JPH0519941B2 - - Google Patents

Info

Publication number
JPH0519941B2
JPH0519941B2 JP60124861A JP12486185A JPH0519941B2 JP H0519941 B2 JPH0519941 B2 JP H0519941B2 JP 60124861 A JP60124861 A JP 60124861A JP 12486185 A JP12486185 A JP 12486185A JP H0519941 B2 JPH0519941 B2 JP H0519941B2
Authority
JP
Japan
Prior art keywords
steam
temperature
dryness
wet
dry saturated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60124861A
Other languages
Japanese (ja)
Other versions
JPS61281956A (en
Inventor
Hisashi Kuryama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP12486185A priority Critical patent/JPS61281956A/en
Publication of JPS61281956A publication Critical patent/JPS61281956A/en
Publication of JPH0519941B2 publication Critical patent/JPH0519941B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、管内を送給される湿り蒸気の乾き度
を測定する方法に関する。 〔従来技術〕 湿り蒸気の乾き度は、たとえば蒸気タービン等
の運転に際して重要な管理対象となつている。蒸
気タービンにおいては、タービンにて使用後の蒸
気は湿り蒸気となつて排気されるが、この湿り蒸
気中の飽和蒸気は凝結水発生の原因となり、また
タービンの金属部材等の腐食を進行させる原因と
もなつていた。 また、蒸気圧を利用して真空を発生させる蒸気
エジエクタ等の装置においては、発生された真空
の真空度が蒸気の湿り度に大きく影響されること
は明らかである。 このような事情から、蒸気タービンの排気の湿
り蒸気の乾き度の測定が行われるのであるが、従
来はたとえば、蒸気の断熱容器内での水との熱交
換量を測定してその蒸気の比エンタルピを求め、
これを基に乾き度を求めるという方法が知られて
いる。 〔発明が解決しようとする問題点〕 しかし、たとえば上述のような従来の湿り蒸気
の乾き度測定方法では、実際の測定に際しては蒸
気配管から蒸気を取出す必要があるため、蒸気配
管の任意の位置の蒸気の乾き度を測定することは
困難である。また測定状象の蒸気の重量、即ち断
熱容器内での水との熱交換量が測定された蒸気の
重量がデータとして必要となるが、測定対象の蒸
気が乾き度を測定すべき、即ち乾き度が未知の湿
り蒸気であるため、その容積は容易に測定可能で
あつても、重量を測定することが非常に困難であ
り、実用には難点があつた。換言すれば、現実に
は湿り蒸気の容積と重量及びその温度が判明すれ
ばその蒸気の乾き度も判明するのであり、湿り蒸
気の重量を容易かつ正確に求め得ないという点に
従来技術の問題が存在しているのである。 従つて従来の蒸気タービン、蒸気エジエクタ等
の蒸気を動作流体とする装置ではその性能の日常
管理に際して、装置面の管理が優先され、蒸気の
質はあまり顧みられることが無かつた。即ち、具
体的にはたとえば、装置が予定の性能を発揮しな
いような場合等には、機械的な構造にまずその原
因が求められた後、機械的な面での問題が発見さ
れない場合に蒸気の質(乾き度)にその原因があ
る、という方向で結論付けられることが多く、蒸
気を動作流体とする装置の性能改善が充分に行わ
れないのが実情である。 〔問題点を解決するための手段〕 本発明は以上の如き問題点に鑑みてなされたも
のであり、湿り蒸気を管内送給の途中にて温度一
定の条件下で加熱して(潜熱を供給して)乾き飽
和蒸気とし、この乾き飽和蒸気の容易に測定可能
な容積流量から求められた乾き飽和蒸気の重量
と、加熱に要した熱量と、乾き飽和蒸気及びこれ
と同一温度の飽和水のエンタルピとから湿り蒸気
の乾き度を求めることにより、蒸気配管の任意の
位置にて、蒸気配管から蒸気を取出すことなく、
蒸気量及びその乾き度を容易且つ正確に測定し得
る湿り蒸気の乾き度測定方法の提供を目的とす
る。 本発明に係る湿り蒸気の乾き度測定方法は、管
内を送給される湿り蒸気の乾き度を測定する方法
において、前記管の適宜位置に配した加熱装置に
て、その上流側で測定した蒸気温度よりも下流側
で測定した蒸気温度が僅かに高くなる慢湿り蒸気
を加熱して乾き飽和蒸気を得、この乾き飽和蒸気
の流量及び管内蒸気圧力に基づき乾き飽和蒸気の
重量流量Gを検出し、この乾き飽和蒸気の重量流
量G及びそのエンタルピh″と、前記加熱装置によ
る加熱に要した熱量Qと、乾き飽和蒸気と同温度
の飽和水のエンタルピh′とから前記湿り蒸気の乾
き度xを下記式 x=1−Q/G・(h″−h′) にて求めることを特徴とする。 〔発明の原理〕 まず、本発明の具体的実施例について説明する
前に、本発明の原理について説明する。 第1図は縦軸に圧力P、横軸に容積vをとつて
示す湿り蒸気の状態変化のPv線図である。この
Pv線図において温度一定の等温線a〜b〜e〜
fの内、a〜bの間は圧力Pの低下に伴つて徐々
に容積vが増加する液体の区間であり、e〜fの
間は圧力Pの低下に伴つて過熱蒸気が断熱膨張す
る区間である。そして、b〜eの間が湿り蒸気、
即ち飽和液と飽和蒸気との混合体の区間であり、
この区間において、たとえば1Kgの湿り蒸気中に
xKgの飽和蒸気が存在する場合(1Kg−xKgは飽
和液)にこのxを乾き度(1−xを湿り度)とい
う。 ところで、このPv線図のb〜eの区間は等温
線上にはあるが断熱状態ではない。即ち、乾き度
xの変化に伴つて潜熱が出入りする、換言すれば
乾き度xが高くなつた場合には飽和液が気化して
飽和蒸気に転化するが、その際に気化熱が吸収さ
れ、逆の場合には飽和蒸気が凝縮熱を放出して飽
和液に転化する。つまり、この区間においては湿
り蒸気全体としての温度変化は無いが、潜熱の出
入りは生じており、乾き度xが異なれば(潜熱の
出入りがあれば)エンタルピ差が存在する。 さてこの湿り蒸気のエンタルピhは、飽和液の
エンタルピをh′、飽和蒸気のエンタルピをh″、湿
り蒸気の乾き度を前述の如くxとすると下記(1)式
にて表される。 h=h′+x・(h″−h′) …(1) 一方、「エンタルピの差」は潜熱量に相当する
から、重量G、乾き度xの湿り蒸気が等温下にお
いて乾き飽和蒸気(乾き度=1)に転化した場合
には、その際に吸収された燃潜熱量をQとすると
下記(2)式が成立する。 G・(h′−h)=Q …(2) 従つて、(2)式に(1)式を代入して整理すると下記
(3)式が導かれ、これにより乾き度xが求まる。 x=1−Q/G・Ph″−h′) …(3) さてここで、蒸気の重量Gとしては、たとえば
湿り蒸気が管内を送給される場合であれば、重量
流量の測定が必要となる。前述した〔従来技術〕
の場合には、乾き度xが未知の湿り蒸気の重量の
測定が困難であるという問題点があつた。しか
し、乾き飽和蒸気の場合には、その温度が判明し
ていればの比重量(比容積の逆数、具体的には単
位容積当たりの重量)は既知であるから、単なる
気体の流量測定に還元され、これは容易に実行可
能である。 なお、上述の如き本発明の原理を実用化するに
際しては、乾き度が1未満の湿り蒸気が過不足無
く乾き度が1の乾き飽和蒸気になつているか否か
の確認が必要となる。何故ならば、湿り蒸気の加
熱前と加熱後の温度差が0℃であつたとしても、
加熱が不充分であつた場合には湿り蒸気は完全な
乾き飽和蒸気にはなつておらず、逆に加熱が過剰
であれば乾き度1の乾き飽和蒸気は直ちに過熱蒸
気となつて温度上昇を来たしてしまうからであ
る。 そこで本発明では、加熱後の蒸気の温度が加熱
前の湿り蒸気の温度より極く僅か、具体的には僅
かであればあるほどよいのであるが、実用上は温
度検出器として用いられる熱電対の検出精度等を
考慮して後述する実施例では0.1℃高くなるまで
湿り蒸気を加熱することにより、湿り蒸気の乾き
飽和蒸気への転化を確認するようにしている。 このように本発明においては、湿り蒸気が完全
に乾き飽和蒸気になつたことを乾き飽和蒸気が湿
り蒸気より0.1℃高温になることにより確認する
こととしているが、このような手法を採ることに
よる誤差は以下に説明する如く実用上は全く無視
してもよい。 一例として第1表は公知の「蒸気表」により通
常のプロセス蒸気として用いられる10、20、
30ata.の範囲の乾き飽和蒸気の飽和温気とその温
度におけるエンタルピ、及びそれより僅かに温度
の高い過熱蒸気の温度とそのエンタルピ、更に両
者の単位温度当たりのエンタルピ差を示してい
る。
[Industrial Field of Application] The present invention relates to a method for measuring the dryness of wet steam fed through a pipe. [Prior Art] The dryness of wet steam is an important control target when operating, for example, a steam turbine. In a steam turbine, the steam used in the turbine becomes wet steam and is exhausted, but the saturated steam in this wet steam causes condensed water generation and causes corrosion of the turbine's metal parts. It was also familiar. Furthermore, in devices such as steam ejectors that generate vacuum using steam pressure, it is clear that the degree of vacuum generated is greatly influenced by the wetness of the steam. For this reason, the dryness of wet steam in the exhaust of a steam turbine is measured. Conventionally, for example, the amount of heat exchanged between steam and water in an insulated container was measured, and the ratio of the steam was measured. Find enthalpy,
A method of determining dryness based on this is known. [Problems to be Solved by the Invention] However, in the conventional wet steam dryness measuring method as described above, it is necessary to take out steam from the steam piping during actual measurement. It is difficult to measure the dryness of steam. In addition, the weight of the steam in the measurement state, that is, the weight of the steam whose heat exchange amount with water in the insulated container was measured, is required as data. Since it is wet steam with an unknown temperature, although its volume can be easily measured, it is very difficult to measure its weight, making it difficult to put it into practical use. In other words, in reality, if the volume and weight of wet steam and its temperature are known, the degree of dryness of that steam is also known, and the problem with the prior art is that the weight of wet steam cannot be determined easily and accurately. exists. Therefore, in the day-to-day management of the performance of conventional equipment such as steam turbines and steam ejectors that use steam as a working fluid, priority has been given to equipment management, and the quality of the steam has not been given much consideration. Specifically, for example, if a device does not perform as expected, the cause is first determined in the mechanical structure, and then, if no mechanical problem is found, the steam It is often concluded that the cause is the quality (dryness) of steam, and the reality is that the performance of devices that use steam as a working fluid has not been sufficiently improved. [Means for Solving the Problems] The present invention has been made in view of the above-mentioned problems, and it heats wet steam under a constant temperature condition during pipe delivery (supplying latent heat). ) dry saturated steam, the weight of the dry saturated steam determined from the easily measurable volumetric flow rate of this dry saturated steam, the amount of heat required for heating, and the dry saturated steam and saturated water at the same temperature. By determining the dryness of wet steam from the enthalpy, it is possible to calculate the dryness of wet steam at any position in the steam piping without taking out steam from the steam piping.
The object of the present invention is to provide a method for measuring the dryness of wet steam that can easily and accurately measure the amount of steam and its dryness. The method for measuring the dryness of wet steam according to the present invention is a method for measuring the dryness of wet steam fed through a pipe, in which the steam is measured on the upstream side of the pipe using a heating device placed at an appropriate position in the pipe. Dry saturated steam is obtained by heating humid steam whose steam temperature is slightly higher than the temperature measured downstream, and the weight flow rate G of dry saturated steam is detected based on the flow rate of this dry saturated steam and the steam pressure in the pipe. , the dryness x of the wet steam from the weight flow rate G and its enthalpy h'' of this dry saturated steam, the amount of heat Q required for heating by the heating device, and the enthalpy h' of saturated water at the same temperature as the dry saturated steam. is determined by the following formula: x=1-Q/G・(h″-h′). [Principle of the Invention] First, before describing specific embodiments of the invention, the principle of the invention will be described. FIG. 1 is a Pv diagram showing changes in the state of wet steam, with pressure P on the vertical axis and volume v on the horizontal axis. this
Isothermal lines a~b~e~ with constant temperature in the Pv diagram
Among f, the period between a and b is a liquid section where the volume v gradually increases as the pressure P decreases, and the section between e and f is a section where superheated steam expands adiabatically as the pressure P decreases. It is. And between b and e is wet steam,
That is, it is a zone of a mixture of saturated liquid and saturated vapor,
In this section, for example, if xKg of saturated steam exists in 1Kg of wet steam (1Kg - xKg is saturated liquid), this x is called dryness (1 - x is wetness). Incidentally, the section from b to e in this Pv diagram is on the isothermal line but is not in an adiabatic state. That is, latent heat flows in and out as the dryness x changes.In other words, when the dryness x increases, the saturated liquid vaporizes and converts into saturated steam, but at that time, the heat of vaporization is absorbed, In the opposite case, the saturated steam releases the heat of condensation and is converted into a saturated liquid. That is, in this section, there is no temperature change in the wet steam as a whole, but latent heat is flowing in and out, and if the dryness x is different (if latent heat is flowing in and out), there is an enthalpy difference. Now, the enthalpy h of this wet steam is expressed by the following equation (1), where the enthalpy of the saturated liquid is h', the enthalpy of the saturated steam is h'', and the dryness of the wet steam is x as mentioned above. h= h′+x・(h″−h′) …(1) On the other hand, since the “difference in enthalpy” corresponds to the amount of latent heat, wet steam with weight G and dryness x becomes dry saturated steam (dryness = In the case of conversion to 1), the following equation (2) holds true, where Q is the amount of latent heat of combustion absorbed at that time. G・(h′−h)=Q …(2) Therefore, by substituting equation (1) into equation (2) and rearranging, we get the following
Equation (3) is derived, and the dryness x is determined from this. x=1-Q/G・Ph″-h′) …(3) Now, to determine the weight G of the steam, for example, if wet steam is being fed through a pipe, the weight flow rate needs to be measured. The above-mentioned [prior art]
In this case, there was a problem in that it was difficult to measure the weight of wet steam whose dryness x was unknown. However, in the case of dry saturated steam, if the temperature is known, the specific weight (the reciprocal of the specific volume, specifically the weight per unit volume) is known, so it can be reduced to simply measuring the flow rate of gas. and this is easily doable. In addition, when putting into practical use the principle of the present invention as described above, it is necessary to confirm whether or not the wet steam with a dryness of less than 1 has become dry saturated steam with a dryness of 1 without excess or deficiency. This is because even if the temperature difference between before and after heating the wet steam is 0°C,
If the heating is insufficient, the wet steam will not become completely dry and saturated steam, and on the other hand, if the heating is excessive, the dry saturated steam with a dryness level of 1 will immediately become superheated steam and the temperature will rise. Because it will come. Therefore, in the present invention, the temperature of the steam after heating is very small compared to the temperature of wet steam before heating, and more specifically, it is better if it is smaller, but in practice, a thermocouple used as a temperature detector is used. In consideration of the detection accuracy, etc., in the embodiment described later, the conversion of the wet steam to dry saturated steam is confirmed by heating the wet steam until the temperature rises by 0.1°C. In this way, in the present invention, it is confirmed that the wet steam has completely dried to become saturated steam by making the dry saturated steam become 0.1°C higher than the wet steam. The error may be completely ignored in practice, as explained below. As an example, Table 1 shows 10, 20,
It shows the saturated temperature of dry saturated steam in the range of 30 at., the enthalpy at that temperature, the temperature and enthalpy of slightly higher superheated steam, and the enthalpy difference per unit temperature between the two.

【表】【table】

〔実施例〕〔Example〕

以下、本発明をその実施例を示す図面に基づい
て詳述する。 第2図は、本発明に係る湿り蒸気の乾き度測定
方法の実施に用いる装置の構成と共に示す演算制
御系のブロツク図である。 図中1は蒸気配管であり、図上で右側から左側
へ向けて湿り蒸気WVが送給されている。そし
て、この蒸気配管1の適宜部分には加熱装置3が
取りつけられている。この加熱装置3は、蒸気配
管1に巻回された抵抗線からなるヒータ31と、
このヒータ31により発生された熱の放散を防止
して蒸気配管1の管壁を通じて管内の蒸気のみを
加熱するための断熱材32とから構成されてい
る。そして、この加熱装置3により蒸気配管1内
を流れる湿り蒸気WVは潜熱を与えられて乾き飽
和蒸気DVになる。 ヒータ31は電源12から給電されており、そ
の給電ラインにはヒータ31に印加される電流A
及び電圧Eをそれぞれ検出するための電流計5及
び電圧計6、並びにヒータ31に印加される電圧
を変化させることによりヒータ31の発熱量を制
御する可変抵抗7(抵抗値:r)がそれぞれ介装
されている。なお、電源12が定電圧電源の場合
には電圧計6は省略してもよい。 一方、蒸気配管1の加熱装置3の配設位置のや
や上流側(湿り蒸気WV側)には湿り蒸気WVの
圧力Pを測定するための圧力計13及び湿り蒸気
WVの温度T1を測定するためのたとえば熱電対
等の温度検出器21が配設されている。これに対
して、蒸気配管1の加熱装置3の配設位置のやや
下流側(乾き飽和蒸気DV側)には乾き飽和蒸気
DVの流量(容積流量)Vを測定するための流量
計9及び前述の温度検出器21と同一構成であつ
て乾き飽和蒸気DVの温度T2を測定するための温
度検出器22が配設されている。 これらの各検出器の検出結果、即ち湿り蒸気
WV及び乾き飽和蒸気DVの温度T1、T2、湿り
蒸気Wの圧力P、乾き飽和蒸気DVの容積流量
V、ヒータ31に印加された電流値A及び電圧E
は演算制御装置8に与えられている。 演算制御装置8は、両温度検出器21,22の
検出信号T1、T2の差が実質的に0、具体的には
湿り蒸気WVが加熱装置3により加熱されて潜熱
を与えられ、湿り蒸気WV中の飽和水の総てが飽
和蒸気になつたことを確認するために極く僅か
(0.1℃程度)温度が上昇して両温度検出器21,
22の検出値の差ΔT(=T2−T1)が0<ΔT≦
0.1の範囲内を維持する程度に可変抵抗7の抵抗
値rを調節する。また、上述の電流計5の検出値
A(アンペア)、電圧計6の検出値E(ボルト)、流
量計9による乾き飽和蒸気DVの容積流量V
(m3/H)をそれぞれ読込み、更に予め数表また
は近似多項式等の形で与えられ適宜の記憶装置に
記憶されている各温度における乾き飽和蒸気DV
のエンタルピh″、比温積v″及び飽和水のエンタル
ピh′とを読出し、前述の〔発明の原理〕の項で説
明した演算を行い、湿り蒸気WVの乾き度xを算
出するものである。 次に、第2図に示された装置により本発明方法
を実施する場合の実際の手順について、演算制御
装置8の演算処理手順を示す第3図のフローチヤ
ートに従つて説明する。 まず、演算制御装置8は両温度検出器21,2
2及び圧力計13の検出値T1、T2及びPを読込
む。そして、両の差ΔT(=T2−T1)を求める。 温度差ΔTが0℃(ΔT=0)に場合には、前
述の如く加熱装置3から発生される熱が不充分な
ため湿り蒸気WVが完全に乾き飽和蒸気DVにな
つていない虞もあるため、演算制御装置8は可変
抵抗の抵抗値rを小とする。これにより、加熱装
置3から発生される熱量はそれ以前に比して大と
なるので、湿り蒸気WVにそれまで以上に搭熱量
が与えられて湿り蒸気WVの飽和水の飽和蒸気化
が促進される。 これに対して温度差ΔTが0.1℃以上(ΔT>
0.1)の場合には、湿り蒸気WVは乾き飽和蒸気
DVとなつた後、更に過剰に加熱されて過熱蒸気
になつているため、演算制御装置8は可変抵抗の
抵抗値rを大とする。これにより、加熱装置3か
ら発生される熱量はそれ以前に比して小となるの
で、湿り蒸気WVにそれまで以下の熱量しか与え
られず、乾き飽和蒸気DVの加熱が抑制される。 さて、温度差ΔTが0.1℃以下(0<ΔT<0.1)
の場合には、湿り蒸気WVは乾き飽和蒸気DVと
なつた後、更に加熱されて乾き飽和蒸気DVとな
つてはいるが、その温度差ΔTは僅かに0.1℃以内
であるため、乾き飽和蒸気DVとこれが0.1℃加熱
された過熱蒸気とのエンタルピ差は極く僅かであ
り、前述した如く、加熱度0.1℃の過熱蒸気のエ
ンタルピを乾き飽和蒸気DVのエンタルピh″と見
做してもよい。この、0<ΔT<0.1の条件下にお
いて、演算制御装置8は乾き度xを求めるための
演算を行う。 即ち、演算制御装置8はまず数表または近似多
項式等の形で記憶している圧力P、温度T1にお
ける乾き飽和蒸気DVのエンタルピh″及び比容積
v″、同じく温度T1における飽和水のエンタルピ
h′とを読出す。次に演算制御装置8は電流計5か
ら電流値Aを、電圧系6から電圧Eをそれぞれ読
込み、加熱装置3による湿り蒸気WVの加熱量Q
を、たとえば電源12が直流電源である場合に
は、下記(4)式にて求める。 Q=0.24×A×E …(4) 更に演算制御装置8は、流量計9から蒸気流量
Vを読込み、先に読出してある圧力P、温度T1
における乾き飽和蒸気DVの比容積v″とから下記
(5)式により加熱後の乾き飽和蒸気DVの重量流量
Gを求める。 G=V×1/v″ …(5) そして最後に演算制御装置8は、前記(3)式 x=1−Q/G・(h″−h′) …(3) により湿り蒸気WVの乾き度xを算出する。 〔効 果〕 以上の如く本発明にあつては、蒸気配管の所定
位置にて加熱装置によりその上流側で測定した蒸
気温度よりも下流側で測定した蒸気温度が僅かに
高くなる迄湿り蒸気を加熱して乾き飽和蒸気を得
ると共に、この乾き飽和蒸気の流量及び管内圧力
に基づき、乾き飽和蒸気の重量流量Gを求め、こ
の重量流量G、加熱装置による加熱熱量Q及び乾
き飽和蒸気のエンタルピh″から乾き飽和蒸気の乾
き度xを求めることとしているから、湿り蒸気に
対する加熱処理のための熱エネルギーに無駄がな
く処理が簡単であり、また重量流量も例えばオリ
フイス式等の公知の測定機器で容易に求め得て設
備コストが安価に済み、更に乾き蒸気の密度等演
算に要する各種の定数も広く知られている乾き飽
和蒸気のそれを用いればよく、新たな定数設定の
ための手間を要しない等、本発明は優れた効果を
奏するものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on drawings showing embodiments thereof. FIG. 2 is a block diagram of an arithmetic and control system along with the configuration of an apparatus used to implement the method for measuring dryness of wet steam according to the present invention. 1 in the figure is a steam pipe, and wet steam WV is fed from the right side to the left side in the figure. A heating device 3 is attached to an appropriate portion of the steam pipe 1. This heating device 3 includes a heater 31 made of a resistance wire wound around the steam pipe 1;
The heat insulating material 32 prevents the heat generated by the heater 31 from dissipating and heats only the steam inside the pipe through the pipe wall of the steam pipe 1. The wet steam WV flowing in the steam pipe 1 is given latent heat by the heating device 3 and becomes dry saturated steam DV. The heater 31 is supplied with power from the power supply 12, and the power supply line has a current A applied to the heater 31.
and a variable resistor 7 (resistance value: r) that controls the amount of heat generated by the heater 31 by changing the voltage applied to the heater 31. equipped. Note that if the power source 12 is a constant voltage power source, the voltmeter 6 may be omitted. On the other hand, a pressure gauge 13 for measuring the pressure P of the wet steam WV and a pressure gauge 13 for measuring the pressure P of the wet steam WV are located slightly upstream (wet steam WV side) of the installation position of the heating device 3 in the steam piping 1.
A temperature detector 21, such as a thermocouple, is provided to measure the temperature T1 of the WV. On the other hand, there is dry saturated steam slightly downstream (dry saturated steam DV side) of the heating device 3 in the steam pipe 1.
A flow meter 9 for measuring the flow rate (volume flow rate) V of DV and a temperature detector 22 having the same configuration as the temperature detector 21 described above and for measuring the temperature T2 of the dry saturated steam DV are provided. There is. The detection results of each of these detectors, i.e., wet steam
Temperatures T1 and T2 of WV and dry saturated steam DV, pressure P of wet steam W, volumetric flow rate V of dry saturated steam DV, current value A and voltage E applied to the heater 31
is given to the arithmetic and control unit 8. The arithmetic and control unit 8 determines that the difference between the detection signals T1 and T2 of both temperature detectors 21 and 22 is substantially 0, specifically, the wet steam WV is heated by the heating device 3 and given latent heat, and the wet steam WV In order to confirm that all of the saturated water inside has become saturated steam, the temperature rises very slightly (about 0.1°C) and both temperature detectors 21,
The difference ΔT (=T2−T1) between the detected values of 22 is 0<ΔT≦
The resistance value r of the variable resistor 7 is adjusted to the extent that it is maintained within the range of 0.1. In addition, the detected value A (ampere) of the above-mentioned ammeter 5, the detected value E (volt) of the voltmeter 6, and the volumetric flow rate V of dry saturated steam DV measured by the flow meter 9.
(m 3 /H), and then calculate the dry saturated steam DV at each temperature given in advance in the form of a numerical table or approximate polynomial and stored in an appropriate storage device.
The enthalpy h'', specific temperature product v'', and enthalpy h' of saturated water are read out, and the calculations explained in the above [Principle of the Invention] section are performed to calculate the dryness x of the wet steam WV. . Next, the actual procedure for carrying out the method of the present invention using the apparatus shown in FIG. 2 will be explained with reference to the flow chart of FIG. 3 showing the arithmetic processing procedure of the arithmetic and control unit 8. First, the arithmetic and control device 8 detects both temperature detectors 21 and 2.
2 and the detected values T1, T2, and P of the pressure gauge 13 are read. Then, the difference ΔT (=T2−T1) between the two is determined. If the temperature difference ΔT is 0°C (ΔT = 0), there is a possibility that the wet steam WV will not completely dry and become saturated steam DV because the heat generated from the heating device 3 is insufficient as described above. , the arithmetic and control unit 8 reduces the resistance value r of the variable resistor. As a result, the amount of heat generated from the heating device 3 becomes larger than before, so more heat is given to the wet steam WV than before, and the saturated vaporization of saturated water in the wet steam WV is promoted. Ru. On the other hand, the temperature difference ΔT is 0.1℃ or more (ΔT>
0.1), wet steam WV is dry saturated steam
After reaching DV, the steam is further heated excessively and becomes superheated steam, so the arithmetic and control unit 8 increases the resistance value r of the variable resistor. As a result, the amount of heat generated from the heating device 3 becomes smaller than before, so that less heat is given to the wet steam WV, and heating of the dry saturated steam DV is suppressed. Now, the temperature difference ΔT is 0.1℃ or less (0<ΔT<0.1)
In the case of , wet steam WV becomes dry saturated steam DV and then is further heated to become dry saturated steam DV, but the temperature difference ΔT is only within 0.1°C, so it is not dry saturated steam. The enthalpy difference between DV and superheated steam heated to 0.1℃ is extremely small, and as mentioned above, the enthalpy of superheated steam heated to 0.1℃ can be regarded as the enthalpy h'' of dry saturated steam DV. Under this condition of 0<ΔT<0.1, the arithmetic and control device 8 performs a calculation to obtain the degree of dryness x.That is, the arithmetic and control device 8 first stores the information in the form of a numerical table or approximate polynomial. Enthalpy h'' and specific volume of dry saturated steam DV at pressure P and temperature T1
v″, also the enthalpy of saturated water at temperature T1
Read h′. Next, the arithmetic and control device 8 reads the current value A from the ammeter 5 and the voltage E from the voltage system 6, and reads the amount Q of heating of the wet steam WV by the heating device 3.
For example, when the power supply 12 is a DC power supply, it is determined by the following equation (4). Q=0.24×A×E...(4) Furthermore, the arithmetic and control device 8 reads the steam flow rate V from the flow meter 9, and uses the previously read pressure P and temperature T1.
From the specific volume v″ of dry saturated steam DV at
Calculate the weight flow rate G of dry saturated steam DV after heating using equation (5). G = V Calculate the dryness x. [Effect] As described above, according to the present invention, wet steam is heated at a predetermined position of the steam piping by a heating device until the steam temperature measured on the downstream side is slightly higher than the steam temperature measured on the upstream side. Heating to obtain dry saturated steam, calculate the weight flow rate G of the dry saturated steam based on the flow rate of this dry saturated steam and the pressure inside the pipe, and calculate the weight flow rate G, the amount of heating heat Q by the heating device, and the enthalpy h of the dry saturated steam Since the dryness x of dry saturated steam is determined from ``, there is no wastage of thermal energy for heat treatment of wet steam, and the process is simple, and the weight flow rate can be measured using known measuring equipment such as an orifice type. It is easy to obtain, the equipment cost is low, and the various constants required for calculations such as the density of dry steam can be used by using the widely known constants for dry saturated steam, which eliminates the hassle of setting new constants. The present invention has excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すものであり、第1
図は湿り蒸気の状態線図、第2図は本発明方法の
実施に用いられる装置の構成と共に示す演算制御
系のブロツク図、第3図は演算制御装置の演算制
御内容を示すフローチヤートである。 1…蒸気配管、3…加熱装置、5…電流計、6
…電圧計、7…可変抵抗、8…演算制御装置、9
…流量計、12…電源、13…圧力計、21,2
2…温度検出器、WV…湿り蒸気、DV…乾き飽
和蒸気。
The drawings show embodiments of the present invention.
Figure 2 is a state diagram of wet steam, Figure 2 is a block diagram of the arithmetic control system along with the configuration of the equipment used to carry out the method of the present invention, and Figure 3 is a flowchart showing the details of the arithmetic control of the arithmetic control device. . 1... Steam piping, 3... Heating device, 5... Ammeter, 6
... Voltmeter, 7... Variable resistance, 8... Arithmetic control device, 9
...flow meter, 12...power supply, 13...pressure gauge, 21,2
2...Temperature detector, WV...wet steam, DV...dry saturated steam.

Claims (1)

【特許請求の範囲】 1 管内を送給される湿り蒸気の乾き度を測定す
る方法において、 前記管の適宜位置に配した加熱装置にて、その
上流側で測定した蒸気温度よりも下流側で測定し
た蒸気温度が僅かに高くなる迄湿り蒸気を加熱し
て乾き飽和蒸気を得、この乾き飽和蒸気の流量及
び管内蒸気圧力に基づき乾き飽和蒸気の重量流量
Gを検出し、この乾き飽和蒸気の重量流量G及び
そのエンタルピh″と、前記加熱装置による加熱に
要した熱量Qと、乾き飽和蒸気と同温度の飽和水
のエンタルピh′とから前記湿り蒸気の乾き度xを
下記式 x=1−Q/G・(h″−h′) にて求めることを特徴とする湿り蒸気の乾き度測
定方法。
[Scope of Claims] 1. A method for measuring the dryness of wet steam fed through a pipe, using a heating device placed at an appropriate position in the pipe to measure the temperature of the steam at a temperature downstream of the steam temperature measured at the upstream side. Dry saturated steam is obtained by heating the wet steam until the measured steam temperature becomes slightly higher, and the weight flow rate G of the dry saturated steam is detected based on the flow rate of this dry saturated steam and the steam pressure in the pipe. The dryness x of the wet steam can be calculated from the weight flow rate G and its enthalpy h'', the amount of heat Q required for heating by the heating device, and the enthalpy h' of saturated water at the same temperature as the dry saturated steam using the following formula: x=1 -Q/G・(h″-h′) A method for measuring the dryness of wet steam.
JP12486185A 1985-06-07 1985-06-07 Method for measuring dryness of wet vapor Granted JPS61281956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12486185A JPS61281956A (en) 1985-06-07 1985-06-07 Method for measuring dryness of wet vapor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12486185A JPS61281956A (en) 1985-06-07 1985-06-07 Method for measuring dryness of wet vapor

Publications (2)

Publication Number Publication Date
JPS61281956A JPS61281956A (en) 1986-12-12
JPH0519941B2 true JPH0519941B2 (en) 1993-03-18

Family

ID=14895912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12486185A Granted JPS61281956A (en) 1985-06-07 1985-06-07 Method for measuring dryness of wet vapor

Country Status (1)

Country Link
JP (1) JPS61281956A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01313748A (en) * 1988-05-11 1989-12-19 C Ie George Monitor for performance of flowing vapor
US8849589B2 (en) 2008-05-23 2014-09-30 Rosemount Inc. Multivariable process fluid flow device with energy flow calculation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4991489A (en) * 1972-12-20 1974-08-31
JPS537390A (en) * 1976-06-29 1978-01-23 Agency Of Ind Science & Technol Ejector type enthalpy meter
JPS5370889A (en) * 1976-12-06 1978-06-23 Westinghouse Electric Corp Fluid enthalpy measuring device
JPS5426788A (en) * 1977-07-30 1979-02-28 Nippon Steel Corp Metering system for water vapor in gases
JPS55142241A (en) * 1979-04-24 1980-11-06 Daikin Ind Ltd Device for measuring degree of dryness of liquid-gas mixed coolant in refrigerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4991489A (en) * 1972-12-20 1974-08-31
JPS537390A (en) * 1976-06-29 1978-01-23 Agency Of Ind Science & Technol Ejector type enthalpy meter
JPS5370889A (en) * 1976-12-06 1978-06-23 Westinghouse Electric Corp Fluid enthalpy measuring device
JPS5426788A (en) * 1977-07-30 1979-02-28 Nippon Steel Corp Metering system for water vapor in gases
JPS55142241A (en) * 1979-04-24 1980-11-06 Daikin Ind Ltd Device for measuring degree of dryness of liquid-gas mixed coolant in refrigerator

Also Published As

Publication number Publication date
JPS61281956A (en) 1986-12-12

Similar Documents

Publication Publication Date Title
Hasegawa et al. The NBS two-pressure humidity generator, mark 2
JP6042449B2 (en) Apparatus and method for measuring fluid mass flow
Lewis et al. Boiling heat transfer to liquid hydrogen and nitrogen in forced flow
JPH0519941B2 (en)
JP2017053758A (en) Relevant information setting method, flow velocity measurement method, relevant information setting system and flow velocity measurement system
Mills et al. Experimental study of condensation from steam-air mixtures flowing over a horizontal tube: overall condensation rates
Jackson et al. Free convection, forced convection, and acoustic vibrations in a constant temperature vertical tube
Hightower et al. Enthalpy by energy balance for aerodynamic heating facility at NASA Ames Research Center Arc Jet Complex
JP6657689B2 (en) Related information setting method, flow velocity measuring method, related information setting system, and flow velocity measuring system
JPH06281605A (en) Simultaneous measuring method for heat conductivity and kinematic viscosity
Lee et al. The excess enthalpy of gaseous mixtures of carbon dioxide with methane
JP6531476B2 (en) Wetness measurement system and method
JP3246860B2 (en) Thermal characteristic measuring device and soil moisture content measuring device using the same
Rauscher et al. Experimental study of film condensation from steam-air mixtures flowing downward over a horizontal tube
JPH01313748A (en) Monitor for performance of flowing vapor
Cebula Experimental and numerical investigation of thermal flow meter
US4704904A (en) High temperature gas flow meter
SU819663A1 (en) Device for measuring steam humidity
JPS5679230A (en) Leakage detecting method for pipeline
RU2088874C1 (en) Method of checking thermal tube for condition
JP2003121290A (en) Leakage detector
Godts et al. Direct measurement of the latent heat of evaporation by flowmetric method
SU932292A1 (en) Method of measuring heat consumption
SU647542A1 (en) Thermocouple-based level gauge
JPS6326848B2 (en)