JP2004138503A - 近接場光プローブ - Google Patents

近接場光プローブ Download PDF

Info

Publication number
JP2004138503A
JP2004138503A JP2002303342A JP2002303342A JP2004138503A JP 2004138503 A JP2004138503 A JP 2004138503A JP 2002303342 A JP2002303342 A JP 2002303342A JP 2002303342 A JP2002303342 A JP 2002303342A JP 2004138503 A JP2004138503 A JP 2004138503A
Authority
JP
Japan
Prior art keywords
metal layer
field optical
light
probe
optical probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002303342A
Other languages
English (en)
Inventor
Tadashi Kawazoe
川添 忠
Takashi Yatsui
八井 崇
Genichi Otsu
大津 元一
Taigen Kin
金 太源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2002303342A priority Critical patent/JP2004138503A/ja
Publication of JP2004138503A publication Critical patent/JP2004138503A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】プローブの突出部先端の温度をリアルタイムに検出することができる近接場光プローブを提供する。
【解決手段】コア20の周囲にクラッド21が設けられた光ファイバの一端に先鋭化したコア20を突出させた突出部12を有する近接場光プローブ1において、突出部12表面に第1の金属層31が形成されるとともに、先端部を除く第1の金属層31を覆って絶縁層32が形成されてなり、さらに絶縁層32と先端部を覆って第1の金属層31と異なる材料からなる第2の金属層33が形成されてなる。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は、例えばプローブ走査型顕微鏡の一つである近接場光学顕微鏡において、エバネッセント光を検出又は照射する光プローブとして使用される近接場光プローブに関する。
【0002】
【従来の技術】
近年、微細加工技術の発展を基盤として、単一分子光メモリ、単一電子デバイスといったナノメートルサイズの微細構造を有する素子が実用化されようとしている。ナノメートルサイズの分解能を有する近接場光学顕微鏡は、上述した素子の開発或いは評価に欠かせない技術として注目されている。この近接場光学顕微鏡は、例えば試料からの発光或いは透過光の光強度、波長、偏光等を検出することにより、試料から得られる発光や透過光から試料の物性を知ることができる。
【0003】
近接場光学顕微鏡は、コアの周囲にクラッドが設けられた光ファイバの一端に先鋭化した上記コアを突出させた突出部を有し、当該突出部に例えばAuやAg等の金属により被覆されたプローブを備え、光の波長を超えた分解能を有する光学像を得ることができる。すなわち、かかる近接場光学顕微鏡を利用することにより、ナノメートル級の分解能で試料の微小領域における物性を測定することに加え、書き込みや読み出し等のメモリ操作、更には光加工等も行うことが可能となる。この近接場光学顕微鏡に用いられる上述のプローブについては、既に開示されている(例えば特許文献1参照。)。
【0004】
ちなみに、この近接場光学顕微鏡により試料の微小領域における物性を測定する場合には、試料表面の光の波長より小さい領域に局在するエバネッセント光を検出して試料の形状を測定する。そして、全反射条件下で試料に光が照射されることにより生じたエバネッセント光を上述したプローブにより散乱させて伝搬光に変換する。この変換された伝搬光は、プローブが形成されている突出部を通じて光ファイバのコアに導かれ、光ファイバのもう一方の出射端に接続された検出器により検出される。すなわちこの近接場光学顕微鏡は、突出部の設けられたプローブにより散乱と検出の双方を行うことができる。
【0005】
【特許文献1】
特開平10−082792
【0006】
【発明が解決しようとする課題】
ところで、上述の如く試料の微小領域にエバネッセント光を生じさせる際に、励起される光に対する材料の温度依存性により、当該試料の温度が上昇してしまう。特にこのエバネッセント光は、プローブの突出部に被覆された金属内部で電子を振動させることにより生じるプラズモンに基づくものであるため、照射する光の波長領域や光強度により、試料の温度変化が著しくなるものと考えられている。
【0007】
しかしながら、従来では、近接場光を用いて試料の微小領域における物性を測定しつつ、プローブの突出部先端の温度をリアルタイムに検出することができず、試料の温度依存性を考慮した信頼性の高い物性データを得ることができないという問題点があった。
【0008】
また、量子力学的効果を利用したナノスケールの量子ドットが近年において特に注目されているが、かかる量子ドットを上述したプローブを用いて作製する際に、基板上に照射する光に対する温度依存性をリアルタイム検出することができず、均一な量子ドットに仕上げることできないという問題点があった。
【0009】
そこで本発明は上述した問題点に鑑みて案出されたものであり、その目的とするところは、プローブの突出部先端の温度をリアルタイムに検出することができる近接場光プローブを提供することにある。
【0010】
【課題を解決するための手段】
本発明に係る近接場光プローブは、上述の課題を解決するために、コアの周囲にクラッドが設けられた光ファイバの一端に先鋭化した上記コアを突出させた突出部を有する近接場光プローブにおいて、上記突出部表面に第1の金属層が形成されるとともに、先端部を除く第1の金属層を覆って絶縁層が形成されてなり、さらに絶縁層と先端部を覆って第1の金属層の異なる材料からなる第2の金属層が形成されてなることを特徴とする。
【0011】
この近接場光プローブは、一端に先鋭化した上記コアを突出させた突出部表面に第1の金属層が形成されるとともに、先端部を除く上記第1の金属層を覆って絶縁層が形成されてなり、さらに上記絶縁層と上記先端部を覆って第2の金属層が形成される。
【0012】
本発明に係る近接場光プローブは、上述の課題を解決するために、コアの周囲にクラッドが設けられた光ファイバの一端に先鋭化したコアを突出させた突出部を有する近接場光プローブにおいて、突出部表面に第1の金属層が形成されるとともに、先端部を除く第1の金属層を覆って絶縁層が形成されてなり、絶縁層と上記先端部を覆って上記第1の金属層の異なる材料からなる第2の金属層が形成されてなり、第1の金属層及び上記第2の金属層を介して先端部の電圧を検出する電圧検出手段を備えることを特徴とする。
【0013】
この近接場光プローブは、一端に先鋭化した上記コアを突出させた突出部表面に第1の金属層が形成されるとともに、先端部を除く上記第1の金属層を覆って絶縁層が形成されてなり、絶縁層と先端部を覆って第2の金属層が形成され、第1の金属層及び上記第2の金属層を介して先端部の電圧を検出する。
【0014】
また本発明に係る近接場光プローブは、上述の課題を解決するために、コアの周囲にクラッドが設けられた光ファイバの一端に先鋭化した上記コアを突出させた突出部を有する近接場光プローブにおいて、突出部表面に第1の金属層が形成されるとともに、先端部を除く上記第1の金属層を覆って絶縁層が形成されてなり、絶縁層と先端部を覆って第1の金属層の異なる材料からなる第2の金属層が形成されてなり、第1の金属層及び第2の金属層を介して先端部へ電圧を印加する電圧印加手段を備えることを特徴とする。
【0015】
この近接場光プローブは、一端に先鋭化した上記コアを突出させた突出部表面に第1の金属層が形成されるとともに、先端部を除く第1の金属層を覆って絶縁層が形成されてなり、絶縁層と先端部を覆って第2の金属層が形成され、さらに第1の金属層及び第2の金属層を介して先端部へ電圧が印加される。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しながら詳細に説明する。
【0017】
図1は、本発明を適用した近接場光プローブ1を示している。この近接場光プローブ1は、例えば試料から得られる発光や透過光に基づいて物性を識別する近接場光学顕微鏡等に用いられ、図1に示すように光導波部11と、突出部12とを備える。
【0018】
光導波部11は、コア20の周囲にクラッド21が設けられた光ファイバより構成される。コア20及びクラッド21は、それぞれSiO系ガラスからなり、F、GeO、B等を添加することにより、コア20よりもクラッド21の屈折率が低くなるように組織制御されている。
【0019】
突出部12は、光導波部11の一端においてクラッドから突出させたコア20aを先鋭化させることにより構成されている。この突出させたコア20aは、図1に示すように先端部13に至るまで徐々に先細になるような円錐形状として構成される。ちなみにこの突出部12は、根元径がコア20の径より短くなるように形成されている。
【0020】
図2は、突出部12の詳細な構成を示している。この図2に示すように、突出部12における突出させたコア20a表面には、第1の金属層31が形成されるとともに、先端部13を除く第1の金属層31を覆って絶縁層32が形成されてなり、さらに絶縁層32と先端部13を覆って第2の金属層33が形成されている。ちなみに各金属層の厚みは、数十nmから数百nmの範囲である。
【0021】
第1の金属層31は、例えばAu等の導電性材料からなる薄膜である。第2の金属層33は、第1の金属層31とは異なる、例えばPt等の導電性材料からなる薄膜である。絶縁層32は、例えば、MgF、Al、CaF、SiO、又はプラスチック薄膜等の絶縁材から構成されている。この絶縁層32は、先端部13を除いて第1の金属層31と第2の金属層33の間に積層されているため、先端部13のみに第1の金属層31と第2の金属層33との接合領域14を設けることができる。
【0022】
接合領域14は、第1の金属層31と第2の金属層33の異なる2種の金属材料が互いに接触されてなる。すなわち、近接場光プローブ1は、この接合領域14においてゼーベック効果により生ずる電圧を、第1の金属層31及び第2の金属層33を介して測定することにより、いわゆる熱電対としての機能を奏することになる。このため、第1の金属層31と第2の金属層33とにおける材料の組み合わせを選択することにより、測定条件に応じて適切な温度範囲内での温度測定を実現することができる。この第1の金属層31と第2の金属層33との組み合わせとして、例えば、AlとCr、AuFeとCr、BiとSb等がある。
【0023】
次に、本発明を適用した近接場光プローブ1の作製方法について図3を用いて説明をする。
【0024】
先ずステップST1において、光導波部11に対して、選択化学エッチングを施すことにより、突出部12を作製する。この選択化学エッチングは、例えばNHF、HF、H0からなる緩衝ふっ酸溶液中に光ファイバを約1時間浸し、クラッド21端部を除去することによりコア20を選択的に先鋭化する。また本発明では、例えば特開平10−82791に提案されている手法を採用することにより、エッチング液の組成と、光ファイバーを構成する材料により溶解速度を制御して、コア20の先端を例えば先端曲率半径10nmまで先鋭化させてもよい。
【0025】
次にステップST2へ移行し、突出部12上に第1の金属層31を被覆する。この被覆については、例えば高真空(1×10−6Torr)のチャンバ内で、原料の金属粉末を乗せたボートに電流を流し、当該金属粉末の沸点以上の温度で加熱する。その結果、金属粉末は蒸発して突出部12上に被覆されてゆくことになる。ちなみに被覆される第1の金属層31の膜厚は、チャンバ内に設けられた図示しない膜厚計により制御される。
【0026】
次にステップST3へ移行し、第1の金属層31上に絶縁層32を被覆する。具体的には、第1の金属層31が被覆された突出部12を、絶縁層32として用いる樹脂系溶剤に軽く浸し、電気オーブン中で加熱乾燥させることにより蒸着させる。
【0027】
次にステップST4へ移行し、絶縁層32が形成されている先端部13を、例えば集束イオンビームを用いてイオン照射することにより切断し第1の金属層31を先端部13表面に露出させる。
【0028】
最後にステップST5へ移行し、突出部12上に第2の金属層33を被覆する。例えば第2の金属層33としてPtを用いる場合には、一定圧力に制御されたチャンバ内に上記突出部12を配設し、Ptを蒸着させる。ステップST4において既に先端部13のみに第1の金属層31を露出させているため、突出部12の全表面を第2の金属層33により被覆しても、先端部13のみに接合領域14を作り出すことが可能となる。
【0029】
このようにして構成された近接場光プローブ1は、図示しない近接場光学顕微鏡に装着されることにより、試料表面の光の波長より小さい領域に局在するエバネッセント光(近接場光)を検出して試料の形状を測定すことができる。そして、全反射条件下で試料に光が照射されることにより生じた近接場光を近接場光プローブ1により散乱させて伝搬光に変換する。この変換された伝搬光は、突出部13を通じて光導波部11のコア20に導かれ、近接場光学顕微鏡により検出される。すなわち、本発明に係る近接場光プローブ1は、突出部12を介して光の散乱と検出の双方を行うことができる。
【0030】
これによりナノメートルオーダーの分解能で試料の微小領域における物性を測定することができ、光の波長を超えた分解能を有する光学像を得ることができる。
【0031】
ちなみに本発明に係る近接場光プローブ1において、先端部13には第1の金属層31に加え、第2の金属層33が積層されてなるが、これらは非常に薄くコーティングされているにすぎず、近接場光を発生させる上で障壁となることは殆どない。また先端部13においてかかる金属層31、33が被覆されている場合であっても、コア20を介して伝搬される光により当該先端部13に被覆された金属内で電子を振動させて、プラズモンを発生させることができる。この伝搬させる光とプラズモンの波長を一致させてさらにカップリングさせることにより、高効率に近接場光を発生させることができる。
【0032】
また、このようにして構成された近接場光プローブ1は、さらに第1の金属層31及び第2の金属層33を介してこの接合領域14の電圧を測定することにより、いわゆる熱電対として動作させることができ、当該接合領域14における温度をリアルタイムに検出することができる。図4は、近接場光プローブ1に、接合領域14の温度を検出する機能を付加した例を示している。この図4に示すように、第1の金属層31と第2の金属層33に対して接続された導線は、それぞれ電圧計5に連結されている。これにより接合領域14における電圧を測定することができ、温度情報を随時得ることができる。
【0033】
すなわち、本発明を適用した近接場光プローブ1は、上述した試料の微小領域における物性測定時において、接合領域14における電圧を測定することにより、温度をリアルタイムに検出することができる。これにより特にコア20を介して伝搬される光の波長領域や光強度に対する温度依存性を、物性を測定する試料に応じて明確にすることができる。また近接場光を用いた物性測定時において、試料の温度依存性を考慮した信頼性の高い物性データを常時得ることができる。
【0034】
また、近年において注目されている量子力学的効果を利用したナノスケールの量子ドットを作製する際に、基板上に照射する光に対する温度依存性をリアルタイム検出することができるため、量子ドットの最適な作製条件を見つけだして、当該作製条件に応じて照射量を制御することにより、均一な量子ドットを作製することができる。
【0035】
なお、本発明は上述した実施の形態に限定されるものではない。例えば図5に示すように、第1の金属層31及び第2の金属層33を介してこの接合領域14へ電圧印加部6より電圧を印加させることにより、二つの異なる導体を環状につないで電流を流すことができるため、ペルチェ効果により当該接合領域14を発熱させ、或いは吸熱させることができる。
【0036】
これにより、この接合領域14をいわゆるヒーターとして、近接場光による物性測定時の条件を自在に変化させることができる。特に量子井戸構造を有する半導体素子や、量子力学的効果を利用した量子ドットの物性を測定する場合において、被測定物の温度を変化させることができ、これによりバンドギャップを自在に変化させつつ、同時に物性を測定することができる。
【0037】
なお、上述の近接場光プローブ1等により、近接場光を用いた物性測定をする際には、被測定物の試料台として例えば図6(a)に示すような近接場測定ステージ6を用いてもよい。この近接場測定ステージ6は、例えば合成石英からなり、水平方向から入射される光をAl+MgFによるコーティングが施された反射面6bにより反射させて試料載置面6a上へ集光させる。これにより、試料載置面6a上に載置された試料を励起させることができる。
【0038】
また、この近接場測定ステージ6を用いることにより、図6(b)の如く斜め下からではなく、水平から光を入射させれば足りるため、近接場測定ステージ6全体の構成を簡略化させることができる。
【0039】
【発明の効果】
以上詳細に説明したように、本発明を適用した近接場光プローブは、一端に先鋭化した上記コアを突出させた突出部表面に第1の金属層が形成されるとともに、先端部を除く第1の金属層を覆って絶縁層が形成されてなり、さらに上記絶縁層と先端部を覆って第2の金属層が形成される。
【0040】
これにより、本発明を適用した近接場光プローブは、試料の微小領域における物性測定時において、第1の金属層と第2の金属層が互いに接触する接合領域の電圧を測定することにより、当該領域の温度をリアルタイムに検出することができる。
【0041】
以上詳細に説明したように、本発明を適用した近接場光プローブは、一端に先鋭化した上記コアを突出させた突出部表面に第1の金属層が形成されるとともに、先端部を除く上記第1の金属層を覆って絶縁層が形成されてなり、絶縁層と先端部を覆って第2の金属層が形成され、さらに第1の金属層及び第2の金属層を介して、先端部へ電圧が印加される。
【0042】
これにより、本発明を適用した近接場光プローブは、試料の微小領域における物性測定時の条件を、自在に変化させることができる。
【図面の簡単な説明】
【図1】本発明を適用した近接場光プローブの構成を示した図である。
【図2】突出部の詳細な構成を説明するための図である。
【図3】本発明を適用した近接場光プローブの作製方法について説明するための図である。
【図4】近接場光プローブに対して接合領域における温度を検出する機能を付加した例を示した図である。
【図5】本発明を適用した近接場光プローブの他の構成を示した図である。
【図6】被測定物の試料台として用いる近接場測定ステージを示す図である。
【符号の説明】
1 近接場光プローブ、11 光導波部、12 突出部、20 コア、21 クラッド、31 第1の金属層、32 絶縁層、33 第2の金属層

Claims (3)

  1. コアの周囲にクラッドが設けられた光ファイバの一端に先鋭化した上記コアを突出させた突出部を有する近接場光プローブにおいて、
    上記突出部表面に第1の金属層が形成されるとともに、先端部を除く上記第1の金属層を覆って絶縁層が形成されてなり、さらに上記絶縁層と上記先端部を覆って上記第1の金属層の異なる材料からなる第2の金属層が形成されてなること
    を特徴とする近接場光プローブ。
  2. 上記第1の金属層及び上記第2の金属層を介して、上記先端部の電圧を検出する電圧検出手段を備えること
    を特徴とする請求項1記載の近接場光プローブ。
  3. 上記第1の金属層及び上記第2の金属層を介して、上記先端部へ電圧を印加する電圧印加手段を備えること
    を特徴とする請求項1記載の近接場光プローブ。
JP2002303342A 2002-10-17 2002-10-17 近接場光プローブ Pending JP2004138503A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002303342A JP2004138503A (ja) 2002-10-17 2002-10-17 近接場光プローブ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002303342A JP2004138503A (ja) 2002-10-17 2002-10-17 近接場光プローブ

Publications (1)

Publication Number Publication Date
JP2004138503A true JP2004138503A (ja) 2004-05-13

Family

ID=32451160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002303342A Pending JP2004138503A (ja) 2002-10-17 2002-10-17 近接場光プローブ

Country Status (1)

Country Link
JP (1) JP2004138503A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7514678B2 (en) 2005-09-22 2009-04-07 Tsinghua University Probe for scanning thermal microscope
CN101493360B (zh) * 2009-01-05 2010-10-27 东南大学 尖端曲率半径为微米或纳米级的热电偶及其制作方法
CN102183313A (zh) * 2011-03-18 2011-09-14 清华大学 基于电子束扫描显微镜环境下的温度测量系统及测量方法
JP2014160947A (ja) * 2013-02-20 2014-09-04 Ibaraki Univ メタマテリアル

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7514678B2 (en) 2005-09-22 2009-04-07 Tsinghua University Probe for scanning thermal microscope
CN101493360B (zh) * 2009-01-05 2010-10-27 东南大学 尖端曲率半径为微米或纳米级的热电偶及其制作方法
CN102183313A (zh) * 2011-03-18 2011-09-14 清华大学 基于电子束扫描显微镜环境下的温度测量系统及测量方法
JP2014160947A (ja) * 2013-02-20 2014-09-04 Ibaraki Univ メタマテリアル

Similar Documents

Publication Publication Date Title
JP3278164B2 (ja) 光ファイバ及びその製造方法
JP5392888B2 (ja) 近接場テラヘルツ光検出器
EP0924524A1 (en) Optical fiber probe and its manufacturing method
Dhawan et al. Focused ion beam fabrication of metallic nanostructures on end faces of optical fibers for chemical sensing applications
US11022752B2 (en) Optical fibers having metallic micro/nano-structure on end-facet, and fabrication method, and application method thereof
JP2005301288A (ja) プラズモン強化テーパ化光ファイバ
Degioanni et al. Surface-enhanced Raman scattering of amorphous silica gel adsorbed on gold substrates for optical fiber sensors
JP3264824B2 (ja) 光伝搬体プローブと走査型近視野顕微鏡及び光伝搬体プローブの透過孔形成方法
JP3856468B2 (ja) 顕微鏡の電磁放射線トランスミッタまたは電磁放射線検出装置
US7408647B2 (en) Surface plasmon resonance sensor device
JP2004138503A (ja) 近接場光プローブ
JPH11237391A (ja) フォトン走査トンネル顕微鏡用ピックアップ
JP3231675B2 (ja) 光ファイバプローブ及びその製造方法
JP3756368B2 (ja) 自己発光型光プローブおよびその製造方法と走査型近接場顕微鏡
Spasopoulos et al. Tailored aggregate-free Au nanoparticle decorations with sharp plasmonic peaks on a U-type optical fiber sensor by nanosecond laser irradiation
JP3788432B2 (ja) 光プローブ
JP3117667B2 (ja) 光ファイバプローブ及びその製造方法
JP2007170928A (ja) 表面プラズモン共鳴センサー素子
JP3366929B2 (ja) 光伝搬体プローブの透過孔形成方法および透過孔形成手段を有する走査型プローブ顕微鏡
JP3651800B2 (ja) ピンホールの作製方法及び作製装置
JP3481583B2 (ja) 光ファイバ及びその製造方法
JP3669436B2 (ja) 近接場光学顕微鏡用のプローブ
JP3677653B2 (ja) 近接場光プローブ及びその製造方法
JP2002148174A (ja) 近接場プローブおよび近接場プローブ製造方法
JPH1151945A (ja) 分光分析機構を有する原子間力顕微鏡

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050502

A131 Notification of reasons for refusal

Effective date: 20051206

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060125

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061107