JP2004134373A - Pem燃料電池のためのセパレータプレート - Google Patents

Pem燃料電池のためのセパレータプレート Download PDF

Info

Publication number
JP2004134373A
JP2004134373A JP2003272199A JP2003272199A JP2004134373A JP 2004134373 A JP2004134373 A JP 2004134373A JP 2003272199 A JP2003272199 A JP 2003272199A JP 2003272199 A JP2003272199 A JP 2003272199A JP 2004134373 A JP2004134373 A JP 2004134373A
Authority
JP
Japan
Prior art keywords
separator plate
composite separator
expanded graphite
plate
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003272199A
Other languages
English (en)
Other versions
JP3830926B2 (ja
Inventor
Elhamid Mahmoud H Abd
モハマウド・エイチ・アビド−エルハミド
Richard H Blunk
リチャード・エイチ・ブランク
Daniel J Lisi
ダニエル・ジェイ・リシ
Youssef M Mikhail
ヨウゼフ・エム・ミクハイル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motors Liquidation Co
Original Assignee
Motors Liquidation Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motors Liquidation Co filed Critical Motors Liquidation Co
Publication of JP2004134373A publication Critical patent/JP2004134373A/ja
Application granted granted Critical
Publication of JP3830926B2 publication Critical patent/JP3830926B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/88Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced
    • B29C70/882Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced partly or totally electrically conductive, e.g. for EMI shielding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/58Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising fillers only, e.g. particles, powder, beads, flakes, spheres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0221Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0226Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】導電性及び腐食耐性を兼ね備えた複合セパレータプレートの提供。
【解決手段】燃料電池で使用するための複合セパレータプレート及びその製造方法が提供される。複合セパレータプレートはポリマー材料であり、該ポリマー材料を通して分散された発泡グラファイトを備えている。発泡グラファイトは、セパレータプレートを通して導電経路を提供する。本方法は、ポリマー材料内に発泡グラファイトを混合させるか又は撒き散らすことにより発泡グラファイトを分散させ、セパレータプレートを圧縮成形する間に該発泡グラファイトを圧縮する工程を含んでいる。
【選択図】図4

