JP2004125736A - Method and device for measuring enthalpy of saturated water, latent evaporation heat of saturated water, enthalpy of superheated steam and dryness fraction of wet steam - Google Patents

Method and device for measuring enthalpy of saturated water, latent evaporation heat of saturated water, enthalpy of superheated steam and dryness fraction of wet steam Download PDF

Info

Publication number
JP2004125736A
JP2004125736A JP2002293677A JP2002293677A JP2004125736A JP 2004125736 A JP2004125736 A JP 2004125736A JP 2002293677 A JP2002293677 A JP 2002293677A JP 2002293677 A JP2002293677 A JP 2002293677A JP 2004125736 A JP2004125736 A JP 2004125736A
Authority
JP
Japan
Prior art keywords
index value
enthalpy
steam
superheated steam
saturated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002293677A
Other languages
Japanese (ja)
Other versions
JP3949044B2 (en
Inventor
Koji Tatsuta
竜田 孝司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2002293677A priority Critical patent/JP3949044B2/en
Publication of JP2004125736A publication Critical patent/JP2004125736A/en
Application granted granted Critical
Publication of JP3949044B2 publication Critical patent/JP3949044B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for measuring enthalpy of saturated water, which can improve the measurement accuracy of information for measuring the dryness fraction of wet steam and reduce the measurement cost. <P>SOLUTION: The device comprises a wet steam pressure detecting means 5 which detects the pressure of the wet steam to be measured, a wet steam index value deriving means 81 which, based on the information detected by the wet steam pressure detecting means 5, multiplies the fourth root of the absolute pressure of the wet steam by a coefficient to obtain a wet steam index value, and a saturated water enthalpy deriving means 82 which obtains enthalpy i1 of saturated water using a n-th formula for deriving the enthalpy of saturated water, having the wet steam index value as a variable. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、飽和水のエンタルピ、飽和水の蒸発潜熱、過熱蒸気のエンタルピ、湿り蒸気の乾き度測定方法及び測定装置に関する。
【0002】
【従来の技術】
被加工物の加工処理や殺菌処理等の各処理において用いられる蒸気の管理は、湿り蒸気中の乾き飽和蒸気の質量割合、即ち乾き度を測定することにより行われる。
そして、湿り蒸気の乾き度を測定する方法としては、測定対象の湿り蒸気を断熱膨張させて過熱蒸気にして、断熱膨張前の飽和水のエンタルピと蒸発潜熱、及び、断熱膨張後の過熱蒸気のエンタルピを湿り蒸気の乾き度を求めるための情報として測定し、それら飽和水のエンタルピi1と蒸発潜熱r、及び、過熱蒸気のエンタルピi2とにより、上記の数1にて湿り蒸気の乾き度xを求める方法が知られている。
上記の方法を用いて湿り蒸気の乾き度を測定するようにした湿り蒸気の乾き度測定装置として、従来は、測定対象の湿り蒸気の圧力を検出する湿り蒸気圧力センサ、断熱膨張後の過熱蒸気の温度を検出する過熱蒸気温度センサ、断熱膨張後の過熱蒸気の圧力を検出する過熱蒸気圧力センサを設け、それら湿り蒸気圧力センサにて検出される湿り蒸気の圧力、過熱蒸気温度センサにて検出される過熱蒸気の温度、及び、過熱蒸気圧力センサにて検出される過熱蒸気の圧力に基づいて、湿り蒸気の乾き度を演算するものがあった(例えば、特許文献1参照。)。
尚、この従来の湿り蒸気の乾き度測定装置を以下の説明では第1従来技術と称する場合がある。
この第1従来技術では、湿り蒸気の圧力、過熱蒸気の温度、及び、過熱蒸気の圧力に基づいて、湿り蒸気の乾き度を演算する方法についての説明はないが、以下のようにして乾き度を演算するものであると考えられる。
即ち、湿り蒸気の圧力とエンタルピと蒸発潜熱との関係を示す飽和蒸気表、並びに、過熱蒸気の温度と圧力とエンタルピとの関係を示す過熱蒸気表を記憶手段に記憶させておいて、湿り蒸気の測定圧力と前記記憶手段に記憶されている飽和蒸気表に基づいて、飽和水のエンタルピ及び蒸発潜熱を求め、並びに、過熱蒸気の測定温度及び測定圧力と前記記憶手段に記憶されている過熱蒸気表に基づいて、過熱蒸気のエンタルピを求め、そのように求めた飽和水のエンタルピ及び蒸発潜熱、並びに、過熱蒸気のエンタルピにより、上記の数1にて湿り蒸気の乾き度を演算するものであると考えられる。
【0003】
又、従来、湿り蒸気の乾き度を測定する湿り蒸気の乾き度測定装置として、上記の第1従来技術の他に、以下に説明する第2従来技術があった(例えば、特許文献2参照。)。
この第2従来技術は、所定量の液体を貯留する測定容器に、測定対象の湿り蒸気を供給し、供給した湿り蒸気の量と、測定容器内の液体の温度変化を検出して、そのように検出した湿り蒸気量、液体の温度変化から、熱量換算に基づいて供給湿り蒸気のエンタルピを湿り蒸気の乾き度を求めるための情報として演算し、そのエンタルピから湿り蒸気の乾き度を求めるように構成していた。
つまり、湿り蒸気の乾き度とエンタルピとの関係は、各圧力において、乾き飽和蒸気の乾き度を100%とし、飽和水の乾き度を0%として、乾き飽和蒸気のエンタルピと飽和水のエンタルピの値の間を比例配分することにより一義的に決まるので、各圧力毎の乾き度とエンタルピとの関係を記憶手段に記憶しておいて、演算した測定対象の湿り蒸気のエンタルピから乾き度を求めるように構成したものである。
【0004】
【特許文献1】
特開2002−174578号公報
【特許文献2】
特開2002−243676号公報
【0005】
【発明が解決しようとする課題】
しかしながら、第1従来技術においては、飽和水のエンタルピ及び飽和水の蒸発潜熱の夫々は、飽和蒸気表に基づいて測定することから、飽和蒸気表といった多量のデータを記憶手段に記憶させる必要があるので、記憶手段として記憶容量の大きい価格の高いものが必要となり、測定コストの高騰化につながると共に、測定対象の湿り蒸気の検出圧力が飽和蒸気表に含まれていない場合、即ち、検出圧力が飽和蒸気表において隣接している圧力の間の値である場合は、飽和水のエンタルピ及び飽和水の蒸発潜熱の測定精度が低くなるという問題があった。
つまり、検出圧力が飽和蒸気表において隣接している圧力の間の値である場合には、それら隣接している圧力に対応するエンタルピや蒸発潜熱を単純に比例配分して求めることが考えられるが、圧力とエンタルピとの関係、及び、圧力と蒸発潜熱との関係は単なる一次関数にて示される関係ではないことから、前述のように比例配分によりエンタルピや蒸発潜熱を求めると、それらの精度が低くなる。
ちなみに、測定対象の湿り蒸気の検出圧力が飽和蒸気表に含まれていないことに起因して飽和水のエンタルピや飽和水の蒸発潜熱の測定精度が低くなるという問題を解消するために、飽和蒸気表におけるデータを極力狭い圧力間隔にて取得することが考えられるが、そのデータの取得に時間と労力を費やす必要があると共に、そのデータを記憶させる記憶手段として、記憶容量の大きい価格が更に高いものが必要となり、飽和水のエンタルピ及び飽和水の蒸発潜熱の測定コストが更に高騰化するという問題が生じる。
【0006】
又、第1従来技術においては、過熱蒸気のエンタルピは、過熱蒸気表に基づいて測定することから、過熱蒸気表といった多量のデータを記憶手段に記憶させる必要があるので、記憶手段として記憶容量の大きい価格の高いものが必要となり、測定コストの高騰化につながると共に、測定対象の過熱蒸気の検出温度や検出圧力が過熱蒸気表に含まれていない場合、即ち、検出温度が過熱蒸気表において隣接している温度の間の値である場合や、検出圧力が過熱蒸気表において隣接している圧力の間の値である場合は、過熱蒸気のエンタルピの測定精度が低くなるという問題があった。
つまり、圧力とエンタルピとの関係、及び、温度とエンタルピとの関係は、単なる一次関数にて示される関係ではないことから、検出温度が過熱蒸気表において隣接している温度の間の値である場合や、検出圧力が過熱蒸気表において隣接している圧力の間の値である場合に、隣接しているエンタルピを単純に比例配分して求めると、その精度が低くなる。
ちなみに、測定対象の過熱蒸気の検出温度や検出圧力が過熱蒸気表に含まれていないことに起因して過熱蒸気のエンタルピの測定精度が低くなるという問題を解消するために、過熱蒸気表におけるデータを極力狭い温度及び圧力にて取得することが考えられるが、そのデータの取得に時間と労力を費やす必要があると共に、そのデータを記憶させる記憶手段として、記憶容量の大きい価格が更に高いものが必要となり、過熱蒸気のエンタルピの測定コストが更に高騰化するという問題が生じる。
【0007】
そして、第1従来技術においては、上述のように、湿り蒸気の乾き度を求めるための情報としての飽和水のエンタルピ、蒸発潜熱及び過熱蒸気のエンタルピの測定精度が悪いので、それら飽和水のエンタルピ、蒸発潜熱及び過熱蒸気のエンタルピに基づいて求める湿り蒸気の乾き度の精度が低くなる。
【0008】
又、第2従来技術では、湿り蒸気の量と湿り蒸気の温度とに基づいて、湿り蒸気のエンタルピを求めるのであるが、湿り蒸気の量は測定方法が複雑で精度良く測定し難いため、湿り蒸気のエンタルピの測定精度が低くなるという問題があった。
そして、第2従来技術においては、湿り蒸気の乾き度を求めるための情報としての湿り蒸気のエンタルピの測定精度が低いので、その湿り蒸気のエンタルピに基づいて求める湿り蒸気の乾き度の精度が低くなる。
しかも、湿り蒸気の量を測定するための構成が複雑となることから、装置価格が高騰化して、湿り蒸気のエンタルピの測定コストの高騰化につながるという問題があった。
要するに、従来では、湿り蒸気の乾き度を測定するための情報、例えば、飽和水のエンタルピ、飽和水の蒸発潜熱、過熱蒸気のエンタルピ及び湿り蒸気のエンタルピ等を測定するに当たって、その測定精度の向上及び測定コストの低廉化を図り難いという問題があった。
【0009】
本発明は、かかる実情に鑑みてなされたものであり、その目的は、湿り蒸気の乾き度を測定するための情報の測定精度の向上及び測定コストの低廉化を図り得る飽和水のエンタルピ、飽和水の蒸発潜熱、過熱蒸気のエンタルピ、湿り蒸気の乾き度測定方法及び測定装置を提供することにある。
【0010】
【課題を解決するための手段】
〔請求項1記載の発明〕
請求項1に記載の飽和水のエンタルピ測定方法は、測定対象の湿り蒸気の絶対圧力の4乗根に係数を乗じて湿り蒸気指標値を求め、その湿り蒸気指標値を変数とする飽和水エンタルピ導出用のn次式にて飽和水のエンタルピi1を求める点を特徴構成とする。
即ち、測定対象の湿り蒸気の絶対圧力を測定して、その絶対圧力の4乗根を求め、その求めた絶対圧力の4乗根に係数を乗じて湿り蒸気指標値を求め、その求めた湿り蒸気指標値を、湿り蒸気指標値を変数とする飽和水エンタルピ導出用のn次式に代入することにより、飽和水のエンタルピi1を求める。
つまり、本発明の発明者は、飽和水のエンタルピを測定するに当たって、測定精度の向上及び測定コストの低廉化を図るべく鋭意研究し、飽和水のエンタルピは、湿り蒸気の絶対圧力の4乗根に所定の係数を乗じて求められる湿り蒸気指標値を変数とするn次式にて、精度良く近似できることを見出した。
そして、湿り蒸気の絶対圧力の4乗根に所定の係数を乗じて求められる湿り蒸気指標値を変数として、換言すれば、湿り蒸気の絶対圧力を変数として、飽和水のエンタルピを精度良く近似できる飽和水エンタルピ導出用のn次式に、測定対象の湿り蒸気の絶対圧力の測定値を代入して、飽和水のエンタルピを求めるので、飽和水のエンタルピを精度良く測定することが可能となる。
又、飽和蒸気表を用いることが無いので、上記の第1従来技術において要求されたところ、測定精度を向上するため精密な飽和蒸気表のデータを取得するといったことが不要となり、又、単に湿り蒸気の圧力を測定するといった簡単な構成にて、飽和水のエンタルピを測定することが可能となるので、測定コストの低廉化を図ることが可能となる。
従って、湿り蒸気の乾き度を測定するための情報としての飽和水のエンタルピの測定精度の向上及び測定コストの低廉化を図り得る飽和水のエンタルピ測定方法を提供することができるようになった。
【0011】
〔請求項2記載の発明〕
請求項2に記載の飽和水のエンタルピ測定装置は、測定対象の湿り蒸気の圧力を検出する湿り蒸気圧力検出手段と、
その湿り蒸気圧力検出手段の検出情報に基づいて、湿り蒸気の絶対圧力の4乗根に係数を乗じて湿り蒸気指標値を求める湿り蒸気指標値導出手段と、
前記湿り蒸気指標値を変数とする飽和水エンタルピ導出用のn次式にて飽和水のエンタルピi1を求める飽和水エンタルピ導出手段とが設けられている点を特徴構成とする。
即ち、湿り蒸気圧力検出手段により、測定対象の湿り蒸気の圧力が検出され、湿り蒸気指標値導出手段により、湿り蒸気圧力検出手段の検出情報に基づいて、湿り蒸気の絶対圧力の4乗根に係数を乗じて湿り蒸気指標値が求められ、飽和水エンタルピ導出手段により、湿り蒸気指標値導出手段にて求められた湿り蒸気指標値を、湿り蒸気指標値を変数とする飽和水エンタルピ導出用のn次式に代入することにより、飽和水のエンタルピi1が求められる。
つまり、請求項1記載の発明について先に説明したように、飽和水のエンタルピは、湿り蒸気の絶対圧力の4乗根に所定の係数を乗じて求められる湿り蒸気指標値を変数とするn次式にて、精度良く近似することができることを見出し、そして、湿り蒸気の絶対圧力の4乗根に所定の係数を乗じて求められる湿り蒸気指標値を変数として、換言すれば、湿り蒸気の絶対圧力を変数として、飽和水のエンタルピを精度良く近似できるものとして設定した飽和水エンタルピ導出用のn次式に、測定対象の湿り蒸気の絶対圧力の測定値を代入して、飽和水のエンタルピを求めるので、飽和水のエンタルピを精度良く測定することが可能となる。
又、飽和水のエンタルピを、情報量の多い飽和蒸気表を用いること無く簡単な数式にて求めるので、記憶手段として記憶容量の少ない安価なものを用いることが可能となり、又、単に湿り蒸気の圧力を測定するといった簡単な構成にて、飽和水のエンタルピを測定することが可能となるので、装置コストの低廉化が図れ、延いては、飽和水のエンタルピの測定コストの低廉化を図ることが可能となる。
従って、湿り蒸気の乾き度を測定するための情報としての飽和水のエンタルピの測定精度の向上及び測定コストの低廉化を図り得る飽和水のエンタルピ測定装置を提供することができるようになった。
【0012】
〔請求項3記載の発明〕
請求項3に記載の飽和水の蒸発潜熱測定方法は、測定対象の湿り蒸気の絶対圧力の4乗根に係数を乗じて湿り蒸気指標値を求め、その湿り蒸気指標値を変数とする飽和水蒸発潜熱導出用のn次式にて飽和水の蒸発潜熱rを求める点を特徴構成とする。
即ち、測定対象の湿り蒸気の絶対圧力を測定して、その絶対圧力の4乗根を求め、その求めた絶対圧力の4乗根に係数を乗じて湿り蒸気指標値を求め、その求めた湿り蒸気指標値を、湿り蒸気指標値を変数とする飽和水蒸発潜熱導出用のn次式に代入することにより、飽和水の蒸発潜熱rを求める。
つまり、本発明の発明者は、飽和水の蒸発潜熱を測定するに当たって、測定精度の向上及び測定コストの低廉化を図るべく鋭意研究し、飽和水の蒸発潜熱は、湿り蒸気の絶対圧力の4乗根に所定の係数を乗じて求められる湿り蒸気指標値を変数とするn次式にて、精度良く近似できることを見出した。
そして、湿り蒸気の絶対圧力の4乗根に所定の係数を乗じて求められる湿り蒸気指標値を変数として、換言すれば、湿り蒸気の絶対圧力を変数として、飽和水の蒸発潜熱を精度良く近似できる飽和水蒸発潜熱導出用のn次式に、測定対象の湿り蒸気の絶対圧力の測定値を代入して、飽和水の蒸発潜熱を求めるので、飽和水の蒸発潜熱を精度良く測定することが可能となる。
又、飽和蒸気表を用いることが無いので、上記の第1従来技術において要求されたところ、測定精度を向上するため精密な飽和蒸気表のデータを取得するといったことが不要となり、又、単に湿り蒸気の圧力を測定するといった簡単な構成にて、飽和水の蒸発潜熱を測定することが可能となるので、測定コストの低廉化を図ることが可能となる。
従って、湿り蒸気の乾き度を測定するための情報としての飽和水の蒸発潜熱の測定精度の向上及び測定コストの低廉化を図り得る飽和水の蒸発潜熱測定方法を提供することができるようになった。
【0013】
〔請求項4記載の発明〕
請求項4に記載の飽和水の蒸発潜熱測定装置は、測定対象の湿り蒸気の圧力を検出する湿り蒸気圧力検出手段と、
その湿り蒸気圧力検出手段の検出情報に基づいて、湿り蒸気の絶対圧力の4乗根に係数を乗じて湿り蒸気指標値を求める湿り蒸気指標値導出手段と、
前記湿り蒸気指標値を変数とする飽和水蒸発潜熱導出用のn次式にて飽和水の蒸発潜熱rを求める飽和水蒸発潜熱導出手段とが設けられている点を特徴構成とする。
即ち、湿り蒸気圧力検出手段により、測定対象の湿り蒸気の圧力が検出され、湿り蒸気指標値導出手段により、湿り蒸気圧力検出手段の検出情報に基づいて、湿り蒸気の絶対圧力の4乗根に係数を乗じて湿り蒸気指標値が求められ、飽和水蒸発潜熱導出手段により、湿り蒸気指標値導出手段にて求められた湿り蒸気指標値を、湿り蒸気指標値を変数とする飽和水蒸発潜熱導出用のn次式に代入することにより、飽和水の蒸発潜熱rが求められる。
つまり、請求項3記載の発明について先に説明したように、飽和水の蒸発潜熱は、湿り蒸気の絶対圧力の4乗根に所定の係数を乗じて求められる湿り蒸気指標値を変数とするn次式にて、精度良く近似することができることを見出し、そして、湿り蒸気の絶対圧力の4乗根に所定の係数を乗じて求められる湿り蒸気指標値を変数として、換言すれば、湿り蒸気の絶対圧力を変数として、飽和水の蒸発潜熱を精度良く近似できるものとして設定した飽和水蒸発潜熱導出用のn次式に、測定対象の湿り蒸気の絶対圧力の測定値を代入して、飽和水の蒸発潜熱を求めるので、飽和水の蒸発潜熱を精度良く測定することが可能となる。
又、飽和水の蒸発潜熱を、情報量の多い飽和蒸気表を用いること無く簡単な数式にて求めるので、記憶手段として記憶容量の少ない安価なものを用いることが可能となり、又、単に湿り蒸気の圧力を測定するといった簡単な構成にて、飽和水の蒸発潜熱を測定することが可能となるので、装置コストの低廉化が図れ、延いては、飽和水の蒸発潜熱の測定コストの低廉化を図ることが可能となる。
従って、湿り蒸気の乾き度を測定するための情報としての飽和水の蒸発潜熱の測定精度の向上及び測定コストの低廉化を図り得る飽和水の蒸発潜熱測定装置を提供することができるようになった。
【0014】
〔請求項5記載の発明〕
請求項5に記載の過熱蒸気のエンタルピ測定方法は、測定対象の過熱蒸気の圧力を変数とする係数用指標値導出用の一次式にて係数用指標値を求め、測定対象の過熱蒸気の圧力を変数とする定数項用指標値導出用の一次式にて定数項用指標値を求め、前記係数用指標値を過熱蒸気の温度を変数とする項の係数とし且つ前記定数項用指標値を定数項とする過熱蒸気エンタルピ導出用の一次式にて、過熱蒸気のエンタルピi2を求める点を特徴構成とする。
即ち、測定対象の過熱蒸気の圧力及び温度を測定し、その測定圧力を、測定対象の過熱蒸気の圧力を変数とする係数用指標値導出用の一次式に代入して、係数用指標値を求め、並びに、測定圧力を、測定対象の過熱蒸気の圧力を変数とする定数項用指標値導出用の一次式に代入して、定数項用指標値を求め、続いて、測定温度を、前記係数用指標値を過熱蒸気の温度を変数とする項の係数とし且つ前記定数項用指標値を定数項とする過熱蒸気エンタルピ導出用の一次式に代入して、過熱蒸気のエンタルピi2を求める。
つまり、本発明の発明者は、過熱蒸気のエンタルピを測定するに当たって、測定精度の向上及び測定コストの低廉化を図るべく鋭意研究し、測定対象の過熱蒸気のエンタルピは、過熱蒸気エンタルピ導出用の一次式、即ち、測定対象の過熱蒸気の圧力を変数とする係数用指標値導出用の一次式にて求めた係数用指標値を過熱蒸気の温度を変数とする1次の項の係数とし、且つ、測定対象の過熱蒸気の圧力を変数とする定数項用指標値導出用の一次式にて求めた定数項用指標値を定数項とする一次式にて、精度良く近似することができることを見出した。
そして、過熱蒸気の圧力及び温度を変数として過熱蒸気のエンタルピを精度良く近似できるものとして設定した係数用指標値導出用、定数項用指標値導出用及び過熱蒸気エンタルピ導出用の3つの一次式に、測定対象の過熱蒸気の圧力及び温度の測定値を代入して過熱蒸気のエンタルピを求めるので、過熱蒸気のエンタルピを精度良く測定することが可能となる。
又、過熱蒸気表を用いることが無いので、上記の第1従来技術において要求されたところ、測定精度を向上するため精密な過熱蒸気表のデータを取得するといったことが不要となり、又、単に過熱蒸気の圧力及び温度を測定するといった簡単な構成にて、過熱蒸気のエンタルピを測定することが可能となるので、測定コストの低廉化を図ることが可能となる。
従って、湿り蒸気の乾き度を測定するための情報としての過熱蒸気のエンタルピの測定精度の向上及び測定コストの低廉化を図り得る過熱蒸気のエンタルピ測定方法を提供することができるようになった。
【0015】
〔請求項6記載の発明〕
請求項6に記載の過熱蒸気のエンタルピ測定装置は、測定対象の過熱蒸気の圧力を検出する過熱蒸気圧力検出手段と、温度を検出する過熱蒸気温度検出手段とが設けられ、
前記過熱蒸気圧力検出手段の検出情報に基づいて、過熱蒸気の圧力を変数とする係数用指標値導出用の一次式にて係数用指標値を求め、且つ、過熱蒸気の圧力を変数とする定数項用指標値導出用の一次式にて定数項用指標値を求める過熱蒸気指標値導出手段と、
前記過熱蒸気温度検出手段の検出情報に基づいて、前記係数用指標値を過熱蒸気の温度を変数とする項の係数とし且つ前記定数項用指標値を定数項とする過熱蒸気エンタルピ導出用の一次式により、過熱蒸気のエンタルピi2を求める過熱蒸気エンタルピ導出手段とが設けられている点を特徴構成とする。
即ち、過熱蒸気圧力検出手段により測定対象の過熱蒸気の圧力が検出され、過熱蒸気温度検出手段により測定対象の過熱蒸気の温度が測定され、過熱蒸気指標値導出手段により、過熱蒸気圧力検出手段の検出情報に基づいて、過熱蒸気の圧力を変数とする係数用指標値導出用の一次式にて係数用指標値が求められ、且つ、過熱蒸気の圧力を変数とする定数項用指標値導出用の一次式にて定数項用指標値が求められ、過熱蒸気エンタルピ導出手段により、過熱蒸気温度検出手段の検出情報に基づいて、前記係数用指標値を過熱蒸気の温度を変数とする項の係数とし且つ前記定数項用指標値を定数項とする過熱蒸気エンタルピ導出用の一次式により、過熱蒸気のエンタルピi2が求められる。
つまり、請求項5記載の発明について先に説明したように、測定対象の過熱蒸気のエンタルピは、過熱蒸気エンタルピ導出用の一次式、即ち、測定対象の過熱蒸気の圧力を変数とする係数用指標値導出用の一次式にて求めた係数用指標値を過熱蒸気の温度を変数とする1次の項の係数とし、且つ、測定対象の過熱蒸気の圧力を変数とする定数項用指標値導出用の一次式にて求めた定数項用指標値を定数項とする一次式にて、精度良く近似することができることを見出し、そして、過熱蒸気の圧力及び温度を変数として過熱蒸気のエンタルピを精度良く近似できるものとして設定した係数用指標値導出用、定数項用指標値導出用及び過熱蒸気エンタルピ導出用の3つの一次式に、測定対象の過熱蒸気の圧力及び温度の測定値を代入して過熱蒸気のエンタルピを求めるので、過熱蒸気のエンタルピを精度良く測定することが可能となる。
又、過熱蒸気のエンタルピは、情報量の多い過熱蒸気表を用いること無く簡単な数式にて求めるので、記憶手段として記憶容量の少ない安価なものを用いることが可能となり、又、単に過熱蒸気の圧力及び温度を測定するといった簡単な構成にて、過熱蒸気のエンタルピを測定することが可能となるので、装置コストの低廉化が図れ、延いては、過熱蒸気のエンタルピの測定コストの低廉化を図ることが可能となる。
従って、湿り蒸気の乾き度を測定するための情報としての過熱蒸気のエンタルピの測定精度の向上及び測定コストの低廉化を図り得る過熱蒸気のエンタルピ測定装置を提供することができるようになった。
【0016】
〔請求項7記載の発明〕
請求項7に記載の湿り蒸気の乾き度測定方法は、測定対象の湿り蒸気の絶対圧力の4乗根に係数を乗じて湿り蒸気指標値を求め、その湿り蒸気指標値を変数とする飽和水エンタルピ導出用のn次式にて飽和水のエンタルピi1を求め、前記湿り蒸気指標値を変数とする飽和水蒸発潜熱導出用のn次式にて飽和水の蒸発潜熱rを求め、
前記測定対象の湿り蒸気を断熱膨張させて生成した過熱蒸気の圧力を変数とする係数用指標値導出用の一次式にて係数用指標値を求め、前記過熱蒸気の圧力を変数とする定数項用指標値導出用の一次式にて定数項用指標値を求め、前記係数用指標値を過熱蒸気の温度を変数とする項の係数とし且つ前記定数項用指標値を定数項とする過熱蒸気エンタルピ導出用の一次式にて、過熱蒸気のエンタルピi2を求め、
前記飽和水のエンタルピi1、前記飽和水の蒸発潜熱r及び前記過熱蒸気のエンタルピi2に基づいて、湿り蒸気の乾き度xを、
【0017】
【数3】
x=(i2−i1)÷r
【0018】
にて求める点を特徴構成とする。
即ち、測定対象の湿り蒸気の絶対圧力を測定して、その絶対圧力の4乗根を求め、その求めた絶対圧力の4乗根に係数を乗じて湿り蒸気指標値を求め、その求めた湿り蒸気指標値を、湿り蒸気指標値を変数とする飽和水エンタルピ導出用のn次式に代入することにより、飽和水のエンタルピi1を求める。
又、前記湿り蒸気指標値を、湿り蒸気指標値を変数とする飽和水蒸発潜熱導出用のn次式に代入することにより、飽和水の蒸発潜熱rを求める。
更に、測定対象の湿り蒸気を断熱膨張させて生成された過熱蒸気の圧力及び温度を測定し、その測定圧力を、過熱蒸気の圧力を変数とする係数用指標値導出用の一次式に代入して、係数用指標値を求め、並びに、測定圧力を、過熱蒸気の圧力を変数とする定数項用指標値導出用の一次式に代入して、定数項用指標値を求め、続いて、測定温度を、前記係数用指標値を過熱蒸気の温度を変数とする項の係数とし且つ前記定数項用指標値を定数項とする過熱蒸気エンタルピ導出用の一次式に代入して、過熱蒸気のエンタルピi2を求める。
そして、上述のように測定した飽和水のエンタルピi1、飽和水の蒸発潜熱r及び過熱蒸気のエンタルピi2を、上記の数3に代入して、湿り蒸気の乾き度xを求める。
つまり、請求項1記載の発明について先に説明したように、飽和水エンタルピ導出用のn次式により、飽和水のエンタルピi1を測定精度の向上及び測定コストの低廉化を図りながら測定することが可能となり、又、請求項3記載の発明について先に説明したたように、飽和水蒸発潜熱導出用のn次式により、飽和水の蒸発潜熱rを測定精度の向上及び測定コストの低廉化を図りながら測定することが可能となり、更に、請求項5記載の説明について先に説明したように、係数用指標値導出用、定数項用指標値導出用及び過熱蒸気エンタルピ導出用の3つの一次式により、過熱蒸気のエンタルピを測定精度の向上及び測定コストの低廉化を図りながら測定することが可能となり、延いては、湿り蒸気の乾き度を測定精度の向上及び測定コストの低廉化を図りながら測定することが可能となる。
従って、湿り蒸気の乾き度を測定するための情報としての飽和水のエンタルピ、飽和水の蒸発潜熱及び過熱蒸気のエンタルピの測定精度の向上及び測定コストの低廉化を図って、湿り蒸気の乾き度の測定精度の向上及び測定コストの低廉化を図り得る湿り蒸気の乾き度測定方法を提供することができるようになった。
【0019】
〔請求項8記載の発明〕
請求項8に記載の湿り蒸気の乾き度測定装置は、測定対象の湿り蒸気の圧力を検出する湿り蒸気圧力検出手段と、
前記測定対象の湿り蒸気を断熱膨張させて過熱蒸気にする断熱膨張器と、
その断熱膨張器により生成された過熱蒸気の圧力を検出する過熱蒸気圧力検出手段と、
前記過熱蒸気の温度を検出する過熱蒸気温度検出手段とが設けられ、
前記湿り蒸気圧力検出手段の検出情報に基づいて、湿り蒸気の絶対圧力の4乗根に係数を乗じて湿り蒸気指標値を求める湿り蒸気指標値導出手段と、
前記湿り蒸気指標値を変数とする飽和水エンタルピ導出用のn次式にて飽和水のエンタルピi1を求める飽和水エンタルピ導出手段と、
前記湿り蒸気指標値を変数とする飽和水蒸発潜熱導出用のn次式にて飽和水の蒸発潜熱rを求める飽和水蒸発潜熱導出手段と、
前記過熱蒸気圧力検出手段の検出情報に基づいて、過熱蒸気の圧力を変数とする係数用指標値導出用の一次式にて係数用指標値を求め、且つ、過熱蒸気の圧力を変数とする定数項用指標値導出用の一次式にて定数項用指標値を求める過熱蒸気指標値導出手段と、
前記過熱蒸気温度検出手段の検出情報に基づいて、前記係数用指標値を過熱蒸気の温度を変数とする項の係数とし且つ前記定数項用指標値を定数項とする過熱蒸気エンタルピ導出用の一次式により、過熱蒸気のエンタルピi2を求める過熱蒸気エンタルピ導出手段とが設けられ、
前記飽和水のエンタルピi1、前記飽和水の蒸発潜熱r及び前記過熱蒸気のエンタルピi2に基づいて、
【0020】
【数4】
x=(i2−i1)÷r
【0021】
により湿り蒸気の乾き度xを求める乾き度導出手段が設けられている点を特徴構成とする。
即ち、湿り蒸気圧力検出手段にて、測定対象の湿り蒸気の圧力が検出され、過熱蒸気圧力検出手段により、断熱膨張器により生成された過熱蒸気の圧力が検出され、過熱蒸気温度検出手段により、断熱膨張器により生成された過熱蒸気の温度が検出される。
湿り蒸気指標値導出手段により、湿り蒸気圧力検出手段の検出情報に基づいて、湿り蒸気の絶対圧力の4乗根に係数を乗じて湿り蒸気指標値が求められ、飽和水エンタルピ導出手段により、湿り蒸気指標値導出手段にて求められた湿り蒸気指標値を、湿り蒸気指標値を変数とする飽和水エンタルピ導出用のn次式に代入することにより、飽和水のエンタルピi1が求められ、飽和水蒸発潜熱導出手段により、前記湿り蒸気指標値を、湿り蒸気指標値を変数とする飽和水蒸発潜熱導出用のn次式に代入することにより、飽和水の蒸発潜熱rが求められる。
過熱蒸気指標値導出手段により、過熱蒸気圧力検出手段の検出情報に基づいて、過熱蒸気の圧力を変数とする係数用指標値導出用の一次式にて係数用指標値が求められ、且つ、過熱蒸気の圧力を変数とする定数項用指標値導出用の一次式にて定数項用指標値が求められ、過熱蒸気エンタルピ導出手段により、過熱蒸気温度検出手段の検出情報に基づいて、前記係数用指標値を過熱蒸気の温度を変数とする項の係数とし且つ前記定数項用指標値を定数項とする過熱蒸気エンタルピ導出用の一次式により、過熱蒸気のエンタルピi2が求められる。
そして、乾き度導出手段により、上述のように測定された飽和水のエンタルピi1、飽和水の蒸発潜熱r及び過熱蒸気のエンタルピi2を上記の数4に代入することにより、湿り蒸気の乾き度xが求められる。
つまり、請求項2記載の発明について先に説明したように、湿り蒸気指標値導出手段及び飽和水エンタルピ導出手段により、飽和水のエンタルピi1を測定精度の向上及び測定コストの低廉化を図りながら測定することが可能となり、又、請求項4記載の発明について先に説明したたように、前記湿り蒸気指標値導出手段及び飽和水蒸発潜熱導出手段により、飽和水の蒸発潜熱rを測定精度の向上及び測定コストの低廉化を図りながら測定することが可能となり、更に、請求項6記載の説明について先に説明したように、過熱蒸気指標値導出手段及び過熱蒸気エンタルピ導出手段により、過熱蒸気のエンタルピを測定精度の向上及び測定コストの低廉化を図りながら測定することが可能となり、延いては、湿り蒸気の乾き度を測定精度の向上及び測定コストの低廉化を図りながら測定することが可能となる。
従って、湿り蒸気の乾き度を測定するための情報としての飽和水のエンタルピ、飽和水の蒸発潜熱及び過熱蒸気のエンタルピの測定精度の向上及び測定コストの低廉化を図って、湿り蒸気の乾き度の測定精度の向上及び測定コストの低廉化を図り得る湿り蒸気の乾き度測定装置を提供することができるようになった。
【0022】
【発明の実施の形態】
以下、図1に基づいて、本発明の実施の形態を説明する。
図1に示すように、湿り蒸気の乾き度測定装置は、測定対象の湿り蒸気を導く測定用蒸気供給路1と、その測定用蒸気供給路1にて供給される湿り蒸気を断熱膨張させて過熱蒸気にする断熱膨張器2と、その断熱膨張器2から蒸気を排出する蒸気排出路3と、測定用蒸気供給路1を通じて断熱膨張器2に供給される湿り蒸気の量を調節する流量調整弁4と、測定用蒸気供給路1における流量調整弁4よりも上流側の個所にて湿り蒸気の圧力を検出する湿り蒸気圧力センサ5(湿り蒸気圧力検出手段に相当する)と、断熱膨張器2内の過熱蒸気の圧力を検出する過熱蒸気圧力センサ6(過熱蒸気圧力検出手段に相当する)と、断熱膨張器2内の過熱蒸気の温度を検出する過熱蒸気温度センサ7(過熱蒸気温度検出手段に相当する)と、それら湿り蒸気圧力センサ5、過熱蒸気圧力センサ6及び過熱蒸気温度センサ7夫々の検出情報に基づいて湿り蒸気の乾き度を演算処理する処理部8と、その処理部8に処理情報を指令する操作部9と、処理部8の演算結果を表示する表示部10とを備えて構成してある。
【0023】
断熱膨張器2は、周知であるので詳細な説明及び図示は省略するが、測定用蒸気供給路1を通じて供給される湿り蒸気を、絞りを与えて断熱膨張器2内に噴出させて断熱膨張(等エンタルピ変化)させることにより、過熱蒸気にするように構成してある。
【0024】
処理部8は、マイクロコンピュータを用いて構成してあり、その処理部8には、湿り蒸気圧力センサ5の検出情報に基づいて、湿り蒸気の絶対圧力の4乗根に係数を乗じて湿り蒸気指標値pを求める湿り蒸気指標値導出手段81、その湿り蒸気指標値pを変数とする飽和水エンタルピ導出用のn次式(nは正の整数)にて飽和水のエンタルピi1を求める飽和水エンタルピ導出手段82、前記湿り蒸気指標値pを変数とする飽和水蒸発潜熱導出用のn次式(nは正の整数)にて飽和水の蒸発潜熱rを求める飽和水蒸発潜熱導出手段83、過熱蒸気圧力センサ6の検出情報に基づいて、過熱蒸気の圧力を変数とする係数用指標値導出用の一次式にて係数用指標値aを求め、且つ、過熱蒸気の圧力を変数とする定数項用指標値導出用の一次式にて定数項用指標値bを求める過熱蒸気指標値導出手段84、過熱蒸気温度センサ7の検出情報に基づいて、前記係数用指標値aを過熱蒸気の温度を変数とする項の係数とし且つ前記定数項用指標値bを定数項とする過熱蒸気エンタルピ導出用の一次式により、過熱蒸気のエンタルピi2を求める過熱蒸気エンタルピ導出手段85、並びに、前記飽和水のエンタルピi1、前記飽和水の蒸発潜熱r及び前記過熱蒸気のエンタルピi2に基づいて、下記の数5により湿り蒸気の乾き度xを求める乾き度導出手段86を備えてある。
【0025】
【数5】
x=(i2−i1)÷r
【0026】
具体的には、湿り蒸気指標値導出手段81、飽和水エンタルピ導出手段82、飽和水蒸発潜熱導出手段83、過熱蒸気指標値導出手段84、過熱蒸気エンタルピ導出手段85及び乾き度導出手段86の各手段は、夫々、処理部8を各手段として機能させるためのプログラムにて構成してあり、それらのプログラムを処理部8の記憶部(図示省略)に記憶させてある。
【0027】
湿り蒸気指標値導出手段81について説明を加えると、湿り蒸気指標値導出手段81は、湿り蒸気圧力センサ5にて検出される測定対象の湿り蒸気のゲージ圧力をP(MPaG)とすると、湿り蒸気指標値pを下記の数6にて求める。
【0028】
【数6】

Figure 2004125736
係数kは、例えば、1000の4乗根に設定する。
【0029】
飽和水エンタルピ導出手段82について説明を加えると、飽和水エンタルピ導出手段82は、飽和水のエンタルピi1(kJ/kg)を、上記の数6にて求めた湿り蒸気指標値pを変数とする下記の数7にて示される飽和水エンタルピ導出用の2次式にて求める。
【0030】
【数7】
i1=k×p+k×p+k
、k、kは定数であり、例えば、以下のように設定する。
=−1.8871
=156.01
=−54.846
【0031】
飽和水蒸発潜熱導出手段83について説明を加えると、飽和水蒸発潜熱導出手段83は、飽和水の蒸発潜熱r(kJ/kg)を、上記の数6にて求めた湿り蒸気指標値pを変数とする下記の数8にて示される飽和水蒸発潜熱導出用の2次式にて求める。
【0032】
【数8】
r=k×p+k×p+k
、k、kは定数であり、例えば、以下のように設定する。
=−3.6590
=−65.746
=2500.29
【0033】
過熱蒸気指標値導出手段84について説明を加えると、過熱蒸気指標値導出手段84は、過熱蒸気圧力センサ6にて検出される過熱蒸気のゲージ圧力をP(MPaG)とすると、係数用指標値aを、過熱蒸気の圧力Pを変数とする下記の数9の係数用指標値導出用の一次式にて求め、並びに、定数項用指標値bを、過熱蒸気の圧力Pを変数とする下記の数10の定数項用指標値導出用の一次式にて求める。
【0034】
【数9】
a=k×P+k
【0035】
【数10】
b=k10×P+k11
、k、k10、k11は定数であり、例えば、以下のように設定する。
=0.1702
=0.47625
10=−44.464
11=591.625
【0036】
過熱蒸気エンタルピ導出手段85について説明を加えると、過熱蒸気エンタルピ導出手段85は、過熱蒸気のエンタルピi2(kJ/kg)を、係数用指標値aを過熱蒸気の温度T(°C)を変数とする項の係数とし且つ定数項用指標値bを定数項とする下記の数11の過熱蒸気エンタルピ導出用の一次式により求める。
【0037】
【数11】
i2=4.18605×(a×T+b)
【0038】
そして、乾き度導出手段86は、湿り蒸気の乾き度xを、上述のようにして求められた飽和水のエンタルピi1、飽和水の蒸発潜熱r及び過熱蒸気のエンタルピi2に基づいて、上記の数5により求める。
【0039】
操作部9は、飽和水のエンタルピi1、飽和水の蒸発潜熱r、過熱蒸気のエンタルピi2及び湿り蒸気の乾き度xのうちから、測定するものを選択自在に指令することができるように構成してあり、処理部8は、操作部9から指令されたものを測定するように機能すると共に、その測定結果を表示部10に表示させる。
【0040】
つまり、飽和水のエンタルピi1の測定が指令されると、湿り蒸気指標値導出手段81及び飽和水エンタルピ導出手段82が作動して飽和水のエンタルピi1が測定され、その測定された飽和水のエンタルピi1が表示部10に表示され、飽和水の蒸発潜熱rの測定が指令されると、湿り蒸気指標値導出手段81及び飽和水蒸発潜熱導出手段83が作動して、飽和水の蒸発潜熱rが測定され、その測定された飽和水の蒸発潜熱rが表示部10に表示される。
又、過熱蒸気のエンタルピi2の測定が指令されると、過熱蒸気指標値導出手段84及び過熱蒸気エンタルピ導出手段85が作動して過熱蒸気のエンタルピi2が測定され、その測定された過熱蒸気のエンタルピi2が表示部10に表示される。
又、湿り蒸気の乾き度xの測定が指令されると、湿り蒸気指標値導出手段81、飽和水エンタルピ導出手段82、飽和水蒸発潜熱導出手段83、過熱蒸気指標値導出手段84、過熱蒸気エンタルピ導出手段85及び乾き度導出手段86が作動して、湿り蒸気の乾き度xが測定され、その測定された乾き度xが表示部10に表示される。
【0041】
上記のように構成した湿り蒸気の乾き度測定装置によれば、飽和水のエンタルピi1、飽和水の蒸発潜熱r、過熱蒸気のエンタルピi2及び湿り蒸気の乾き度xを連続して測定することが可能である。
【0042】
〔別実施形態〕
次に別実施形態を説明する。
(イ) 上記の実施形態においては、湿り蒸気の乾き度測定装置の実施形態について説明したが、以下、図1に基づいて、飽和水のエンタルピ測定装置、飽和水の蒸発潜熱測定装置、及び、過熱蒸気のエンタルピ測定装置夫々の実施形態について説明する。
飽和水のエンタルピ測定装置は、上記の実施形態において説明した湿り蒸気の乾き度測定装置のうちの、測定用蒸気供給路1、湿り蒸気圧力センサ5、処理部8、操作部9及び表示部10を備えて構成し、処理部8には、湿り蒸気指標値導出手段81及び飽和水エンタルピ導出手段82を備える。
【0043】
飽和水の蒸発潜熱測定装置は、上記の実施形態において説明した湿り蒸気の乾き度測定装置のうちの、測定用蒸気供給路1、湿り蒸気圧力センサ5、処理部8、操作部9及び表示部10を備えて構成し、処理部8には、湿り蒸気指標値導出手段81及び飽和水蒸発潜熱導出手段83を備える。
【0044】
過熱蒸気のエンタルピ測定装置は、上記の実施形態において説明した湿り蒸気の乾き度測定装置のうちの、測定用蒸気供給路1、断熱膨張器2、蒸気排出路3、流量調整弁4、過熱蒸気圧力センサ6、過熱蒸気温度センサ7、処理部8、操作部9及び表示部10を備えて構成し、処理部8には、過熱蒸気指標値導出手段84及び過熱蒸気エンタルピ導出手段85を備える。
【0045】
(ロ) 上記の実施形態において、飽和水エンタルピ導出用のn次式及び飽和水蒸発潜熱導出用のn次式として、夫々、2次の多項式を設定したが、1次の多項式を設定したり、3次以上の多項式を設定しても良い。但し、1次の多項式では誤差が大きくなるので、2次以上の多項式に設定するのが好ましい。
【0046】
(ハ) 飽和水のエンタルピi1を、上記の数6にて示される湿り蒸気指標値導出用の式及び数7にて示される飽和水エンタルピ導出用の2次式により、人為的に演算して求めても良い。
飽和水の蒸発潜熱rを、上記の数6にて示される湿り蒸気指標値導出用の式及び数8にて示される飽和水蒸発潜熱導出用の2次式により、人為的に演算して求めても良い。
過熱蒸気のエンタルピi2を、上記の数9にて示される係数用指標値導出用の一次式、数10にて示される定数項用指標値導出用の一次式及び数11にて示される過熱蒸気エンタルピ導出用の一次式により、人為的に演算して求めても良い。
湿り蒸気の乾き度xを、以下のように、人為的に演算することにより求めても良い。即ち、上述のように飽和水のエンタルピi1、飽和水の蒸発潜熱r及び過熱蒸気のエンタルピi2を演算して求めると共に、それら飽和水のエンタルピi1、飽和水の蒸発潜熱r及び過熱蒸気のエンタルピi2に基づいて、上記の数5により、湿り蒸気の乾き度xを求める。
【0047】
(ニ) 定数k,k,k,k,k,k,k,k,k,k10,k11の具体値は、上記の実施形態において例示した値に限定されるものではなく、導出目的の各値を精度良く求めることができるようにすべく、種々に設定することができる。例えば、湿り蒸気の乾き度を0〜100%の間で複数の範囲に分けて、各範囲毎に、乾き度を精度良く測定することができるように、前記各定数を設定すると、湿り蒸気の乾き度の測定精度を一段と向上することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施形態にかかる湿り蒸気の乾き度測定装置を示すブロック図
【符号の説明】
2  断熱膨張器
5  湿り蒸気圧力検出手段
6  過熱蒸気圧力検出手段
7  過熱蒸気温度検出手段
81 湿り蒸気指標値導出手段
82 飽和水エンタルピ導出手段
83 飽和水蒸発潜熱導出手段
84 過熱蒸気指標値導出手段
85 過熱蒸気エンタルピ導出手段
86 乾き度導出手段[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for measuring enthalpy of saturated water, latent heat of evaporation of saturated water, enthalpy of superheated steam, and dryness of wet steam.
[0002]
[Prior art]
The management of the steam used in each processing such as the processing and sterilization of the workpiece is performed by measuring the mass ratio of the dry saturated steam in the wet steam, that is, the dryness.
Then, as a method of measuring the dryness of the wet steam, the wet steam to be measured is adiabatically expanded to superheated steam, and the enthalpy and latent heat of evaporation of the saturated water before the adiabatic expansion, and the superheated steam after the adiabatic expansion. The enthalpy is measured as information for determining the dryness of the wet steam, and the enthalpy i1 of the saturated water, the latent heat of evaporation r, and the enthalpy i2 of the superheated steam are used to calculate the dryness x of the wet steam in Equation 1 above. The method of seeking is known.
Conventionally, as a wet steam dryness measuring apparatus that measures the dryness of wet steam using the above method, a wet steam pressure sensor that detects the pressure of the wet steam to be measured, a superheated steam after adiabatic expansion, A superheated steam temperature sensor that detects the temperature of the superheated steam and a superheated steam pressure sensor that detects the pressure of the superheated steam after adiabatic expansion are provided.The pressure of the wet steam detected by the wet steam pressure sensor is detected by the superheated steam temperature sensor. In some cases, the dryness of wet steam is calculated based on the temperature of the superheated steam and the pressure of the superheated steam detected by the superheated steam pressure sensor (for example, see Patent Document 1).
Note that this conventional wet steam dryness measuring apparatus may be referred to as a first conventional technique in the following description.
In the first prior art, there is no description of a method of calculating the dryness of wet steam based on the pressure of wet steam, the temperature of superheated steam, and the pressure of superheated steam, but the dryness is calculated as follows. Is calculated.
That is, a saturated steam table indicating the relationship between the pressure of wet steam, enthalpy, and latent heat of vaporization, and a superheated steam table indicating the relationship between temperature, pressure, and enthalpy of superheated steam are stored in storage means, and the wet steam is stored. The enthalpy and latent heat of vaporization of the saturated water are determined based on the measured pressure of the superheated steam and the saturated steam table stored in the storage means, and the measured temperature and measured pressure of the superheated steam and the superheated steam stored in the storage means are obtained. Based on the table, the enthalpy of the superheated steam is obtained, and the dryness of the wet steam is calculated by the above equation (1) from the enthalpy of the saturated water and the latent heat of vaporization thus obtained, and the enthalpy of the superheated steam. it is conceivable that.
[0003]
Conventionally, as a wet steam dryness measuring apparatus for measuring the dryness of wet steam, there has been a second prior art described below in addition to the above first prior art (for example, see Patent Document 2). ).
This second conventional technique supplies wet steam to be measured to a measuring container that stores a predetermined amount of liquid, detects the amount of the supplied wet steam, and detects a temperature change of the liquid in the measuring container. From the detected amount of wet steam and the temperature change of the liquid, the enthalpy of the supplied wet steam is calculated as information for calculating the dryness of the wet steam based on the calorific value conversion, and the dryness of the wet steam is calculated from the enthalpy. Was composed.
That is, the relationship between the dryness of the wet steam and the enthalpy of the dry steam is defined as 100% of the dryness of the dry saturated steam and 0% of the dryness of the saturated water at each pressure. Since the value is uniquely determined by proportionally distributing the values, the relationship between the dryness and the enthalpy for each pressure is stored in the storage means, and the dryness is calculated from the calculated enthalpy of the wet steam to be measured. It is configured as follows.
[0004]
[Patent Document 1]
JP-A-2002-174578
[Patent Document 2]
JP-A-2002-243676
[0005]
[Problems to be solved by the invention]
However, in the first prior art, since each of the enthalpy of saturated water and the latent heat of evaporation of saturated water is measured based on the saturated steam table, it is necessary to store a large amount of data such as the saturated steam table in the storage means. Therefore, a high-priced storage device having a large storage capacity is required as the storage means, which leads to an increase in measurement cost, and when the detection pressure of the wet steam to be measured is not included in the saturated steam table, that is, when the detection pressure is In the case of a value between adjacent pressures in the saturated steam table, there is a problem that the measurement accuracy of the enthalpy of the saturated water and the latent heat of vaporization of the saturated water is reduced.
In other words, when the detected pressure is a value between adjacent pressures in the saturated steam table, it is conceivable that the enthalpy and latent heat of vaporization corresponding to the adjacent pressures are simply obtained by proportionally distributing. , The relationship between pressure and enthalpy, and the relationship between pressure and latent heat of vaporization are not simply relationships expressed by a linear function. Lower.
By the way, in order to eliminate the problem that the measurement accuracy of the enthalpy of saturated water and the latent heat of evaporation of saturated water is reduced due to the fact that the detection pressure of the wet steam to be measured is not included in the saturated steam table, It is conceivable to acquire the data in the table at as narrow a pressure interval as possible, but it is necessary to spend time and effort in acquiring the data, and as a storage means for storing the data, the price of a large storage capacity is higher. However, the cost of measuring the enthalpy of saturated water and the latent heat of vaporization of saturated water is further increased.
[0006]
Further, in the first prior art, since the enthalpy of the superheated steam is measured based on the superheated steam table, it is necessary to store a large amount of data such as the superheated steam table in the storage means. A large and expensive product is required, which leads to an increase in measurement cost.In addition, if the detected temperature and pressure of the superheated steam to be measured are not included in the superheated steam table, that is, the detected temperature is adjacent to the superheated steam table In the case where the detected pressure is a value between the temperatures of the superheated steam and the detected pressure is a value between the adjacent pressures in the superheated steam table, the measurement accuracy of the enthalpy of the superheated steam is reduced.
In other words, since the relationship between pressure and enthalpy, and the relationship between temperature and enthalpy are not simply relationships represented by linear functions, the detected temperature is a value between adjacent temperatures in the superheated steam table. In the case where the detected pressure is a value between the adjacent pressures in the superheated steam table, if the adjacent enthalpies are simply obtained by proportionally distributing, the accuracy is reduced.
By the way, in order to eliminate the problem that the measurement temperature and pressure of the superheated steam to be measured are not included in the superheated steam table, the measurement accuracy of the enthalpy of the superheated steam is reduced, the data in the superheated steam table are used. It is conceivable to obtain the data at as narrow a temperature and pressure as possible.However, it is necessary to spend time and effort to obtain the data, and as a storage means for storing the data, a storage device having a larger storage capacity and a higher price is required. This necessitates a problem that the cost of measuring the enthalpy of the superheated steam further increases.
[0007]
In the first prior art, as described above, since the measurement accuracy of the enthalpy of the saturated water and the enthalpy of the latent heat of vaporization and the enthalpy of the superheated steam as the information for determining the dryness of the wet steam is poor, the enthalpy of the saturated water is low. , The accuracy of the dryness of the wet steam obtained based on the latent heat of vaporization and the enthalpy of the superheated steam becomes low.
[0008]
In the second prior art, the enthalpy of the wet steam is obtained based on the amount of the wet steam and the temperature of the wet steam. However, the amount of the wet steam is complicated and it is difficult to measure it with high accuracy. There has been a problem that the measurement accuracy of the enthalpy of steam is low.
In the second prior art, since the measurement accuracy of the enthalpy of the wet steam as information for obtaining the dryness of the wet steam is low, the accuracy of the dryness of the wet steam obtained based on the enthalpy of the wet steam is low. Become.
In addition, since the configuration for measuring the amount of wet steam becomes complicated, there is a problem that the cost of the apparatus rises and the cost of measuring the enthalpy of the wet steam rises.
In short, conventionally, information for measuring the dryness of wet steam, for example, enthalpy of saturated water, latent heat of evaporation of saturated water, enthalpy of superheated steam, enthalpy of wet steam, etc. In addition, there is a problem that it is difficult to reduce the measurement cost.
[0009]
The present invention has been made in view of the above circumstances, and has as its object to improve the measurement accuracy of information for measuring the dryness of wet steam and to reduce the cost of measuring the enthalpy and saturation of saturated water. It is an object of the present invention to provide a method and apparatus for measuring latent heat of vaporization of water, enthalpy of superheated steam, and dryness of wet steam.
[0010]
[Means for Solving the Problems]
[Invention of claim 1]
A method for measuring the enthalpy of saturated water according to claim 1 is to obtain a wet steam index value by multiplying a coefficient by a fourth root of the absolute pressure of the wet steam to be measured, and to use the wet steam index value as a variable. The feature is that the enthalpy i1 of the saturated water is obtained by the n-th order equation for derivation.
That is, the absolute pressure of the wet steam to be measured is measured, the fourth root of the absolute pressure is obtained, and the obtained fourth root of the absolute pressure is multiplied by a coefficient to obtain a wet steam index value. The enthalpy i1 of the saturated water is obtained by substituting the steam index value into the n-th order equation for deriving the saturated water enthalpy using the wet steam index value as a variable.
In other words, the inventor of the present invention has intensively studied the measurement of the enthalpy of the saturated water in order to improve the measurement accuracy and reduce the cost of the measurement. The enthalpy of the saturated water is the fourth root of the absolute pressure of the wet steam. Has been found to be able to be accurately approximated by an n-th order equation in which the wet steam index value obtained by multiplying by a predetermined coefficient is a variable.
The enthalpy of the saturated water can be accurately approximated using the wet steam index value obtained by multiplying the fourth root of the absolute pressure of the wet steam by a predetermined coefficient as a variable, in other words, using the absolute pressure of the wet steam as a variable. The enthalpy of the saturated water is obtained by substituting the measured value of the absolute pressure of the wet steam to be measured into the n-th order equation for deriving the enthalpy of the saturated water, so that the enthalpy of the saturated water can be accurately measured.
Further, since a saturated steam table is not used, it is not necessary to obtain accurate saturated steam table data in order to improve measurement accuracy, which is required in the above-mentioned first conventional technique. The enthalpy of the saturated water can be measured with a simple configuration such as measuring the pressure of steam, so that the measurement cost can be reduced.
Accordingly, it is possible to provide a method for measuring the enthalpy of the saturated water, which can improve the measurement accuracy of the enthalpy of the saturated water as information for measuring the dryness of the wet steam and reduce the measurement cost.
[0011]
[Invention of claim 2]
The enthalpy measuring device for saturated water according to claim 2 is a wet steam pressure detecting means for detecting the pressure of the wet steam to be measured,
A wet steam index value deriving means for obtaining a wet steam index value by multiplying a coefficient by a fourth root of the absolute pressure of the wet steam based on the detection information of the wet steam pressure detecting means;
There is provided a saturated water enthalpy deriving means for obtaining an enthalpy of saturated water i1 by an n-th order equation for deriving saturated water enthalpy using the wet steam index value as a variable.
That is, the wet steam pressure detecting means detects the pressure of the wet steam to be measured, and the wet steam index value deriving means calculates the absolute pressure of the wet steam on the basis of the detection information of the wet steam pressure detecting means. The wet steam index value is obtained by multiplying the coefficient by a coefficient, and the saturated water enthalpy derivation means uses the wet steam index value obtained by the wet steam index value derivation means as a variable for the saturated water enthalpy using the wet steam index value as a variable. The enthalpy i1 of the saturated water is obtained by substituting into the n-th order equation.
That is, as described above, the enthalpy of the saturated water is determined by multiplying the fourth root of the absolute pressure of the wet steam by a predetermined coefficient to the nth order using the wet steam index value as a variable. It is found that the approximation can be made with high accuracy by the formula, and the wet steam index value obtained by multiplying the fourth root of the absolute pressure of the wet steam by a predetermined coefficient is used as a variable, in other words, the absolute value of the wet steam. Using the pressure as a variable and substituting the measured value of the absolute pressure of the wet steam to be measured into the nth order equation for deriving the saturated water enthalpy set as that which can accurately approximate the enthalpy of the saturated water, Since it is determined, the enthalpy of the saturated water can be accurately measured.
Further, since the enthalpy of the saturated water is obtained by a simple formula without using a saturated steam table having a large amount of information, it is possible to use an inexpensive memory having a small storage capacity as a storage means. Since the enthalpy of saturated water can be measured with a simple configuration such as measuring pressure, the cost of equipment can be reduced, and the cost of measuring the enthalpy of saturated water can be reduced. Becomes possible.
Therefore, it has become possible to provide an apparatus for measuring the enthalpy of saturated water that can improve the measurement accuracy of the enthalpy of saturated water as information for measuring the dryness of wet steam and reduce the cost of measurement.
[0012]
[Invention of claim 3]
The method for measuring the latent heat of vaporization of saturated water according to claim 3, wherein a coefficient of the fourth root of the absolute pressure of the wet steam to be measured is multiplied by a coefficient to obtain a wet steam index value, and the saturated steam index value is used as a variable. It is characterized in that the latent heat of evaporation r of saturated water is obtained by the n-th order equation for deriving latent heat of evaporation.
That is, the absolute pressure of the wet steam to be measured is measured, the fourth root of the absolute pressure is obtained, and the obtained fourth root of the absolute pressure is multiplied by a coefficient to obtain a wet steam index value. By substituting the steam index value into the n-th order equation for deriving the latent heat of evaporation of saturated water using the wet steam index value as a variable, the latent heat of evaporation r of the saturated water is obtained.
In other words, the inventor of the present invention has studied diligently in measuring the latent heat of vaporization of saturated water in order to improve the measurement accuracy and reduce the cost of the measurement. The latent heat of vaporization of the saturated water is 4 times the absolute pressure of the wet steam. It has been found that the approximation can be made with high accuracy by an n-th order equation using the wet steam index value obtained by multiplying the root by a predetermined coefficient as a variable.
Then, using the wet steam index value obtained by multiplying the fourth root of the absolute pressure of the wet steam by a predetermined coefficient as a variable, in other words, using the absolute pressure of the wet steam as a variable, the latent heat of evaporation of the saturated water is accurately approximated. By substituting the measured value of the absolute pressure of the wet steam to be measured into the n-th equation for deriving the latent heat of evaporation of saturated water, the latent heat of evaporation of the saturated water is obtained. It becomes possible.
Further, since a saturated steam table is not used, it is not necessary to obtain accurate saturated steam table data in order to improve measurement accuracy, which is required in the above-mentioned first conventional technique. Since the latent heat of evaporation of saturated water can be measured with a simple configuration such as measuring the pressure of steam, the measurement cost can be reduced.
Therefore, it is possible to provide a method for measuring the latent heat of evaporation of saturated water, which can improve the measurement accuracy of the latent heat of evaporation of saturated water as information for measuring the dryness of wet steam and reduce the cost of measurement. Was.
[0013]
[Invention of claim 4]
An apparatus for measuring the latent heat of vaporization of saturated water according to claim 4, comprising: a wet steam pressure detecting means for detecting the pressure of the wet steam to be measured;
A wet steam index value deriving means for obtaining a wet steam index value by multiplying a coefficient by a fourth root of the absolute pressure of the wet steam based on the detection information of the wet steam pressure detecting means;
A characteristic feature is that there is provided a saturated water evaporation latent heat deriving means for obtaining an evaporation latent heat r of saturated water by an n-th order expression for deriving saturated water evaporation latent heat using the wet steam index value as a variable.
That is, the wet steam pressure detecting means detects the pressure of the wet steam to be measured, and the wet steam index value deriving means calculates the absolute pressure of the wet steam on the basis of the detection information of the wet steam pressure detecting means. The wet steam index value is obtained by multiplying the coefficient by the coefficient, and the saturated water evaporation latent heat derivation means derives the saturated steam evaporation latent heat using the wet steam index value obtained by the wet steam index value derivation means as a variable. The latent heat of evaporation r of the saturated water is obtained by substituting into the following n-th order equation.
That is, as described above, the latent heat of evaporation of the saturated water is obtained by multiplying the fourth root of the absolute pressure of the wet steam by a predetermined coefficient, and using the wet steam index value as a variable. It has been found that the approximation can be made with high accuracy by the following equation, and the wet steam index value obtained by multiplying the fourth root of the absolute pressure of the wet steam by a predetermined coefficient is used as a variable, in other words, Using the absolute pressure as a variable, the measured value of the absolute pressure of the wet steam to be measured is substituted into the n-th order equation for deriving the latent heat of evaporation of saturated water, which is set as a value that can accurately approximate the latent heat of vaporization of saturated water. Since the latent heat of vaporization of the saturated water is obtained, the latent heat of vaporization of the saturated water can be accurately measured.
Further, since the latent heat of evaporation of the saturated water is obtained by a simple formula without using a saturated steam table having a large amount of information, an inexpensive storage device having a small storage capacity can be used. It is possible to measure the latent heat of vaporization of saturated water with a simple configuration, such as measuring the pressure of water, so that the cost of the apparatus can be reduced and the cost of measuring the latent heat of vaporization of saturated water can be reduced. Can be achieved.
Therefore, it is possible to provide an apparatus for measuring the latent heat of evaporation of saturated water, which can improve the measurement accuracy of the latent heat of evaporation of saturated water as information for measuring the dryness of wet steam and reduce the cost of measurement. Was.
[0014]
[Invention according to claim 5]
The method for measuring the enthalpy of superheated steam according to claim 5 obtains an index value for the coefficient by a linear expression for deriving an index value for the coefficient using the pressure of the superheated steam to be measured as a variable, and obtains the pressure of the superheated steam to be measured. The index value for the constant term is determined by a linear expression for deriving the index value for the constant term with the variable as the variable, and the index value for the coefficient is set as the coefficient of the term with the temperature of the superheated steam as a variable, and the index value for the constant term The characteristic feature is that the enthalpy i2 of the superheated steam is obtained by a linear equation for deriving the superheated steam enthalpy as a constant term.
That is, the pressure and temperature of the superheated steam to be measured are measured, and the measured pressure is substituted into a linear expression for deriving the index value for the coefficient with the pressure of the superheated steam to be measured as a variable, and the index value for the coefficient is obtained. Obtain, and, the measured pressure, by substituting the pressure of the superheated steam of the measurement target into a linear expression for deriving an index value for a constant term as a variable, to obtain an index value for a constant term, and then measuring the measurement temperature, The enthalpy i2 of the superheated steam is obtained by substituting the index value for the coefficient as a coefficient of a term using the temperature of the superheated steam as a variable and deriving a linear equation for deriving the enthalpy of superheated steam using the index value for the constant term as a constant term.
In other words, the inventor of the present invention, when measuring the enthalpy of superheated steam, conducts intensive research to improve the measurement accuracy and reduce the cost of measurement, and the enthalpy of the superheated steam to be measured is used to derive the superheated steam enthalpy. The primary expression, that is, the coefficient index value obtained by the linear expression for deriving the index value for the coefficient using the pressure of the superheated steam to be measured as a variable, as the coefficient of the primary term using the temperature of the superheated steam as a variable, In addition, it can be accurately approximated by a linear expression in which the constant term index value obtained by the linear expression for deriving the constant term index value using the pressure of the superheated steam to be measured as a variable is a constant term. I found it.
Then, the pressure and temperature of the superheated steam are used as variables, and the three primary expressions for deriving the index value for the coefficient, deriving the index value for the constant term, and deriving the superheated steam enthalpy set as those that can accurately approximate the enthalpy of the superheated steam are given. Since the enthalpy of the superheated steam is obtained by substituting the measured values of the pressure and the temperature of the superheated steam to be measured, the enthalpy of the superheated steam can be accurately measured.
Further, since the superheated steam table is not used, it is not necessary to acquire accurate data of the superheated steam table in order to improve the measurement accuracy, which is required in the first prior art. Since the enthalpy of the superheated steam can be measured with a simple configuration such as measuring the pressure and the temperature of the steam, the measurement cost can be reduced.
Therefore, it has become possible to provide a method for measuring the enthalpy of superheated steam which can improve the measurement accuracy of the enthalpy of superheated steam as information for measuring the dryness of wet steam and reduce the measurement cost.
[0015]
[Invention of claim 6]
An apparatus for measuring the enthalpy of superheated steam according to claim 6, wherein superheated steam pressure detecting means for detecting the pressure of the superheated steam to be measured and superheated steam temperature detecting means for detecting the temperature are provided.
Based on the detection information of the superheated steam pressure detecting means, a coefficient index value is obtained by a linear expression for deriving a coefficient index value using the pressure of the superheated steam as a variable, and a constant using the pressure of the superheated steam as a variable. Superheated steam index value deriving means for obtaining a constant term index value by a linear expression for term index value derivation,
Based on the detection information of the superheated steam temperature detecting means, the primary value for deriving the superheated steam enthalpy using the index value for the coefficient as a coefficient of a term using the temperature of the superheated steam as a variable and the index value for the constant term as a constant term A feature is that a superheated steam enthalpy deriving means for obtaining the enthalpy i2 of the superheated steam by an equation is provided.
That is, the pressure of the superheated steam to be measured is detected by the superheated steam pressure detection means, the temperature of the superheated steam to be measured is measured by the superheated steam temperature detection means, and the superheated steam pressure value detection means is detected by the superheated steam index value derivation means. Based on the detection information, the index value for the coefficient is obtained by a linear expression for deriving the index value for the coefficient using the pressure of the superheated steam as a variable, and for deriving the index value for the constant term using the pressure of the superheated steam as a variable. An index value for a constant term is obtained by a linear expression, and the coefficient of the term using the temperature of the superheated steam as a variable is determined by the superheated steam enthalpy deriving means based on the detection information of the superheated steam temperature detecting means. Then, the enthalpy i2 of the superheated steam is obtained by a linear expression for deriving the superheated steam enthalpy using the index value for the constant term as a constant term.
That is, as described above, the enthalpy of the superheated steam to be measured is a linear expression for deriving the superheated steam enthalpy, that is, the index for the coefficient having the pressure of the superheated steam to be measured as a variable. Derivation of the index value for the coefficient obtained by the linear expression for deriving the value as the coefficient of the primary term with the temperature of the superheated steam as a variable, and the derivation of the index value for the constant term with the pressure of the superheated steam to be measured as a variable It is found that the approximation can be accurately approximated by a linear expression that uses the index value for the constant term obtained by the linear expression for the constant term as a constant term, and the enthalpy of the superheated steam is accurately determined using the pressure and temperature of the superheated steam as variables. Substituting the measured values of the pressure and temperature of the superheated steam to be measured into three linear equations for deriving the index value for the coefficient set as a good approximation, deriving the index value for the constant term, and deriving the superheated steam enthalpy Superheated steam Since obtaining the enthalpy, it becomes possible to accurately measure the enthalpy of the superheated steam.
In addition, the enthalpy of the superheated steam is obtained by a simple formula without using a superheated steam table having a large amount of information, so that an inexpensive one having a small storage capacity can be used as a storage means. It is possible to measure the enthalpy of the superheated steam with a simple configuration such as measuring the pressure and the temperature, so that the cost of the apparatus can be reduced and the cost of measuring the enthalpy of the superheated steam can be reduced. It becomes possible to plan.
Therefore, it has become possible to provide an enthalpy measurement apparatus for superheated steam that can improve the measurement accuracy of enthalpy of superheated steam as information for measuring the dryness of wet steam and reduce the measurement cost.
[0016]
[Invention of claim 7]
The method for measuring the dryness of wet steam according to claim 7, wherein a wet steam index value is obtained by multiplying a coefficient by a fourth root of the absolute pressure of the wet steam to be measured, and the saturated water having the wet steam index value as a variable. An enthalpy of saturated water i1 is obtained by an nth-order equation for deriving enthalpy, and a latent heat of evaporation r of the saturated water is obtained by an nth-order equation for deriving a latent heat of evaporation of saturated water using the wet steam index value as a variable.
Determine the index value for the coefficient by a linear expression for deriving the index value for the coefficient with the pressure of the superheated steam generated by adiabatically expanding the wet steam of the measurement target, and obtain a constant term using the pressure of the superheated steam as a variable. An index value for a constant term is determined by a linear expression for deriving an index value for the superheated steam, wherein the index value for the coefficient is a coefficient of a term having the temperature of the superheated steam as a variable, and the index value for the constant term is a constant term. The enthalpy i2 of the superheated steam is obtained by a linear equation for deriving the enthalpy,
Based on the enthalpy i1 of the saturated water, the latent heat of evaporation r of the saturated water, and the enthalpy i2 of the superheated steam, the dryness x of the wet steam is calculated as follows:
[0017]
(Equation 3)
x = (i2-i1) ÷ r
[0018]
The feature obtained at is defined as a feature configuration.
That is, the absolute pressure of the wet steam to be measured is measured, the fourth root of the absolute pressure is obtained, and the obtained fourth root of the absolute pressure is multiplied by a coefficient to obtain a wet steam index value. The enthalpy i1 of the saturated water is obtained by substituting the steam index value into an n-th order equation for deriving the saturated water enthalpy using the wet steam index value as a variable.
Further, by substituting the wet steam index value into the n-th order equation for deriving the latent heat of evaporation of saturated water using the wet steam index value as a variable, the evaporation latent heat r of the saturated water is obtained.
Further, the pressure and temperature of the superheated steam generated by adiabatically expanding the wet steam to be measured are measured, and the measured pressure is substituted into a linear expression for deriving an index value for a coefficient having the pressure of the superheated steam as a variable. The index value for the coefficient is obtained, and the measured pressure is substituted into a linear expression for deriving the index value for the constant term using the pressure of the superheated steam as a variable to obtain the index value for the constant term. By substituting the temperature into a linear equation for deriving the superheated steam enthalpy using the index value for the coefficient as a coefficient of a term using the temperature of the superheated steam as a variable and using the index value for the constant term as a constant term, the enthalpy of the superheated steam is obtained. Find i2.
Then, the dryness x of the wet steam is obtained by substituting the enthalpy of saturated water i1, the latent heat of evaporation r of the saturated water, and the enthalpy i2 of the superheated steam measured as described above into the above equation (3).
That is, as described above with respect to the first aspect of the present invention, it is possible to measure the enthalpy i1 of the saturated water while improving the measurement accuracy and reducing the measurement cost by using the n-th order equation for deriving the saturated water enthalpy. In addition, as described above with respect to the third aspect of the present invention, it is possible to improve the measurement accuracy of the saturated water evaporation latent heat r and reduce the measurement cost by using the n-th order equation for deriving the saturated water evaporation latent heat. It is possible to measure while planning, and as described above in the description of claim 5, three linear expressions for deriving an index value for a coefficient, deriving an index value for a constant term, and deriving an overheated steam enthalpy. This makes it possible to measure the enthalpy of the superheated steam while improving the measurement accuracy and reducing the measurement cost, and thereby improving the measurement accuracy and the measurement cost of the wet steam dryness. It is possible to measure while achieving cost reduction.
Accordingly, the accuracy of measurement of the enthalpy of saturated water, the latent heat of evaporation of saturated water, and the enthalpy of superheated steam as information for measuring the dryness of wet steam, and the measurement cost are reduced, and the dryness of wet steam is reduced. It has become possible to provide a method for measuring the dryness of wet steam which can improve the measurement accuracy and reduce the measurement cost.
[0019]
[Invention of claim 8]
A wet steam dryness measuring apparatus according to claim 8, wherein a wet steam pressure detecting means for detecting a pressure of the wet steam to be measured;
An adiabatic expander that adiabatically expands the wet steam to be measured to superheated steam,
Superheated steam pressure detection means for detecting the pressure of the superheated steam generated by the adiabatic expander,
Superheated steam temperature detecting means for detecting the temperature of the superheated steam is provided,
Wet steam index value deriving means for obtaining a wet steam index value by multiplying a fourth root of the absolute pressure of the wet steam by a coefficient based on the detection information of the wet steam pressure detecting means,
Saturated water enthalpy deriving means for obtaining an enthalpy of saturated water i1 by an n-th order equation for deriving saturated water enthalpy with the wet steam index value as a variable,
A saturated water evaporation latent heat deriving means for obtaining an evaporation latent heat r of the saturated water by an n-th equation for deriving the saturated water evaporation latent heat having the wet steam index value as a variable;
Based on the detection information of the superheated steam pressure detecting means, a coefficient index value is obtained by a linear expression for deriving a coefficient index value using the pressure of the superheated steam as a variable, and a constant using the pressure of the superheated steam as a variable. Superheated steam index value deriving means for obtaining a constant term index value by a linear expression for term index value derivation,
Based on the detection information of the superheated steam temperature detecting means, the primary value for deriving the superheated steam enthalpy using the index value for the coefficient as a coefficient of a term using the temperature of the superheated steam as a variable and the index value for the constant term as a constant term A superheated steam enthalpy deriving means for obtaining the enthalpy i2 of the superheated steam by the formula is provided,
Based on the enthalpy i1 of the saturated water, the latent heat of evaporation r of the saturated water, and the enthalpy i2 of the superheated steam,
[0020]
(Equation 4)
x = (i2-i1) ÷ r
[0021]
And a dryness deriving means for obtaining a dryness x of the wet steam by the following method.
That is, the wet steam pressure detecting means detects the pressure of the wet steam to be measured, the superheated steam pressure detecting means detects the pressure of the superheated steam generated by the adiabatic expander, and the superheated steam temperature detecting means The temperature of the superheated steam generated by the adiabatic expander is detected.
The wet steam index value deriving means obtains the wet steam index value by multiplying the fourth root of the absolute pressure of the wet steam by a coefficient based on the detection information of the wet steam pressure detecting means, and obtains the wet steam enthalpy deriving means. The enthalpy i1 of the saturated water is obtained by substituting the wet steam index value obtained by the steam index value deriving means into the nth order equation for deriving the saturated water enthalpy using the wet steam index value as a variable. The latent heat of evaporation r of the saturated water is obtained by substituting the wet steam index value into an n-th order equation for deriving the latent water evaporation latent heat using the wet steam index value as a variable by the evaporation latent heat deriving means.
The superheated steam index value deriving means obtains a coefficient index value by a linear expression for deriving a coefficient index value using the pressure of the superheated steam as a variable based on the detection information of the superheated steam pressure detecting means, and An index value for the constant term is obtained by a linear expression for deriving the index value for the constant term using the steam pressure as a variable, and the superheated steam enthalpy derivation means determines the index value for the coefficient based on the detection information of the superheated steam temperature detection means. The enthalpy i2 of the superheated steam is obtained by a linear equation for deriving the superheated steam enthalpy using the index value as a coefficient of a term using the temperature of the superheated steam as a variable and the index value for the constant term as a constant term.
Then, the dryness deriving means substitutes the enthalpy of saturated water i1, the latent heat of evaporation r of saturated water, and the enthalpy of superheated steam i2, which are measured as described above, into the above equation (4) to obtain the dryness x of the wet steam. Is required.
That is, as described above, the enthalpy i1 of the saturated water is measured by the wet steam index value deriving means and the saturated water enthalpy deriving means while improving the measurement accuracy and reducing the measurement cost. In addition, as described above, the accuracy of measuring the latent heat of evaporation r of the saturated water is improved by the wet steam index value deriving means and the saturated water evaporation latent heat deriving means. In addition, it is possible to perform the measurement while reducing the measurement cost, and as described above, the enthalpy of the superheated steam is obtained by the superheated steam index value deriving means and the superheated steam enthalpy deriving means. Measurement while improving the measurement accuracy and reducing the measurement cost, thereby improving the measurement accuracy of the dryness of wet steam. It is possible to measure while achieving cost reduction of the fine measurement costs.
Accordingly, the accuracy of measurement of the enthalpy of saturated water, the latent heat of evaporation of saturated water, and the enthalpy of superheated steam as information for measuring the dryness of wet steam, and the measurement cost are reduced, and the dryness of wet steam is reduced. It has become possible to provide a wet steam dryness measuring device capable of improving measurement accuracy and reducing measurement cost.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 1, the wet steam dryness measuring device is configured to adiabaticly expand a measurement steam supply path 1 for guiding the wet steam to be measured and the wet steam supplied in the measurement steam supply path 1. Adiabatic expander 2 for converting superheated steam, a steam discharge path 3 for discharging steam from the adiabatic expander 2, and a flow rate adjustment for adjusting an amount of wet steam supplied to the adiabatic expander 2 through a measurement steam supply path 1. A valve 4, a wet steam pressure sensor 5 (corresponding to wet steam pressure detecting means) for detecting the pressure of the wet steam at a location upstream of the flow control valve 4 in the measurement steam supply path 1, and an adiabatic expander. A superheated steam pressure sensor 6 (corresponding to superheated steam pressure detecting means) for detecting the pressure of superheated steam in the superheated steam 2 and a superheated steam temperature sensor 7 (superheated steam temperature detection) for detecting the temperature of the superheated steam in the adiabatic expander 2 Equivalent to the means) and those wet A processing unit 8 for calculating the dryness of the wet steam based on the detection information of the steam pressure sensor 5, the superheated steam pressure sensor 6, and the superheated steam temperature sensor 7, and an operation unit 9 for instructing the processing unit 8 to process the information. And a display unit 10 for displaying the calculation result of the processing unit 8.
[0023]
Since the adiabatic expander 2 is well known and will not be described in detail and not shown, the wet steam supplied through the measurement steam supply path 1 is throttled to be jetted into the adiabatic expander 2 to adiabatic expansion ( By changing the enthalpy, superheated steam is formed.
[0024]
The processing unit 8 is configured using a microcomputer, and based on the detection information of the wet steam pressure sensor 5, the processing unit 8 multiplies the fourth root of the absolute pressure of the wet steam by a coefficient to obtain a wet steam. Wet steam index value deriving means 81 for obtaining the index value p, saturated water for obtaining the enthalpy i1 of the saturated water by an n-th order equation (n is a positive integer) for deriving the saturated water enthalpy using the wet steam index value p as a variable An enthalpy deriving means 82; a saturated water evaporation latent heat deriving means 83 for obtaining an evaporation latent heat r of the saturated water by an n-th order equation (n is a positive integer) for deriving a saturated water evaporation latent heat using the wet steam index value p as a variable; Based on the detection information of the superheated steam pressure sensor 6, a coefficient index value a is obtained by a linear expression for deriving a coefficient index value using the pressure of the superheated steam as a variable, and a constant using the pressure of the superheated steam as a variable. In the linear expression for deriving the index value for the term The superheated steam index value deriving means 84 for obtaining the index value b for the number term, based on the detection information of the superheated steam temperature sensor 7, sets the index value a for the coefficient as a coefficient of a term having the temperature of the superheated steam as a variable, and the constant Superheated steam enthalpy deriving means 85 for obtaining enthalpy i2 of superheated steam by a linear expression for deriving superheated steam enthalpy having term index value b as a constant term, enthalpy i1 of the saturated water, latent heat of evaporation of the saturated water r And a dryness deriving means 86 for obtaining the dryness x of the wet steam from the following equation 5 based on the enthalpy i2 of the superheated steam.
[0025]
(Equation 5)
x = (i2-i1) ÷ r
[0026]
Specifically, each of the wet steam index value deriving means 81, the saturated water enthalpy deriving means 82, the saturated water evaporation latent heat deriving means 83, the superheated steam index value deriving means 84, the superheated steam enthalpy deriving means 85, and the dryness deriving means 86 The means are each configured by a program for causing the processing unit 8 to function as each unit, and the programs are stored in a storage unit (not shown) of the processing unit 8.
[0027]
The wet steam index value deriving means 81 will be described. The wet steam index value deriving means 81 sets the gauge pressure of the wet steam to be measured detected by the wet steam pressure sensor 5 to P.1(MPaG), the wet steam index value p is obtained by the following equation (6).
[0028]
(Equation 6)
Figure 2004125736
Coefficient k1Is set to, for example, the fourth root of 1000.
[0029]
The saturated water enthalpy deriving means 82 will be described below. The saturated water enthalpy deriving means 82 determines the enthalpy i1 (kJ / kg) of the saturated water as a variable using the wet steam index value p obtained by the above equation (6). Is obtained by a quadratic equation for deriving the saturated water enthalpy represented by the equation (7).
[0030]
(Equation 7)
i1 = k2× p2+ K3× p + k4
k2, K3, K4Is a constant, and is set, for example, as follows.
k2= -1.8871
k3= 156.01
k4= -54.846
[0031]
The saturated water evaporation latent heat deriving means 83 will be described. The saturated water evaporation latent heat deriving means 83 calculates the evaporation latent heat r (kJ / kg) of the saturated water by using the wet steam index value p obtained by the above equation 6 as a variable. The following equation (8) is used to derive the latent heat of evaporation of saturated water.
[0032]
(Equation 8)
r = k5× p2+ K6× p + k7
k5, K6, K7Is a constant, and is set, for example, as follows.
k5= -3.6590
k6= -65.746
k7= 250.29
[0033]
The superheated steam index value deriving means 84 will be described. The superheated steam index value deriving means 84 sets the gauge pressure of the superheated steam detected by the superheated steam pressure sensor 6 to P.2(MPaG), the index value a for the coefficient is represented by the pressure P of the superheated steam.2Is determined by a linear expression for deriving an index value for the coefficient of the following equation 9 with the variable as the variable, and the index value b for the constant term is determined by the pressure P of the superheated steam.2Is obtained by the following linear expression for deriving an index value for a constant term of the following Expression 10 using a variable as a variable.
[0034]
(Equation 9)
a = k8× P2+ K9
[0035]
(Equation 10)
b = k10× P2+ K11
k8, K9, K10, K11Is a constant, and is set, for example, as follows.
k8= 0.1702
k9= 0.47625
k10= -44.464
k11= 591.625
[0036]
The superheated steam enthalpy deriving means 85 will be described in further detail. The superheated steam enthalpy deriving means 85 uses the enthalpy i2 (kJ / kg) of the superheated steam as a coefficient index value a and the temperature T (° C) of the superheated steam as a variable. The superheated steam enthalpy of the following equation 11 is obtained by using a linear equation for deriving the superheated steam enthalpy as the coefficient of the term to be set and the index value b for the constant term as a constant term.
[0037]
[Equation 11]
i2 = 4.18605 × (a × T2+ B)
[0038]
Then, the dryness deriving means 86 calculates the dryness x of the wet steam on the basis of the enthalpy i1 of the saturated water, the latent heat of evaporation r of the saturated water, and the enthalpy i2 of the superheated steam, as described above. Determined by 5.
[0039]
The operation unit 9 is configured to be capable of selectively instructing what to measure among the enthalpy of saturated water i1, the latent heat of evaporation of saturated water r, the enthalpy of superheated steam i2, and the dryness x of wet steam. The processing unit 8 functions to measure what is instructed from the operation unit 9 and causes the display unit 10 to display the measurement result.
[0040]
That is, when the measurement of the enthalpy i1 of the saturated water is instructed, the wet steam index value deriving means 81 and the enthalpy deriving means 82 of the saturated water are operated to measure the enthalpy i1 of the saturated water, and the enthalpy of the measured saturated water is measured. When i1 is displayed on the display unit 10 and the measurement of the latent heat of evaporation r of the saturated water is commanded, the wet steam index value deriving means 81 and the latent water evaporating latent heat deriving means 83 operate, and the latent heat of evaporation r of the saturated water is reduced. The measured latent heat of vaporization r of the saturated water is displayed on the display unit 10.
Further, when the measurement of the enthalpy i2 of the superheated steam is instructed, the superheated steam index value deriving means 84 and the superheated steam enthalpy deriving means 85 are operated to measure the enthalpy i2 of the superheated steam, and the measured enthalpy i of the superheated steam is measured. i2 is displayed on the display unit 10.
When the measurement of the dryness x of the wet steam is commanded, the wet steam index value deriving means 81, the saturated water enthalpy deriving means 82, the saturated water evaporation latent heat deriving means 83, the superheated steam index value deriving means 84, the superheated steam enthalpy The derivation unit 85 and the dryness derivation unit 86 operate to measure the dryness x of the wet steam, and the measured dryness x is displayed on the display unit 10.
[0041]
According to the wet steam dryness measuring device configured as described above, it is possible to continuously measure the enthalpy of saturated water i1, the latent heat of evaporation r of saturated water, the enthalpy of superheated steam i2, and the dryness x of wet steam. It is possible.
[0042]
[Another embodiment]
Next, another embodiment will be described.
(A) In the above embodiment, the embodiment of the wetness steam dryness measuring device has been described. Hereinafter, based on FIG. 1, the saturated water enthalpy measuring device, the saturated water evaporation latent heat measuring device, and Each embodiment of the enthalpy measuring device for superheated steam will be described.
The enthalpy measuring device for the saturated water is the measuring steam supply path 1, the wet steam pressure sensor 5, the processing unit 8, the operating unit 9, and the display unit 10 of the wet steam dryness measuring device described in the above embodiment. The processing unit 8 includes a wet steam index value deriving unit 81 and a saturated water enthalpy deriving unit 82.
[0043]
The apparatus for measuring the latent heat of evaporation of saturated water is the measuring steam supply path 1, the wet steam pressure sensor 5, the processing section 8, the operating section 9, and the display section of the wet steam dryness measuring apparatus described in the above embodiment. The processing unit 8 includes a wet steam index value deriving unit 81 and a saturated water evaporation latent heat deriving unit 83.
[0044]
The apparatus for measuring the enthalpy of superheated steam is the measuring steam supply path 1, the adiabatic expander 2, the steam discharge path 3, the flow control valve 4, the superheated steam, and the wet steam dryness measuring apparatus described in the above embodiment. The processing unit 8 includes a pressure sensor 6, a superheated steam temperature sensor 7, a processing unit 8, an operation unit 9, and a display unit 10. The processing unit 8 includes a superheated steam index value deriving unit 84 and a superheated steam enthalpy deriving unit 85.
[0045]
(B) In the above embodiment, a quadratic polynomial was set as the n-th order equation for deriving the saturated water enthalpy and the n-th order equation for deriving the saturated water evaporation latent heat. A third-order or higher polynomial may be set. However, since an error increases in a first-order polynomial, it is preferable to set a second-order or higher polynomial.
[0046]
(C) エ ン The enthalpy i1 of the saturated water is artificially calculated by the equation for deriving the wet steam index value shown in the above equation 6 and the quadratic equation for deriving the saturated water enthalpy shown in the above equation 7 You may ask.
The latent heat of evaporation r of the saturated water is artificially calculated by the equation for deriving the wet steam index value shown in the above equation 6 and the quadratic equation for deriving the latent water of evaporation of the saturated water shown in equation 8 above. May be.
The enthalpy i2 of the superheated steam is obtained by calculating the linear expression for deriving the index value for the coefficient shown by the above equation 9, the linear equation for deriving the index value for the constant term shown by the above equation 10, and the superheated steam shown by the above equation 11. The enthalpy may be artificially calculated using a linear equation for deriving the enthalpy.
The dryness x of the wet steam may be obtained by artificially calculating as follows. That is, as described above, the enthalpy of saturated water i1, the latent heat of evaporation of saturated water r, and the enthalpy of superheated steam i2 are calculated, and the enthalpy of saturated water, latent heat of evaporation of saturated water r, and enthalpy of superheated steam i2 are calculated. Is used to determine the dryness x of the wet steam from the above equation (5).
[0047]
(D) constant k1, K2, K3, K4, K5, K6, K7, K8, K9, K10, K11Is not limited to the values exemplified in the above embodiment, but can be variously set so that each value for the purpose of derivation can be obtained with high accuracy. For example, when the dryness of the wet steam is divided into a plurality of ranges from 0 to 100%, and the above constants are set so that the dryness can be accurately measured for each range, the wet steam is It becomes possible to further improve the measurement accuracy of the dryness.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an apparatus for measuring dryness of wet steam according to an embodiment of the present invention.
[Explanation of symbols]
2 adiabatic expander
5 Wet steam pressure detection means
6 Superheated steam pressure detection means
7 Superheated steam temperature detection means
81 Wet steam index value derivation means
82 Saturated water enthalpy derivation means
83 ° means for deriving latent heat of evaporation of saturated water
84 Superheated steam index value derivation means
Derivation means for 85 ° superheated steam enthalpy
86 Dryness derivation means

Claims (8)

測定対象の湿り蒸気の絶対圧力の4乗根に係数を乗じて湿り蒸気指標値を求め、その湿り蒸気指標値を変数とする飽和水エンタルピ導出用のn次式にて飽和水のエンタルピi1を求める飽和水のエンタルピ測定方法。The enthalpy i1 of the saturated water is calculated by multiplying the fourth root of the absolute pressure of the wet steam to be measured by a coefficient to obtain a wet steam index value, and using the wet steam index value as a variable to derive the saturated water enthalpy n-th order equation. The desired enthalpy measurement method for saturated water. 測定対象の湿り蒸気の圧力を検出する湿り蒸気圧力検出手段と、
その湿り蒸気圧力検出手段の検出情報に基づいて、湿り蒸気の絶対圧力の4乗根に係数を乗じて湿り蒸気指標値を求める湿り蒸気指標値導出手段と、
前記湿り蒸気指標値を変数とする飽和水エンタルピ導出用のn次式にて飽和水のエンタルピi1を求める飽和水エンタルピ導出手段とが設けられている飽和水のエンタルピ測定装置。
Wet steam pressure detecting means for detecting the pressure of the wet steam to be measured,
A wet steam index value deriving means for obtaining a wet steam index value by multiplying a coefficient by a fourth root of the absolute pressure of the wet steam based on the detection information of the wet steam pressure detecting means;
A saturated water enthalpy deriving means for obtaining a saturated water enthalpy i1 by an n-th order equation for deriving the saturated water enthalpy using the wet steam index value as a variable.
測定対象の湿り蒸気の絶対圧力の4乗根に係数を乗じて湿り蒸気指標値を求め、その湿り蒸気指標値を変数とする飽和水蒸発潜熱導出用のn次式にて飽和水の蒸発潜熱rを求める飽和水の蒸発潜熱測定方法。A coefficient is multiplied by the fourth root of the absolute pressure of the wet steam to be measured to obtain a wet steam index value, and the latent heat of vaporization of saturated water is calculated by an n-th order equation for deriving latent heat of vaporization of saturated water using the wet steam index value as a variable. A method for measuring latent heat of vaporization of saturated water for determining r. 測定対象の湿り蒸気の圧力を検出する湿り蒸気圧力検出手段と、
その湿り蒸気圧力検出手段の検出情報に基づいて、湿り蒸気の絶対圧力の4乗根に係数を乗じて湿り蒸気指標値を求める湿り蒸気指標値導出手段と、
前記湿り蒸気指標値を変数とする飽和水蒸発潜熱導出用のn次式にて飽和水の蒸発潜熱rを求める飽和水蒸発潜熱導出手段とが設けられている飽和水の蒸発潜熱測定装置。
Wet steam pressure detecting means for detecting the pressure of the wet steam to be measured,
A wet steam index value deriving means for obtaining a wet steam index value by multiplying a coefficient by a fourth root of the absolute pressure of the wet steam based on the detection information of the wet steam pressure detecting means;
A saturated water evaporative latent heat deriving means for obtaining a saturated water evaporative latent heat r by an n-th order equation for deriving the saturated water evaporative latent heat using the wet steam index value as a variable.
測定対象の過熱蒸気の圧力を変数とする係数用指標値導出用の一次式にて係数用指標値を求め、測定対象の過熱蒸気の圧力を変数とする定数項用指標値導出用の一次式にて定数項用指標値を求め、前記係数用指標値を過熱蒸気の温度を変数とする項の係数とし且つ前記定数項用指標値を定数項とする過熱蒸気エンタルピ導出用の一次式にて、過熱蒸気のエンタルピi2を求める過熱蒸気のエンタルピ測定方法。A linear expression for deriving an index value for the coefficient using a linear expression for deriving an index value for the coefficient using the pressure of the superheated steam to be measured as a variable, and an index value for the constant term using the pressure of the superheated steam for the variable as the variable The index value for the constant term is obtained at, and the index value for the coefficient is a coefficient of a term using the temperature of the superheated steam as a variable, and the linear expression for deriving the superheated steam enthalpy with the index value for the constant term as a constant term. Enthalpy measurement method of superheated steam for obtaining enthalpy i2 of superheated steam. 測定対象の過熱蒸気の圧力を検出する過熱蒸気圧力検出手段と、温度を検出する過熱蒸気温度検出手段とが設けられ、
前記過熱蒸気圧力検出手段の検出情報に基づいて、過熱蒸気の圧力を変数とする係数用指標値導出用の一次式にて係数用指標値を求め、且つ、過熱蒸気の圧力を変数とする定数項用指標値導出用の一次式にて定数項用指標値を求める過熱蒸気指標値導出手段と、
前記過熱蒸気温度検出手段の検出情報に基づいて、前記係数用指標値を過熱蒸気の温度を変数とする項の係数とし且つ前記定数項用指標値を定数項とする過熱蒸気エンタルピ導出用の一次式により、過熱蒸気のエンタルピi2を求める過熱蒸気エンタルピ導出手段とが設けられている過熱蒸気のエンタルピ測定装置。
Superheated steam pressure detection means for detecting the pressure of the superheated steam to be measured, and superheated steam temperature detection means for detecting the temperature are provided,
Based on the detection information of the superheated steam pressure detecting means, a coefficient index value is obtained by a linear expression for deriving a coefficient index value using the pressure of the superheated steam as a variable, and a constant using the pressure of the superheated steam as a variable. Superheated steam index value deriving means for obtaining a constant term index value by a linear expression for term index value derivation,
Based on the detection information of the superheated steam temperature detecting means, the primary value for deriving the superheated steam enthalpy using the index value for the coefficient as a coefficient of a term using the temperature of the superheated steam as a variable and the index value for the constant term as a constant term An apparatus for measuring the enthalpy of superheated steam provided with superheated steam enthalpy deriving means for obtaining the enthalpy i2 of superheated steam by an equation.
測定対象の湿り蒸気の絶対圧力の4乗根に係数を乗じて湿り蒸気指標値を求め、その湿り蒸気指標値を変数とする飽和水エンタルピ導出用のn次式にて飽和水のエンタルピi1を求め、前記湿り蒸気指標値を変数とする飽和水蒸発潜熱導出用のn次式にて飽和水の蒸発潜熱rを求め、
前記測定対象の湿り蒸気を断熱膨張させて生成した過熱蒸気の圧力を変数とする係数用指標値導出用の一次式にて係数用指標値を求め、前記過熱蒸気の圧力を変数とする定数項用指標値導出用の一次式にて定数項用指標値を求め、前記係数用指標値を過熱蒸気の温度を変数とする項の係数とし且つ前記定数項用指標値を定数項とする過熱蒸気エンタルピ導出用の一次式にて、過熱蒸気のエンタルピi2を求め、
前記飽和水のエンタルピi1、前記飽和水の蒸発潜熱r及び前記過熱蒸気のエンタルピi2に基づいて、湿り蒸気の乾き度xを、
Figure 2004125736
にて求める湿り蒸気の乾き度測定方法。
The enthalpy of the saturated water i1 is calculated by multiplying the fourth root of the absolute pressure of the wet steam to be measured by a coefficient to obtain a wet steam index value, and using the wet steam index value as a variable to derive the saturated water enthalpy n-th order equation. Calculating the latent heat of evaporation of saturated water r by the n-th order equation for deriving latent water of evaporation of saturated water using the wet steam index value as a variable,
Determine the index value for the coefficient by a linear expression for deriving the index value for the coefficient with the pressure of the superheated steam generated by adiabatically expanding the wet steam of the measurement target, and obtain a constant term using the pressure of the superheated steam as a variable. An index value for a constant term is determined by a linear expression for deriving an index value for the superheated steam, wherein the index value for the coefficient is a coefficient of a term having the temperature of the superheated steam as a variable, and the index value for the constant term is a constant term. The enthalpy i2 of the superheated steam is obtained by a linear equation for deriving the enthalpy,
Based on the enthalpy i1 of the saturated water, the latent heat of evaporation r of the saturated water, and the enthalpy i2 of the superheated steam, the dryness x of the wet steam is calculated as follows:
Figure 2004125736
The method for measuring the dryness of wet steam as determined by
測定対象の湿り蒸気の圧力を検出する湿り蒸気圧力検出手段と、
前記測定対象の湿り蒸気を断熱膨張させて過熱蒸気にする断熱膨張器と、
その断熱膨張器により生成された過熱蒸気の圧力を検出する過熱蒸気圧力検出手段と、
前記過熱蒸気の温度を検出する過熱蒸気温度検出手段とが設けられ、
前記湿り蒸気圧力検出手段の検出情報に基づいて、湿り蒸気の絶対圧力の4乗根に係数を乗じて湿り蒸気指標値を求める湿り蒸気指標値導出手段と、
前記湿り蒸気指標値を変数とする飽和水エンタルピ導出用のn次式にて飽和水のエンタルピi1を求める飽和水エンタルピ導出手段と、
前記湿り蒸気指標値を変数とする飽和水蒸発潜熱導出用のn次式にて飽和水の蒸発潜熱rを求める飽和水蒸発潜熱導出手段と、
前記過熱蒸気圧力検出手段の検出情報に基づいて、過熱蒸気の圧力を変数とする係数用指標値導出用の一次式にて係数用指標値を求め、且つ、過熱蒸気の圧力を変数とする定数項用指標値導出用の一次式にて定数項用指標値を求める過熱蒸気指標値導出手段と、
前記過熱蒸気温度検出手段の検出情報に基づいて、前記係数用指標値を過熱蒸気の温度を変数とする項の係数とし且つ前記定数項用指標値を定数項とする過熱蒸気エンタルピ導出用の一次式により、過熱蒸気のエンタルピi2を求める過熱蒸気エンタルピ導出手段とが設けられ、
前記飽和水のエンタルピi1、前記飽和水の蒸発潜熱r及び前記過熱蒸気のエンタルピi2に基づいて、
Figure 2004125736
により湿り蒸気の乾き度xを求める乾き度導出手段が設けられている湿り蒸気の乾き度測定装置。
Wet steam pressure detecting means for detecting the pressure of the wet steam to be measured,
An adiabatic expander that adiabatically expands the wet steam to be measured to superheated steam,
Superheated steam pressure detection means for detecting the pressure of the superheated steam generated by the adiabatic expander,
Superheated steam temperature detecting means for detecting the temperature of the superheated steam is provided,
Wet steam index value deriving means for obtaining a wet steam index value by multiplying a coefficient by a fourth root of the absolute pressure of the wet steam based on the detection information of the wet steam pressure detecting means,
Saturated water enthalpy deriving means for obtaining an enthalpy of saturated water i1 by an n-th order equation for deriving saturated water enthalpy with the wet steam index value as a variable,
Saturated water evaporation latent heat deriving means for obtaining the evaporation latent heat r of saturated water by an n-th order equation for deriving the latent water evaporation latent heat having the wet steam index value as a variable,
Based on the detection information of the superheated steam pressure detecting means, a coefficient index value is obtained by a linear expression for deriving a coefficient index value using the pressure of the superheated steam as a variable, and a constant using the pressure of the superheated steam as a variable. Superheated steam index value deriving means for obtaining a constant term index value by a linear expression for term index value derivation,
Based on the detection information of the superheated steam temperature detecting means, the primary value for deriving the superheated steam enthalpy using the index value for the coefficient as a coefficient of a term using the temperature of the superheated steam as a variable and the index value for the constant term as a constant term A superheated steam enthalpy deriving means for obtaining the enthalpy i2 of the superheated steam by the formula is provided,
Based on the enthalpy i1 of the saturated water, the latent heat of evaporation r of the saturated water, and the enthalpy i2 of the superheated steam,
Figure 2004125736
A wetness steam dryness measuring device provided with a dryness derivation means for obtaining a wetness steam dryness x by means of:
JP2002293677A 2002-10-07 2002-10-07 Enthalpy of saturated water, latent heat of vaporization of saturated water, enthalpy of superheated steam, dryness measurement method and apparatus for wet steam Expired - Fee Related JP3949044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002293677A JP3949044B2 (en) 2002-10-07 2002-10-07 Enthalpy of saturated water, latent heat of vaporization of saturated water, enthalpy of superheated steam, dryness measurement method and apparatus for wet steam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002293677A JP3949044B2 (en) 2002-10-07 2002-10-07 Enthalpy of saturated water, latent heat of vaporization of saturated water, enthalpy of superheated steam, dryness measurement method and apparatus for wet steam

Publications (2)

Publication Number Publication Date
JP2004125736A true JP2004125736A (en) 2004-04-22
JP3949044B2 JP3949044B2 (en) 2007-07-25

Family

ID=32284523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002293677A Expired - Fee Related JP3949044B2 (en) 2002-10-07 2002-10-07 Enthalpy of saturated water, latent heat of vaporization of saturated water, enthalpy of superheated steam, dryness measurement method and apparatus for wet steam

Country Status (1)

Country Link
JP (1) JP3949044B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101935580B1 (en) * 2017-02-28 2019-01-04 (주)엔피홀딩스 Apparatus for steam cleaning
CN113969776A (en) * 2021-11-16 2022-01-25 中国石油天然气股份有限公司 Device and method for measuring dryness of underground steam based on overheating method
CN114235896A (en) * 2021-12-23 2022-03-25 中国核动力研究设计院 Saturated steam dryness measuring device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101935580B1 (en) * 2017-02-28 2019-01-04 (주)엔피홀딩스 Apparatus for steam cleaning
CN113969776A (en) * 2021-11-16 2022-01-25 中国石油天然气股份有限公司 Device and method for measuring dryness of underground steam based on overheating method
CN113969776B (en) * 2021-11-16 2024-04-26 中国石油天然气股份有限公司 Device and method for measuring dryness of underground steam based on overheating method
CN114235896A (en) * 2021-12-23 2022-03-25 中国核动力研究设计院 Saturated steam dryness measuring device

Also Published As

Publication number Publication date
JP3949044B2 (en) 2007-07-25

Similar Documents

Publication Publication Date Title
US8290742B2 (en) Methods and systems for determining dehumidifier performance
JP2004532398A5 (en)
US10161834B1 (en) Method to determine performance of a chiller and chiller plant
JP5251465B2 (en) Heat loss evaluation system and evaluation method for steam pipe
Junior et al. Consolidated experimental heat and mass transfer database for a reduced scale evaporative condenser
US5020000A (en) Measuring dryness fraction
JP2004125736A (en) Method and device for measuring enthalpy of saturated water, latent evaporation heat of saturated water, enthalpy of superheated steam and dryness fraction of wet steam
das Neves et al. Intelligent control system for extractive distillation columns
JP2007245204A (en) Learning method for rolling-load model and device therefor
US8480786B2 (en) Method of measuring information for adsorption isostere creation, adsorption isostere creation method, adsorption heat calculation method, computer program, and measurement system
EP0959354A2 (en) Noncombustive method of determining the calorific value of fuel gas
JP2019132445A (en) Humidity generation device
JP2019111648A5 (en)
JP5911455B2 (en) ENVIRONMENTAL TEST DEVICE AND METHOD FOR CONTROLLING ENVIRONMENTAL TEST DEVICE
JP2013238365A (en) Observation device and observation method
JP5182638B2 (en) Heat loss evaluation system and evaluation method
JP2008128736A (en) Waveform display apparatus and waveform display method
JP2011526170A (en) Cryoprobe temperature regulator, cryosurgical apparatus having temperature regulator, and method for regulating cryoprobe temperature
Hauge Advanced leak detection in oil and gas pipelines using a nonlinear observer and OLGA models
Quoilin et al. Assessing the quality of Experimental Data with Gaussian Processes: Example with an Injection Scroll Compressor
JP2024031636A (en) Concentration estimation method, concentration control method, continuous crystallization process, and concentration estimation device
JPH07260264A (en) Refrigerating device
Colby et al. Performance and fiscal analysis of distributed sensor networks in a power plant
JP2571615B2 (en) Abnormality detection device for temperature and humidity measurement means
Braems et al. Prior characterization of the performance of software sensors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070417

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees