JP2004130458A - 半導体デバイスとその製造方法 - Google Patents

半導体デバイスとその製造方法 Download PDF

Info

Publication number
JP2004130458A
JP2004130458A JP2002298255A JP2002298255A JP2004130458A JP 2004130458 A JP2004130458 A JP 2004130458A JP 2002298255 A JP2002298255 A JP 2002298255A JP 2002298255 A JP2002298255 A JP 2002298255A JP 2004130458 A JP2004130458 A JP 2004130458A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
semiconductor device
semiconductor
thin portion
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002298255A
Other languages
English (en)
Inventor
Masaki Takaoka
高岡 将樹
Noriyuki Shimoji
下地 規之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2002298255A priority Critical patent/JP2004130458A/ja
Priority to US10/605,585 priority patent/US20040104454A1/en
Publication of JP2004130458A publication Critical patent/JP2004130458A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Micromachines (AREA)

Abstract

【課題】半導体基板側面からの力に対して機械的・構造的に強く、また半導体基板上の構造物が剥がれにくい微細化の可能な半導体デバイス及びその製造方法を提供する。
【解決手段】半導体基板の主体105と、半導体基板100に凹部200を形成するように主体105よりも薄肉に形成され、かつ少なくとも1つの貫通孔220が形成されている薄肉部210とを有し、薄肉部210は、主体105よりもエッチングレートが遅くなるように形成されている、半導体デバイスを提供する。
薄肉部210は、凹部200両側の主体の橋渡し構造を提供しており、半導体基板の主体105側面からの力に対して半導体デバイスを機械的・構造的に強くできる。よって、半導体基板主体105や薄肉部210上、または貫通孔220を介して形成された配線、膜、半導体素子等の構造物を半導体デバイスから剥がれにくくすることができる。
【選択図】   図1

Description

【0001】
【発明の属する技術分野】
本発明は、半導体デバイスに関するものである。
【0002】
【従来の技術】
従来から、シリコンなどの半導体材料を利用したマイクロマシン技術が提供されている。このマイクロマシン技術を用いたデバイスとしては、各種センサ、半導体レーザ、マイクロアクチュエータ、マイクロポンプやバルブなどの流体制御デバイスなどが挙げられる。このようなデバイスは、一般的には、半導体基板の表面に絶縁膜や金属パターンを用いて立体的な構造物を形成することにより構築されている。
【0003】
【発明が解決しようとする課題】
図21(a)は貫通孔を有する従来の半導体デバイスの断面斜視図、同図(b)はその半導体基板を裏面から観察した平面図である。貫通孔17が形成されることによって、半導体基板10表面には第1開口22が形成され、半導体基板10裏面には第2開口24が形成されている。このような貫通孔は、一般的に半導体基板10裏面からアルカリエッチングを行うことによって形成される。この時、半導体基板10表面の第1開口22を所望の位置、大きさに形成するために、半導体基板10裏面の第2開口24は、通常、第1開口22より大きい開口を有するマスクを用いて形成される。このような貫通孔17を形成するシリコンなどの半導体基板の厚さは、例えば6インチ用ウェハの基板であれば約625μmであり、エッチングする深さが深い。そのため、貫通孔を形成するにあたり、半導体基板の表面における第1開口22の位置及び大きさにマージンを持たせた設計にせざるを得ない。具体的には、6インチ用半導体基板を用いて第1開口22の幅が20μm程度の貫通孔を形成したい場合でも、製作段階では幅100μm程度の開口用スペースを見込んでいる。よって、半導体基板10表面における第1開口22及び半導体基板10裏面における第2開口24がともに大きくなるため、半導体基板両側からの力F(図21(a)矢印参照)に対して機械的・構造的に弱い構造となる。
【0004】
図21(c)は同図(a)の半導体デバイス上に半導体素子を形成した場合の平面図、同図(d)は同図(c)の半導体デバイスのD−D’での断面斜視図である。半導体基板10上には、配線42の一部であるゲート電極32とソース34とドレイン36とを含む半導体素子30が形成されている。半導体素子30上には、層間絶縁膜38と配線40,44とが順に形成されている。配線40は、半導体基板10裏面から表面にかけて、貫通孔17の壁面19に沿うように形成されており、層間絶縁膜38のコンタクトホールを介して半導体素子30のソース34と接続されている。配線44は、層間絶縁膜38のコンタクトホールを介してドレイン36と接続されている。
【0005】
このような半導体デバイスは、半導体基板の両面に半導体素子を有する半導体デバイスや複数の半導体基板を積層した大規模なLSIに適用することができる。しかし、半導体基板10表面には第1開口22が大きく形成されているため、高密度に配線を形成することが難しく、半導体デバイスの微細化に不向きである。また、半導体基板両側からの力に対して機械的・構造的に弱い構造であるので、半導体デバイスがたわみ、半導体基板上に形成された構造物の剥がれを生じさせる場合がある。
【0006】
本発明の課題は、半導体基板側面からの力に対して機械的・構造的に強い半導体基板及びその製造方法を提供することである。
本発明の別の課題は、微細化の可能な半導体デバイス及びその製造方法を提供することである。
本発明の別の課題は、半導体デバイスに形成された配線等の構造物が剥離しにくい半導体デバイス及びその製造方法を提供することである。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本願第1発明は、半導体基板の主体と、前記半導体基板に凹部を形成するように前記主体よりも薄肉に形成され、かつ少なくとも1つの貫通孔が形成されている薄肉部とを有し、前記薄肉部は、前記主体よりもエッチングレートが遅くなるように形成されている、半導体デバイスを提供する。
【0008】
半導体デバイスは、半導体基板の主体と半導体基板に凹部を形成するように主体よりも薄肉に形成され、かつ少なくとも1つの貫通孔が形成されている薄肉部とを有している。薄肉部は、凹部両側の主体の橋渡し構造を提供しており、半導体基板の主体側面からの力に対して半導体デバイスを機械的・構造的に強くできる。また、薄肉部には1以上の貫通孔が形成されているため、例えば、薄肉部に配線を形成でき、さらに凹部両側の主体に渡る配線を形成することが容易である。さらには、薄肉部上に半導体素子を形成することもでき、半導体デバイスの高密度化・微細化が可能となる。また、薄肉部により半導体デバイスが機械的・構造的に強化されているため、半導体デバイスのたわみが低減される。よって、半導体基板主体や薄肉部上、または貫通孔を介して形成された配線、膜、半導体素子等の構造物を半導体デバイスから剥がれにくくすることができる。
【0009】
本願第2発明は、前記第1発明において、前記薄肉部と前記主体とが一体に形成されている半導体デバイスを提供する。
半導体基板を削ることにより形成された薄肉部と半導体基板の主体とにより一体に半導体デバイスを形成する。よって、半導体基板の主体側面からの力に対して半導体デバイスを機械的・構造的に強くできる。
【0010】
本願第3発明は、前記第1または第2発明において、前記貫通孔には金属配線が形成されている半導体デバイスを提供する。
貫通孔に金属配線を形成することで、半導体基板表面から裏面にわたる配線を形成することができ、半導体デバイスの高密度化・微細化が可能となる。
本願第4発明は、前記第1または第2発明において、前記薄肉部上には樹脂膜が形成されている半導体デバイスを提供する。
【0011】
凹部を形成する薄肉部が樹脂膜と接触するため、半導体デバイスと樹脂膜との接触面積が増加する。よって、樹脂膜を半導体デバイスから剥がれにくくすることができる。
本願第5発明は、前記第1乃至第4発明において、前記薄肉部には不純物が注入されている、半導体デバイスを提供する。
【0012】
半導体基板表面に不純物を添加することで、不純物が添加された部分のエッチングレートを遅くすることができる。よって、半導体基板裏面からのエッチングにより、半導体基板主体よりも薄い薄肉部を形成することができる。不純物としては、エッチングレートを遅くすることができる不純物であれば良く、ボロン、リン、ゲルマニウム等の不純物であると好ましい。
【0013】
本願第6発明は、前記第1乃至第4発明において、前記薄肉部は選択酸化膜により形成されている、半導体デバイスを提供する。
半導体基板表面に選択酸化膜を形成することで、選択酸化膜部分のエッチングレートを遅くすることができる。よって、半導体基板裏面からのエッチングにより、半導体基板主体よりも薄い薄肉部を形成することができる。また、選択酸化膜の形成は、LSI集積回路の通常の工程により形成できる。よって、特別の工程が必要でないため、製造工程を短縮して製造コストを低減することが可能である。また、選択酸化膜により形成された薄肉部は、電気的に良好に絶縁可能な層間絶縁膜として使用可能である。
【0014】
本願第7発明は、半導体基板の第1面にエッチングストッパを形成するエッチングストッパ形成ステップと、前記半導体基板の前記第1面と反対側の第2面側から、前記エッチングストッパが残留するように前記半導体基板をエッチングすることにより、前記半導体基板に凹部を形成しかつ少なくとも1つの貫通孔が形成された薄肉部を形成する薄肉部形成ステップとを含む半導体デバイスの製造方法を提供する。
【0015】
エッチングストッパは、不純物の注入された半導体基板や選択酸化膜等によりエッチングレートを低下できるように形成されている。半導体基板の第1面にエッチングストッパを有する半導体基板を第2面からエッチングすると、エッチングストッパは、半導体基板の主体に挟まれた薄肉部として残留し、凹部を形成する。薄肉部は、エッチングストッパが形成されていない部分を有し、エッチングによりその部分の半導体基板が貫通するため、少なくとも1つの貫通孔を有している。
【0016】
このようにして得られた半導体デバイスは、凹部両側の主体の橋渡しとなる薄肉部が形成されているので、半導体基板の主体側面からの力に対して機械的・構造的に強い利点がある。また、薄肉部には1以上の貫通孔が形成されているため、例えば、薄肉部に配線を形成でき、さらに凹部両側の主体に渡る配線を形成することが容易である。さらには、薄肉部上に半導体素子を形成することもでき、半導体デバイスの高密度化・微細化が可能となる。また、薄肉部により半導体デバイスが機械的・構造的に強化されているため、半導体デバイスのたわみが低減される。よって、半導体基板主体や薄肉部上、または貫通孔を介して形成された配線、膜、半導体素子等の構造物を半導体デバイスから剥がれにくくすることができる。
【0017】
【発明の実施の形態】
以下に、本発明の第1実施形態例を説明する。図1(a)は本発明の第1実施形態に係る半導体デバイスの断面斜視図、同図(b)はその半導体デバイスを半導体基板裏面から観察した平面図である。
この半導体デバイスの半導体基板100は、半導体基板の主体105と半導体基板100表面側の薄肉部210とを有している。薄肉部210は、半導体基板の主体105の間に位置しており、半導体基板の主体105よりも薄く形成されている。また、薄肉部210と半導体基板の主体105により、凹部200と半導体基板100裏面側の開口240とが形成されている。薄肉部210には、少なくとも1つの貫通孔220が形成されている。この薄肉部210は、不純物注入や選択酸化膜により形成することができる。
【0018】
このように、半導体基板の主体105の間に薄肉部210が形成されているため、これが半導体基板の主体105両側の橋渡しの役割を果たしている。よって、半導体基板両側からの力F(図1(a)矢印)に対して半導体デバイスを機械的・構造的に強くできる。また、薄肉部210には1以上の貫通孔220が形成されているため、例えば、薄肉部210に配線を形成でき、さらに凹部200両側の主体105に渡る配線を形成することも容易である。さらには、薄肉部210上に半導体素子を形成することもでき、半導体デバイスの高密度化・微細化が可能となる。また、選択酸化膜により形成された薄肉部は、電気的に良好に絶縁可能な層間絶縁膜として使用可能である。また、薄肉部210により半導体デバイスが機械的・構造的に強化されているため、半導体デバイスのたわみが低減される。よって、半導体基板主体105や薄肉部210上、または貫通孔220を介して形成された配線、膜、半導体素子等の構造物を半導体デバイスから剥がれにくくすることができる。
【0019】
この半導体デバイスの製造方法を説明する。製造方法には、例えば、薄肉部をボロン等の不純物の注入により形成する第1の製造工程と、薄肉部を選択酸化膜により形成する第2の製造工程とが挙げられる。図2(a)〜(c)は図1(a)の第1の製造工程を示す断面図、図3は不純物濃度とシリコンエッチングレートとの関係図、図5(a)〜(d)は図1(a)の第2の製造工程を示す断面図である。
【0020】
第1の製造工程を図2(a)〜(c)を用いて説明する。まず、半導体基板の主体105が形成される部分(α)及び貫通孔220が形成される部分(β)の半導体基板100上にレジスト等のマスク110を形成する。そして、マスク110の開口部分(γ)を通して半導体基板100の表面にボロン等の不純物を注入する(同図(a)参照)。注入する不純物は、シリコンエッチングレートを遅くすることができる不純物であれば良く、ボロン、リン、ゲルマニウム等の不純物であると好ましい。不純物の注入は、不純物の注入がない、または少ない半導体基板よりもエッチングレートを遅くできる濃度で行う。図3は、シリコン基板にボロンを注入する場合であれば1×1019pcs/cm以上の濃度で打ち込むと良好にエッチングレートを遅くすることができることを示している。
【0021】
次に、半導体基板100裏面上に、不純物を注入した部分(γ)と対向する位置に開口を有するシリコン酸化膜等の裏面エッチ用マスク120を形成する(同図(b)参照)。
この裏面エッチ用マスク120を用いて、エッチング処理による異方性エッチングを半導体基板100裏面より行い、貫通孔220を有する薄肉部210を形成する。このとき、半導体基板の主体105と薄肉部210とにより囲まれる凹部200が形成される。このエッチングの際、γ部分の半導体基板100の表面には不純物が注入されているため、エッチングレートが前記不純物の注入されていない半導体基板100よりも遅くなる。そのため、不純物が注入された部分(γ)はエッチングされることなく残留し、薄肉部210が形成される。一方、不純物が注入されていない部分(β)の半導体基板はその表面までエッチングが進行して、貫通孔220が形成される。最後に、マスク110,120を除去する(同図(c)参照)。半導体基板100裏面からのエッチング処理としては、アルカリエッチング処理を行うと好ましい。アルカリエッチングは、SiOやSi等のマスクにより処理が可能であり、またエッチング処理における横方向の広がりの少ない異方性エッチングが可能であるので開口寸法の制御性が良い。
【0022】
このように、不純物注入の場所を制御することにより、貫通孔220を正確に位置制御して形成することができる。
上記では、γ部分に薄肉部210を形成し、β部分に貫通孔220を形成しているが、図4に示すように貫通孔220と薄肉部210とを形成しても良い。
次に、第2の製造工程を図5(a)〜(d)を用いて説明する。まず、半導体基板100を酸化することにより、半導体基板100上にシリコン酸化膜130を形成する。さらに、半導体基板の主体105が形成される部分(α)及び貫通孔220が形成される部分(β)のシリコン酸化膜130上にシリコン窒化膜等のマスク110を形成する(同図(a)参照)。
【0023】
次に、この半導体基板100を熱酸化することで、マスク110の開口部分(γ)に選択酸化膜(LOCOS)140を形成する(同図(b)参照)。
さらに、選択酸化膜140を形成した部分と対向する位置に開口を有するシリコン酸化膜等の裏面エッチ用マスク120を半導体基板100裏面上に形成する(同図(c)参照)。
【0024】
このマスク120を用いて、エッチング処理、好ましくはアルカリエッチング処理による異方性エッチングを半導体基板100裏面より行い、薄肉部210(選択酸化膜140)と貫通孔220とを形成する。このエッチングの際、γ部分の半導体基板100の表面には選択酸化膜140が形成されているため、選択酸化膜140が形成されていない部分よりエッチングレートが遅くなる。そのため、選択酸化膜が形成された部分(γ)はエッチングされることなく残留し、薄肉部210(選択酸化膜140)が形成される。一方、選択酸化膜が形成されていない部分(β)の半導体基板はその表面までエッチングが進行して、貫通孔220が薄肉部210に形成される。この時、半導体基板の主体105と薄肉部210とにより囲まれる凹部200が形成される。最後に、マスク110,120を除去する(同図(d)参照)。
【0025】
選択酸化膜140の形成は、LSI集積回路の通常の工程により形成できる。よって、特別の工程が必要でないため、製造工程を短縮して製造コストを低減することが可能である。また、選択酸化膜を形成する場所を制御することにより、貫通孔220を正確に位置制御して形成することができる。
上記では、γ部分に薄肉部210を形成し、β部分に貫通孔220を形成しているが、図6に示すように貫通孔220と薄肉部210とを形成しても良い。
【0026】
[実施例1]
図7は、第1の実施形態による基本構造を、微細配線を有する半導体デバイスに適用した場合の実施例である。この半導体デバイスの半導体基板100は、半導体基板の主体105と半導体基板100表面側の薄肉部210と半導体基板100上に形成された層間絶縁膜380と配線400,420とを有している。薄肉部210は、半導体基板の主体105の間に位置しており、半導体基板の主体105よりも薄く形成されている。この薄肉部210には、貫通孔220が形成されている。また、薄肉部210と半導体基板の主体105により、凹部200と半導体基板裏面側の開口240とが形成されている。配線400は、半導体基板100表面及び裏面を結合する配線であり、貫通孔220を介して凹部200の壁面245に沿って形成されている。また、配線420は、薄肉部210上の層間絶縁膜380に形成されている。このように、薄肉部210により半導体デバイスの機械的・構造的強度の向上を図りつつ、かつ薄肉部210に高密度に配線を形成することにより半導体デバイスの微細化が可能となる。また、薄肉部210により半導体デバイスが機械的・構造的に強化されているため、半導体デバイスのたわみが低減される。よって、半導体基板主体105や薄肉部210上、または貫通孔220を介して形成された配線400,420、層間絶縁膜380、半導体素子等の構造物を半導体デバイスから剥がれにくくすることができる。
【0027】
図8(a)〜(d)、図9(a)〜(b)は、図7の半導体デバイスの製造工程である。図9(b)は、半導体デバイスの断面斜視図であり、配線400は、貫通孔220を介して凹部200の壁面245に沿って形成され、配線420は、薄肉部210上の層間絶縁膜380及び半導体基板の主体105上に形成されている。
【0028】
まず、半導体基板100上に、開口を有するレジスト等のマスク500を形成する。そして、マスク500の開口部分から半導体基板100の表面にボロン(B)等の不純物を注入する(図8(a)参照)。マスク500の開口場所は、薄肉部を形成する部分であり、注入する不純物の種類や濃度は上述の通りである。次にマスク500を除去し、半導体基板100上に層間絶縁膜380を形成する(図8(b)参照)。
【0029】
さらに、層間絶縁膜380上に配線420を形成し、半導体基板100裏面上に不純物を注入した部分と対向する位置に開口を有するシリコン酸化膜等の裏面エッチ用マスク520を形成する(図8(c)参照)。
裏面エッチ用マスク520を用いて、エッチング処理、好ましくはアルカリエッチング処理による異方性エッチングを半導体基板100裏面より行い、ボロン(B)等の不純物が注入されていない半導体基板100を除去する。これにより、薄肉部210、貫通孔220、凹部200が形成される。さらに、マスク520を除去する(図8(d)参照)。
【0030】
次に、半導体基板100裏面からのドライエッチングにより、貫通孔220により露出された層間絶縁膜380を配線420の表面が露出されるまで除去する(図9(a)参照)。
配線400を貫通孔220を介して凹部200の壁面245に沿って形成し、配線420と配線400とを接続する(図9(b)参照)。配線400を形成するためのマスクは、非平面へのマスク形成が可能な方法を用いて形成される。例えば、加圧した気体とともにレジスト粒子を噴霧して霧化して行う。この時、半導体基板に付着したレジスト粒子の乾燥と粒子同士の融合による平坦化の速度が最適になるように、半導体基板と噴霧器の距離、半導体基板の温度等を最適化してレジストの作成を行う。
【0031】
[実施例2]
図10は、図7の半導体デバイスを積層した場合の実施例である。図10に示すように、半導体基板150上には、ゲート電極320とソース340とドレイン360とを含む半導体素子300が形成されている。半導体素子300上には、層間絶縁膜380と配線440,445とが順に形成されている。配線440,445は、層間絶縁膜380のコンタクトホールを介してそれぞれソース340,ドレイン360と接続されている。この半導体基板150の上部に半導体基板100を積層して、一体の半導体デバイスを構成している。上部の半導体基板100上の配線構成は、図7と同様である。ここで、上部の半導体基板100と下部の半導体基板150との電気的結合は、下部の半導体基板150の配線440,445と上部の半導体基板100の配線400との接続により行われている。以上では2層の積層構造について述べたが、複数の半導体基板を積層することもできる。このようにすることで、薄肉部210による半導体デバイスの機械的・構造的強度が向上し、半導体デバイスのたわみが低減される。この結果、半導体基板上の配線、膜、半導体素子等の構造物を半導体デバイスから剥がれにくくすることができる。また、薄肉部210に高密度に配線を形成することによる半導体デバイスの微細化や、さらに半導体デバイスの多層化が可能となる。
【0032】
[実施例3]
図11は、半導体基板の表面及び裏面に半導体素子が形成された半導体デバイスの実施例を示す。半導体基板100の表面及び裏面上には、ゲート電極320とソース340とドレイン360とを含む半導体素子300がそれぞれ形成されている。半導体素子300上には、層間絶縁膜380と配線400が順に形成されている。この半導体基板100表面及び裏面上の半導体素子300は、配線400により互いに接続されている。配線400は、薄肉部210上及び半導体基板の主体105上に形成され、かつ貫通孔220を介して凹部200の壁面245に沿って形成されている。このような構成により、薄肉部210による半導体デバイスの機械的・構造的強度が向上し半導体デバイスのたわみが低減される。その結果、半導体基板上の配線、膜、半導体素子等の構造物が半導体デバイスから剥離しにくくなり、薄肉部210に配線や半導体素子300を高密度に形成することによる半導体デバイスの微細化が可能となる。また、半導体基板100表面と裏面ともに半導体素子300を形成して互いに配線接続ができるので、半導体デバイスの高密度化がさらに可能である。
【0033】
[実施例4]
図12は図11の半導体デバイスを積層した場合の実施例である。半導体素子300が形成された別の半導体基板150上に図11の半導体デバイスを積層することもでき、さらなる半導体デバイスの高密度化・多層化が可能となる。ここでは、2層の積層構造について述べたが、複数の半導体デバイスを積層することもできる。
【0034】
[実施例5]
図13は第1実施形態の基本構造をマイクロポンプに適用した場合の実施例、図14(a)は凹部730bの拡大図、同図(b)は図13のA−A’断面の平面図、同図(c)はバルブの拡大図である。
マイクロポンプは、仕切板620が形成された樹脂板610と、半導体基板710と、樹脂板610と反対側の半導体基板裏面に接合された樹脂板810とを有している。
【0035】
半導体基板710は、半導体基板の主体705と薄肉部715とを含んでいる。また、薄肉部715と半導体基板の主体705とにより凹部730a〜730d(凹部730)が形成されている。凹部730a,730cは、流体を半導体基板表面から裏面へと導き、凹部730b,730dは、流体を半導体基板裏面から表面へと導く。また、薄肉部715には貫通孔735a,735a’ 735b,735b’,735c,735c’ 735d,735d’(貫通孔735)が設けられており、貫通孔735a,735a’は凹部730aに、貫通孔735b,735b’は凹部730bに、貫通孔735c,735c’は凹部730cに、貫通孔735d,735d’は凹部730dに対応して形成されている。樹脂板610は、半導体基板710上の熱酸化膜772及び酸化膜774上に形成されており、仕切板620を有している。この仕切板620は、貫通孔735b,735b’からの流体をそれぞれ分離する圧力室660a,660b(圧力室660)を有するように形成されている(圧力室660bは図示せず)。樹脂板610の仕切板620上には、仕切板620を振動させるためのピエゾアクチュエータ630が取り付けられている。バルブ720a,720a’,720b,720b’(バルブ720)は、液路となる貫通孔735を有する半導体基板710上に、液路をふさぐような形状のポリシリコンでできた円盤状の弁と、片側を基板に固定され前記弁を支える4本の腕とから形成される(図14(c)参照)。それぞれの凹部730に対する貫通孔、バルブ、圧力室の構成をまとめると、次の通りである。凹部730aに対して貫通孔が2箇所(735a,735a’)、凹部730cに対して貫通孔が2箇所(735c,735c’)、設けられている。一方、凹部730bに対して、貫通孔が2箇所(735b,735b’)、バルブが2箇所(720a,720a’)、圧力室が2箇所(圧力室660a,660b)設けられている。凹部730dには、貫通孔が2箇所(735d,735d’)、バルブが2箇所(720b,720b’)設けられている。本実施例では、上記のように凹部一箇所に対して貫通孔、バルブ等が、それぞれ2個設けられているが、2箇所以上設けられていても良い。
【0036】
このようなマイクロポンプは、薄肉部715に複数の貫通孔735を形成することができので、複数の貫通孔上に高密度にバルブを形成することが可能である。また、薄肉部715により半導体デバイスの機械的・構造的強度が向上して半導体デバイスのたわみが低減され、樹脂膜やバルブを半導体デバイスから剥がれにくくすることが可能である。さらに、例えばバルブ720ごとに設けた圧力室660を、図15に示すL字形やステップ形状など様々な形状に形成することで、様々な形態のマイクロポンプを得ることができる。
【0037】
図16(a)〜(d)、図17(a)〜(b)、図18(a)〜(b)、図19(a)〜(b)は、図14(b)のB−B’断面におけるマイクロポンプの要部の製造工程を示し、図19(b)は、図14(b)のB−B’断面におけるマイクロポンプの要部の構成を示す。また、図20(a)〜(e)は、図14(b)のC−C’断面におけるマイクロポンプの要部の製造工程を示し、同図(e)は、図14(b)のC−C’断面におけるマイクロポンプの要部の構成を示す。
【0038】
図19(b)のマイクロポンプの要部の構成は、図13と同様であり、図20(e)のマイクロポンプの要部は、以下の構成からなる。
マイクロポンプは、半導体基板710と、半導体基板710の両面に接合された2つの樹脂板610,810とを含む。半導体基板710には、半導体基板の主体705と薄肉部715とが形成されている。また、薄肉部715と半導体基板の主体705とにより、凹部730bが形成されている。凹部730bにおいて、薄肉部715には貫通孔735b,735b’が形成されており、貫通孔735b,735b’上にはバルブ720a,720a’がそれぞれ形成されている。
【0039】
樹脂板610は、半導体基板710上の熱酸化膜772及び酸化膜774上に形成されており、仕切板620を有している。仕切板620は、半導体基板710表面との間に圧力室660a及び660bを形成している。この仕切板620上には、仕切板620を振動させるためのピエゾアクチュエータが取り付けられ(図示せず)、圧力室660a,660b内の圧力を変化させる。
【0040】
図16(a)〜(d)、図17(a)〜(b)、図18(a)〜(b)、図19(a)〜(b)及び図20(a)〜(e)を参照して、マイクロポンプの要部の製造工程を説明する。
まず、前述の方法で、例えば(100)シリコン基板である半導体基板710表面上に、不純物を注入する部分(γ)に開口を有するマスク770を形成する。マスク770は、例えばレジスト、酸化膜等からなる。そして、マスク770の開口(γ)を通して半導体基板710の表面にボロン等の不純物を注入する(図16(a),図20(a)参照)。不純物を注入する部分(γ)は、凹部730a〜730d(凹部730)に対応している。
【0041】
マスク770を取り除き、熱酸化膜772を形成し、熱酸化膜772の上に酸化膜774を堆積させる。熱酸化膜772及び酸化膜774は、バルブ720を形作るようにそれぞれ開口を有している(図16(b)参照)。また、熱酸化膜772及び酸化膜774を、バルブ720以外の部分に半導体素子を形成するためや、半導体素子を保護するために利用することもできる。
【0042】
バルブ720を熱酸化膜772及び酸化膜774上に形成する(図16(c),図20(b)参照)。バルブ720は、例えば、CVDとフォトレジストをマスクにしたプラズマエッチングによりpoly−Siで形成される。
流体を半導体基板表面から裏面へ導く部分及び半導体基板裏面から表面へ導く部分、つまり凹部730に対応する部分に開口を有するレジスト776を、熱酸化膜772及び酸化膜774上に形成する。レジスト776の開口部分に位置する、熱酸化膜772及び酸化膜774をHFにより除去する(図16(d),図20(c)参照)。
【0043】
樹脂板610に流体の流路を形成するために、入口640、圧力室660及び出口650に対応する部分にレジスト778を塗布する。レジスト778上に樹脂板610となる有機膜を、例えばスピンコートにより塗布する。入口640、仕切板620及び出口650に対応する有機膜を、例えばOプラズマドライエッチングにより除去し、樹脂板610を形成する。半導体基板710に凹部730及び液路750を形成するためにレジスト778及び樹脂板610上に、裏面からのエッチングによる影響から保護するための保護膜780を形成する。まず、半導体基板710裏面に液路750に対応する部分に開口を有するレジスト782を形成し、半導体基板710裏面からのエッチングにより液路750を形成する(図17(a)〜(b)、図18(a)〜(b),図20(d)参照)。
【0044】
レジスト782を除去し、凹部730に対応する部分に開口を有するレジスト784を半導体基板710裏面に形成し、半導体基板裏面からのエッチングにより凹部730を形成する。次に保護膜780を除去し、半導体基板表面から例えばUV露光により全面露光を行う(図19(a)参照)。
全面露光後、現像液によりレジスト778を除去し、半導体基板710裏面に樹脂板810を接合し、マイクロポンプを得る(図19(b)、図20(e)参照)。
【0045】
このようなマイクロポンプは、貫通孔が形成される位置を不純物の注入位置により制御できるので、貫通孔の位置が正確に制御される。従って、バルブ、圧力室、液路、入口、出口など各種素子や機能部を半導体基板表面上に精度良く高密度に形成することができる。薄肉部を、前述のように選択酸化膜により形成することもできる。ここでは微細配線を有する半導体デバイス、マイクロポンプを例に挙げたが、他にマイクロバルブ、フローセンサ、光配線など様々なマイクロマシンに本発明を適用することができる。
【0046】
【発明の効果】
本発明を用いれば、半導体基板両側からの力に対して機械的・構造的に強い半導体基板を提供することができる。
本発明を用いれば、微細化の可能な半導体デバイスを提供することができる。また、本発明を用いれば、半導体デバイスに形成された配線等の構造物が剥離しにくい半導体デバイス及びその製造方法を提供することができる。
【図面の簡単な説明】
【図1】(a)本発明の第1実施形態に係る半導体デバイスの断面斜視図。
(b)(a)の半導体デバイスを半導体基板裏面から観察した平面図。
【図2】(a)図1(a)の第1の製造工程を示す断面図(1)。
(b)図1(a)の第1の製造工程を示す断面図(2)。
(c)図1(a)の第1の製造工程を示す断面図(3)。
【図3】不純物濃度とシリコンエッチングレートとの関係図。
【図4】図1(a)の第1の製造工程によるその他の半導体デバイスを示す断面図。
【図5】(a)図1(a)の第2の製造工程を示す断面図(1)。
(b)図1(a)の第2の製造工程を示す断面図(2)。
(c)図1(a)の第2の製造工程を示す断面図(3)。
(d)図1(a)の第2の製造工程を示す断面図(4)。
【図6】図1(a)の第2の製造工程によるその他の半導体デバイスを示す断面図。
【図7】第1の実施形態による基本構造を、微細配線を有する半導体デバイスに適用した場合の断面斜視図。
【図8】(a)図7の半導体デバイスの製造工程を示す断面斜視図(1)。
(b)図7の半導体デバイスの製造工程を示す断面斜視図(2)。
(c)図7の半導体デバイスの製造工程を示す断面斜視図(3)。
(d)図7の半導体デバイスの製造工程を示す断面斜視図(4)。
【図9】(a)図7の半導体デバイスの製造工程を示す断面斜視図(5)。
(b)図7の半導体デバイスの製造工程を示す断面斜視図(6)。
【図10】図7の半導体デバイスを積層した場合の断面斜視図。
【図11】半導体基板の表面及び裏面に半導体素子が形成された半導体デバイスの断面斜視図。
【図12】図11の半導体デバイスを積層した場合の断面斜視図。
【図13】第1実施形態の基本構造をマイクロポンプに適用した場合の断面図。
【図14】(a)凹部の拡大図。
(b)図13のA−A’断面の平面図。
(c)バルブの拡大図。
【図15】L字形やステップ形状の圧力室を有するマイクロポンプ。
【図16】(a)図14(b)のB−B’断面におけるマイクロポンプの要部の製造工程を示す断面図(1)
(b)図14(b)のB−B’断面におけるマイクロポンプの要部の製造工程を示す断面図(2)
(c)図14(b)のB−B’断面におけるマイクロポンプの要部の製造工程を示す断面図(3)
(d)図14(b)のB−B’断面におけるマイクロポンプの要部の製造工程を示す断面図(4)
【図17】(a)図14(b)のB−B’断面におけるマイクロポンプの要部の製造工程を示す断面図(5)
(b)図14(b)のB−B’断面におけるマイクロポンプの要部の製造工程を示す断面図(6)
【図18】
(a)図14(b)のB−B’断面におけるマイクロポンプの要部の製造工程を示す断面図(7)
(b)図14(b)のB−B’断面におけるマイクロポンプの要部の製造工程を示す断面図(8)
【図19】(a)図14(b)のB−B’断面におけるマイクロポンプの要部の製造工程を示す断面図(9)
(b)図14(b)のB−B’断面におけるマイクロポンプの要部の製造工程を示す断面図(10)
【図20】(a)図14(b)のC−C’断面におけるマイクロポンプの製造工程(1)
(b)図14(b)のC−C’断面におけるマイクロポンプの製造工程(2)
(c)図14(b)のC−C’断面におけるマイクロポンプの製造工程(3)
(d)図14(b)のC−C’断面におけるマイクロポンプの製造工程(4)
(e)図14(b)のC−C’断面におけるマイクロポンプの製造工程(5)
【図21】(a)貫通孔を有する従来の半導体デバイスの断面斜視図。
(b)(a)の半導体基板を裏面から観察した平面図。
(c)(a)に半導体素子を形成した場合の平面図。
(d)(c)のD−D’での断面図斜視図。
【符号の説明】
10、100、150、710:半導体基板
105、705:半導体基板の主体
17、220、735:貫通孔
19、245:壁面
22:第1開口
24:第2開口
30、300:半導体素子
32、320:ゲート電極
34、340:ソース
36、360:ドレイン
38、380:層間絶縁膜
40、42、44、400、420、440、445:配線
110、120、500、520、770:マスク
130:シリコン酸化膜
140:選択酸化膜
200、730:凹部
210、715:薄肉部
240:開口
610、810:樹脂板
620:仕切板
630:ピエゾアクチュエータ
640:入口
650:出口
660:圧力室
720:バルブ
750:液路

Claims (5)

  1. 半導体基板の主体と、
    前記半導体基板に凹部を形成するように前記主体よりも薄肉に形成され、かつ少なくとも1つの貫通孔が形成されている薄肉部とを有し、
    前記薄肉部は、前記主体よりもエッチングレートが遅くなるように形成されている、半導体デバイス。
  2. 前記薄肉部と前記主体とが一体に形成されている、請求項1に記載の半導体デバイス。
  3. 前記薄肉部には不純物が注入されている、請求項1または2に記載の半導体デバイス。
  4. 前記薄肉部は選択酸化膜により形成されている、請求項1または2に記載の半導体デバイス。
  5. 半導体基板の第1面にエッチングストッパを形成するエッチングストッパ形成ステップと、
    前記半導体基板の前記第1面と反対側の第2面側から、前記エッチングストッパが残留するように前記半導体基板をエッチングすることにより、前記半導体基板に凹部を形成しかつ少なくとも1つの貫通孔が形成された薄肉部を形成する薄肉部形成ステップと、
    を含む半導体デバイスの製造方法。
JP2002298255A 2002-10-10 2002-10-11 半導体デバイスとその製造方法 Pending JP2004130458A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002298255A JP2004130458A (ja) 2002-10-11 2002-10-11 半導体デバイスとその製造方法
US10/605,585 US20040104454A1 (en) 2002-10-10 2003-10-10 Semiconductor device and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002298255A JP2004130458A (ja) 2002-10-11 2002-10-11 半導体デバイスとその製造方法

Publications (1)

Publication Number Publication Date
JP2004130458A true JP2004130458A (ja) 2004-04-30

Family

ID=32287728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002298255A Pending JP2004130458A (ja) 2002-10-10 2002-10-11 半導体デバイスとその製造方法

Country Status (1)

Country Link
JP (1) JP2004130458A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010514584A (ja) * 2007-01-05 2010-05-06 エヌエックスピー ビー ヴィ 厚膜底部におけるフィーチャ限界寸法の制御性の向上されたエッチング方法
JP2012244134A (ja) * 2011-05-24 2012-12-10 Denso Corp 電子デバイス、及び、その製造方法
JP2013089816A (ja) * 2011-10-19 2013-05-13 Toshiba Corp 半導体装置及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010514584A (ja) * 2007-01-05 2010-05-06 エヌエックスピー ビー ヴィ 厚膜底部におけるフィーチャ限界寸法の制御性の向上されたエッチング方法
JP2012244134A (ja) * 2011-05-24 2012-12-10 Denso Corp 電子デバイス、及び、その製造方法
JP2013089816A (ja) * 2011-10-19 2013-05-13 Toshiba Corp 半導体装置及びその製造方法

Similar Documents

Publication Publication Date Title
US20040104454A1 (en) Semiconductor device and method of producing the same
EP3173235B1 (en) Fluid ejection device with restriction channel, and manufacturing method thereof
US6531417B2 (en) Thermally driven micro-pump buried in a silicon substrate and method for fabricating the same
US7557441B2 (en) Package of MEMS device and method for fabricating the same
JP4754557B2 (ja) フレキシブル静電アクチュエータ
US8998388B2 (en) Method for manufacturing a fluid ejection device and fluid ejection device
KR100421217B1 (ko) 점착 방지 미세 구조물 제조 방법
JP2002373912A (ja) 集積回路および微細加工システム
KR101424748B1 (ko) 작은 부피 및 높은 정밀도의 멤브레인들 및 캐비티들의 집합적 제조 프로세스
EP1296067B1 (en) Passive microvalve
US8828750B2 (en) Highly integrated wafer bonded MEMS devices with release-free membrane manufacture for high density print heads
CN100451737C (zh) 柔性静电激励器
US7585423B2 (en) Liquid discharge head and producing method therefor
JP2004508946A (ja) デバイスの起伏形状パターニング方法
JP2004130458A (ja) 半導体デバイスとその製造方法
CN102653389B (zh) 贯通孔形成方法、喷嘴板以及mems器件
KR20070106358A (ko) 실리콘 기판 상에 상이한 수직 단차를 갖는 미세구조물의제조 방법
JP2003332586A (ja) 外力センサ及びその製造方法
JP5276785B2 (ja) 半導体装置
JP4384844B2 (ja) マイクロ素子のための膜構造,膜構造を含むマイクロ素子,及び膜構造を作るための方法
WO2013187267A1 (en) Microstructure and method of manufacturing the same
JP2003326499A (ja) 半導体デバイス及びその製造方法
KR100429839B1 (ko) 일괄 공정에 의한 마이크로 소자의 제조 방법
US6938487B2 (en) Inertia sensor
KR100227787B1 (ko) 실리콘 미소 구조체 제조 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070821