Description

 本出願は、2002年9月9日に出願された米国仮特許出願シリアル番号60/394,647号に基づいて、その優先権を主張する。
 本発明は、PEM燃料電池に係り、より詳しくは、そのための複合セパレータプレート(例えば、二極式プレート)に関する。
 燃料電池は、多数の用途のための電源として提案されてきた。そのような燃料電池の一つが、陽子交換膜即ちPEM燃料電池である。PEM燃料電池は、当該技術分野で周知されており、その各々の電池に、所謂「膜電極アッセンブリ」即ちMEAを備えている。膜電極アッセンブリは、薄い陽子伝達性のポリマー膜電解質を備え、該電解質は、その一方の面に形成されたアノード電極面と、その反対側の面に形成されたカソード電極面と、を有する。一般に、そのような膜電解質は、イオン交換膜樹脂から作られており、典型的には、E.l..デュポン・ダ・ネメアウアス&Coから市販されている、例えばNAFION(登録商標)等のフッ素置換スルホン酸ポリマーを含んでいる。他方では、アノード面及びカソード面は、典型的には、細かく分割された炭素粒子と、該炭素粒子の内側表面及び外側表面上に支持された非常に細かく分割された触媒粒子と、触媒粒子及び炭素粒子と混合されたNAFION等の陽子伝達粒子と、を含み、或いは、(2)ポリテトラフルオロエチレン(PTFE)の結合剤を通して分散された、炭素無しの触媒粒子を含んでいる。
 多電池式のPEM燃料電池は、電気的に直列に一緒に積み上げられた複数の膜電極アッセンブリを備え、一方が隣接するものから、ガスセパレータプレート又は二極式プレートとして知られている、ガス不浸透性の導電性電流コレクターにより分離されている。そのような多重電池式の燃料電池は、燃料電池として知られている。二極式プレートは、2つの作用面を持っており、一方は、一つの電池のアノードに対面し、他方は、スタック中の次に隣接する電池上のカソードと対面しており、隣接する電池の間で電流を導電させる。スタックの両端部における電流コレクターは、端部電池のみと接触しており、端部プレートとして知られている。セパレータプレートは、アノード及びカソードの表面に亘って、ガス状反応物(例えば、H2及びO2/空気)を分布する流れ場を含んでいる。これらの流れ場は、主要な電流コレクターと接触し、それらの間の複数の流れチャンネルを画成する複数のランドを備えており、該チャンネルを通ってガス状反応物が、流れ場の両端部に配置された、供給ヘッダー及び排出ヘッダーの間を流れる。
 「拡散媒体」として知られている、非常に多孔性(即ちカルシウム60%〜80%)の導電材料(例えば、布、スクリーン、ペーパー、発泡体等)が、電流コレクターと膜電極アッセンブリとの間に介設されており、(1) 電流コレクターのランドの間及びランドの下方で電極の全面に亘ってガス状反応物を分布させ、(2) 溝と対面する電極の面からの電流を収集し、それを当該溝を画定する隣接するランドに伝達させるように機能する。そのような一つの既知の拡散媒体は、体積にして約70%の多孔率で約0.17mmの非圧縮性厚さを有する、グラファイトぺーパーを備え、トーレイ060という名称で、トーレイ社から市販されている。そのような拡散媒体は、当該技術分野で知られているように、細かいメッシュの貴金属スクリーン等から構成されてもよい。
 H2−O2/空気PEM燃料電池の環境では、電流コレクターが、F-、SO4 --、SO3 -、HSO4 -、CO3 --、及び、HCO3 -等々を含む、やや酸性溶液(pH3〜5)と常時接触した状態にある。その上、カソードは、圧縮空気にさらされている間に、最大約1Vに分極されている、非常な酸化環境で作動している。最後に、アノードは、常に水素にさらされている。よって、電流コレクターは、燃料電池内で悪環境へ抵抗を持っていなければならない。
 発泡グラファイトは、二極式プレート内で以前から使用されてきた(バラードは、それら電流燃料電池スタック中の発泡グラファイトを使用し、SGLカーボンは、EGプレートに関して多くの仕事をなした)。しかし、このプロセスは、EGのシートで開始し、ガスの浸透を減少させるため、それらのシート内にポリマー樹脂を含浸させる。当該プレートは、80乃至90%の間のグラファイトを有し、製造するのが困難である。
 従って、電流コレクターは、これまでのところ、(1)グラファイトの細片から機械加工され、(2)ポリマーマトリックス(熱可塑性若しくは熱硬化性)を通して分散された、容量導電性充填物(例えば、グラファイト粒子又はフィラメント)により、約50%乃至約90%を含むポリマー組成材料から鋳造され、(3) 容量導電粒子により約30%乃至約40%を含むポリマー組成材料で被覆された金属から製造されている。この後者の観点では、2002年4月16日にフロンクらに付与され米国特許番号6,372,376号を見よ。この米国特許は、(1)本発明の譲受人に譲渡され、(2)ここで触れたことによりその内容を本願に組み込まれ、(3)酸耐性の不溶性の酸化耐性ポリマーのマトリックス中に分散された複数の導電性の耐腐食性(酸化耐性及び酸耐性)の充填粒子を含む、耐腐食性の導電層で被覆された金属シートから作られた電流コレクターを開示している。このポリマーマトリックスは、これらの粒子を一緒に、金属シートの表面に結合する。フロンクらの型式の複合コーティングは、子コーティングの組成、抵抗及び完全な状態に依存して、約50mオーム・cm以下の抵抗、並びに、約5ミクロン乃至約75ミクロンの間の厚さを有する。より薄いコーティングが、燃料電池スタックを通して、より低いIR抵抗を達成する上では好ましいが、より厚いコーティングは、腐食からの保護を強化するためには好ましい。
 金属プレートを使用する別のアプローチは、導電性及び腐食耐性の両方を兼ね備え、これにより下位の金属を保護する金属又は金属化合物の層で、軽量金属電流コレクターを被覆することである。例えば、2001年7月17日に登録された、リ(Li)らのRE37,284Eを見よ。これは、本発明の譲受人に譲渡され、軽量金属コア、該コア上のステンレス鋼の耐腐食層と、該ステンレス鋼層上の窒化チタニウム(TiN)の層と、を開示している。
 従来では、セパレータプレートは、熱エネルギー及び電気エネルギーの転移を強化するための耐腐食性導電コーティングで保護された、例えばステンレス鋼又はアルミニウム等の適切な金属合金から形成されている。そのような金属プレートは、流れ場を形成するため2つの打ち抜き又はエッチングプロセス、並びに、冷却式プレートアッセンブリを製造するため結合若しくはブレーズ溶接プロセスのいずれか、を必要とするが、該アッセンブリは、設計にコスト及び複雑さを追加する。加えて、腐食燃料電池環境の金属プレートの耐久性及び冷却剤の漏れの可能性は、懸念事項のままとなっている。
 これらの欠点は、複合セパレータプレートの開発へと導いた。この点において、複合セパレータプレートの開発中の近年の努力は、適切な電気伝導率及び熱伝導率を有する材料に向けられてきた。材料の供給者は、必須の伝導率の目標を達成するため、ポリマーマトリックス中で体積にして50%乃至90%の範囲にあるグラファイト粉末からなる高いカーボン充填複合プレートを開発した。この型式のセパレータプレートは、腐食性の燃料電池環境中を生き残り、ほとんどの部品に対して、コスト及び伝導率の目標に合致する。しかし、グラファイトの高い充填量及びグラファイトの高い比重のために、これらのプレートは、生来、壊れやすく、密度が高く、体積及び重量測定で得られた望ましいスタックパワー密度には及ばない。そのような二極式プレートの現在利用可能なものの一つが、ウェストシカゴIIIのバルクモールディングコムパウンド社からBMCプレートとして市販されている、
 その代わりに、カーボンの充填量を減少させ、プレートのタフさを増大しようとする試みにおいて、導電ファイバーが、複合プレートで使用されてきた。ブランクらにより2001年5月31日に出願された、現在係属中の米国特許出願シリアル番号09/871,189号を見よ。これは、本発明の譲渡人に譲渡されており、ここで触れたことによりその内容が本願中に組み込まれる。繊維質材料は、典型的には、導電粉末と比べたとき、軸方向に典型的には1000倍も伝導率が高い。その結果、導電性繊維材料が内部に配置されたポリマーセパレータプレートは、壊れやすさを生じさせかなない比較的高い濃度のカーボン充填量を有すること無しにプレートの電気伝導率を増大させる。しかし、これらの利点を達成するために、繊維材料は、貫通平面方向に適切に配位されなければならない。その上、貫通平面配位で貫通する連続的な導電性繊維部材を有するポリマーセパレータプレートは、セパレータプレートを通した電気的エネルギーの転送を非常に増大させるが、製造するのが幾分複雑となる。2002年2月11日に出願された、リシらによる米国特許出願シリアル番号10/074,913号を見よ。これは、本発明の譲渡人に譲渡されており、ここで触れたことにより、本願中に組み込まれる。
 より薄いプレートを使用することにより、燃料電池スタックの質量及び体積を減少させようとする努力がなされてきた。残念ながら、これらのプレートの壊れやすいという性質は、特に、部品の型除去(demold)の間、接着結合の間、及び、スタックアッセンブリの作動中において、しばしば、ひび割れ及び破壊を生じさせる。このようにして、比較的低いカーボン濃度及び比較的高いポリマー濃度を有するセパレータプレートは、該セパレータプレートの壊れやすさを減少させ、燃料電池スタック質量及び体積の目標と合致させることが望ましい。残念ながら、これまでのところ低いカーボン濃度では、所望の電気伝導率及び熱伝導率と合致させることはきわめて困難である。
米国特許番号6,372,376号 米国特許出願シリアル番号09/871,189号 米国特許出願シリアル番号10/074,913号
 かくして、高いカーボン充填プレート、導電繊維が充填されたプレート、及び、これらに伴う困難に関連する諸問題、を克服した、複合燃料電池セパレータプレート及び製造方法を提供する必要性が存在している。従って、薄く壊れにくいプレートを鋳造するため、燃料電池の質量及び体積の目標と合致させるため、低い伝達性充填物の充填において、高い電気伝導率及び高い熱伝導率を有する複合材料から形成された、燃料電池セパレータ又は二極式プレートを提供することが望ましい。
 本発明によれば、第1の表面と、該第1の表面と反対側にある第2の表面とを有する型式の燃料電池スタックで使用するための複合セパレータプレートが提供される。この複合セパレータプレートは、ポリマー材料と、該ポリマー材料内に分散された発泡グラファイトと、を含んでいる。
 本発明によれば、第1の表面と、該第1の表面と反対側にある第2の表面とを有する型式の燃料電池スタックで使用するための複合セパレータプレートが提供される。この複合セパレータプレートは、ポリマー材料と、該ポリマー材料内に分散された圧縮性伝導材料と、を含んでいる。
 本発明によれば、燃料電池用の複合セパレータプレートを製造するための方法も提供される。本方法は、発泡グラファイトを粒子化する工程を含んでいる。発泡グラファイトは、ポリマー樹脂内に分散される。次に、該樹脂及びグラファイト粒子は、圧縮成形されてセパレータプレートが形成される。
 一つの方法では、発泡グラファイトは、ポリマー樹脂内に混合されることにより該ポリマー樹脂内に分散される。代替の方法では、発泡グラファイトは、SMC様プロセスを使用して、ポリマー樹脂内に撒き散らされる。
 本発明の用途の更なる領域は、以下に述べられる詳細な説明から明らかとなるであろう。詳細な説明及び特定の実施例は、本発明の好ましい実施例を指し示す一方で、図解目的のみのためなされたものであり、本発明の範囲を制限することを意図したものではない。
 本発明は、詳細な説明及び添付図面からよりよく理解されるようになるであろう。
 好ましい実施例の次の説明は、その性質上、単なる一例であり、本発明をその用途又は使用形態に制限することを意図したものではない。
 2つの電池の二極式PEM燃料電池スタックが、図1の10で概略示されている。燃料電池スタック10は、12及び14で概略示された、一対の膜電極アッセンブリを備えている。膜電極アッセンブリは、16で示された導電性の液体冷却式の二極式プレートにより互いから分離されている。セパレータプレート16は、二極式プレート16としても知られている。膜電極アッセンブリ12及び14は、18及び20で全体として指し示された略ステンレス鋼製のクランププレートと、22及び24で全体として指し示された電流コレクター端部プレートとの間を一緒に積み重ねられている。クランププレート18及び20は、クランププレート18、20のコーナーのところで開口26を通過するボルト(図示せず)を用いてスタック10に圧縮力を印加する。端部プレート22及び24、並びに、二極式プレート16の両方の作動面は、複数の溝又はチャンネル28、34及び72を含んでいる。溝28及び34は、夫々、端部プレート22及び24上にあり、溝72は、二極式プレート15の両面上にある。溝28、34及び72は、燃料及び酸化剤ガス(即ち、H2及びO2)を膜電極アッセンブリ12及び14に分配するために設けられている。
 非導電性ガスケット36、38、40及び42は、燃料電池スタックの幾つかの構成部品の間でシール部及び電気的絶縁を提供する。ガス透過性のカーボン/グラファイトの拡散媒体44、46、48及び50は、膜電極アッセンブリ12及び14の電極面に対して押圧する。端部プレート22及び24は、カーボン/グラファイト拡散媒体44及び50に対して各々押圧するが、二極式プレート16は、膜電極アッセンブリ12のアノード面上のカーボン/グラファイト媒体46に対して押圧し、且つ、膜電極アッセンブリ14のカソード面上のカーボン/グラファイト媒体48に対して押圧する。
 酸素は、適切な供給配管54を介して貯蔵タンク52から燃料電池スタックのカソード側に供給され、その一方で、水素は、適切な供給配管58を介して、貯蔵タンク56から燃料電池のアノード側に供給される。その代わりに、空気は、周囲環境からカソード側に供給されてもよく、水素は、メタノール又はガソリンの改質器等からアノード側に供給されてもよい。膜電極アッセンブリのH2及びO2/空気の両側のための排出配管(図示せず)を設けてもよい。追加の配管60、62及び64が、二極式プレート16並びに端部プレート22及び24に液体冷却剤を供給するため設けられる。プレート16並びに端部プレート22及び24から冷却剤を排出するための適切な配管も設けられているが、図示されていない。
 図2は、図1の二極式プレート16の等角概略図を示している。二極式プレート16は、実際には、2つの類似のプレート半部分74を一緒に固定したものである。各々のプレート半部分は、同一であるのが好ましく、2つのプレート半部分74は、例えば適切な接着剤若しくはブレーズ溶接の使用により一緒に固定される。図2及び図3で理解することができるように、各々のプレート半部分74は、第1の表面66と、第2の表面68とを備える。第1の表面66は、カーボングラファイトの媒体46及び48と係合する。第1の表面66は、複数のランド70を備えており、該ランドは、それらの間で、流れ場として知られている複数の溝72を画成する。該流れ場を通って、燃料電池の反応ガス(即ち、H2又はO2)は、二極式プレートの半部分74の第1の表面66からその第2の表面68までの蛇行経路で流れる。燃料電池10が完全に組み立てられたとき、ランド70は、カーボン/グラファイト媒体46及び48を押圧し、膜電極アッセンブリ12及び14に対して各々押圧する。図2は、非常に誇張されたサイズでランド70及び溝72のアレイを表している。プレート16は、任意の形態を取り得ることが認められよう。
 プレートの半部分の第2の表面68は、ランド70と反対の領域に複数のチャンネル76を備えている。これは、図3で最も良く示されている。反対側プレートの半部分74のチャンネル76は、二極式プレート16を通る冷却剤流れ導管を提供するためプレート半部分74が固定されるとき整列する。図3に示されるように、冷却剤チャンネル76は、各ランド70の下方に存在するのが好ましい。ランド70の形状は、流れ場のサイズ、形状及び構成を画成し、これは、ガス状反応物の所望の流れを達成するため変えることができる。現在のところ示されているように、流れ場は、平行な溝72及びランド70を有するものとして構成されている。
 二極式プレートの半部分74が示されているが、二極式プレート16は、単一プレートとして形成されてもよい。即ち、二極式プレートは、その各々の外側表面から延びるランド70を有し、内部に形成された冷却式チャンネル76を有して一体に形成されてもよい。
 各々の二極式プレートの半部分74は、複合材料を含んでいる。複合材料は、冷却剤流体及び反応ガスに関して、比較的高い強度、適切な熱伝導及び導電特性及び低い透過率を有するポリマー材料を含むのが好ましい。複合材料は、圧縮性の伝導性の添加物を更に含んでいる。
 ポリマー材料は、熱硬化性又は熱可塑性のポリマーのいずれかである。好ましくは、ポリマー材料は、エポキシ、ポリビニールエステル、ポリエステル、ポリプロピレン、及び、ポリフッ化ビニリデン(PVDF)からなるグループから選択される。好ましいポリマー材料が上記に記載されたが、任意の適切なポリマー材料を、本発明の文脈内で使用することができる。ポリマー材料は、例えば、所望された硬化周期時間に依存して、様々な濃度で、例えば、過酸化ベンゾイル等の架橋結合開始剤を含んでいてもよい。ポリマー材料は、ポリマー材料としてエポキシを利用するとき特に役立つ、例えばベンジルジメチルアミン等の硬化促進剤も含んでいてもよい。さらには、適切な硬化剤を使用してもよい。そのような硬化剤の一つが、メチルテトラヒドロ無水フタル酸(MTHPA)であり、これは、ポリマー材料としてエポキシを利用するとき特に役立つ。
 熱伝導率及び電気伝導率は、ポリマー材料に圧縮性伝導材料を充填することにより強化することができる。好ましい圧縮性材料は、発泡グラファイトである。発泡グラファイトは、天然又は合成のグラファイトのグラファイト平面の剥離により作られる。発泡グラファイトを、様々な厚さのシートにコンパクト化して作ることができる。発泡グラファイトも多孔性である。そのようなシートは、SGLカーボングループから市販され、主要にはガスケット材料として使用されている。使用されるシートは、厚さにして約3mm乃至13mmの間にあるのが好ましい。そのような多孔性の圧縮性シートを使用することによって、発泡グラファイトの更なる圧縮を達成することができ、強化接着及びガス不浸透性のためポリマー樹脂を多孔性構造に容易に浸透させることができる。そのようなシートの面積重量は、約1000乃至4000g/m2にある。しかし、他の厚さのシート及び異なる面積重量のシートを、本発明の範囲内で使用することができる。
 発泡グラファイトシートは、約2.54cm×約2.54cm(約1インチ×約1インチ)のチャージサイズへと手動又は自動のいずれかで分断される。該チャージは、例えば、粉砕機又はミキサー等の適切な破砕装置を使用して適切な粒子サイズへと更に分断される。ポリマー材料に添加される発泡グラファイトの好ましい粒子サイズは、約0.4mm乃至3mmの間にある。好ましくは、粒子サイズは、最終的なプレート厚の約10%より大きい。チャージに対して10秒乃至3分の攪拌又は粉砕時間が、適切な粒子サイズをもたらす。より長い粉砕時間は、比較的小さいサイズの発泡グラファイト粒子を生じさせる。
 発泡グラファイトは、プレート材料のうち体積にして約10%乃至約50%の間を占めるのが好ましい。発泡グラファイトは、プレート材料のうち体積にして約20%乃至約35%の間を占めるのが更に好ましい。より低い発泡グラファイトの充填量が使用されたとき、比較的大きい発泡グラファイト粒子サイズ、好ましくは、1乃至3mmを使用するのが好ましい。
 複合材料を準備するため、適切な樹脂が選択される。架橋結合開始剤及び硬化剤を追加してもよい。発泡グラファイト粒子は、上記に記載された処置に従って準備され、適切なメッシュを使用して好ましいサイズ分布へとふるいにかけられ、例えば、ブラベンダー等のツインスクリュー押し出し式ミキサーの従来の混合装置を使用して樹脂内に混合される。一旦、発泡グラファイトが混合工程により樹脂内に分散されたならば、複合材料は、適切な圧力及び硬化時間で、所望のプレート構成へと圧縮成形される。圧縮成形が開示されたが、任意の適切な鋳造又は複合形成を、本発明に従って使用することができることが認められよう。
 その代わりに、発泡グラファイト粒子が、上記に記載された処置に従って準備され、次に、適切なメッシュを使用して好ましいサイズ分布へとふるいにかけられ、シート鋳造混合(SMC)状プロセスを使用して、好ましくは、「Bステージ」樹脂システムを使用して、それを内部で撒き散らすことにより、液体ポリマー樹脂内に分散されてもよい。一旦、発泡グラファイトが、樹脂内に撒き散らされることにより該樹脂内に分散されたならば、複合材料は、適切な圧力及び硬化時間で所望のプレート形状へと圧縮成形される。この撒き散らし工程は、発泡グラファイトを分布させるため更なる混合工程を必要とすること無く、樹脂中を通して、発泡グラファイトを樹脂内に配置させる任意のプロセスに言及することを意図されている。このプロセスは、樹脂の上方の位置から発泡グラファイトを撒き散らし又は落とすことを含むことができるが、これに限定されるものではない。本方法の使用は、発泡グラファイトプレート材料を圧縮型内により均一に配置することを可能ならしめる。本方法の更なる使用は、比較的大きい発泡グラファイト粒子サイズを、樹脂内により容易に分散させることを可能ならしめる。
 幾つかの例では、鋳造プロセスの間にプレートの表面66、68に亘って形成し得るポリマースキンを除去することが望ましい。このスキンは、例えば、砂研磨工程等の任意の適切なプロセスにより除去することができる。このスキンの除去は、第1の表面66と、隣接するカーボングラファイト媒体46、48との間に、より低い接触抵抗を生じさせる。
 図4は、プレート16の圧縮成形以前における、複合材料の概略表現である。図示のように、発泡グラファイト粒子80は、樹脂82内の混合又は撒き散らし工程により分散される。より大きなグラファイト粒子80の中には、樹脂82から突出し得るものがある。図5は、二極式プレート16の圧縮成形後における複合材料の概略表現図である。理解することができるように、グラファイト粒子80、及び、特に樹脂から突出したものは、プレート16の厚さにまで圧縮される。グラファイト粒子80の少なくとも幾つかは、プレート16の全厚さに亘って延在し得る。これは、発泡グラファイト80を通して直接的で連続的な電子経路が形成され、二極式プレート16の比較的低い容積抵抗をもたらすという点において利点がある。より小さい発泡グラファイト粒子80は、プレート16の厚さを通して電子の流れ経路を形成するため互いに接触することができる。発泡グラファイト粒子80の使用は、プレート16においてより低いレベルのグラファイト充填量でプレートの比較的低い容積抵抗を達成させる。かくして、プレートの物理的特性は、以前に販売されていたものよりも比較的高いポリマー濃度を使用して適合させることができる。
 プレート16の物理的特性を適合させるため様々な充填物をポリマー樹脂に添加することができることも認められよう。添加物は、プレート16に、強度、タフネスさ、柔軟性、又は、他の物理的特性を分与させるために使用することができる。ガラス繊維、金属繊維、綿くず、粉砕若しくは乱切りされたポリアクリロニトリル(PAN)ベースの繊維を始めとする多数の型式の添加物を本発明の範囲内で使用することができるが、これらの例に限定されるものではない。ポリマーメッシュ及び金属メッシュも使用することができる。メッシュが使用された場合、プレートの伝導率に悪影響を及ぼさないように、メッシュ開口が1.5mmより大きくすることが好ましい。添加物の体積は、所望されるプレート16の最終的な特性に依存している。カーボンファイバーを使用したとき、体積にして、50%の合計カーボン含有量を超えないことが望ましい。
 図6で最も良く示されているように、2001年1月20日に出願された、ブランクらによる米国特許シリアル番号09/997,190号に説明されているように、プレートの半部分74の外側表面66に亘って、伝導結合層84を配置してもよい。本出願は、本発明の譲渡人に譲渡されており、ここで触れたことにより、本願に組み込まれる。伝導結合層は、第1の表面66と、隣接するカーボングラファイト媒体46、48との間の接触抵抗を減少させるため使用される導電層である。任意の適切な材料を、伝導結合層84のために使用してもよい。結合層84の好ましい材料は、金、銀、プラチナ、カーボン、パラジウム、ロジウム、及び、ルテニウムを含んでいる。伝導結合層は、任意の適切な技術により第1の表面66上に沈着させることができる。一つの適切な技術は、結合層84の蒸着の使用である。
 様々なプレート組成のテストが実施された。これらのテストの結果は、図7乃至12に記載されている。図7及び図9乃至図11では、PVEは、重量にして4%のBPOを備えた、体積にして75%のアッシュランドのポリビニールエステル樹脂Q6055に言及している。硬化工程は、466.5K(380°F(カーバー温度(Carver Temperature)))で15分間で実行される。PVEサンプルは、338.7K(150°F)で60分間に亘って後硬化された。エポキシは、MTHPA硬化剤及びBDMA硬化促進剤を備えた体積にして75%の383ダウエポキシに言及している。エポキシのサンプルは、422K(300°F(カーバー温度))で20分間に亘って硬化された。
 図8及び図12では、テストされたエポキシは、ドウ化学エポキシ樹脂(重量にして100部品)、ロンザMTHPA硬化剤(重量にして80部分)及びBDMA硬化促進剤(重量にして2部分)を含んでいる。発泡グラファイトシートは、SGLカーボングループから得られ、約13mmの厚さを持っていた。このシートは、約2.54cm×約2.54cm(約1インチ×約1インチ)のチャージにまで分断された。発泡グラファイトの中には、約3分間、ブレンダー内で分断されたものがあり、その結果、比較的小さい発泡グラファイト粒子(約1mmより小さい)を生じさせた。発泡グラファイトの中には、約10秒間、ブレンダー内で分断されたものがあり、その結果、比較的大きい発泡グラファイト粒子(約1mmより大きい)を生じさせた。発泡グラファイトの粒子は、エポキシ内に手作業で混合された。この混合物は、0.5mmシム内で22トンで約15分間に亘って422K(300°F(カーバー熱板温度(Carver Platen Temperature)))で硬化された。
 本発明に従って作られたセパレータプレート16は、以前に市販されていたものよりも比較的高いポリマー含有量を持っている。本発明に従って作られたプレートは、低い比率の水素透過率を示している。水素の透過率は、172.4kPaゲージ圧(25psig)、80℃、及び、5mmで、0.01mアンペア/cm2より小さい。この低い透過率は、当該プレートが以前に可能であったものよりも薄く形成することができることを示唆している。80℃で、Ag/AgCl電極に対して+0.6vの電位のカソード側燃料電池環境のシミュレートされた腐食テストデータは、有意なアノード電流(約50nA/cm2)を示していなかった。更には、プレートは、低い水取り込み量(90℃で1ヶ月の間で<1%)を示した。その材料は、比較的低い粘性率を示し、その結果、製造を容易とするための低圧降下を生じさせた。
 材料のタフネスさのテストが実行された。このテストの結果が図7及び図10に示されている。図7は、エポキシ及びPVE樹脂、並びに、体積にして20%の発泡グラファイトを利用した結果を示している。図10は、材料のタフネスさに関して、PANベースのカーボン繊維(粉砕若しくは乱切りされた)の使用の効果を示している。更には、図10は、BMC二極式プレート材料と比較した結果を示している。ASTMD790に追従した標準の3点可撓性テストが実行された。当該材料は、高いカーボン充填量のBMC材料と比較したとき、良好な伸長度/タフネスさを示した。その結果は、本発明に従って作られたプレートが、以前に市販されたものよりも壊れにくく、スクラップの結果となる可能性が少ないことを示唆している。加えて、本発明に関してより高いポリマー濃度のために、当該データは、プレートの物理的/機械的特性がより容易に仕立て上げることができることを明瞭に示している。
 本発明に従って作られた複合材料の面積比抵抗に関する発泡グラファイト充填量の効果もテストされた。図8、9及び11は、夫々、テストデータの結果も含んでいる。図8は、図示の発泡グラファイト充填量を有するエポキシから形成された複合材料を使用したテスト結果を示している。図9は、PVE及び約26%の充填量の発泡グラファイトから形成された複合材料を使用したテスト結果を示している。図11は、抵抗に関してPANベースのカーボン繊維(粉砕若しくは乱切りされた)を追加する効果を示している。
 テクスト備品は、2つの適切な電極を備えていた。適切な拡散媒体は、電極に亘って配置され、テスト材料は、拡散媒体の間に配置された。圧縮力が当該備品に印加された。その結果生じた面積比抵抗が、テスト複合セパレータプレートの両側にある拡散媒体のところで測定された。その結果は、各サンプルが、1379kPa(200psi)以下で172.4kPa(25psi)より大きい圧縮圧力で、40ミリオーム・cm2より小さい面積比抵抗を有することを示している。面積比抵抗は、1379kPa(200psi)以上の圧縮圧力で、20ミリオーム・cm2より小さい。
 図12は、面積抵抗に関する発泡グラファイト濃度の効果を示している。図12では、表示As−lsは、セパレータプレートの表面に言及しており、該表面は、それが鋳型から出たものであることを示している。表示の「砂研磨」は、セパレータプレートの表面を砂研磨していることに言及している。表示のAgCTLは、セパレータプレートの表面上への銀伝導結合層の沈着に言及している。
 テストデータから明らかなように、1及び2部品の二極式セパレータプレートを、上述された材料を使用して作ることができる。そのようなセパレータプレートを、比較的薄く、2mmより薄く形成することができる。それらは、重量が軽く、1.4g/ccより小さい密度を有する。そのようなプレートは、良好な熱伝導率及び電気伝導率も持っている。プレートは、タフであり、現存するプレートと比較して、特に、型除去、パッケージング、結合、積み重ね作業の間で、スクラップになる可能性を減少させることができる。
 本発明の説明は、その性質上、単なる例示にしか過ぎず、かくして、本発明の要旨から逸脱しない変更が、本発明の範囲内にあることが意図されている。そのような変更は、本発明の精神及び範囲から逸脱するものとしてはみなされるべきではない。
図1は、PEM燃料電池スタックの概略分解図である。 図2は、図1に示されたものに類似した、PEM燃料電池スタックで有用となる二極式プレートの破断等角図である。 図3は、燃料電池スタックの一部分の拡大断面図である。 図4は、圧縮以前における、本発明の一実施例に係る二極式プレートプレートの一部分の拡大断面図である。 図5は、本発明の一実施例に係る、二極式プレートの一部分の拡大断面図である。 図6は、本発明の代替の実施例に係る二極式プレートの一部分の拡大断面図である。 図7は、本発明に係る、複合材料の材料のタフネスさを示すグラフである。 図8は、本発明に係る複合材料の面積抵抗を示すグラフである。 図9は、本発明に係る代替の複合材料の面積抵抗を示すグラフである。 図10は、本発明の代替実施例に係る複合材料の材料のタフネスさを示すグラフである。 図11は、本発明の代替実施例に係る複合材料の面積抵抗を示すグラフである。 図12は、面積抵抗に関する発泡グラファイト濃度の効果を示す表である。

Claims (47)

  1. 第1の表面と、該第1の表面と反対側にある第2の表面とを有する型式の燃料電池スタックで使用するための複合セパレータプレートであって、
     ポリマー材料と、該ポリマー材料内に分散された発泡グラファイトと、を含んでいる、前記複合セパレータプレート。
  2. 前記発泡グラファイトは、体積にして、約10%乃至約50%の間を占めている、請求項1に記載の複合セパレータプレート。
  3. 前記発泡グラファイトは、体積にして、約20%乃至約35%の間を占めている、請求項2に記載の複合セパレータプレート。
  4. 前記発泡グラファイトは、約0.4乃至約3.0ミリメートルの粒子サイズ内にある、請求項1に記載の複合セパレータプレート。
  5. 前記発泡グラファイトは、最終プレートの厚さの10%より大きい粒子サイズ内にある、請求項1に記載の複合セパレータプレート。
  6. 前記発泡グラファイトの少なくとも幾つかは、前記第1の表面から前記第2の表面まで延在している、請求項1に記載の複合セパレータプレート。
  7. 前記ポリマー材料は、熱硬化性ポリマー及び熱可塑性ポリマーからなるグループから選択される、請求項1に記載の複合セパレータプレート。
  8. 前記ポリマー材料は、エポキシ、ポリビニールエステル、ポリエステル、ポリプロピレン、及び、ポリフッ化ビニリデンからなるグループから選択される、請求項7に記載の複合セパレータプレート。
  9. 前記発泡グラファイトは、圧縮可能である、請求項1に記載の複合セパレータプレート。
  10. 前記発泡グラファイトは、多孔性である、請求項1に記載の複合セパレータプレート。
  11. 前記プレートは、前記ポリマー材料内に分散された充填材料を更に含んでいる、請求項1に記載の複合セパレータプレート。
  12. 前記充填材料は、ガラス繊維、金属繊維、綿くず、ポリアクリロニトリル(PAN)ベースのカーボン繊維、並びに、ポリマー及び金属メッシュからなるグループから選択されている、請求項11に記載の複合セパレータプレート。
  13. 前記プレートは、172.4kPaゲージ圧(25psig)、80℃及び0.5mmで、0.01ミリアンペア/cm2より小さい水素透過率を有する、請求項1に記載の複合セパレータプレート。
  14. 前記複合セパレータプレートは、前記第1の表面に亘って分散された伝導金属の層を備え、該伝導材料層は、前記発泡グラファイトと接触している、請求項1に記載の複合セパレータプレート。
  15. 前記伝導材料は、金、銀、プラチナ、カーボン、パラジウム、ロジウム及びルテニウムからなるグループから選択されている、請求項14に記載の複合セパレータプレート。
  16. 前記プレートは、1379Kpa(200psi)以下で172.4kPa(25psi)より大きい圧縮圧力で40ミリオーム・cm2の面積比抵抗を有する、請求項1に記載の複合セパレータプレート。
  17. 前記プレートは、1379kPa(200psi)以上の圧縮圧力で20ミリオーム・cm2より小さい面積比抵抗を有する、請求項16に記載の複合セパレータプレート。
  18. 第1の表面と、該第1の表面と反対側にある第2の表面とを有する型式の燃料電池スタックで使用するための複合セパレータプレートであって、
     ポリマー材料と、該ポリマー材料内に分散された圧縮性伝導材料と、を含んでいる、前記複合セパレータプレート。
  19. 前記圧縮性材料は、体積にして、約10%乃至約50%の間を占めている、請求項18に記載の複合セパレータプレート。
  20. 前記圧縮性材料は、体積にして、約20%乃至約35%の間を占めている、請求項19に記載の複合セパレータプレート。
  21. 前記圧縮性材料は、発泡グラファイトを含んでいる、請求項19に記載の複合セパレータプレート。
  22. 前記発泡グラファイトは、約0.4乃至約3.0ミリメートルの粒子サイズ内にある、請求項21に記載の複合セパレータプレート。
  23. 前記圧縮性材料は、最終プレートの厚さの10%より大きい粒子サイズ内にある、請求項18に記載の複合セパレータプレート。
  24. 前記圧縮性材料の少なくとも幾つかは、前記第1の表面から前記第2の表面まで延在している、請求項18に記載の複合セパレータプレート。
  25. 前記ポリマー材料は、熱硬化性ポリマー及び熱可塑性ポリマーからなるグループから選択される、請求項18に記載の複合セパレータプレート。
  26. 前記ポリマー材料は、エポキシ、ポリビニールエステル、ポリエステル、ポリプロピレン、及び、ポリフッ化ビニリデンからなるグループから選択される、請求項25に記載の複合セパレータプレート。
  27. 前記プレートは、前記ポリマー材料内に分散された充填材料を更に含んでいる、請求項18に記載の複合セパレータプレート。
  28. 前記充填材料は、ガラス繊維、金属繊維、綿くず、ポリアクリロニトリル(PAN)ベースのカーボン繊維、並びに、ポリマー及び金属メッシュからなるグループから選択されている、請求項27に記載の複合セパレータプレート。
  29. 前記プレートは、172.4kPaゲージ圧(25psig)、80℃及び0.5mmで、0.01ミリアンペア/cm2より小さい水素透過率を有する、請求項18に記載の複合セパレータプレート。
  30. 前記複合セパレータプレートは、前記第1の表面に亘って分散された伝導金属の層を備え、該伝導材料層は、前記発泡グラファイトと接触している、請求項18に記載の複合セパレータプレート。
  31. 前記伝導材料は、金、銀、プラチナ、カーボン、パラジウム、ロジウム及びルテニウムからなるグループから選択されている、請求項30に記載の複合セパレータプレート。
  32. 前記プレートは、1379kPa(200psi)以下で172.4kPa(25psi)より大きい圧縮圧力で40ミリオーム・cm2の面積比抵抗を有する、請求項18に記載の複合セパレータプレート。
  33. 前記プレートは、1379kPa(200psi)以上の圧縮圧力で20ミリオーム・cm2より小さい面積比抵抗を有する、請求項32に記載の複合セパレータプレート。
  34. 燃料電池用の複合セパレータプレートを製造するための方法であって、
     発泡グラファイトを粒子化し、
     前記発泡グラファイトをポリマー樹脂内に分散させ、
     前記樹脂及びグラファイト粒子を圧縮成形して前記セパレータプレートを形成する、各工程を含む、方法。
  35. 前記発泡グラファイトは、前記ポリマー樹脂内に混合されることにより該ポリマー樹脂内に分散される、請求項34に記載の方法。
  36. 前記発泡グラファイトは、前記ポリマー樹脂内に撒き散らされることにより分散される、請求項34に記載の方法。
  37. 前記発泡グラファイトは、前記プレートの体積にして約10%乃至約50%の間を占めている、請求項34に記載の方法。
  38. 前記発泡グラファイト粒子は、発泡グラファイトを、約0.4mm乃至約3.0mmの粒子サイズへと破砕することにより準備される、請求項37に記載の方法。
  39. 前記発泡グラファイト粒子は、ふるいにかけられる、請求項38に記載の方法。
  40. 前記発泡グラファイト粒子は、発泡グラファイトを、最終的なプレート厚さの10%より大きい粒子サイズへと破砕することにより準備される、請求項34に記載の方法。
  41. 前記ポリマー樹脂は、エポキシ、ポリビニールエステル、ポリエステル、ポリプロピレン、及び、ポリフッ化ビニリデンからなるグループから選択される、請求項38に記載の方法。
  42. 前記ポリマー樹脂内に充填材料を分散させる工程を更に含む、請求項34に記載の方法。
  43. 前記充填材料は、ガラス繊維、金属繊維、綿くず、ポリアクリロニトリル(PAN)ベースのカーボン繊維、並びに、ポリマー及び金属メッシュからなるグループから選択されている、請求項42に記載の方法。
  44. 前記セパレータプレートの一つの表面の少なくとも一部分から前記ポリマー樹脂の一部分を除去する工程を更に含む、請求項34に記載の方法。
  45. 前記ポリマー樹脂の一部分は、前記セパレータプレートの一つの表面の少なくとも一部分を砂研磨することにより除去される、請求項44に記載の方法。
  46. 前記セパレータプレートの少なくとも一部分上に伝導結合層を沈着させる工程を更に含む、請求項34に記載の方法。
  47. 前記伝導結合層は、前記セパレータプレートの少なくとも一部分上に蒸着される、請求項46に記載の方法。
JP2003272199A 2002-07-09 2003-07-09 Pem燃料電池のためのセパレータプレート Expired - Fee Related JP3830926B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US39464702P 2002-07-09 2002-07-09

Publications (2)

Publication Number Publication Date
JP2004134373A true JP2004134373A (ja) 2004-04-30
JP3830926B2 JP3830926B2 (ja) 2006-10-11

Family

ID=30115749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003272199A Expired - Fee Related JP3830926B2 (ja) 2002-07-09 2003-07-09 Pem燃料電池のためのセパレータプレート

Country Status (3)

Country Link
US (2) US20040062974A1 (ja)
JP (1) JP3830926B2 (ja)
DE (1) DE10330832A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006172776A (ja) * 2004-12-14 2006-06-29 Tokai Carbon Co Ltd 燃料電池用セパレータ材とその製造方法
JP2007291267A (ja) * 2006-04-26 2007-11-08 Teijin Ltd 熱伝導性成形材料及びこれを用いた成形シート

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050064271A1 (en) * 2003-09-19 2005-03-24 Misiaszek Steven Michael Low cost proton exchange membrane fuel cell collector plate
US7687175B2 (en) * 2004-05-03 2010-03-30 Gm Global Technology Operations, Inc. Hybrid bipolar plate assembly and devices incorporating same
WO2005117165A1 (en) * 2004-05-29 2005-12-08 Polymer Technologies Inc. Separator plate for fuel cell and production system for products for use in fuel cells
CN1330026C (zh) * 2004-07-06 2007-08-01 中国科学院大连化学物理研究所 一种质子交换膜燃料电池双极板制备工艺
EP1635415A1 (en) * 2004-09-08 2006-03-15 Samsung SDI Co., Ltd. Fuel cell stack
CA2583569A1 (en) * 2004-10-12 2006-04-20 Polymer Technologies Inc. Separator plate for fuel cell
EP1653537A1 (de) * 2004-10-29 2006-05-03 Sgl Carbon Ag Kühlplattenmodul für einen Brennstoffzellenstack
WO2006072923A1 (en) * 2005-01-10 2006-07-13 Dana Corporation In-situ molding of fuel cell separator plate reinforcement
US20090107975A1 (en) * 2005-02-17 2009-04-30 Thomas Caterina Heating unit for warming pallets
US8735016B2 (en) * 2005-05-12 2014-05-27 GM Global Technology Operations LLC Hydrophilic, electrically conductive fluid distribution plate for fuel cell
US20060257711A1 (en) * 2005-05-12 2006-11-16 Elhamid Mahmoud H A Electrically conductive fluid distribution plate for fuel cells
US8623573B2 (en) * 2005-05-12 2014-01-07 GM Global Technology Operations LLC Porous, electrically conductive fluid distribution plate for fuel cells
US8017280B2 (en) 2005-07-13 2011-09-13 GM Global Technology Operations LLC Metal fluid distribution plate with an adhesion promoting layer and polymeric layer
US7883819B2 (en) * 2005-08-30 2011-02-08 Gm Global Technologies Operations, Inc. Hybrid electrically conductive fluid distribution separator plate assembly for fuel cells
US8518603B2 (en) * 2005-12-05 2013-08-27 Nanotek Instruments, Inc. Sheet molding compound flow field plate, bipolar plate and fuel cell
KR20070114494A (ko) * 2006-05-29 2007-12-04 삼성에스디아이 주식회사 연료 전지용 캐소드 촉매 및 이를 포함하는 연료 전지용막-전극 어셈블리
EP2041758B1 (en) * 2006-07-13 2014-08-20 Orica Explosives Technology Pty Ltd Electrical conductive element
US20080113245A1 (en) * 2006-11-09 2008-05-15 Gm Global Technology Operations, Inc. Method of making hydrophilic fuel cell bipolar plates
US8455155B2 (en) * 2006-11-22 2013-06-04 GM Global Technology Operations LLC Inexpensive approach for coating bipolar plates for PEM fuel cells
US9065086B2 (en) 2007-06-19 2015-06-23 GM Global Technology Operations LLC Thermoplastic bipolar plate
US8066359B2 (en) 2008-03-03 2011-11-29 Silverbrook Research Pty Ltd Ink supply system with float valve chamber
US20110053052A1 (en) * 2009-08-28 2011-03-03 Enerfuel, Inc. Fuel cell composite flow field element and method of forming the same
CN101986392B (zh) * 2010-05-25 2013-10-02 华东理工大学 一种导电材料及其制备方法和用途
KR101173059B1 (ko) * 2010-09-29 2012-08-13 한국과학기술원 고분자 전해질 연료전지용 복합재료 분리판 및 이의 제조방법
CN107710482B (zh) * 2015-06-15 2020-11-17 森村索福克科技股份有限公司 燃料电池堆和燃料电池堆的制造方法
JP6887100B2 (ja) * 2016-12-26 2021-06-16 パナソニックIpマネジメント株式会社 膜電極接合体および電気化学式水素ポンプ
US20190372131A1 (en) * 2017-01-23 2019-12-05 eChemion, Inc. Manufacturing impervious bipolar materials from porous graphite
DE102018200673B4 (de) 2018-01-17 2021-05-12 Audi Ag Bipolarplatte, Brennstoffzelle und ein Kraftfahrzeug

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3573122A (en) * 1968-08-23 1971-03-30 Dow Chemical Co Preparation of conductive materials
US4265952A (en) * 1978-03-23 1981-05-05 The Dow Chemical Company Vermicular expanded graphite composite material
DE3615975A1 (de) * 1985-05-15 1986-11-20 Bridgestone Corp., Tokio/Tokyo Polyaniline, verfahren zu ihrer herstellung und sie enthaltende zellen
JPH0813902B2 (ja) * 1987-07-02 1996-02-14 ライオン株式会社 導電性樹脂組成物
US5882570A (en) * 1994-06-20 1999-03-16 Sgl Technic, Inc. Injection molding graphite material and thermoplastic material
DE69609668T2 (de) * 1995-05-29 2001-04-12 Nisshin Spinning Kohlenstoffverbundmaterial und Verfahren zu seiner Herstellung
US5624769A (en) * 1995-12-22 1997-04-29 General Motors Corporation Corrosion resistant PEM fuel cell
CA2323835A1 (en) * 1999-10-20 2001-04-20 Nisshinbo Industries, Inc. Fuel cell separator and fuel cell of solid polymer type
ATE528814T1 (de) * 1999-12-06 2011-10-15 Hitachi Chemical Co Ltd Brennstoffzelle, brennstoffzellenseparator und herstellungsverfahren dafür
US6372376B1 (en) * 1999-12-07 2002-04-16 General Motors Corporation Corrosion resistant PEM fuel cell
US6811917B2 (en) * 2000-08-14 2004-11-02 World Properties, Inc. Thermosetting composition for electrochemical cell components and methods of making thereof
US6607857B2 (en) * 2001-05-31 2003-08-19 General Motors Corporation Fuel cell separator plate having controlled fiber orientation and method of manufacture
US6811918B2 (en) * 2001-11-20 2004-11-02 General Motors Corporation Low contact resistance PEM fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006172776A (ja) * 2004-12-14 2006-06-29 Tokai Carbon Co Ltd 燃料電池用セパレータ材とその製造方法
JP4650673B2 (ja) * 2004-12-14 2011-03-16 東海カーボン株式会社 燃料電池用セパレータ材とその製造方法
JP2007291267A (ja) * 2006-04-26 2007-11-08 Teijin Ltd 熱伝導性成形材料及びこれを用いた成形シート

Also Published As

Publication number Publication date
JP3830926B2 (ja) 2006-10-11
US20040062974A1 (en) 2004-04-01
US20070164483A1 (en) 2007-07-19
DE10330832A1 (de) 2004-02-05

Similar Documents

Publication Publication Date Title
JP3830926B2 (ja) Pem燃料電池のためのセパレータプレート
JP3697223B2 (ja) 繊維の方向が調整された燃料電池セパレータプレート及び製造方法
TWI241732B (en) Mesh reinforced fuel cell separator plate
US20060240305A1 (en) Bipolar plate and fuel cell assembly having same
US8735016B2 (en) Hydrophilic, electrically conductive fluid distribution plate for fuel cell
US8623573B2 (en) Porous, electrically conductive fluid distribution plate for fuel cells
EP2477262A1 (en) Gas diffusion layer and process for production thereof, and fuel cell
EP1976046A1 (en) Fuel cell separator, process for producing the same, and fuel cell including the separator
JP2002528862A (ja) 個別の膜組立体とプレート組立体との間にシールを備える燃料電池
JP2008186817A (ja) 燃料電池用セパレータ
US8785077B2 (en) Apparatus and methods for connecting fuel cells to an external circuit
Satola Bipolar plates for the vanadium redox flow battery
CN107195921A (zh) 多层复合导电板及其制备方法
JP2004259497A (ja) 固体高分子型燃料電池用セパレータの製造方法、及び、固体高分子型燃料電池用セパレータ
JP2003217608A (ja) 燃料電池セパレータの製造方法、燃料電池セパレータ、および固体高分子型燃料電池
US20030118888A1 (en) Polymer coated metallic bipolar separator plate and method of assembly
KR101199801B1 (ko) 연료 전지 세퍼레이터 성형용 조성물, 연료 전지 세퍼레이터, 연료 전지 세퍼레이터의 제조 방법, 및 연료 전지
Wang Conductive thermoplastic composite blends for flow field plates for use in polymer electrolyte membrane fuel cells (PEMFC)
JP2003297385A (ja) 燃料電池セパレータの製造方法、燃料電池セパレータ、および固体高分子型燃料電池
JP5502552B2 (ja) 燃料電池セパレータ用組成物、燃料電池セパレータ、及び燃料電池の製造方法
WO2002091506A1 (en) Flow field plates and a method for forming a seal between them
JP4508574B2 (ja) 燃料電池用セパレータ、燃料電池用セパレータの製造方法
JP4435508B2 (ja) 固体高分子型燃料電池用セパレータ
KR101380401B1 (ko) 연료전지용 복합분리판
KR101986783B1 (ko) 유효 면적부 이외의 부분에 테이프가 부착된 연료전지용 박판형 분리판 및 그 제조방법

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051124

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060223

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3830926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees