図16〜図18参照)を作成する場合を例示する。
【0050】
図22のブロック図に示すように、上記プログラムはコンピュータないしはCAD装置200にインストールされることにより当該コンピュータ200をレイアウト情報取得手段210及びトレンチパターン作成手段220を含んだ装置として機能させる。なお、トレンチパターン作成手段220は、抽出手段221と、区画手段222と、占有率算出手段223と、サイジング処理手段224と、を含んでいる。
【0051】
まず、レイアウト情報取得手段210は半導体装置50Bのレイアウトに関する情報(以下「レイアウト情報」とも呼ぶ)201を、例えばデータベースからやオペレータによる入力(作図入力)を通じて、取得する。このとき、取得するレイアウト情報201には、デュアルダマシン構造50のビアホール51H及びトレンチ51T、並びに、トレンチ53Tのレイアウト情報が含まれる。
【0052】
次に、トレンチパターン作成手段220によって、取得したレイアウト情報201を参照してトレンチ51T,53Tのレイヤに対応するパターンを作成する。
【0053】
詳細には、抽出手段221によって、レイアウト情報201を参照し、当該レイアウト情報201に基づいたトレンチ51Tのレイアウトにおいて、サイジング処理の対象となる箇所を抽出する。例えば、CADソフトウェアの一般的な機能を利用して、レイアウト情報201に基づいたレイアウト上でビアホール51Hのエッジとの間隔d(図12参照)が70nm以下であるトレンチ51T(又は配線部52T)のエッジe(図12参照)にフラグを付与する。
【0054】
また、区画手段222によって、レイアウト情報201に基づいたレイアウト上で、トレンチ51T,53Tのレイヤを複数の領域120A(図16〜図18参照)に区画する。このときの区画の条件、例えば領域120(図14参照)の範囲の設定や各領域120Aの大きさは、プログラムに予め組み込んでおいたり、或いは、例えば区画手段222によって適時オペレータに入力を促すようにする。その後、占有率算出手段223によって、各領域120A内におけるビアホール51Hの占有率を算出する。なお、占有率算出手段223はCADソフトウェアの一般的な機能を利用可能である。
【0055】
なお、抽出手段221による処理と、区画手段222及び占有率算出手段223による処理と、はいずれを先に実行しても良い。
【0056】
そして、サイジング処理手段によって、抽出手段221が抽出した箇所において(抽出手段221が抽出したトレンチ51Tのエッジeのうちでビアホール51Hに対応する部分付近において)、遮光パターン111にアンダーサイジングを施す。なお、ポジ型のレジストに対して用いるマスク102の場合には遮光パターン111にオーバーサイジングを施す。このとき、サイジング処理手段224は、上記占有率が高い領域120Aほどアンダーサイジング(又はオーバーサイジング)を大きく施す。
【0057】
かかるプログラムによりマスク103のマスクパターン110(図16〜図18参照)が作成される。なお、マスク101,102(図8及び図13参照)のマスクパターン110を作成する場合には区画手段222及び占有率算出手段223をプログラムに設けなくても構わない。
【0058】
【発明の効果】
この発明によれば、現像後のレジストパターンにおいてホール付近のパターン不具合(形状不具合)を抑制することができる。従って、トレンチ及びトレンチ内に埋め込まれた導電体の形状不具合を抑制できる。
【図面の簡単な説明】
【図1】実施の形態1に係るパターン転写マスクを説明するための、デュアルダマシン構造を含んだ半導体装置の設計レイアウト図である。
【図2】デュアルダマシン構造を説明するための断面図である。
【図3】ビアホールを形成した後の基板を説明するための平面図である。
【図4】トレンチの形成方法を説明するための断面図である。
【図5】トレンチを形成した後の基板を説明するための断面図である。
【図6】比較用のパターン転写マスクを説明するための平面図である。
【図7】比較用のパターン転写マスクを用いて形成したレジストパターンを説明するための平面図である。
【図8】実施の形態1に係るパターン転写マスクを説明するための平面図である。
【図9】図8の一部拡大図である。
【図10】実施の形態1に係るパターン転写マスクを用いて形成したレジストパターンを説明するための平面図である。
【図11】実施の形態1に係るパターン転写マスクを説明するためのグラフである。
【図12】ビアホールのエッジと配線のエッジとの間隔を説明するための模式図である。
【図13】実施の形態1に係る他のパターン転写マスクを説明するための平面図である。
【図14】実施の形態2に係るパターン転写マスクを説明するための、デュアルダマシン構造を含んだ半導体装置の設計レイアウト図である。
【図15】比較用のパターン転写マスクで形成したレジストパターンを説明するためのグラフである。
【図16】実施の形態2に係るパターン転写マスクを説明するための平面図である。
【図17】実施の形態2に係るパターン転写マスクを説明するための平面図である。
【図18】実施の形態2に係るパターン転写マスクを説明するための平面図である。
【図19】実施の形態2に係るパターン転写マスクを説明するためのグラフである。
【図20】デュアルダマシン構造を含んだ半導体装置の実施の形態2に係る製造方法を説明するための断面図である。
【図21】デュアルダマシン構造を含んだ半導体装置の実施の形態2に係る製造方法を説明するためのグラフである。
【図22】実施の形態3に係るコンピュータの機能を説明するためのブロック図である。
【符号の説明】
50 デュアルダマシン構造、50A,50B 半導体装置、51H ビアホール、51T トレンチ、52 埋め込み金属(導電体)、63 層間絶縁膜、71 レジスト、72 反射防止膜、101〜103 パターン転写マスク、110 マスクパターン、111 遮光パターン、112 光透過パターン、120A 領域、200 コンピュータ、201 レイアウト情報、210 レイアウト情報取得手段、220 トレンチパターン作成手段、221 抽出手段、222 区画手段、223 占有率算出手段、224 サイジング処理手段。
【発明の属する技術分野】
この発明は、デュアルダマシン(Dual Damascene)構造を含んだ半導体装置の製造に用いられるパターン転写マスクに関し、更に当該パターン転写マスクを用いた半導体装置の製造方法、及び、当該パターン転写マスクのマスクパターンを作成するためのコンピュータプログラムに関する。
【0002】
【従来の技術】
従来より半導体装置の多層配線に銅(Cu)デュアルダマシン構造が用いられており、かかる構造は次のようにして形成される。まず、基板の酸化膜にビアホールを形成する。その後、酸化膜上にレジストを全面的に塗布し、露光及び現像によって当該レジストをトレンチ(溝)に対応したパターンにパターニングする。ビアホール用又はトレンチ用のレジストを塗布する前に反射防止膜を塗布等の方法により成膜する場合もある。次に、パターニングされたレジストをマスクとして用いて酸化膜をエッチングすることによりトレンチを形成する。なお、トレンチはビアホール上に形成される。そして、ビアホール及びトレンチ内にCu膜をメッキ処理することによって、デュアルダマシン構造が形成される。
【0003】
なお、かかるデュアルダマシン構造は例えば特許文献1において紹介されている。
【0004】
【特許文献1】
特開2000−58647号公報 (図4)
【0005】
【発明が解決しようとする課題】
上述の従来の形成方法ではレジストをビアホールが形成された酸化膜上又は反射防止膜上に全面的に塗布するので、ビアホール内にもレジストが配置される(たまる)。このとき、レジストの厚さ(酸化膜のうちでビアホールが形成されていない部分の表面を基準にした厚さ)はビアホール上で薄くなりやすい。しかも、ビアホールの配置形態に起因してビアホール内へのレジストのたまり具合が異なるので、ビアホールが形成されていない箇所、ビアホールが数多く開口している箇所、及び、ビアホールがまばらに開口している箇所、でレジストの厚さが異なる。
【0006】
また、ビアホールが形成された酸化膜上に塗布型の反射防止膜を形成した場合には、同様に、ビアホールの配置に起因して反射防止膜の厚さが異なる。
【0007】
光転写ではレジストの厚さが異なると、同一露光量であっても、定在波効果(干渉効果)及びバルク効果(吸収効果)によって、現像後のレジストパターンの仕上がり寸法が異なってしまう。すなわち、ビアホールの存在や配置形態に起因して、所望の寸法のトレンチパターンが得られないという問題がある。
【0008】
また、反射防止膜の膜厚が異なる場合、反射率が異なることにより、同様に、所望の寸法が得られない。
【0009】
また、一般的にビアホールが在る場所と無い場所とでは露光光の反射率が異なるので、同一露光量でも実効の露光量が異なることになり、かかる場合にも上述の場合と同様に所望のパターン寸法が得られない。
【0010】
その結果、出来上がったトレンチが所望よりも細いと配線の抵抗上昇や断線が発生しやすくなるし、逆に太いと設計値よりも配線抵抗が低くなったり隣接する配線同士がショートしてしまう。つまり、半導体装置において設計どおりの動作が得られない。
【0011】
この発明は、かかる点に鑑みてなされたものであり、現像後のレジストパターンにおいて上述のホール付近のパターン不具合を抑制可能なパターン転写マスクを提供することを目的とし、更に当該パターン転写マスクを用いた半導体装置の製造方法、及び、当該パターン転写マスクのマスクパターンを作成するためのコンピュータプログラムを提供することを目的とする。
【0012】
【課題を解決するための手段】
この発明に係るパターン転写マスクは、半導体装置の製造時にレジストにパターンを転写するために用いられる。ここで、前記半導体装置は、少なくとも1つのホールと、前記少なくとも1つのホール上に延在するトレンチと、前記少なくとも1つのホール内及び前記トレンチ内に埋め込まれた導電体と、を含んだデュアルダマシン構造を同一レイヤに複数含んでいる。このとき、前記パターン転写マスクは、前記トレンチを形成するために前記レジストをパターニングする際に用いられる。前記パターン転写マスクは、遮光パターンと、前記遮光パターンよりも光透過率が高い光透過パターンと、を含んでおり、前記遮光パターンは、各ホールに対応する部分付近にアンダーサイジング又はオーバーサイジングが施されている。
【0013】
【発明の実施の形態】
実施の形態1.
まず、図1の設計レイアウト図及び図2の断面図を参照しつつ、デュアルダマシン構造50を含んだ半導体装置50Aを説明する。なお、図1の設計レイアウト図ではビアホール51Hを×印を四角(□)で囲んだ記号で図示しており、図2は図1中の2−2線での断面図に相当する。
【0014】
半導体装置50Aは同一レイヤに2つのデュアルダマシン構造50を含んでおり、各デュアルダマシン構造50は、基板60と、ビアホール51Hと、トレンチ(溝)51Tと、ビアホール51H内及びトレンチ51T内に埋め込まれた金属(ないしは導電体)52とを含んでいる。トレンチ51Tはビアホール51H上に延在しており(平面視上重なっており)、ビアホール51Hに連結している。換言すると、上記埋め込み金属52において、トレンチ51T内の配線部52Tはビアホール51H内のビア部52H上に延在し、ビア部52Hに接している。なお、半導体装置50Aではデュアルダマシン構造50が1つのビアホール51H及び1つのトレンチ51Tを有する場合を説明するが、1つのトレンチ51Tに複数のビアホール51Hが設けられる場合もある(後述の図14を参照)。
【0015】
図1及び図2に示すように、デュアルダマシン構造50は基板60内に形成されており、ここでは基板60が、層間絶縁膜61と、下層配線62と、層間絶縁膜63とを含む場合を例に挙げる。具体的には、下層配線62は層間絶縁膜61の表面内に配置されており、層間絶縁膜61の表面上には層間絶縁膜63が配置されている。なお、説明の簡単のため図2では層間絶縁膜63を1層で図示しているが、当該層間絶縁膜63はストッパ膜又はハードマスクを含む多層膜の場合もある。
【0016】
そして、層間絶縁膜63内にデュアルダマシン構造50が作り込まれている。
詳細には、層間絶縁膜63において、下層配線62の側にビアホール51Hが設けられており、下層配線62から遠い側にトレンチ51Tが設けられている。トレンチ51Tは層間絶縁膜63の表面(下層配線62から遠い側の表面)において開口していると共に、層間絶縁膜63内でビアホール51Hと連結している。
ビアホール51Hは下層配線62へ至っている。
【0017】
かかるビアホール51H及びトレンチ51Tは埋め込み金属52によって埋められている。埋め込み金属52は、例えば銅(Cu)から成り、或いは更にトレンチ51T及びビアホール51H内において層間絶縁膜63及び下層配線62に接して配置されたバリアメタル膜を含む場合もある。これにより、トレンチ51T内の配線部52T及びビアホール51H内のビア部52Hから成る埋め込み金属52が構成され、配線部52Tはビア部52Hを介して下層配線62に電気的に接続される。
【0018】
図1に示すように、半導体装置50Aでは、2つの配線部52T(換言すれば2つのトレンチ51T)は平行に延在しており、各配線部52Tをライン部Lとして且つ層間絶縁膜63のうちで配線部52T間に在る部分をスペース部Sとしてライン・アンド・スペース・パターンが形成されている。なお、平面視上、2つのビアホール51Hはスペース部Sを挟んでトレンチ51Tの延在方向と垂直な方向に並んでいる。ここでは、設計上、スペース部Sの幅Swが0.20μm、トレンチ51Tの幅(換言すれば配線部52T又はライン部Lの幅)Twが0.22μm、ビアホール51の直径Hrが0.22μmの場合を一例に挙げる。
このとき、設計上は幅Twはトレンチ51T全体に渡って均一であり、幅Swも同様である。なおここでは、図1に示すようにトレンチ51Tの幅Twがビアホール51Hの直径Hrに等しい場合を説明するが、幅Twが直径Hrと異なる場合もある。
【0019】
次に、図1及び図2に加えて図3〜図5を参照して、半導体装置50Aの製造方法、特にデュアルダマシン構造50の形成方法を説明する。まず、下層配線62を有する層間絶縁膜61上に層間絶縁膜63を全面的に形成する。次に、層間絶縁膜63上に全面的にレジストを塗布し、写真製版法によって当該レジストにビアホール51Hのパターンを転写し、当該レジストをパターニングする。そして、パターニングされたレジストをマスクにして層間絶縁膜63をエッチングし、層間絶縁膜63内にビアホール51Hを形成する(図3の平面図を参照)。その後、レジストを除去する。
【0020】
次に、図4の断面図(図3中の4−4線における断面に相当)に示すように、ビアホール51H内を埋めるようにネガ型のレジスト71を全面的に塗布し、このレジスト71を写真製版法によりパターニングする。具体的には、パターン転写マスク(以下、単に「マスク」とも呼ぶ)100越しにレジスト71に露光光(例えば波長248nmのKrF光)を照射して当該レジスト71にトレンチ51Tに対応するパターンを転写し、その後、レジスト71を現像する。そして、パターニングされたレジスト71をマスク(レジストマスク)にして層間絶縁膜63をエッチングして、図5の断面図に示すようにトレンチ51Tを形成する。
その後、レジスト71を除去する。このように、パターン転写マスク100は、レジスト71をトレンチ51Tの形成用にパターニングするために用いられる。
【0021】
そして、例えば銅(Cu)の膜をメッキ処理によりトレンチ51T内及びビアホール51H内に埋め込み、かかる銅膜のうちで層間絶縁膜63上の部分を例えばCMP(Chemical Mechanical Polishing)法によって除去する。これにより、埋め込み金属52が形成される。
【0022】
ここで、図4のマスク100として、図6の平面図に示す比較用のマスク501を用いた場合を説明する。なお、説明を分かりやすくするため、図6及び後述の図では半導体装置50Aの上記ライン部L及びスペース部Sに対応する部分に符号”L”及び”S”をそれぞれ付している。
【0023】
マスク501のマスクパターン510は、露光光が十分に透過可能な光透過パターン512と、この光透過パターン512よりも露光光の透過率が低い遮光パターン511と、を平面視上有している。マスク501はネガ型レジスト71に対して用いられ、光透過パターン512を透過した露光光がネガ型レジスト71(本来現像液に溶解する)に照射され(換言すればマスクパターン510がレジスト71に転写され)、当該被照射部分が現像液に対して不溶化する。従って、レジスト71のうちで光透過パターン512に対応したパターンが現像後に残り、レジストパターン(レジスト像)になる。
【0024】
マスク501では、遮光パターン511においてトレンチ51Tに対応する各部分(換言すれば上記ライン部Lに対応する各部分)は、図1に図示されるトレンチ51Tの設計上のパターンと同様、均一な幅の帯状をしている。これに伴い、光透過パターン512において上記スペース部Sに対応する部分も均一な幅の帯状をしている。
【0025】
このとき、スペース部Sに対応する部分の幅がスペース部Sの設計値と同じ0.20μmに設定されたマスク501を用いた場合、現像後のレジストパターンにおいてスペース部Sに対応する部分の幅は、近くにビアホール51Hが無い箇所では設計値通りの0.20μmであったが、ビアホール51Hの横では0.17μmであった。つまり、図7の平面図(SEM像)に示すようにレジストパターンにおいてスペース部Sに対応する部分はビアホール51H付近でスペース部Sの設計値よりも細く仕上がっている。換言すれば、トレンチ51Tに対応する各部分はビアホール51H付近でトレンチ51Tの設計値よりも太くなっている。
【0026】
これに対して、図8の平面図に示す実施の形態1に係るパターン転写マスク101によれば、上述のパターン不具合(形状不具合)を抑制することができる。
以下に、図8及びこれの一部拡大図である図9を参照しつつマスク101を詳述するが、図8及び図9には説明のためにビアホール51Hの設計レイアウトを併せて図示している。
【0027】
マスク101のマスクパターン110は、露光光が十分に透過可能な光透過パターン112と、光透過パターン112よりも露光光の透過率が低い遮光パターン(例えばCrやMoSiで形成される)111と、で平面視上、形成されているが、後述のように、図6の比較用マスク501とはパターンの形状が異なる。
なお、比較用マスク501と同様に、マスク101はネガ型レジスト71に対して用いられ、光透過パターン112を透過した露光光がネガ型レジスト71に照射され(すなわちマスクパターン110がレジスト71に転写され)、レジスト71のうちで光透過パターン112に対応したパターンが現像後のレジストパターンになる。
【0028】
特に、マスク101の遮光パターン111は、図6の比較用マスク501の遮光パターン511においてビアホール51Hに対応する部分付近にアンダーサイジングが施された形状(パターン)を有している。すなわち、図9に示すように、遮光パターン111は、トレンチ51T(換言すれば配線部52T又はライン部L)の設計上の幅Twを有する基部111Bと、ビアホール51Hに対応する部分に設けられ基部111Bよりも幅が狭い(平面視上、基部111Bに対して凹んだ又は後退した)アンダーサイジング部111Hと、を含んでいる。
【0029】
逆に言えば、マスク101の光透過パターン112は、図6の比較用マスク501の光透過パターン512においてビアホール51Hに対応する部分付近にオーバーサイジングが施された形状(パターン)を有している。すなわち、図9に示すように、光透過パターン112は、図6の光透過パターン512と同様の寸法を有する基部112Bと、基部112Bよりも遮光パターン111の側に張り出したオーバーサイジング部112Hと、を含んでいる。なお、基部111B及びアンダーサイジング部111Hは基部112B及びオーバーサイジング部112Hにそれぞれ隣接している。
【0030】
具体的に、遮光パターン111において基部111Bのエッジに対するアンダーサイジング部111Hのエッジの凹み寸法又は後退量としてのアンダーサイジング量H(図9参照)を0.01μmに設定し、アンダーサイジング部111Hにおいて遮光パターン111の延在方向に沿った寸法としてのアンダーサイジング量W(図9参照)を0.20μmに設定した場合、レジストパターンにおいてスペース部Sに対応する部分の幅を0.186μmにすることができた(図10の平面図(SEM像)を参照)。なお、このとき、アンダーサイジングは遮光パターン111においてビアホール51H(の中央)に対応する部分を介して対向する2つのエッジの双方に施すことにより、アンダーサイジング部111Hの幅を0.20μmに設定し、光透過パターン112においてスペース部Sに対応する部分のオーバーサイジング部112Hの幅を0.22μmに設定した。
【0031】
なお、上述のサイジング量Hは光透過パターン112において基部112Bのエッジに対するオーバーサイジング部112Hのエッジの張り出し寸法でもあり、又、上述のサイジング量Wはオーバーサイジング部112Hにおいて遮光パターン111の延在方向に沿った寸法でもある。
【0032】
このように、マスク101によればレジストパターンにおいてビアホール51H付近のパターン不具合を抑制することができる。従って、トレンチ51T及びトレンチ51T内の配線部52Tの形状不具合、具体的には幅の増大を抑制できるので、配線部52Tの抵抗が設計値よりも低かったり、隣接する配線部52T同士がショートするといった問題が改善される。つまり、半導体装置50Aでは設計どおりの動作が得られる。
【0033】
ここで、マスク101において上記サイジング量H,Wについて種々の組み合わせを検討した結果を、図11のグラフに示す。図11によれば、サイジング量H,Wが大きいほど、レジストパターンのうちでスペース部Sに対応する部分のビアホール51H付近の幅は大きくなり、サイジング量Wの増大に伴いその変化は飽和傾向を示すことがわかる。このとき、例えばH=0.02μm、W=0.26μmの場合、レジストパターンにおいて上述のビアホール51H付近で設計値通り0.20μmの幅が得られ、従って設計値通りの寸法のスペース部Sが得られた。
【0034】
更に、発明者の実験によれば、設計レイアウト図(図1参照)上でビアホール51Hのエッジとトレンチ51T(又は配線部52T)のエッジe(図12の模式図を参照)との間隔d(図12参照)が70nm以下の箇所にサイジングを施すことにより、上述のパターン不具合が実用的なレベルにまで改善されることが分かった。
【0035】
さて、上述の説明ではレジスト71がネガ型の場合を述べたが、ポジ型のレジストには図13の平面図に示すマスク102を適用すれば良い。具体的には、図13と図8とを比較すれば分かるように、マスク102はマスク101において遮光パターン111と光透過パターン112とを互いに入れ替えたマスクパターン110を有しており、マスク102の遮光パターン111はホール51Hに対応する部分付近にオーバーサイジングが施されており、逆に言えばマスク102の光透過パターン112はホール51Hに対応する部分にアンダーサイジングが施されている。なお、図13には説明のためビアホール51Hの設計レイアウトを併せて図示している。
【0036】
このようなマスク102よってもマスク101と同様の効果が得られるので、トレンチ51T及びトレンチ51T内の配線部52Tの形状不具合、具体的には幅の減少を抑制できる。従って、配線部52Tの抵抗増大や断線が改善される。
つまり、半導体装置50Aでは設計どおりの動作が得られる。
【0037】
実施の形態2.
まず、図14の設計レイアウト図を参照しつつ、デュアルダマシン構造50を含んだ半導体装置50Bを説明する。図14に示すように半導体装置50Bは同一レイヤに複数のデュアルダマシン構造50を含んでおり、半導体装置50Bでは各デュアルダマシン構造50は1つのトレンチ51Tに対して複数のビアホール51Hを有している。更に、半導体装置50Bはデュアルダマシン構造50のトレンチ51Tと同じレイヤにトレンチ51Tと平行に延在する複数のトレンチ53Tを含んでおり、各トレンチ53T内に配線53が配置されている。具体的には、20μm四方の領域内に、配線部52T及び配線53(換言すればトレンチ51T,53T)に当たる0.20μmのライン部Lと0.20μmのスペース部Sとが交互に配置されたライン・アンド・スペース領域120が形成されている。なお、トレンチ53Tはライン・アンド・スペース領域120の領域端に設けられている。そして、デュアルダマシン構造50を成す0.20μm径のビアホール51Hが縦横に0.40μmピッチで並んでいる。このとき、隣接するビアホール51Hはスペース部Sを挟んで、トレンチ51Tの延在方向と垂直な方向に並んでいる。
【0038】
ここで、上述のトレンチ51T,53Tを形成するにあたり、ネガ型のレジスト71(図4及び図5参照)を、比較用のマスク501(図6参照)と同様にサイジングが施されていない比較用マスクを用いてパターニングしたところ、図15のグラフに示す結果が得られた。すなわち、比較用マスクで形成したレジストパターン(半導体装置50Bにおけるスペース部Sに対応する)の幅は、ビアホール51Hが無い、領域120の端付近では設計値どおり0.20μmになったが、ビアホール51Hが在る、領域120の中央へ向かうに従って細くなる、という傾向が得られた。これは、塗布したレジスト71がビアホール51H中に埋め込まれるのでビアホール51Hが在る中央領域内では層間絶縁膜63上でのレジスト71の膜厚が薄くなり(図4参照)、レジスト71のバルク効果によって実効露光量が変動することが原因であると考えられる。
【0039】
このような実験結果に基づいて、実施の形態2に係るマスク103には図16〜図18の平面図(それぞれマスク103の一部拡大図である)に示すようなマスクパターン110を与えている。なお、図16〜図18には説明のためビアホール51Hの設計レイアウトを併せて図示している。
【0040】
詳細には、マスク103の遮光パターン111は、基本的には既述のマスク101(図8及び図9参照)と同様に、半導体装置50Bにおけるライン部L(すなわちトレンチ51T,53T)に対応したパターンを有し、ビアホール51Hに対応する部分付近にアンダーサイジングが施されている。特に、平面視上(図14参照)半導体装置50Bを、より具体的にはトレンチ51T,53Tのレイヤを複数の領域120Aに区画した場合に、ビアホール51Hの占有率(領域120Aの面積に対する該領域120A内のビアホール51Hの総面積の割合)が高い領域120Aほどアンダーサイジングを大きく施している。例えば、上述の20μm四方のライン・アンド・スペース領域120を2μm四方の複数の領域120Aに区画し、各領域120A内のビアホール51Hの占有率を計算する。
そして、例えば、占有率が0〜10%の領域120Aに対しては図16に示すようにサイジングを施さず、占有率が10〜18%の領域120Aに対しては図17に示すようにH(図9参照)=0.01μmのアンダーサイジングを施し、占有率が18〜25%の領域120Aに対しては図18に示すようにH=0.02μmのアンダーサイジングを施す。このとき、遮光パターン111に呼応して光透過パターン112がオーバーサイジングされるのは言うまでもない。なお、図16〜図18の例では各トレンチ51Tに対して設けられた複数のサイジング部分を一体化している(一続きにしている)。
【0041】
このようなマスクパターン110を有するマスク103を図4中のマスク100として用いてネガ型のレジスト71をパターニングしたところ、図19のグラフに示すように、レジストパターンの上記幅をライン・アンド・スペース領域120内の全箇所で0.20±0.02μmにすることができた。つまり、マスク102によれば、ビアホール51Hの配置形態(例えば粗密)に依存したレジストパターンのパターン不具合を抑制することができる。
【0042】
なお、図14の設計レイアウトとは異なる場合、例えばトレンチ53Tがデュアルダマシン構造50のトレンチ51Tと交互に配置されている場合等にも、マスク103と同様の手法が適用可能である。
【0043】
ところで、上述の図15のグラフによれば比較用マスクで形成したレジストパターンの幅は、0.02μm程度で振幅しながら(振動しながら)細くなっていることが分かる。また、図19のグラフでの同様の振動が見られる。これは、上述のようにビアホール51Hが在る領域内では層間絶縁膜63上でのレジスト71の膜厚が薄くなるので、膜厚変動による定在波効果及びバルク効果によって実効露光量が異なることが原因であると考えられる。
【0044】
そこで、図20の断面図に示すように、レジスト71の露出表面上に反射防止膜72を形成した後にマスク103でレジスト71を露光したところ、上述の振動的なパターン不具合は抑制され、図21のグラフに示すようにレジスト71の上記幅をライン・アンド・スペース領域120内の全箇所で0.20±0.01μmの寸法を得ることができた。反射防止膜72はマスク101,102と組み合わせても良く、マスク103の場合と同様に、レジストパターンの寸法精度を向上させることができる。
【0045】
なお、図8及び図13のマスク101,102と同様に、マスク103において遮光パターン111と光透過パターン112とを入れ替えることにより、ポジ型レジスト用のマスクを得ることができる。
【0046】
実施の形態1,2の変形例.
さて、図2の下層配線62が半導体基板内に形成された不純物領域(例えばMISFET(Metal Insulator Semiconductor Field Effect Transistor)のソース/ドレイン領域)の場合にもデュアルダマシン構造50は適用可能であり、実施の形態1,2の説明を当てはめることができる。かかる場合ビアホールはコンタクトホールとも呼ばれるので、ビアホール及びコンタクトホールを総称して「ホール」と呼ぶことにする。
【0047】
また、露光光は上述のKrFに限られず他の波長の露光光であっても良く、例えばi線、ArF、F2による露光に対してもマスク101〜103を応用可能である。
【0048】
更に、マスク101〜103では遮光パターン111をCrやMoSiで形成する場合を述べたが、CrやMoSiに比して露光光の透過率が高い材料、例えばMoSiONやCrONで遮光パターン111を形成することによって、マスク101〜103をいわゆるハーフトーン型位相シフトマスクにすることも可能である。なお、いずれの場合も遮光パターン111を多層膜で構成しても良い。
【0049】
実施の形態3.
実施の形態3では、マスク101〜103のマスクパターン110を作成するためのコンピュータプログラムないしはCAD(Computer Aided Design)ソフトウェアを説明する。ここでは、マスク103(図16〜図18参照)を作成する場合を例示する。
【0050】
図22のブロック図に示すように、上記プログラムはコンピュータないしはCAD装置200にインストールされることにより当該コンピュータ200をレイアウト情報取得手段210及びトレンチパターン作成手段220を含んだ装置として機能させる。なお、トレンチパターン作成手段220は、抽出手段221と、区画手段222と、占有率算出手段223と、サイジング処理手段224と、を含んでいる。
【0051】
まず、レイアウト情報取得手段210は半導体装置50Bのレイアウトに関する情報(以下「レイアウト情報」とも呼ぶ)201を、例えばデータベースからやオペレータによる入力(作図入力)を通じて、取得する。このとき、取得するレイアウト情報201には、デュアルダマシン構造50のビアホール51H及びトレンチ51T、並びに、トレンチ53Tのレイアウト情報が含まれる。
【0052】
次に、トレンチパターン作成手段220によって、取得したレイアウト情報201を参照してトレンチ51T,53Tのレイヤに対応するパターンを作成する。
【0053】
詳細には、抽出手段221によって、レイアウト情報201を参照し、当該レイアウト情報201に基づいたトレンチ51Tのレイアウトにおいて、サイジング処理の対象となる箇所を抽出する。例えば、CADソフトウェアの一般的な機能を利用して、レイアウト情報201に基づいたレイアウト上でビアホール51Hのエッジとの間隔d(図12参照)が70nm以下であるトレンチ51T(又は配線部52T)のエッジe(図12参照)にフラグを付与する。
【0054】
また、区画手段222によって、レイアウト情報201に基づいたレイアウト上で、トレンチ51T,53Tのレイヤを複数の領域120A(図16〜図18参照)に区画する。このときの区画の条件、例えば領域120(図14参照)の範囲の設定や各領域120Aの大きさは、プログラムに予め組み込んでおいたり、或いは、例えば区画手段222によって適時オペレータに入力を促すようにする。その後、占有率算出手段223によって、各領域120A内におけるビアホール51Hの占有率を算出する。なお、占有率算出手段223はCADソフトウェアの一般的な機能を利用可能である。
【0055】
なお、抽出手段221による処理と、区画手段222及び占有率算出手段223による処理と、はいずれを先に実行しても良い。
【0056】
そして、サイジング処理手段によって、抽出手段221が抽出した箇所において(抽出手段221が抽出したトレンチ51Tのエッジeのうちでビアホール51Hに対応する部分付近において)、遮光パターン111にアンダーサイジングを施す。なお、ポジ型のレジストに対して用いるマスク102の場合には遮光パターン111にオーバーサイジングを施す。このとき、サイジング処理手段224は、上記占有率が高い領域120Aほどアンダーサイジング(又はオーバーサイジング)を大きく施す。
【0057】
かかるプログラムによりマスク103のマスクパターン110(図16〜図18参照)が作成される。なお、マスク101,102(図8及び図13参照)のマスクパターン110を作成する場合には区画手段222及び占有率算出手段223をプログラムに設けなくても構わない。
【0058】
【発明の効果】
この発明によれば、現像後のレジストパターンにおいてホール付近のパターン不具合(形状不具合)を抑制することができる。従って、トレンチ及びトレンチ内に埋め込まれた導電体の形状不具合を抑制できる。
【図面の簡単な説明】
【図1】実施の形態1に係るパターン転写マスクを説明するための、デュアルダマシン構造を含んだ半導体装置の設計レイアウト図である。
【図2】デュアルダマシン構造を説明するための断面図である。
【図3】ビアホールを形成した後の基板を説明するための平面図である。
【図4】トレンチの形成方法を説明するための断面図である。
【図5】トレンチを形成した後の基板を説明するための断面図である。
【図6】比較用のパターン転写マスクを説明するための平面図である。
【図7】比較用のパターン転写マスクを用いて形成したレジストパターンを説明するための平面図である。
【図8】実施の形態1に係るパターン転写マスクを説明するための平面図である。
【図9】図8の一部拡大図である。
【図10】実施の形態1に係るパターン転写マスクを用いて形成したレジストパターンを説明するための平面図である。
【図11】実施の形態1に係るパターン転写マスクを説明するためのグラフである。
【図12】ビアホールのエッジと配線のエッジとの間隔を説明するための模式図である。
【図13】実施の形態1に係る他のパターン転写マスクを説明するための平面図である。
【図14】実施の形態2に係るパターン転写マスクを説明するための、デュアルダマシン構造を含んだ半導体装置の設計レイアウト図である。
【図15】比較用のパターン転写マスクで形成したレジストパターンを説明するためのグラフである。
【図16】実施の形態2に係るパターン転写マスクを説明するための平面図である。
【図17】実施の形態2に係るパターン転写マスクを説明するための平面図である。
【図18】実施の形態2に係るパターン転写マスクを説明するための平面図である。
【図19】実施の形態2に係るパターン転写マスクを説明するためのグラフである。
【図20】デュアルダマシン構造を含んだ半導体装置の実施の形態2に係る製造方法を説明するための断面図である。
【図21】デュアルダマシン構造を含んだ半導体装置の実施の形態2に係る製造方法を説明するためのグラフである。
【図22】実施の形態3に係るコンピュータの機能を説明するためのブロック図である。
【符号の説明】
50 デュアルダマシン構造、50A,50B 半導体装置、51H ビアホール、51T トレンチ、52 埋め込み金属(導電体)、63 層間絶縁膜、71 レジスト、72 反射防止膜、101〜103 パターン転写マスク、110 マスクパターン、111 遮光パターン、112 光透過パターン、120A 領域、200 コンピュータ、201 レイアウト情報、210 レイアウト情報取得手段、220 トレンチパターン作成手段、221 抽出手段、222 区画手段、223 占有率算出手段、224 サイジング処理手段。
Claims (5)
- 半導体装置の製造時にレジストにパターンを転写するためのパターン転写マスクであって、
前記半導体装置は、少なくとも1つのホールと、前記少なくとも1つのホール上に延在するトレンチと、前記少なくとも1つのホール内及び前記トレンチ内に埋め込まれた導電体と、を含んだデュアルダマシン構造を同一レイヤに複数備えており、
前記パターン転写マスクは、前記トレンチを形成するために前記レジストをパターニングする際に用いられ、
前記パターン転写マスクは、
各ホールに対応する部分付近にアンダーサイジング又はオーバーサイジングが施された遮光パターンと、
前記遮光パターンよりも光透過率が高い光透過パターンと、を備える、
パターン転写マスク。 - 請求項1に記載のパターン転写マスクであって、
前記アンダーサイジング又は前記オーバーサイジングは、前記半導体装置の平面視上前記ホールの占有率が高い領域ほど、大きく施されている、
パターン転写マスク。 - 請求項1又は請求項2に記載のパターン転写マスクを用いた、半導体装置の製造方法であって、
(a)前記デュアルダマシン構造を作り込むための層間絶縁膜を形成する工程と、
(b)前記層間絶縁膜に前記ホールを形成する工程と、
(c)前記工程(b)の後に前記層間絶縁膜上にレジストを形成する工程と、
(d)前記レジスト上に反射防止膜を形成する工程と、
(e)前記工程(d)の後に前記レジストを、請求項1又は請求項2に記載のパターン転写マスクを用いた写真製版法によってパターニングする工程と、
(f)パターニングされたレジストをマスクとして前記層間絶縁膜をエッチングして前記トレンチを形成する工程と、を備える、
半導体装置の製造方法。 - 請求項1又は請求項2に記載のパターン転写マスクのマスクパターンを作成するためのコンピュータプログラムであって、
コンピュータを、
前記ホール及び前記トレンチの各レイアウトについての情報を含むレイアウト情報を取得するレイアウト情報取得手段と、
前記レイアウト情報を参照して前記トレンチに対応するパターンを作成するトレンチパターン作成手段と、を備え、
前記トレンチパターン作成手段は、
前記トレンチの前記レイアウトにおいて前記ホールに対応する部分付近にアンダーサイジング又はオーバーサイジングを施す、サイジング処理手段と、
前記トレンチの前記レイアウトにおいてサイジング処理の対象となる箇所を前記レイアウト情報を参照して抽出する抽出手段と、を含む装置として機能させるための、マスクパターン作成用コンピュータプログラム。 - 請求項4に記載のマスクパターン作成用コンピュータプログラムであって、
前記トレンチパターン作成手段は、
前記トレンチを含む前記レイヤを複数の領域に区画する区画手段と、
各領域内における前記ホールの占有率を算出する占有率算出手段と、を更に含み、
前記サイジング処理手段は、前記占有率が高い領域ほど前記アンダーサイジング又は前記オーバーサイジングを大きく施す、
マスクパターン作成用コンピュータプログラム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002309416A JP2004144975A (ja) | 2002-10-24 | 2002-10-24 | パターン転写マスク、半導体装置の製造方法、及び、マスクパターン作成用コンピュータプログラム |
US10/442,960 US7033925B2 (en) | 2002-10-24 | 2003-05-22 | Pattern transfer mask related to formation of dual damascene structure and method of forming dual damascene structure |
CNB031548423A CN100336197C (zh) | 2002-10-24 | 2003-08-15 | 图案复制掩模、半导体装置制造方法及掩模图案制作用程序 |
US11/360,384 US20060141774A1 (en) | 2002-10-24 | 2006-02-24 | Pattern transfer mask related to formation of dual damascene structure and method of forming dual damascene structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002309416A JP2004144975A (ja) | 2002-10-24 | 2002-10-24 | パターン転写マスク、半導体装置の製造方法、及び、マスクパターン作成用コンピュータプログラム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004144975A true JP2004144975A (ja) | 2004-05-20 |
JP2004144975A5 JP2004144975A5 (ja) | 2005-12-22 |
Family
ID=32105266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002309416A Withdrawn JP2004144975A (ja) | 2002-10-24 | 2002-10-24 | パターン転写マスク、半導体装置の製造方法、及び、マスクパターン作成用コンピュータプログラム |
Country Status (3)
Country | Link |
---|---|
US (2) | US7033925B2 (ja) |
JP (1) | JP2004144975A (ja) |
CN (1) | CN100336197C (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006095915A1 (ja) * | 2005-03-09 | 2006-09-14 | Nec Corporation | 多層配線構造、半導体装置、パターン転写マスク、及び多層配線構造の製造方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100898222B1 (ko) * | 2007-08-30 | 2009-05-18 | 주식회사 동부하이텍 | 반도체 소자 및 그 제조 방법 |
CN102683876B (zh) * | 2012-04-28 | 2016-01-06 | 深圳光启创新技术有限公司 | 超材料的制备工艺 |
CN103019042B (zh) * | 2012-11-29 | 2015-01-07 | 上海华力微电子有限公司 | 改善高透光率掩膜板套刻精度稳定性的方法 |
CN107505811B (zh) * | 2017-09-11 | 2020-05-05 | 深圳市华星光电技术有限公司 | 光罩 |
US10481487B2 (en) | 2017-09-11 | 2019-11-19 | Shenzhen China Star Optoelectronics Technology Co., Ltd | Mask |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0450943A (ja) * | 1990-06-15 | 1992-02-19 | Mitsubishi Electric Corp | マスクパターンとその製造方法 |
JPH0844038A (ja) | 1994-08-03 | 1996-02-16 | Matsushita Electron Corp | マスターマスク作成装置及び半導体装置の製造方法 |
JPH1012543A (ja) * | 1996-06-20 | 1998-01-16 | Mitsubishi Electric Corp | 位相シフトマスクを用いたパターンの形成方法 |
JPH11307426A (ja) | 1998-04-22 | 1999-11-05 | Toshiba Corp | マスクパターンの補正方法と補正システム、及びこれらを用いた露光用マスクと半導体装置 |
JP2000058647A (ja) | 1998-08-17 | 2000-02-25 | Toshiba Corp | 半導体装置の製造方法 |
JP2000077524A (ja) * | 1998-09-03 | 2000-03-14 | Matsushita Electronics Industry Corp | パターン形成方法 |
US6355399B1 (en) * | 2000-01-18 | 2002-03-12 | Chartered Semiconductor Manufacturing Ltd. | One step dual damascene patterning by gray tone mask |
JP2001351924A (ja) * | 2000-06-08 | 2001-12-21 | Mitsubishi Electric Corp | 半導体装置の製造方法 |
JP3760086B2 (ja) * | 2000-07-07 | 2006-03-29 | 株式会社ルネサステクノロジ | フォトマスクの製造方法 |
US6436810B1 (en) * | 2000-09-27 | 2002-08-20 | Institute Of Microelectronics | Bi-layer resist process for dual damascene |
KR100475074B1 (ko) * | 2002-05-16 | 2005-03-10 | 삼성전자주식회사 | 반도체 소자의 커패시터의 스토리지 전극 제조 방법 |
-
2002
- 2002-10-24 JP JP2002309416A patent/JP2004144975A/ja not_active Withdrawn
-
2003
- 2003-05-22 US US10/442,960 patent/US7033925B2/en not_active Expired - Fee Related
- 2003-08-15 CN CNB031548423A patent/CN100336197C/zh not_active Expired - Fee Related
-
2006
- 2006-02-24 US US11/360,384 patent/US20060141774A1/en not_active Abandoned
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006095915A1 (ja) * | 2005-03-09 | 2006-09-14 | Nec Corporation | 多層配線構造、半導体装置、パターン転写マスク、及び多層配線構造の製造方法 |
JPWO2006095915A1 (ja) * | 2005-03-09 | 2008-08-21 | 日本電気株式会社 | 多層配線構造、半導体装置、パターン転写マスク、及び多層配線構造の製造方法 |
US7999392B2 (en) | 2005-03-09 | 2011-08-16 | Renesas Electronics Corporation | Multilayer wiring structure, semiconductor device, pattern transfer mask and method for manufacturing multilayer wiring structure |
Also Published As
Publication number | Publication date |
---|---|
CN1497699A (zh) | 2004-05-19 |
US20060141774A1 (en) | 2006-06-29 |
US7033925B2 (en) | 2006-04-25 |
US20040083444A1 (en) | 2004-04-29 |
CN100336197C (zh) | 2007-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3819711B2 (ja) | 半導体装置の製造方法 | |
TWI509442B (zh) | 用以為欲以雙倍圖樣化製造之積體電路安排路由的方法、系統、及程式產品 | |
US10283437B2 (en) | Metal density distribution for double pattern lithography | |
US7435513B2 (en) | Design and layout of phase shifting photolithographic masks | |
CN100536091C (zh) | 形成平面场效应晶体管和在集成电路中形成层的方法 | |
US20070190434A1 (en) | Pattern forming method and phase shift mask manufacturing method | |
US20050280159A1 (en) | Computer implemented method for designing a semiconductor device, an automated design system and a semiconductor device | |
WO2006068788A2 (en) | Layout modification using multilayer-based constraints | |
US7694269B2 (en) | Method for positioning sub-resolution assist features | |
US9230906B2 (en) | Feature patterning methods and structures thereof | |
Mirsaeedi et al. | Self-aligned double patterning (SADP) layout decomposition | |
EP1752825A2 (en) | Lithography Masks and Methods | |
JP5233219B2 (ja) | 半導体装置の製造方法及びフォトマスクの設計方法 | |
US8875067B2 (en) | Reusable cut mask for multiple layers | |
JP2014135417A (ja) | パターンの形成方法、それを用いた物品の製造方法 | |
US20060141774A1 (en) | Pattern transfer mask related to formation of dual damascene structure and method of forming dual damascene structure | |
TWI438824B (zh) | Manufacturing method of semiconductor device | |
CN112736027A (zh) | 具有约束金属线布置的集成电路 | |
US20030186138A1 (en) | Photomask and method for forming micro patterns of semiconductor device using the same | |
CN109390217B (zh) | 光掩膜及半导体装置的形成方法 | |
US20070281218A1 (en) | Dummy Phase Shapes To Reduce Sensitivity Of Critical Gates To Regions Of High Pattern Density | |
US7297468B2 (en) | Method for forming a structure element on a wafer by means of a mask and a trimming mask assigned hereto | |
US20060099518A1 (en) | Method to resolve line end distortion for alternating phase shift mask | |
US7425389B2 (en) | Line photo masks and methods of forming semiconductor devices using the same | |
JP2000058647A (ja) | 半導体装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051019 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051104 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20071116 |