JP3949044B2 - Enthalpy of saturated water, latent heat of vaporization of saturated water, enthalpy of superheated steam, dryness measurement method and apparatus for wet steam - Google Patents

Enthalpy of saturated water, latent heat of vaporization of saturated water, enthalpy of superheated steam, dryness measurement method and apparatus for wet steam Download PDF

Info

Publication number
JP3949044B2
JP3949044B2 JP2002293677A JP2002293677A JP3949044B2 JP 3949044 B2 JP3949044 B2 JP 3949044B2 JP 2002293677 A JP2002293677 A JP 2002293677A JP 2002293677 A JP2002293677 A JP 2002293677A JP 3949044 B2 JP3949044 B2 JP 3949044B2
Authority
JP
Japan
Prior art keywords
index value
enthalpy
steam
superheated steam
saturated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002293677A
Other languages
Japanese (ja)
Other versions
JP2004125736A (en
Inventor
孝司 竜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2002293677A priority Critical patent/JP3949044B2/en
Publication of JP2004125736A publication Critical patent/JP2004125736A/en
Application granted granted Critical
Publication of JP3949044B2 publication Critical patent/JP3949044B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、飽和水のエンタルピ、飽和水の蒸発潜熱、過熱蒸気のエンタルピ、湿り蒸気の乾き度測定方法及び測定装置に関する。
【0002】
【従来の技術】
被加工物の加工処理や殺菌処理等の各処理において用いられる蒸気の管理は、湿り蒸気中の乾き飽和蒸気の質量割合、即ち乾き度を測定することにより行われる。
そして、湿り蒸気の乾き度を測定する方法としては、測定対象の湿り蒸気を断熱膨張させて過熱蒸気にして、断熱膨張前の飽和水のエンタルピと蒸発潜熱、及び、断熱膨張後の過熱蒸気のエンタルピを湿り蒸気の乾き度を求めるための情報として測定し、それら飽和水のエンタルピi1と蒸発潜熱r、及び、過熱蒸気のエンタルピi2とにより、上記の数1にて湿り蒸気の乾き度xを求める方法が知られている。
上記の方法を用いて湿り蒸気の乾き度を測定するようにした湿り蒸気の乾き度測定装置として、従来は、測定対象の湿り蒸気の圧力を検出する湿り蒸気圧力センサ、断熱膨張後の過熱蒸気の温度を検出する過熱蒸気温度センサ、断熱膨張後の過熱蒸気の圧力を検出する過熱蒸気圧力センサを設け、それら湿り蒸気圧力センサにて検出される湿り蒸気の圧力、過熱蒸気温度センサにて検出される過熱蒸気の温度、及び、過熱蒸気圧力センサにて検出される過熱蒸気の圧力に基づいて、湿り蒸気の乾き度を演算するものがあった(例えば、特許文献1参照。)。
尚、この従来の湿り蒸気の乾き度測定装置を以下の説明では第1従来技術と称する場合がある。
この第1従来技術では、湿り蒸気の圧力、過熱蒸気の温度、及び、過熱蒸気の圧力に基づいて、湿り蒸気の乾き度を演算する方法についての説明はないが、以下のようにして乾き度を演算するものであると考えられる。
即ち、湿り蒸気の圧力とエンタルピと蒸発潜熱との関係を示す飽和蒸気表、並びに、過熱蒸気の温度と圧力とエンタルピとの関係を示す過熱蒸気表を記憶手段に記憶させておいて、湿り蒸気の測定圧力と前記記憶手段に記憶されている飽和蒸気表に基づいて、飽和水のエンタルピ及び蒸発潜熱を求め、並びに、過熱蒸気の測定温度及び測定圧力と前記記憶手段に記憶されている過熱蒸気表に基づいて、過熱蒸気のエンタルピを求め、そのように求めた飽和水のエンタルピ及び蒸発潜熱、並びに、過熱蒸気のエンタルピにより、上記の数1にて湿り蒸気の乾き度を演算するものであると考えられる。
【0003】
又、従来、湿り蒸気の乾き度を測定する湿り蒸気の乾き度測定装置として、上記の第1従来技術の他に、以下に説明する第2従来技術があった(例えば、特許文献2参照。)。
この第2従来技術は、所定量の液体を貯留する測定容器に、測定対象の湿り蒸気を供給し、供給した湿り蒸気の量と、測定容器内の液体の温度変化を検出して、そのように検出した湿り蒸気量、液体の温度変化から、熱量換算に基づいて供給湿り蒸気のエンタルピを湿り蒸気の乾き度を求めるための情報として演算し、そのエンタルピから湿り蒸気の乾き度を求めるように構成していた。
つまり、湿り蒸気の乾き度とエンタルピとの関係は、各圧力において、乾き飽和蒸気の乾き度を100%とし、飽和水の乾き度を0%として、乾き飽和蒸気のエンタルピと飽和水のエンタルピの値の間を比例配分することにより一義的に決まるので、各圧力毎の乾き度とエンタルピとの関係を記憶手段に記憶しておいて、演算した測定対象の湿り蒸気のエンタルピから乾き度を求めるように構成したものである。
【0004】
【特許文献1】
特開2002−174578号公報
【特許文献2】
特開2002−243676号公報
【0005】
【発明が解決しようとする課題】
しかしながら、第1従来技術においては、飽和水のエンタルピ及び飽和水の蒸発潜熱の夫々は、飽和蒸気表に基づいて測定することから、飽和蒸気表といった多量のデータを記憶手段に記憶させる必要があるので、記憶手段として記憶容量の大きい価格の高いものが必要となり、測定コストの高騰化につながると共に、測定対象の湿り蒸気の検出圧力が飽和蒸気表に含まれていない場合、即ち、検出圧力が飽和蒸気表において隣接している圧力の間の値である場合は、飽和水のエンタルピ及び飽和水の蒸発潜熱の測定精度が低くなるという問題があった。
つまり、検出圧力が飽和蒸気表において隣接している圧力の間の値である場合には、それら隣接している圧力に対応するエンタルピや蒸発潜熱を単純に比例配分して求めることが考えられるが、圧力とエンタルピとの関係、及び、圧力と蒸発潜熱との関係は単なる一次関数にて示される関係ではないことから、前述のように比例配分によりエンタルピや蒸発潜熱を求めると、それらの精度が低くなる。
ちなみに、測定対象の湿り蒸気の検出圧力が飽和蒸気表に含まれていないことに起因して飽和水のエンタルピや飽和水の蒸発潜熱の測定精度が低くなるという問題を解消するために、飽和蒸気表におけるデータを極力狭い圧力間隔にて取得することが考えられるが、そのデータの取得に時間と労力を費やす必要があると共に、そのデータを記憶させる記憶手段として、記憶容量の大きい価格が更に高いものが必要となり、飽和水のエンタルピ及び飽和水の蒸発潜熱の測定コストが更に高騰化するという問題が生じる。
【0006】
又、第1従来技術においては、過熱蒸気のエンタルピは、過熱蒸気表に基づいて測定することから、過熱蒸気表といった多量のデータを記憶手段に記憶させる必要があるので、記憶手段として記憶容量の大きい価格の高いものが必要となり、測定コストの高騰化につながると共に、測定対象の過熱蒸気の検出温度や検出圧力が過熱蒸気表に含まれていない場合、即ち、検出温度が過熱蒸気表において隣接している温度の間の値である場合や、検出圧力が過熱蒸気表において隣接している圧力の間の値である場合は、過熱蒸気のエンタルピの測定精度が低くなるという問題があった。
つまり、圧力とエンタルピとの関係、及び、温度とエンタルピとの関係は、単なる一次関数にて示される関係ではないことから、検出温度が過熱蒸気表において隣接している温度の間の値である場合や、検出圧力が過熱蒸気表において隣接している圧力の間の値である場合に、隣接しているエンタルピを単純に比例配分して求めると、その精度が低くなる。
ちなみに、測定対象の過熱蒸気の検出温度や検出圧力が過熱蒸気表に含まれていないことに起因して過熱蒸気のエンタルピの測定精度が低くなるという問題を解消するために、過熱蒸気表におけるデータを極力狭い温度及び圧力にて取得することが考えられるが、そのデータの取得に時間と労力を費やす必要があると共に、そのデータを記憶させる記憶手段として、記憶容量の大きい価格が更に高いものが必要となり、過熱蒸気のエンタルピの測定コストが更に高騰化するという問題が生じる。
【0007】
そして、第1従来技術においては、上述のように、湿り蒸気の乾き度を求めるための情報としての飽和水のエンタルピ、蒸発潜熱及び過熱蒸気のエンタルピの測定精度が悪いので、それら飽和水のエンタルピ、蒸発潜熱及び過熱蒸気のエンタルピに基づいて求める湿り蒸気の乾き度の精度が低くなる。
【0008】
又、第2従来技術では、湿り蒸気の量と湿り蒸気の温度とに基づいて、湿り蒸気のエンタルピを求めるのであるが、湿り蒸気の量は測定方法が複雑で精度良く測定し難いため、湿り蒸気のエンタルピの測定精度が低くなるという問題があった。
そして、第2従来技術においては、湿り蒸気の乾き度を求めるための情報としての湿り蒸気のエンタルピの測定精度が低いので、その湿り蒸気のエンタルピに基づいて求める湿り蒸気の乾き度の精度が低くなる。
しかも、湿り蒸気の量を測定するための構成が複雑となることから、装置価格が高騰化して、湿り蒸気のエンタルピの測定コストの高騰化につながるという問題があった。
要するに、従来では、湿り蒸気の乾き度を測定するための情報、例えば、飽和水のエンタルピ、飽和水の蒸発潜熱、過熱蒸気のエンタルピ及び湿り蒸気のエンタルピ等を測定するに当たって、その測定精度の向上及び測定コストの低廉化を図り難いという問題があった。
【0009】
本発明は、かかる実情に鑑みてなされたものであり、その目的は、湿り蒸気の乾き度を測定するための情報の測定精度の向上及び測定コストの低廉化を図り得る飽和水のエンタルピ、飽和水の蒸発潜熱、過熱蒸気のエンタルピ、湿り蒸気の乾き度測定方法及び測定装置を提供することにある。
【0010】
【課題を解決するための手段】
〔請求項1記載の発明〕
請求項1に記載の飽和水のエンタルピ測定方法は、測定対象の湿り蒸気の絶対圧力の4乗根に係数を乗じて湿り蒸気指標値を求め、その湿り蒸気指標値を変数とする飽和水エンタルピ導出用のn次式にて飽和水のエンタルピi1を求める点を特徴構成とする。
即ち、測定対象の湿り蒸気の絶対圧力を測定して、その絶対圧力の4乗根を求め、その求めた絶対圧力の4乗根に係数を乗じて湿り蒸気指標値を求め、その求めた湿り蒸気指標値を、湿り蒸気指標値を変数とする飽和水エンタルピ導出用のn次式に代入することにより、飽和水のエンタルピi1を求める。
つまり、本発明の発明者は、飽和水のエンタルピを測定するに当たって、測定精度の向上及び測定コストの低廉化を図るべく鋭意研究し、飽和水のエンタルピは、湿り蒸気の絶対圧力の4乗根に所定の係数を乗じて求められる湿り蒸気指標値を変数とするn次式にて、精度良く近似できることを見出した。
そして、湿り蒸気の絶対圧力の4乗根に所定の係数を乗じて求められる湿り蒸気指標値を変数として、換言すれば、湿り蒸気の絶対圧力を変数として、飽和水のエンタルピを精度良く近似できる飽和水エンタルピ導出用のn次式に、測定対象の湿り蒸気の絶対圧力の測定値を代入して、飽和水のエンタルピを求めるので、飽和水のエンタルピを精度良く測定することが可能となる。
又、飽和蒸気表を用いることが無いので、上記の第1従来技術において要求されたところ、測定精度を向上するため精密な飽和蒸気表のデータを取得するといったことが不要となり、又、単に湿り蒸気の圧力を測定するといった簡単な構成にて、飽和水のエンタルピを測定することが可能となるので、測定コストの低廉化を図ることが可能となる。
従って、湿り蒸気の乾き度を測定するための情報としての飽和水のエンタルピの測定精度の向上及び測定コストの低廉化を図り得る飽和水のエンタルピ測定方法を提供することができるようになった。
【0011】
〔請求項2記載の発明〕
請求項2に記載の飽和水のエンタルピ測定装置は、測定対象の湿り蒸気の圧力を検出する湿り蒸気圧力検出手段と、
その湿り蒸気圧力検出手段の検出情報に基づいて、湿り蒸気の絶対圧力の4乗根に係数を乗じて湿り蒸気指標値を求める湿り蒸気指標値導出手段と、
前記湿り蒸気指標値を変数とする飽和水エンタルピ導出用のn次式にて飽和水のエンタルピi1を求める飽和水エンタルピ導出手段とが設けられている点を特徴構成とする。
即ち、湿り蒸気圧力検出手段により、測定対象の湿り蒸気の圧力が検出され、湿り蒸気指標値導出手段により、湿り蒸気圧力検出手段の検出情報に基づいて、湿り蒸気の絶対圧力の4乗根に係数を乗じて湿り蒸気指標値が求められ、飽和水エンタルピ導出手段により、湿り蒸気指標値導出手段にて求められた湿り蒸気指標値を、湿り蒸気指標値を変数とする飽和水エンタルピ導出用のn次式に代入することにより、飽和水のエンタルピi1が求められる。
つまり、請求項1記載の発明について先に説明したように、飽和水のエンタルピは、湿り蒸気の絶対圧力の4乗根に所定の係数を乗じて求められる湿り蒸気指標値を変数とするn次式にて、精度良く近似することができることを見出し、そして、湿り蒸気の絶対圧力の4乗根に所定の係数を乗じて求められる湿り蒸気指標値を変数として、換言すれば、湿り蒸気の絶対圧力を変数として、飽和水のエンタルピを精度良く近似できるものとして設定した飽和水エンタルピ導出用のn次式に、測定対象の湿り蒸気の絶対圧力の測定値を代入して、飽和水のエンタルピを求めるので、飽和水のエンタルピを精度良く測定することが可能となる。
又、飽和水のエンタルピを、情報量の多い飽和蒸気表を用いること無く簡単な数式にて求めるので、記憶手段として記憶容量の少ない安価なものを用いることが可能となり、又、単に湿り蒸気の圧力を測定するといった簡単な構成にて、飽和水のエンタルピを測定することが可能となるので、装置コストの低廉化が図れ、延いては、飽和水のエンタルピの測定コストの低廉化を図ることが可能となる。
従って、湿り蒸気の乾き度を測定するための情報としての飽和水のエンタルピの測定精度の向上及び測定コストの低廉化を図り得る飽和水のエンタルピ測定装置を提供することができるようになった。
【0012】
〔請求項3記載の発明〕
請求項3に記載の飽和水の蒸発潜熱測定方法は、測定対象の湿り蒸気の絶対圧力の4乗根に係数を乗じて湿り蒸気指標値を求め、その湿り蒸気指標値を変数とする飽和水蒸発潜熱導出用のn次式にて飽和水の蒸発潜熱rを求める点を特徴構成とする。
即ち、測定対象の湿り蒸気の絶対圧力を測定して、その絶対圧力の4乗根を求め、その求めた絶対圧力の4乗根に係数を乗じて湿り蒸気指標値を求め、その求めた湿り蒸気指標値を、湿り蒸気指標値を変数とする飽和水蒸発潜熱導出用のn次式に代入することにより、飽和水の蒸発潜熱rを求める。
つまり、本発明の発明者は、飽和水の蒸発潜熱を測定するに当たって、測定精度の向上及び測定コストの低廉化を図るべく鋭意研究し、飽和水の蒸発潜熱は、湿り蒸気の絶対圧力の4乗根に所定の係数を乗じて求められる湿り蒸気指標値を変数とするn次式にて、精度良く近似できることを見出した。
そして、湿り蒸気の絶対圧力の4乗根に所定の係数を乗じて求められる湿り蒸気指標値を変数として、換言すれば、湿り蒸気の絶対圧力を変数として、飽和水の蒸発潜熱を精度良く近似できる飽和水蒸発潜熱導出用のn次式に、測定対象の湿り蒸気の絶対圧力の測定値を代入して、飽和水の蒸発潜熱を求めるので、飽和水の蒸発潜熱を精度良く測定することが可能となる。
又、飽和蒸気表を用いることが無いので、上記の第1従来技術において要求されたところ、測定精度を向上するため精密な飽和蒸気表のデータを取得するといったことが不要となり、又、単に湿り蒸気の圧力を測定するといった簡単な構成にて、飽和水の蒸発潜熱を測定することが可能となるので、測定コストの低廉化を図ることが可能となる。
従って、湿り蒸気の乾き度を測定するための情報としての飽和水の蒸発潜熱の測定精度の向上及び測定コストの低廉化を図り得る飽和水の蒸発潜熱測定方法を提供することができるようになった。
【0013】
〔請求項4記載の発明〕
請求項4に記載の飽和水の蒸発潜熱測定装置は、測定対象の湿り蒸気の圧力を検出する湿り蒸気圧力検出手段と、
その湿り蒸気圧力検出手段の検出情報に基づいて、湿り蒸気の絶対圧力の4乗根に係数を乗じて湿り蒸気指標値を求める湿り蒸気指標値導出手段と、
前記湿り蒸気指標値を変数とする飽和水蒸発潜熱導出用のn次式にて飽和水の蒸発潜熱rを求める飽和水蒸発潜熱導出手段とが設けられている点を特徴構成とする。
即ち、湿り蒸気圧力検出手段により、測定対象の湿り蒸気の圧力が検出され、湿り蒸気指標値導出手段により、湿り蒸気圧力検出手段の検出情報に基づいて、湿り蒸気の絶対圧力の4乗根に係数を乗じて湿り蒸気指標値が求められ、飽和水蒸発潜熱導出手段により、湿り蒸気指標値導出手段にて求められた湿り蒸気指標値を、湿り蒸気指標値を変数とする飽和水蒸発潜熱導出用のn次式に代入することにより、飽和水の蒸発潜熱rが求められる。
つまり、請求項3記載の発明について先に説明したように、飽和水の蒸発潜熱は、湿り蒸気の絶対圧力の4乗根に所定の係数を乗じて求められる湿り蒸気指標値を変数とするn次式にて、精度良く近似することができることを見出し、そして、湿り蒸気の絶対圧力の4乗根に所定の係数を乗じて求められる湿り蒸気指標値を変数として、換言すれば、湿り蒸気の絶対圧力を変数として、飽和水の蒸発潜熱を精度良く近似できるものとして設定した飽和水蒸発潜熱導出用のn次式に、測定対象の湿り蒸気の絶対圧力の測定値を代入して、飽和水の蒸発潜熱を求めるので、飽和水の蒸発潜熱を精度良く測定することが可能となる。
又、飽和水の蒸発潜熱を、情報量の多い飽和蒸気表を用いること無く簡単な数式にて求めるので、記憶手段として記憶容量の少ない安価なものを用いることが可能となり、又、単に湿り蒸気の圧力を測定するといった簡単な構成にて、飽和水の蒸発潜熱を測定することが可能となるので、装置コストの低廉化が図れ、延いては、飽和水の蒸発潜熱の測定コストの低廉化を図ることが可能となる。
従って、湿り蒸気の乾き度を測定するための情報としての飽和水の蒸発潜熱の測定精度の向上及び測定コストの低廉化を図り得る飽和水の蒸発潜熱測定装置を提供することができるようになった。
【0014】
〔請求項5記載の発明〕
請求項5に記載の過熱蒸気のエンタルピ測定方法は、測定対象の過熱蒸気の圧力を変数とする係数用指標値導出用の一次式にて係数用指標値を求め、測定対象の過熱蒸気の圧力を変数とする定数項用指標値導出用の一次式にて定数項用指標値を求め、前記係数用指標値を過熱蒸気の温度を変数とする項の係数とし且つ前記定数項用指標値を定数項とする過熱蒸気エンタルピ導出用の一次式にて、過熱蒸気のエンタルピi2を求める点を特徴構成とする。
即ち、測定対象の過熱蒸気の圧力及び温度を測定し、その測定圧力を、測定対象の過熱蒸気の圧力を変数とする係数用指標値導出用の一次式に代入して、係数用指標値を求め、並びに、測定圧力を、測定対象の過熱蒸気の圧力を変数とする定数項用指標値導出用の一次式に代入して、定数項用指標値を求め、続いて、測定温度を、前記係数用指標値を過熱蒸気の温度を変数とする項の係数とし且つ前記定数項用指標値を定数項とする過熱蒸気エンタルピ導出用の一次式に代入して、過熱蒸気のエンタルピi2を求める。
つまり、本発明の発明者は、過熱蒸気のエンタルピを測定するに当たって、測定精度の向上及び測定コストの低廉化を図るべく鋭意研究し、測定対象の過熱蒸気のエンタルピは、過熱蒸気エンタルピ導出用の一次式、即ち、測定対象の過熱蒸気の圧力を変数とする係数用指標値導出用の一次式にて求めた係数用指標値を過熱蒸気の温度を変数とする1次の項の係数とし、且つ、測定対象の過熱蒸気の圧力を変数とする定数項用指標値導出用の一次式にて求めた定数項用指標値を定数項とする一次式にて、精度良く近似することができることを見出した。
そして、過熱蒸気の圧力及び温度を変数として過熱蒸気のエンタルピを精度良く近似できるものとして設定した係数用指標値導出用、定数項用指標値導出用及び過熱蒸気エンタルピ導出用の3つの一次式に、測定対象の過熱蒸気の圧力及び温度の測定値を代入して過熱蒸気のエンタルピを求めるので、過熱蒸気のエンタルピを精度良く測定することが可能となる。
又、過熱蒸気表を用いることが無いので、上記の第1従来技術において要求されたところ、測定精度を向上するため精密な過熱蒸気表のデータを取得するといったことが不要となり、又、単に過熱蒸気の圧力及び温度を測定するといった簡単な構成にて、過熱蒸気のエンタルピを測定することが可能となるので、測定コストの低廉化を図ることが可能となる。
従って、湿り蒸気の乾き度を測定するための情報としての過熱蒸気のエンタルピの測定精度の向上及び測定コストの低廉化を図り得る過熱蒸気のエンタルピ測定方法を提供することができるようになった。
【0015】
〔請求項6記載の発明〕
請求項6に記載の過熱蒸気のエンタルピ測定装置は、測定対象の過熱蒸気の圧力を検出する過熱蒸気圧力検出手段と、温度を検出する過熱蒸気温度検出手段とが設けられ、
前記過熱蒸気圧力検出手段の検出情報に基づいて、過熱蒸気の圧力を変数とする係数用指標値導出用の一次式にて係数用指標値を求め、且つ、過熱蒸気の圧力を変数とする定数項用指標値導出用の一次式にて定数項用指標値を求める過熱蒸気指標値導出手段と、
前記過熱蒸気温度検出手段の検出情報に基づいて、前記係数用指標値を過熱蒸気の温度を変数とする項の係数とし且つ前記定数項用指標値を定数項とする過熱蒸気エンタルピ導出用の一次式により、過熱蒸気のエンタルピi2を求める過熱蒸気エンタルピ導出手段とが設けられている点を特徴構成とする。
即ち、過熱蒸気圧力検出手段により測定対象の過熱蒸気の圧力が検出され、過熱蒸気温度検出手段により測定対象の過熱蒸気の温度が測定され、過熱蒸気指標値導出手段により、過熱蒸気圧力検出手段の検出情報に基づいて、過熱蒸気の圧力を変数とする係数用指標値導出用の一次式にて係数用指標値が求められ、且つ、過熱蒸気の圧力を変数とする定数項用指標値導出用の一次式にて定数項用指標値が求められ、過熱蒸気エンタルピ導出手段により、過熱蒸気温度検出手段の検出情報に基づいて、前記係数用指標値を過熱蒸気の温度を変数とする項の係数とし且つ前記定数項用指標値を定数項とする過熱蒸気エンタルピ導出用の一次式により、過熱蒸気のエンタルピi2が求められる。
つまり、請求項5記載の発明について先に説明したように、測定対象の過熱蒸気のエンタルピは、過熱蒸気エンタルピ導出用の一次式、即ち、測定対象の過熱蒸気の圧力を変数とする係数用指標値導出用の一次式にて求めた係数用指標値を過熱蒸気の温度を変数とする1次の項の係数とし、且つ、測定対象の過熱蒸気の圧力を変数とする定数項用指標値導出用の一次式にて求めた定数項用指標値を定数項とする一次式にて、精度良く近似することができることを見出し、そして、過熱蒸気の圧力及び温度を変数として過熱蒸気のエンタルピを精度良く近似できるものとして設定した係数用指標値導出用、定数項用指標値導出用及び過熱蒸気エンタルピ導出用の3つの一次式に、測定対象の過熱蒸気の圧力及び温度の測定値を代入して過熱蒸気のエンタルピを求めるので、過熱蒸気のエンタルピを精度良く測定することが可能となる。
又、過熱蒸気のエンタルピは、情報量の多い過熱蒸気表を用いること無く簡単な数式にて求めるので、記憶手段として記憶容量の少ない安価なものを用いることが可能となり、又、単に過熱蒸気の圧力及び温度を測定するといった簡単な構成にて、過熱蒸気のエンタルピを測定することが可能となるので、装置コストの低廉化が図れ、延いては、過熱蒸気のエンタルピの測定コストの低廉化を図ることが可能となる。
従って、湿り蒸気の乾き度を測定するための情報としての過熱蒸気のエンタルピの測定精度の向上及び測定コストの低廉化を図り得る過熱蒸気のエンタルピ測定装置を提供することができるようになった。
【0016】
〔請求項7記載の発明〕
請求項7に記載の湿り蒸気の乾き度測定方法は、測定対象の湿り蒸気の絶対圧力の4乗根に係数を乗じて湿り蒸気指標値を求め、その湿り蒸気指標値を変数とする飽和水エンタルピ導出用のn次式にて飽和水のエンタルピi1を求め、前記湿り蒸気指標値を変数とする飽和水蒸発潜熱導出用のn次式にて飽和水の蒸発潜熱rを求め、
前記測定対象の湿り蒸気を断熱膨張させて生成した過熱蒸気の圧力を変数とする係数用指標値導出用の一次式にて係数用指標値を求め、前記過熱蒸気の圧力を変数とする定数項用指標値導出用の一次式にて定数項用指標値を求め、前記係数用指標値を過熱蒸気の温度を変数とする項の係数とし且つ前記定数項用指標値を定数項とする過熱蒸気エンタルピ導出用の一次式にて、過熱蒸気のエンタルピi2を求め、
前記飽和水のエンタルピi1、前記飽和水の蒸発潜熱r及び前記過熱蒸気のエンタルピi2に基づいて、湿り蒸気の乾き度xを、
【0017】
【数3】
x=(i2−i1)÷r
【0018】
にて求める点を特徴構成とする。
即ち、測定対象の湿り蒸気の絶対圧力を測定して、その絶対圧力の4乗根を求め、その求めた絶対圧力の4乗根に係数を乗じて湿り蒸気指標値を求め、その求めた湿り蒸気指標値を、湿り蒸気指標値を変数とする飽和水エンタルピ導出用のn次式に代入することにより、飽和水のエンタルピi1を求める。
又、前記湿り蒸気指標値を、湿り蒸気指標値を変数とする飽和水蒸発潜熱導出用のn次式に代入することにより、飽和水の蒸発潜熱rを求める。
更に、測定対象の湿り蒸気を断熱膨張させて生成された過熱蒸気の圧力及び温度を測定し、その測定圧力を、過熱蒸気の圧力を変数とする係数用指標値導出用の一次式に代入して、係数用指標値を求め、並びに、測定圧力を、過熱蒸気の圧力を変数とする定数項用指標値導出用の一次式に代入して、定数項用指標値を求め、続いて、測定温度を、前記係数用指標値を過熱蒸気の温度を変数とする項の係数とし且つ前記定数項用指標値を定数項とする過熱蒸気エンタルピ導出用の一次式に代入して、過熱蒸気のエンタルピi2を求める。
そして、上述のように測定した飽和水のエンタルピi1、飽和水の蒸発潜熱r及び過熱蒸気のエンタルピi2を、上記の数3に代入して、湿り蒸気の乾き度xを求める。
つまり、請求項1記載の発明について先に説明したように、飽和水エンタルピ導出用のn次式により、飽和水のエンタルピi1を測定精度の向上及び測定コストの低廉化を図りながら測定することが可能となり、又、請求項3記載の発明について先に説明したたように、飽和水蒸発潜熱導出用のn次式により、飽和水の蒸発潜熱rを測定精度の向上及び測定コストの低廉化を図りながら測定することが可能となり、更に、請求項5記載の説明について先に説明したように、係数用指標値導出用、定数項用指標値導出用及び過熱蒸気エンタルピ導出用の3つの一次式により、過熱蒸気のエンタルピを測定精度の向上及び測定コストの低廉化を図りながら測定することが可能となり、延いては、湿り蒸気の乾き度を測定精度の向上及び測定コストの低廉化を図りながら測定することが可能となる。
従って、湿り蒸気の乾き度を測定するための情報としての飽和水のエンタルピ、飽和水の蒸発潜熱及び過熱蒸気のエンタルピの測定精度の向上及び測定コストの低廉化を図って、湿り蒸気の乾き度の測定精度の向上及び測定コストの低廉化を図り得る湿り蒸気の乾き度測定方法を提供することができるようになった。
【0019】
〔請求項8記載の発明〕
請求項8に記載の湿り蒸気の乾き度測定装置は、測定対象の湿り蒸気の圧力を検出する湿り蒸気圧力検出手段と、
前記測定対象の湿り蒸気を断熱膨張させて過熱蒸気にする断熱膨張器と、
その断熱膨張器により生成された過熱蒸気の圧力を検出する過熱蒸気圧力検出手段と、
前記過熱蒸気の温度を検出する過熱蒸気温度検出手段とが設けられ、
前記湿り蒸気圧力検出手段の検出情報に基づいて、湿り蒸気の絶対圧力の4乗根に係数を乗じて湿り蒸気指標値を求める湿り蒸気指標値導出手段と、
前記湿り蒸気指標値を変数とする飽和水エンタルピ導出用のn次式にて飽和水のエンタルピi1を求める飽和水エンタルピ導出手段と、
前記湿り蒸気指標値を変数とする飽和水蒸発潜熱導出用のn次式にて飽和水の蒸発潜熱rを求める飽和水蒸発潜熱導出手段と、
前記過熱蒸気圧力検出手段の検出情報に基づいて、過熱蒸気の圧力を変数とする係数用指標値導出用の一次式にて係数用指標値を求め、且つ、過熱蒸気の圧力を変数とする定数項用指標値導出用の一次式にて定数項用指標値を求める過熱蒸気指標値導出手段と、
前記過熱蒸気温度検出手段の検出情報に基づいて、前記係数用指標値を過熱蒸気の温度を変数とする項の係数とし且つ前記定数項用指標値を定数項とする過熱蒸気エンタルピ導出用の一次式により、過熱蒸気のエンタルピi2を求める過熱蒸気エンタルピ導出手段とが設けられ、
前記飽和水のエンタルピi1、前記飽和水の蒸発潜熱r及び前記過熱蒸気のエンタルピi2に基づいて、
【0020】
【数4】
x=(i2−i1)÷r
【0021】
により湿り蒸気の乾き度xを求める乾き度導出手段が設けられている点を特徴構成とする。
即ち、湿り蒸気圧力検出手段にて、測定対象の湿り蒸気の圧力が検出され、過熱蒸気圧力検出手段により、断熱膨張器により生成された過熱蒸気の圧力が検出され、過熱蒸気温度検出手段により、断熱膨張器により生成された過熱蒸気の温度が検出される。
湿り蒸気指標値導出手段により、湿り蒸気圧力検出手段の検出情報に基づいて、湿り蒸気の絶対圧力の4乗根に係数を乗じて湿り蒸気指標値が求められ、飽和水エンタルピ導出手段により、湿り蒸気指標値導出手段にて求められた湿り蒸気指標値を、湿り蒸気指標値を変数とする飽和水エンタルピ導出用のn次式に代入することにより、飽和水のエンタルピi1が求められ、飽和水蒸発潜熱導出手段により、前記湿り蒸気指標値を、湿り蒸気指標値を変数とする飽和水蒸発潜熱導出用のn次式に代入することにより、飽和水の蒸発潜熱rが求められる。
過熱蒸気指標値導出手段により、過熱蒸気圧力検出手段の検出情報に基づいて、過熱蒸気の圧力を変数とする係数用指標値導出用の一次式にて係数用指標値が求められ、且つ、過熱蒸気の圧力を変数とする定数項用指標値導出用の一次式にて定数項用指標値が求められ、過熱蒸気エンタルピ導出手段により、過熱蒸気温度検出手段の検出情報に基づいて、前記係数用指標値を過熱蒸気の温度を変数とする項の係数とし且つ前記定数項用指標値を定数項とする過熱蒸気エンタルピ導出用の一次式により、過熱蒸気のエンタルピi2が求められる。
そして、乾き度導出手段により、上述のように測定された飽和水のエンタルピi1、飽和水の蒸発潜熱r及び過熱蒸気のエンタルピi2を上記の数4に代入することにより、湿り蒸気の乾き度xが求められる。
つまり、請求項2記載の発明について先に説明したように、湿り蒸気指標値導出手段及び飽和水エンタルピ導出手段により、飽和水のエンタルピi1を測定精度の向上及び測定コストの低廉化を図りながら測定することが可能となり、又、請求項4記載の発明について先に説明したたように、前記湿り蒸気指標値導出手段及び飽和水蒸発潜熱導出手段により、飽和水の蒸発潜熱rを測定精度の向上及び測定コストの低廉化を図りながら測定することが可能となり、更に、請求項6記載の説明について先に説明したように、過熱蒸気指標値導出手段及び過熱蒸気エンタルピ導出手段により、過熱蒸気のエンタルピを測定精度の向上及び測定コストの低廉化を図りながら測定することが可能となり、延いては、湿り蒸気の乾き度を測定精度の向上及び測定コストの低廉化を図りながら測定することが可能となる。
従って、湿り蒸気の乾き度を測定するための情報としての飽和水のエンタルピ、飽和水の蒸発潜熱及び過熱蒸気のエンタルピの測定精度の向上及び測定コストの低廉化を図って、湿り蒸気の乾き度の測定精度の向上及び測定コストの低廉化を図り得る湿り蒸気の乾き度測定装置を提供することができるようになった。
【0022】
【発明の実施の形態】
以下、図1に基づいて、本発明の実施の形態を説明する。
図1に示すように、湿り蒸気の乾き度測定装置は、測定対象の湿り蒸気を導く測定用蒸気供給路1と、その測定用蒸気供給路1にて供給される湿り蒸気を断熱膨張させて過熱蒸気にする断熱膨張器2と、その断熱膨張器2から蒸気を排出する蒸気排出路3と、測定用蒸気供給路1を通じて断熱膨張器2に供給される湿り蒸気の量を調節する流量調整弁4と、測定用蒸気供給路1における流量調整弁4よりも上流側の個所にて湿り蒸気の圧力を検出する湿り蒸気圧力センサ5(湿り蒸気圧力検出手段に相当する)と、断熱膨張器2内の過熱蒸気の圧力を検出する過熱蒸気圧力センサ6(過熱蒸気圧力検出手段に相当する)と、断熱膨張器2内の過熱蒸気の温度を検出する過熱蒸気温度センサ7(過熱蒸気温度検出手段に相当する)と、それら湿り蒸気圧力センサ5、過熱蒸気圧力センサ6及び過熱蒸気温度センサ7夫々の検出情報に基づいて湿り蒸気の乾き度を演算処理する処理部8と、その処理部8に処理情報を指令する操作部9と、処理部8の演算結果を表示する表示部10とを備えて構成してある。
【0023】
断熱膨張器2は、周知であるので詳細な説明及び図示は省略するが、測定用蒸気供給路1を通じて供給される湿り蒸気を、絞りを与えて断熱膨張器2内に噴出させて断熱膨張(等エンタルピ変化)させることにより、過熱蒸気にするように構成してある。
【0024】
処理部8は、マイクロコンピュータを用いて構成してあり、その処理部8には、湿り蒸気圧力センサ5の検出情報に基づいて、湿り蒸気の絶対圧力の4乗根に係数を乗じて湿り蒸気指標値pを求める湿り蒸気指標値導出手段81、その湿り蒸気指標値pを変数とする飽和水エンタルピ導出用のn次式(nは正の整数)にて飽和水のエンタルピi1を求める飽和水エンタルピ導出手段82、前記湿り蒸気指標値pを変数とする飽和水蒸発潜熱導出用のn次式(nは正の整数)にて飽和水の蒸発潜熱rを求める飽和水蒸発潜熱導出手段83、過熱蒸気圧力センサ6の検出情報に基づいて、過熱蒸気の圧力を変数とする係数用指標値導出用の一次式にて係数用指標値aを求め、且つ、過熱蒸気の圧力を変数とする定数項用指標値導出用の一次式にて定数項用指標値bを求める過熱蒸気指標値導出手段84、過熱蒸気温度センサ7の検出情報に基づいて、前記係数用指標値aを過熱蒸気の温度を変数とする項の係数とし且つ前記定数項用指標値bを定数項とする過熱蒸気エンタルピ導出用の一次式により、過熱蒸気のエンタルピi2を求める過熱蒸気エンタルピ導出手段85、並びに、前記飽和水のエンタルピi1、前記飽和水の蒸発潜熱r及び前記過熱蒸気のエンタルピi2に基づいて、下記の数5により湿り蒸気の乾き度xを求める乾き度導出手段86を備えてある。
【0025】
【数5】
x=(i2−i1)÷r
【0026】
具体的には、湿り蒸気指標値導出手段81、飽和水エンタルピ導出手段82、飽和水蒸発潜熱導出手段83、過熱蒸気指標値導出手段84、過熱蒸気エンタルピ導出手段85及び乾き度導出手段86の各手段は、夫々、処理部8を各手段として機能させるためのプログラムにて構成してあり、それらのプログラムを処理部8の記憶部(図示省略)に記憶させてある。
【0027】
湿り蒸気指標値導出手段81について説明を加えると、湿り蒸気指標値導出手段81は、湿り蒸気圧力センサ5にて検出される測定対象の湿り蒸気のゲージ圧力をP1(MPaG)とすると、湿り蒸気指標値pを下記の数6にて求める。
【0028】
【数6】

Figure 0003949044
係数k1は、例えば、1000の4乗根に設定する。
【0029】
飽和水エンタルピ導出手段82について説明を加えると、飽和水エンタルピ導出手段82は、飽和水のエンタルピi1(kJ/kg)を、上記の数6にて求めた湿り蒸気指標値pを変数とする下記の数7にて示される飽和水エンタルピ導出用の2次式にて求める。
【0030】
【数7】
i1=k2×p2+k3×p+k4
2、k3、k4は定数であり、例えば、以下のように設定する。
2=−1.8871
3=156.01
4=−54.846
【0031】
飽和水蒸発潜熱導出手段83について説明を加えると、飽和水蒸発潜熱導出手段83は、飽和水の蒸発潜熱r(kJ/kg)を、上記の数6にて求めた湿り蒸気指標値pを変数とする下記の数8にて示される飽和水蒸発潜熱導出用の2次式にて求める。
【0032】
【数8】
r=k5×p2+k6×p+k7
5、k6、k7は定数であり、例えば、以下のように設定する。
5=−3.6590
6=−65.746
7=2500.29
【0033】
過熱蒸気指標値導出手段84について説明を加えると、過熱蒸気指標値導出手段84は、過熱蒸気圧力センサ6にて検出される過熱蒸気のゲージ圧力をP2(MPaG)とすると、係数用指標値aを、過熱蒸気の圧力P2を変数とする下記の数9の係数用指標値導出用の一次式にて求め、並びに、定数項用指標値bを、過熱蒸気の圧力P2を変数とする下記の数10の定数項用指標値導出用の一次式にて求める。
【0034】
【数9】
a=k8×P2+k9
【0035】
【数10】
b=k10×P2+k11
8、k9、k10、k11は定数であり、例えば、以下のように設定する。
8=0.1702
9=0.47625
10=−44.464
11=591.625
【0036】
過熱蒸気エンタルピ導出手段85について説明を加えると、過熱蒸気エンタルピ導出手段85は、過熱蒸気のエンタルピi2(kJ/kg)を、係数用指標値aを過熱蒸気の温度T(°C)を変数とする項の係数とし且つ定数項用指標値bを定数項とする下記の数11の過熱蒸気エンタルピ導出用の一次式により求める。
【0037】
【数11】
i2=4.18605×(a×T2+b)
【0038】
そして、乾き度導出手段86は、湿り蒸気の乾き度xを、上述のようにして求められた飽和水のエンタルピi1、飽和水の蒸発潜熱r及び過熱蒸気のエンタルピi2に基づいて、上記の数5により求める。
【0039】
操作部9は、飽和水のエンタルピi1、飽和水の蒸発潜熱r、過熱蒸気のエンタルピi2及び湿り蒸気の乾き度xのうちから、測定するものを選択自在に指令することができるように構成してあり、処理部8は、操作部9から指令されたものを測定するように機能すると共に、その測定結果を表示部10に表示させる。
【0040】
つまり、飽和水のエンタルピi1の測定が指令されると、湿り蒸気指標値導出手段81及び飽和水エンタルピ導出手段82が作動して飽和水のエンタルピi1が測定され、その測定された飽和水のエンタルピi1が表示部10に表示され、飽和水の蒸発潜熱rの測定が指令されると、湿り蒸気指標値導出手段81及び飽和水蒸発潜熱導出手段83が作動して、飽和水の蒸発潜熱rが測定され、その測定された飽和水の蒸発潜熱rが表示部10に表示される。
又、過熱蒸気のエンタルピi2の測定が指令されると、過熱蒸気指標値導出手段84及び過熱蒸気エンタルピ導出手段85が作動して過熱蒸気のエンタルピi2が測定され、その測定された過熱蒸気のエンタルピi2が表示部10に表示される。
又、湿り蒸気の乾き度xの測定が指令されると、湿り蒸気指標値導出手段81、飽和水エンタルピ導出手段82、飽和水蒸発潜熱導出手段83、過熱蒸気指標値導出手段84、過熱蒸気エンタルピ導出手段85及び乾き度導出手段86が作動して、湿り蒸気の乾き度xが測定され、その測定された乾き度xが表示部10に表示される。
【0041】
上記のように構成した湿り蒸気の乾き度測定装置によれば、飽和水のエンタルピi1、飽和水の蒸発潜熱r、過熱蒸気のエンタルピi2及び湿り蒸気の乾き度xを連続して測定することが可能である。
【0042】
〔別実施形態〕
次に別実施形態を説明する。
(イ) 上記の実施形態においては、湿り蒸気の乾き度測定装置の実施形態について説明したが、以下、図1に基づいて、飽和水のエンタルピ測定装置、飽和水の蒸発潜熱測定装置、及び、過熱蒸気のエンタルピ測定装置夫々の実施形態について説明する。
飽和水のエンタルピ測定装置は、上記の実施形態において説明した湿り蒸気の乾き度測定装置のうちの、測定用蒸気供給路1、湿り蒸気圧力センサ5、処理部8、操作部9及び表示部10を備えて構成し、処理部8には、湿り蒸気指標値導出手段81及び飽和水エンタルピ導出手段82を備える。
【0043】
飽和水の蒸発潜熱測定装置は、上記の実施形態において説明した湿り蒸気の乾き度測定装置のうちの、測定用蒸気供給路1、湿り蒸気圧力センサ5、処理部8、操作部9及び表示部10を備えて構成し、処理部8には、湿り蒸気指標値導出手段81及び飽和水蒸発潜熱導出手段83を備える。
【0044】
過熱蒸気のエンタルピ測定装置は、上記の実施形態において説明した湿り蒸気の乾き度測定装置のうちの、測定用蒸気供給路1、断熱膨張器2、蒸気排出路3、流量調整弁4、過熱蒸気圧力センサ6、過熱蒸気温度センサ7、処理部8、操作部9及び表示部10を備えて構成し、処理部8には、過熱蒸気指標値導出手段84及び過熱蒸気エンタルピ導出手段85を備える。
【0045】
(ロ) 上記の実施形態において、飽和水エンタルピ導出用のn次式及び飽和水蒸発潜熱導出用のn次式として、夫々、2次の多項式を設定したが、1次の多項式を設定したり、3次以上の多項式を設定しても良い。但し、1次の多項式では誤差が大きくなるので、2次以上の多項式に設定するのが好ましい。
【0046】
(ハ) 飽和水のエンタルピi1を、上記の数6にて示される湿り蒸気指標値導出用の式及び数7にて示される飽和水エンタルピ導出用の2次式により、人為的に演算して求めても良い。
飽和水の蒸発潜熱rを、上記の数6にて示される湿り蒸気指標値導出用の式及び数8にて示される飽和水蒸発潜熱導出用の2次式により、人為的に演算して求めても良い。
過熱蒸気のエンタルピi2を、上記の数9にて示される係数用指標値導出用の一次式、数10にて示される定数項用指標値導出用の一次式及び数11にて示される過熱蒸気エンタルピ導出用の一次式により、人為的に演算して求めても良い。
湿り蒸気の乾き度xを、以下のように、人為的に演算することにより求めても良い。即ち、上述のように飽和水のエンタルピi1、飽和水の蒸発潜熱r及び過熱蒸気のエンタルピi2を演算して求めると共に、それら飽和水のエンタルピi1、飽和水の蒸発潜熱r及び過熱蒸気のエンタルピi2に基づいて、上記の数5により、湿り蒸気の乾き度xを求める。
【0047】
(ニ) 定数k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11の具体値は、上記の実施形態において例示した値に限定されるものではなく、導出目的の各値を精度良く求めることができるようにすべく、種々に設定することができる。例えば、湿り蒸気の乾き度を0〜100%の間で複数の範囲に分けて、各範囲毎に、乾き度を精度良く測定することができるように、前記各定数を設定すると、湿り蒸気の乾き度の測定精度を一段と向上することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施形態にかかる湿り蒸気の乾き度測定装置を示すブロック図
【符号の説明】
2 断熱膨張器
5 湿り蒸気圧力検出手段
6 過熱蒸気圧力検出手段
7 過熱蒸気温度検出手段
81 湿り蒸気指標値導出手段
82 飽和水エンタルピ導出手段
83 飽和水蒸発潜熱導出手段
84 過熱蒸気指標値導出手段
85 過熱蒸気エンタルピ導出手段
86 乾き度導出手段[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus for measuring the enthalpy of saturated water, the latent heat of vaporization of saturated water, the enthalpy of superheated steam, and the dryness of wet steam.
[0002]
[Prior art]
The management of the steam used in each processing such as processing and sterilization of the workpiece is performed by measuring the mass ratio of dry saturated steam in the wet steam, that is, the dryness.
As a method of measuring the dryness of the wet steam, the wet steam to be measured is adiabatically expanded to be superheated steam, and the enthalpy and latent heat of evaporation of the saturated water before the adiabatic expansion and the superheated steam after the adiabatic expansion are measured. The enthalpy is measured as information for determining the dryness of the wet steam, and the dryness x of the wet steam is expressed by the above equation 1 by the enthalpy i1 of the saturated water, the latent heat of evaporation r, and the enthalpy i2 of the superheated steam. The method of seeking is known.
Conventionally, as a wet steam dryness measuring device that measures the dryness of wet steam using the above method, a wet steam pressure sensor that detects the pressure of the wet steam to be measured, superheated steam after adiabatic expansion A superheated steam temperature sensor that detects the temperature of the superheated steam and a superheated steam pressure sensor that detects the pressure of the superheated steam after adiabatic expansion are provided. The wet steam pressure detected by the wet steam pressure sensor and the superheated steam temperature sensor detect There is one that calculates the dryness of the wet steam based on the temperature of the superheated steam to be detected and the pressure of the superheated steam detected by the superheated steam pressure sensor (see, for example, Patent Document 1).
The conventional wet steam dryness measuring apparatus may be referred to as the first prior art in the following description.
In the first prior art, there is no description of a method for calculating the dryness of the wet steam based on the pressure of the wet steam, the temperature of the superheated steam, and the pressure of the superheated steam, but the dryness is as follows. It is thought that it is what calculates.
That is, the saturated steam table indicating the relationship between the pressure, enthalpy and latent heat of vaporization of the wet steam, and the superheated steam table indicating the relationship between the temperature, pressure and enthalpy of the superheated steam are stored in the storage means. The saturated water enthalpy and latent heat of vaporization are obtained based on the measured pressure and the saturated steam table stored in the storage means, and the measured temperature and measured pressure of the superheated steam and the superheated steam stored in the storage means Based on the table, the enthalpy of the superheated steam is obtained, and the dryness of the wet steam is calculated by the above equation 1 based on the enthalpy and latent heat of evaporation of the saturated water and the enthalpy of the superheated steam thus obtained. it is conceivable that.
[0003]
Conventionally, as a wet steam dryness measuring device for measuring the wet steam dryness, there is a second prior art described below in addition to the first prior art described above (see, for example, Patent Document 2). ).
This second prior art supplies wet vapor to be measured to a measurement container that stores a predetermined amount of liquid, detects the amount of supplied wet vapor and the temperature change of the liquid in the measurement container, and so on. Based on the detected amount of wet steam and liquid temperature, the enthalpy of the supplied wet steam is calculated as information for determining the dryness of the wet steam based on calorie conversion, and the dryness of the wet steam is calculated from the enthalpy. It was composed.
In other words, the relationship between the dryness of wet steam and enthalpy is that the dryness of dry saturated steam is 100%, the dryness of saturated water is 0%, and the enthalpy of dry saturated steam and saturated water is enthalpy at each pressure. Since it is uniquely determined by proportionally distributing between the values, the relationship between the dryness and enthalpy for each pressure is stored in the storage means, and the dryness is obtained from the calculated enthalpy of the wet steam to be measured. It is comprised as follows.
[0004]
[Patent Document 1]
JP 2002-174578 A
[Patent Document 2]
JP 2002-243676 A
[0005]
[Problems to be solved by the invention]
However, in the first prior art, each of the enthalpy of saturated water and the latent heat of vaporization of saturated water is measured based on the saturated steam table, so a large amount of data such as the saturated steam table needs to be stored in the storage means. Therefore, a storage device having a large storage capacity and a high price is required, leading to an increase in measurement cost, and when the detected pressure of the wet steam to be measured is not included in the saturated steam table, that is, the detected pressure is When the value is between the adjacent pressures in the saturated steam table, there is a problem that the measurement accuracy of the enthalpy of saturated water and the latent heat of evaporation of saturated water becomes low.
In other words, if the detected pressure is a value between adjacent pressures in the saturated steam table, it can be considered that the enthalpy and latent heat of vaporization corresponding to the adjacent pressures are simply proportionally determined. Since the relationship between pressure and enthalpy and the relationship between pressure and latent heat of vaporization are not just a linear function, as described above, when enthalpy and latent heat of vaporization are obtained by proportional distribution, their accuracy is Lower.
Incidentally, in order to solve the problem that the measurement accuracy of the enthalpy of saturated water and the latent heat of evaporation of saturated water is reduced due to the fact that the detected pressure of wet steam to be measured is not included in the saturated steam table, saturated steam Although it is conceivable to acquire the data in the table at as narrow a pressure interval as possible, it is necessary to spend time and effort to acquire the data, and as a storage means for storing the data, the price with a large storage capacity is even higher A problem arises that the cost of measuring saturated water enthalpy and saturated latent heat of vaporization is further increased.
[0006]
In the first prior art, since the enthalpy of superheated steam is measured based on the superheated steam table, it is necessary to store a large amount of data such as the superheated steam table in the storage means. A large and expensive product is required, leading to an increase in measurement cost, and when the detected temperature or detected pressure of the superheated steam to be measured is not included in the superheated steam table, that is, the detected temperature is adjacent to the superheated steam table. When the value is between the two temperatures, or when the detected pressure is a value between adjacent pressures in the superheated steam table, there is a problem that the measurement accuracy of the enthalpy of the superheated steam is lowered.
In other words, the relationship between pressure and enthalpy, and the relationship between temperature and enthalpy is not a relationship represented by a simple linear function, so the detected temperature is a value between adjacent temperatures in the superheated steam table. In this case, or when the detected pressure is a value between adjacent pressures in the superheated steam table, if the adjacent enthalpies are obtained simply by proportional distribution, the accuracy becomes low.
By the way, in order to solve the problem that the measurement accuracy of superheated steam enthalpy is reduced due to the detection temperature and pressure of the superheated steam to be measured not included in the superheated steam table, data in the superheated steam table is used. However, it is necessary to spend time and labor to acquire the data, and as a storage means for storing the data, there is a device with a higher storage capacity and a higher price. This becomes a problem, and the measurement cost of the enthalpy of the superheated steam is further increased.
[0007]
In the first prior art, as described above, the measurement accuracy of the enthalpy of saturated water, the latent heat of vaporization, and the enthalpy of superheated steam as information for obtaining the dryness of the wet steam is poor. Further, the accuracy of the dryness of the wet steam obtained based on the enthalpy of the latent heat of vaporization and superheated steam is lowered.
[0008]
In the second prior art, the enthalpy of the wet steam is obtained based on the amount of the wet steam and the temperature of the wet steam. However, since the measurement method of the wet steam is complicated and difficult to measure accurately, There was a problem that the measurement accuracy of the enthalpy of steam was lowered.
In the second prior art, since the measurement accuracy of the enthalpy of the wet steam is low as information for determining the dryness of the wet steam, the accuracy of the dryness of the wet steam obtained based on the enthalpy of the wet steam is low. Become.
In addition, since the configuration for measuring the amount of wet steam becomes complicated, there has been a problem that the price of the apparatus rises and the measurement cost of the enthalpy of wet steam increases.
In short, in the past, information for measuring the dryness of wet steam, such as the enthalpy of saturated water, the latent heat of vaporization of saturated water, the enthalpy of superheated steam, and the enthalpy of wet steam, improve the measurement accuracy. In addition, there is a problem that it is difficult to reduce the measurement cost.
[0009]
The present invention has been made in view of such circumstances, and its purpose is to improve the measurement accuracy of information for measuring the dryness of wet steam and to reduce the measurement cost, and the enthalpy and saturation of saturated water. An object is to provide a method and an apparatus for measuring the latent heat of vaporization of water, the enthalpy of superheated steam, and the dryness of wet steam.
[0010]
[Means for Solving the Problems]
[Invention of Claim 1]
The method for measuring enthalpy of saturated water according to claim 1 obtains a wet steam index value by multiplying the fourth root of the absolute pressure of the wet steam to be measured by a coefficient, and uses the wet steam index value as a variable. The feature configuration is that the enthalpy i1 of saturated water is obtained by an nth-order equation for derivation.
That is, the absolute pressure of the wet steam to be measured is measured, the fourth root of the absolute pressure is obtained, the wet root index value is obtained by multiplying the fourth root of the obtained absolute pressure by a coefficient, and the obtained wet pressure is obtained. The saturated water enthalpy i1 is obtained by substituting the steam index value into the nth order equation for deriving the saturated water enthalpy using the wet steam index value as a variable.
In other words, the inventor of the present invention has intensively studied to improve the measurement accuracy and reduce the measurement cost in measuring the enthalpy of saturated water. The enthalpy of saturated water is the fourth root of the absolute pressure of wet steam. It was found that the approximation can be made with high accuracy by an nth order equation using a wet steam index value obtained by multiplying a predetermined coefficient as a variable.
The wet steam index value obtained by multiplying the fourth root of the absolute pressure of the wet steam by a predetermined coefficient is used as a variable. In other words, the enthalpy of saturated water can be accurately approximated using the absolute pressure of the wet steam as a variable. Since the saturated water enthalpy is obtained by substituting the measured value of the absolute pressure of the wet steam to be measured into the nth order equation for deriving the saturated water enthalpy, the enthalpy of the saturated water can be measured with high accuracy.
Further, since no saturated steam table is used, it is not necessary to acquire precise saturated steam table data in order to improve the measurement accuracy, as required in the first prior art. Since it is possible to measure the enthalpy of saturated water with a simple configuration such as measuring the pressure of the steam, the measurement cost can be reduced.
Accordingly, it is possible to provide a saturated water enthalpy measurement method capable of improving the measurement accuracy of saturated water enthalpy as information for measuring the dryness of wet steam and reducing the measurement cost.
[0011]
[Invention of Claim 2]
The saturated water enthalpy measuring device according to claim 2, wherein the wet steam pressure detecting means for detecting the pressure of the wet steam to be measured;
Wet steam index value deriving means for obtaining the wet steam index value by multiplying the fourth root of the absolute pressure of the wet steam by a coefficient based on the detection information of the wet steam pressure detecting means;
Saturated water enthalpy deriving means for obtaining saturated water enthalpy i1 by an nth-order equation for deriving saturated water enthalpy using the wet steam index value as a variable is provided.
That is, the wet steam pressure detecting means detects the pressure of the wet steam to be measured, and the wet steam index value deriving means is based on the detection information of the wet steam pressure detecting means to the fourth root of the absolute pressure of the wet steam. The wet steam index value is obtained by multiplying the coefficient, and the saturated water enthalpy derivation means is used to derive the saturated water enthalpy using the wet steam index value as a variable. By substituting into the nth order equation, the enthalpy i1 of saturated water is obtained.
In other words, as described above with respect to the invention of claim 1, the enthalpy of saturated water is an n-th order using a wet steam index value obtained by multiplying the fourth root of the absolute pressure of wet steam by a predetermined coefficient as a variable. In the equation, it is found that it can be accurately approximated, and the wet steam index value obtained by multiplying the fourth root of the absolute pressure of the wet steam by a predetermined coefficient as a variable, in other words, the absolute value of the wet steam Substituting the measured value of the absolute pressure of the wet steam to be measured into the nth order equation for deriving the saturated water enthalpy, which is set to be able to approximate the saturated water enthalpy accurately with the pressure as a variable, Therefore, it is possible to accurately measure the enthalpy of saturated water.
Also, since the enthalpy of saturated water is obtained by a simple formula without using a saturated steam table with a large amount of information, it becomes possible to use an inexpensive one with a small storage capacity as a storage means, Since it is possible to measure the enthalpy of saturated water with a simple configuration such as measuring pressure, it is possible to reduce the cost of the equipment and, in turn, to reduce the cost of measuring enthalpy of saturated water. Is possible.
Therefore, it has become possible to provide a saturated water enthalpy measurement device capable of improving the measurement accuracy of saturated water enthalpy as information for measuring the dryness of wet steam and reducing the measurement cost.
[0012]
[Invention of Claim 3]
The method for measuring latent heat of evaporation of saturated water according to claim 3 obtains a wet steam index value by multiplying the fourth root of the absolute pressure of the wet steam to be measured by a coefficient, and uses the wet steam index value as a variable. The characteristic configuration is that the latent heat of vaporization r of saturated water is obtained by an nth order equation for deriving latent heat of vaporization.
That is, the absolute pressure of the wet steam to be measured is measured, the fourth root of the absolute pressure is obtained, the wet root index value is obtained by multiplying the fourth root of the obtained absolute pressure by a coefficient, and the obtained wet pressure is obtained. By substituting the steam index value into an nth-order equation for deriving saturated water evaporation latent heat with the wet steam index value as a variable, the evaporation latent heat r of saturated water is obtained.
That is, the inventor of the present invention has intensively studied to improve the measurement accuracy and reduce the measurement cost when measuring the latent heat of evaporation of saturated water. The latent heat of evaporation of saturated water is 4 of the absolute pressure of wet steam. It has been found that the approximation can be performed with high accuracy by an nth order equation using a wet steam index value obtained by multiplying the root of the product by a predetermined coefficient as a variable.
Then, the wet steam index value obtained by multiplying the fourth root of the absolute pressure of the wet steam by a predetermined coefficient is used as a variable, in other words, the latent heat of evaporation of saturated water is accurately approximated using the absolute pressure of the wet steam as a variable. Substituting the measured value of the absolute pressure of the wet steam to be measured into the n-th order equation for deriving the saturated water evaporation latent heat, and obtaining the evaporation latent heat of saturated water, the evaporation latent heat of saturated water can be accurately measured. It becomes possible.
Further, since no saturated steam table is used, it is not necessary to acquire precise saturated steam table data in order to improve the measurement accuracy, as required in the first prior art. Since the latent heat of vaporization of saturated water can be measured with a simple configuration such as measuring the pressure of the steam, the measurement cost can be reduced.
Therefore, it is possible to provide a method for measuring the latent heat of evaporation of saturated water that can improve the measurement accuracy of the latent heat of evaporation of saturated water as information for measuring the dryness of wet steam and can reduce the measurement cost. It was.
[0013]
[Invention of Claim 4]
The apparatus for measuring latent heat of evaporation of saturated water according to claim 4 comprises wet steam pressure detecting means for detecting the pressure of wet steam to be measured,
Wet steam index value deriving means for obtaining the wet steam index value by multiplying the fourth root of the absolute pressure of the wet steam by a coefficient based on the detection information of the wet steam pressure detecting means;
Saturated water evaporation latent heat deriving means for obtaining saturated water evaporation latent heat r by an n-order equation for deriving saturated water evaporation latent heat using the wet steam index value as a variable is provided.
That is, the wet steam pressure detecting means detects the pressure of the wet steam to be measured, and the wet steam index value deriving means is based on the detection information of the wet steam pressure detecting means to the fourth root of the absolute pressure of the wet steam. Multiplying the coefficient to obtain the wet steam index value, the saturated water evaporation latent heat deriving means derives the saturated water evaporation latent heat using the wet steam index value obtained by the wet steam index value deriving means as a variable. By substituting into the n-th order equation, the evaporation latent heat r of saturated water is obtained.
That is, as described above for the invention of claim 3, the latent heat of vaporization of saturated water is a variable n that is a wet steam index value obtained by multiplying the fourth root of the absolute pressure of wet steam by a predetermined coefficient. In the following equation, it is found that it can be approximated with high accuracy, and the wet steam index value obtained by multiplying the fourth root of the absolute pressure of the wet steam by a predetermined coefficient as a variable, in other words, Substituting the measured value of the absolute pressure of the wet steam to be measured into the nth order equation for deriving the saturated water evaporation latent heat, which is set so that the latent heat of vaporization of the saturated water can be accurately approximated using the absolute pressure as a variable, Therefore, it is possible to accurately measure the latent heat of evaporation of saturated water.
In addition, since the latent heat of evaporation of saturated water is obtained by a simple mathematical formula without using a saturated steam table with a large amount of information, it is possible to use an inexpensive one with a small storage capacity as a storage means, or simply wet steam. It is possible to measure the latent heat of vaporization of saturated water with a simple configuration, such as measuring the pressure of the water, thereby reducing the cost of the equipment and, in turn, lowering the cost of measuring the latent heat of vaporization of saturated water. Can be achieved.
Accordingly, it is possible to provide an apparatus for measuring the latent heat of evaporation of saturated water capable of improving the measurement accuracy of the latent heat of evaporation of saturated water as information for measuring the dryness of wet steam and reducing the measurement cost. It was.
[0014]
[Invention of Claim 5]
The method for measuring the enthalpy of superheated steam according to claim 5 calculates the index value for the coefficient by a linear expression for deriving the index value for the coefficient with the pressure of the superheated steam to be measured as a variable, and the pressure of the superheated steam to be measured The index value for the constant term is obtained by a linear expression for deriving the index value for the constant term with the variable as the variable, the index value for the coefficient is set as the coefficient of the term with the temperature of the superheated steam as a variable, and the index value for the constant term is The characteristic configuration is that the enthalpy i2 of the superheated steam is obtained by a linear expression for deriving the superheated steam enthalpy as a constant term.
That is, the pressure and temperature of the superheated steam to be measured are measured, and the measured pressure is substituted into the primary expression for deriving the index value for the coefficient with the pressure of the superheated steam to be measured as a variable, and the index value for the coefficient is And substituting the measured pressure into a primary expression for deriving an index value for a constant term using the pressure of the superheated steam to be measured as a variable to obtain an index value for the constant term, and subsequently measuring the measured temperature, By substituting the index value for coefficient into a linear equation for deriving superheated steam enthalpy using the coefficient of the term having the temperature of the superheated steam as a variable and deriving the index value for the constant term as a constant term, the enthalpy i2 of the superheated steam is obtained.
In other words, the inventor of the present invention has earnestly studied to improve the measurement accuracy and reduce the measurement cost when measuring the enthalpy of superheated steam. The coefficient value obtained by the linear equation, that is, the coefficient for deriving the index value for the coefficient with the pressure of the superheated steam to be measured as a variable, as the coefficient of the first term with the temperature of the superheated steam as a variable, In addition, it can be accurately approximated by a linear expression using a constant term index value obtained by a linear expression for deriving a constant term index value using the pressure of the superheated steam to be measured as a variable. I found it.
And the three primary equations for deriving index values for coefficients, deriving index values for constant terms, and deriving superheated steam enthalpies, which are set so that the enthalpy of superheated steam can be accurately approximated using the pressure and temperature of superheated steam as variables, Since the enthalpy of the superheated steam is obtained by substituting the measured values of the pressure and temperature of the superheated steam to be measured, the enthalpy of the superheated steam can be accurately measured.
In addition, since no superheated steam table is used, it is not necessary to acquire accurate superheated steam table data in order to improve the measurement accuracy, as required in the first prior art, or simply overheating. Since it is possible to measure the enthalpy of superheated steam with a simple configuration such as measuring the pressure and temperature of the steam, the measurement cost can be reduced.
Accordingly, it is possible to provide a superheated steam enthalpy measurement method capable of improving the measurement accuracy of superheated steam enthalpy as information for measuring the dryness of wet steam and reducing the measurement cost.
[0015]
[Invention of Claim 6]
The superheated steam enthalpy measuring device according to claim 6 is provided with superheated steam pressure detecting means for detecting the pressure of the superheated steam to be measured, and superheated steam temperature detecting means for detecting the temperature,
Based on the detection information of the superheated steam pressure detecting means, a coefficient index value is obtained by a linear expression for deriving a coefficient index value using the superheated steam pressure as a variable, and a constant using the superheated steam pressure as a variable Superheated steam index value deriving means for obtaining an index value for a constant term with a linear expression for deriving an index value for a term;
Based on the detection information of the superheated steam temperature detecting means, the coefficient index value is a coefficient of a term having the temperature of the superheated steam as a variable, and the primary for deriving superheated steam enthalpy having the constant term index value as a constant term According to the formula, a superheated steam enthalpy deriving means for obtaining the enthalpy i2 of the superheated steam is provided.
That is, the superheated steam pressure detecting means detects the pressure of the superheated steam to be measured, the superheated steam temperature detecting means measures the temperature of the superheated steam to be measured, and the superheated steam index value deriving means determines the superheated steam pressure detecting means. Based on the detection information, the index value for the coefficient is obtained by a linear expression for deriving the index value for the coefficient using the pressure of the superheated steam as a variable, and for deriving the index value for the constant term using the pressure of the superheated steam as a variable The index value for the constant term is obtained by a linear expression, and the coefficient of the term with the temperature of the superheated steam as the variable is used as the coefficient index value based on the detection information of the superheated steam temperature detecting means by the superheated steam enthalpy deriving means. And the enthalpy i2 of the superheated steam is obtained by a linear expression for deriving the superheated steam enthalpy using the constant term index value as a constant term.
That is, as described above for the invention according to claim 5, the enthalpy of the superheated steam to be measured is a linear expression for deriving the superheated steam enthalpy, that is, a coefficient index having the pressure of the superheated steam to be measured as a variable. The index value for the coefficient obtained by the linear equation for deriving the value is the coefficient of the first-order term using the temperature of the superheated steam as a variable, and the index value for the constant term is derived using the pressure of the superheated steam to be measured as a variable It is found that it can be approximated with high accuracy by a linear expression that uses the constant term index value obtained from the linear expression for the constant term, and the enthalpy of the superheated steam is accurately determined using the pressure and temperature of the superheated steam as variables. Substituting the measured values of the pressure and temperature of the superheated steam to be measured into the three primary equations for deriving the index value for the coefficient, deriving the index value for the constant term, and deriving the superheated steam enthalpy that are set to be well approximated Superheated steam Since obtaining the enthalpy, it becomes possible to accurately measure the enthalpy of the superheated steam.
Moreover, since the enthalpy of superheated steam is obtained by a simple formula without using a superheated steam table with a large amount of information, it is possible to use an inexpensive one with a small storage capacity as a storage means, or simply Since it is possible to measure the enthalpy of superheated steam with a simple configuration such as measuring pressure and temperature, the cost of the equipment can be reduced, and in turn, the measurement cost of enthalpy of superheated steam can be reduced. It becomes possible to plan.
Therefore, it has become possible to provide a superheated steam enthalpy measurement device capable of improving the measurement accuracy of superheated steam enthalpy as information for measuring the dryness of wet steam and reducing the measurement cost.
[0016]
[Invention of Claim 7]
The wet steam dryness measuring method according to claim 7, wherein the wet steam index value is obtained by multiplying the fourth root of the absolute pressure of the wet steam to be measured by a coefficient, and the wet steam index value is used as a variable. The saturated water enthalpy i1 is obtained from the nth order equation for deriving enthalpy, the latent heat evaporating r of the saturated water is obtained from the nth order equation for deriving the latent heat of saturated water having the wet steam index value as a variable,
Obtain a coefficient index value with a primary expression for deriving a coefficient index value using the pressure of the superheated steam generated by adiabatic expansion of the measurement target wet steam as a variable, and a constant term with the pressure of the superheated steam as a variable The index value for the constant term is obtained by a linear expression for deriving the index value for the index, the index value for the coefficient is used as a coefficient of a term whose temperature is the temperature of the superheated steam, and the index value for the constant term is used as the constant term Obtain the enthalpy i2 of the superheated steam using the primary equation for enthalpy derivation,
Based on the enthalpy i1 of the saturated water, the latent heat of vaporization r of the saturated water and the enthalpy i2 of the superheated steam, the dryness x of the wet steam,
[0017]
[Equation 3]
x = (i2-i1) / r
[0018]
The point obtained in step is defined as a feature configuration.
That is, the absolute pressure of the wet steam to be measured is measured, the fourth root of the absolute pressure is obtained, the wet root index value is obtained by multiplying the fourth root of the obtained absolute pressure by a coefficient, and the obtained wet pressure is obtained. The saturated water enthalpy i1 is obtained by substituting the steam index value into the nth order equation for deriving the saturated water enthalpy using the wet steam index value as a variable.
Further, by substituting the wet steam index value into an nth-order equation for deriving saturated water evaporation latent heat with the wet steam index value as a variable, the latent heat of evaporation r of saturated water is obtained.
Furthermore, the pressure and temperature of the superheated steam generated by adiabatic expansion of the wet steam to be measured are measured, and the measured pressure is substituted into the primary expression for deriving the index value for the coefficient using the pressure of the superheated steam as a variable. The index value for the coefficient is obtained, and the measured pressure is substituted into the primary expression for deriving the index value for the constant term using the pressure of the superheated steam as a variable to obtain the index value for the constant term, followed by the measurement. Substituting temperature into the primary equation for deriving superheated steam enthalpy with the index value for coefficient as the coefficient of the term with the temperature of superheated steam as a variable and the index value for constant term as the constant term, the enthalpy of superheated steam Find i2.
Then, the enthalpy i1 of saturated water, the latent heat of evaporation r1 of saturated water and the enthalpy i2 of superheated steam measured as described above are substituted into the above Equation 3 to obtain the dryness x of wet steam.
In other words, as described above with respect to the invention of claim 1, the saturated water enthalpy i1 can be measured while improving the measurement accuracy and reducing the measurement cost by the nth order equation for deriving the saturated water enthalpy. In addition, as described in the third aspect of the present invention, the measurement accuracy of the evaporation latent heat r of saturated water can be improved and the measurement cost can be reduced by the nth order equation for deriving the latent heat of evaporation of saturated water. In addition, as described above with reference to the description of claim 5, three linear expressions for deriving index values for coefficients, deriving index values for constant terms, and deriving superheated steam enthalpy This makes it possible to measure the enthalpy of superheated steam while improving the measurement accuracy and reducing the measurement cost, and further improving the measurement accuracy and measuring cost of wet steam. It is possible to measure while achieving cost reduction.
Therefore, to improve the accuracy of measurement of enthalpy of saturated water as information for measuring the dryness of wet steam, the latent heat of evaporation of saturated water and the enthalpy of superheated steam, and to reduce the measurement cost, the dryness of wet steam It is now possible to provide a method for measuring the dryness of wet steam that can improve the measurement accuracy and reduce the measurement cost.
[0019]
[Invention of Claim 8]
The wet steam dryness measuring apparatus according to claim 8, wherein the wet steam pressure detecting means for detecting the pressure of the wet steam to be measured;
An adiabatic expander that adiabatically expands the wet steam to be measured into superheated steam;
Superheated steam pressure detecting means for detecting the pressure of the superheated steam generated by the adiabatic expander;
And a superheated steam temperature detecting means for detecting the temperature of the superheated steam,
Wet steam index value deriving means for obtaining the wet steam index value by multiplying the fourth root of the absolute pressure of the wet steam by a coefficient based on the detection information of the wet steam pressure detecting means;
Saturated water enthalpy derivation means for obtaining an enthalpy i1 of saturated water by an nth order equation for deriving saturated water enthalpy using the wet steam index value as a variable;
Saturated water evaporation latent heat deriving means for obtaining saturated water evaporation latent heat r by an nth-order equation for deriving saturated water evaporation latent heat with the wet steam index value as a variable;
Based on the detection information of the superheated steam pressure detecting means, a coefficient index value is obtained by a linear expression for deriving a coefficient index value using the superheated steam pressure as a variable, and a constant using the superheated steam pressure as a variable Superheated steam index value deriving means for obtaining an index value for a constant term with a linear expression for deriving an index value for a term;
Based on the detection information of the superheated steam temperature detecting means, the coefficient index value is a coefficient of a term having the temperature of the superheated steam as a variable, and the primary for deriving superheated steam enthalpy having the constant term index value as a constant term The superheated steam enthalpy deriving means for obtaining the superheated steam enthalpy i2 according to the equation is provided,
Based on the enthalpy i1 of the saturated water, the latent heat of vaporization r of the saturated water and the enthalpy i2 of the superheated steam,
[0020]
[Expression 4]
x = (i2-i1) / r
[0021]
The characteristic feature is that dryness deriving means for obtaining the dryness x of the wet steam is provided.
That is, the wet steam pressure detecting means detects the pressure of the wet steam to be measured, the superheated steam pressure detecting means detects the pressure of the superheated steam generated by the adiabatic expander, and the superheated steam temperature detecting means The temperature of the superheated steam generated by the adiabatic expander is detected.
The wet steam index value deriving means obtains the wet steam index value by multiplying the fourth root of the absolute pressure of the wet steam by a coefficient based on the detection information of the wet steam pressure detecting means, and the saturated water enthalpy deriving means By substituting the wet steam index value obtained by the steam index value deriving means into an nth order equation for deriving saturated water enthalpy using the wet steam index value as a variable, the enthalpy i1 of saturated water is obtained, and saturated water By substituting the wet steam index value into the nth-order equation for deriving saturated water evaporation latent heat with the wet steam index value as a variable, the latent heat of evaporation r of saturated water is obtained by the latent heat of vapor deriving means.
Based on the detection information of the superheated steam pressure detecting means, the superheated steam index value deriving means obtains a coefficient index value by a primary expression for deriving a coefficient index value using the superheated steam pressure as a variable, and An index value for the constant term is obtained by a linear expression for deriving an index value for the constant term with the steam pressure as a variable, and the coefficient for the coefficient is calculated by the superheated steam enthalpy deriving means based on the detection information of the superheated steam temperature detecting means. The enthalpy i2 of the superheated steam is obtained by a linear equation for deriving the superheated steam enthalpy using the index value as a coefficient of the term having the temperature of the superheated steam as a variable and the index value for the constant term as the constant term.
Then, by substituting the enthalpy i1 of saturated water, the latent heat of evaporation r1 of saturated water and the enthalpy i2 of superheated steam measured as described above by the dryness deriving means, the dryness x of the wet steam x Is required.
In other words, as described above for the invention of claim 2, the saturated water enthalpy i1 is measured by the wet steam index value deriving means and the saturated water enthalpy deriving means while improving the measurement accuracy and reducing the measurement cost. In addition, as described in the fourth aspect of the present invention, the measurement accuracy of the evaporation latent heat r of saturated water is improved by the wet steam index value deriving means and the saturated water evaporation latent heat deriving means. In addition, as described above, the superheated steam index value deriving means and the superheated steam enthalpy deriving means provide the enthalpy of the superheated steam. Can be measured while improving the measurement accuracy and reducing the measurement cost. As a result, the dryness of wet steam can be improved. It is possible to measure while achieving cost reduction of the fine measurement costs.
Therefore, to improve the accuracy of measurement of enthalpy of saturated water as information for measuring the dryness of wet steam, the latent heat of evaporation of saturated water and the enthalpy of superheated steam, and to reduce the measurement cost, the dryness of wet steam It has become possible to provide a wet steam dryness measuring device capable of improving the measurement accuracy and reducing the measurement cost.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 1, the wet steam dryness measuring apparatus adiabatically expands the measurement steam supply path 1 that guides the wet steam to be measured and the wet steam supplied in the measurement steam supply path 1. Adiabatic expander 2 for making superheated steam, a steam discharge path 3 for discharging steam from the adiabatic expander 2, and a flow rate adjustment for adjusting the amount of wet steam supplied to the adiabatic expander 2 through the steam supply path 1 for measurement A wet steam pressure sensor 5 (corresponding to a wet steam pressure detecting means) that detects the pressure of wet steam at a location upstream of the flow rate adjusting valve 4 in the measurement steam supply path 1, and an adiabatic expander A superheated steam pressure sensor 6 (corresponding to a superheated steam pressure detection means) for detecting the pressure of superheated steam in the heat pump 2 and a superheated steam temperature sensor 7 (superheated steam temperature detection for detecting the temperature of the superheated steam in the adiabatic expander 2). Equivalent to the means) and those wet A processing unit 8 that calculates the dryness of the wet steam based on detection information of each of the steam pressure sensor 5, the superheated steam pressure sensor 6, and the superheated steam temperature sensor 7, and an operation unit 9 that instructs the processing unit 8 to process information. And a display unit 10 for displaying the calculation result of the processing unit 8.
[0023]
Since the adiabatic expander 2 is well known, detailed description and illustration are omitted, but wet steam supplied through the measurement steam supply path 1 is blown into the adiabatic expander 2 by giving a throttle and adiabatic expansion ( It is configured to be superheated steam by changing the enthalpy.
[0024]
The processing unit 8 is configured by using a microcomputer, and the processing unit 8 is based on the detection information of the wet steam pressure sensor 5 and multiplies the fourth root of the absolute pressure of the wet steam by a coefficient to obtain wet steam. Wet steam index value deriving means 81 for obtaining the index value p, and saturated water for obtaining the enthalpy i1 of the saturated water by an nth-order equation (n is a positive integer) for deriving saturated water enthalpy using the wet steam index value p as a variable. Enthalpy deriving means 82; saturated water evaporating latent heat deriving means 83 for obtaining saturated water evaporating latent heat r by an nth order equation (n is a positive integer) for deriving saturated water evaporating latent heat with wet steam index value p as a variable; Based on the detection information of the superheated steam pressure sensor 6, a coefficient index value a is obtained by a linear expression for deriving a coefficient index value using the superheated steam pressure as a variable, and a constant using the superheated steam pressure as a variable In the primary expression for deriving index values for terms Based on the detection information of the superheated steam index value deriving means 84 and the superheated steam temperature sensor 7 for obtaining the index value b for several terms, the index value for coefficient a is a coefficient of a term whose temperature is the temperature of the superheated steam, and the constant The superheated steam enthalpy deriving means 85 for obtaining the enthalpy i2 of the superheated steam by a linear expression for deriving the superheated steam enthalpy with the term index value b as a constant term, the enthalpy i1 of the saturated water, and the latent heat of vaporization r of the saturated water And a dryness deriving means 86 for obtaining the dryness x of the wet steam by the following equation 5 based on the enthalpy i2 of the superheated steam.
[0025]
[Equation 5]
x = (i2-i1) / r
[0026]
Specifically, each of wet steam index value deriving means 81, saturated water enthalpy deriving means 82, saturated water evaporation latent heat deriving means 83, superheated steam index value deriving means 84, superheated steam enthalpy deriving means 85, and dryness deriving means 86. Each means is constituted by a program for causing the processing unit 8 to function as each means, and these programs are stored in a storage unit (not shown) of the processing unit 8.
[0027]
The wet steam index value deriving unit 81 will be described. The wet steam index value deriving unit 81 calculates the gauge pressure of the wet steam to be measured detected by the wet steam pressure sensor 5 as P.1Assuming (MPaG), the wet steam index value p is obtained by the following equation (6).
[0028]
[Formula 6]
Figure 0003949044
Coefficient k1Is set to the fourth power of 1000, for example.
[0029]
The saturated water enthalpy deriving unit 82 will be described. The saturated water enthalpy deriving unit 82 uses the wet steam index value p obtained by the above Equation 6 as a variable for the saturated water enthalpy i1 (kJ / kg). This is obtained by a quadratic equation for deriving saturated water enthalpy expressed by Equation (7).
[0030]
[Expression 7]
i1 = k2× p2+ KThree× p + kFour
k2, KThree, KFourIs a constant, and is set as follows, for example.
k2= -1.8871
kThree= 156.01
kFour= −54.846
[0031]
When the saturated water evaporation latent heat deriving unit 83 is described further, the saturated water evaporation latent heat deriving unit 83 uses the wet steam index value p obtained by the above equation 6 as the variable for the latent heat of evaporation of saturated water r (kJ / kg). It calculates | requires by the secondary type | formula for derivation | leading-out saturated water evaporation latent heat shown by the following several 8.
[0032]
[Equation 8]
r = kFive× p2+ K6× p + k7
kFive, K6, K7Is a constant, and is set as follows, for example.
kFive= -3.6590
k6= −65.746
k7= 2500.29
[0033]
The superheated steam index value deriving unit 84 will be described. The superheated steam index value deriving unit 84 calculates the gauge pressure of the superheated steam detected by the superheated steam pressure sensor 6 as P.2(MPaG), the index value a for the coefficient is the superheated steam pressure P2Is obtained by a linear expression for deriving the index value for the coefficient of the following formula 9, and the index value b for the constant term is determined from the pressure P of the superheated steam.2Is obtained by the following linear expression for deriving the index value for the constant term of the following ten.
[0034]
[Equation 9]
a = k8× P2+ K9
[0035]
[Expression 10]
b = kTen× P2+ K11
k8, K9, KTen, K11Is a constant, and is set as follows, for example.
k8= 0.1702
k9= 0.47625
kTen= -44.464
k11= 591.625
[0036]
The superheated steam enthalpy deriving means 85 will be described. The superheated steam enthalpy deriving means 85 uses the superheated steam enthalpy i2 (kJ / kg), the coefficient index value a as the superheated steam temperature T (° C) as a variable. The following equation 11 is used to obtain the superheated steam enthalpy derivation using the constant term index value b as a constant term.
[0037]
## EQU11 ##
i2 = 4.18605 × (a × T2+ B)
[0038]
The dryness deriving means 86 calculates the dryness x of the wet steam based on the enthalpy i1 of saturated water, the latent heat of evaporation r1 of saturated water and the enthalpy i2 of superheated steam obtained as described above. 5 is obtained.
[0039]
The operation unit 9 is configured to be able to command freely what to measure from the enthalpy i1 of saturated water, the latent heat of vaporization r of saturated water, the enthalpy i2 of superheated steam, and the dryness x of wet steam. The processing unit 8 functions to measure what is instructed from the operation unit 9 and causes the display unit 10 to display the measurement result.
[0040]
That is, when the measurement of the saturated water enthalpy i1 is commanded, the wet steam index value deriving means 81 and the saturated water enthalpy deriving means 82 are operated to measure the saturated water enthalpy i1, and the measured saturated water enthalpy is measured. When i1 is displayed on the display unit 10 and the measurement of the saturated water evaporative latent heat r is commanded, the wet steam index value deriving unit 81 and the saturated water evaporating latent heat deriving unit 83 are activated, and the saturated water evaporating latent heat r is obtained. The measured latent heat of vaporization r of the saturated water is displayed on the display unit 10.
Further, when the measurement of the superheated steam enthalpy i2 is commanded, the superheated steam index value deriving means 84 and the superheated steam enthalpy deriving means 85 are operated to measure the superheated steam enthalpy i2, and the measured superheated steam enthalpy i2 is measured. i2 is displayed on the display unit 10.
When the measurement of the wet steam dryness x is commanded, the wet steam index value deriving means 81, the saturated water enthalpy deriving means 82, the saturated water evaporation latent heat deriving means 83, the superheated steam index value deriving means 84, the superheated steam enthalpy. The deriving unit 85 and the dryness deriving unit 86 are operated to measure the dryness x of the wet steam, and the measured dryness x is displayed on the display unit 10.
[0041]
According to the wet steam dryness measuring apparatus configured as described above, it is possible to continuously measure the enthalpy i1 of saturated water, the latent heat of evaporation r of saturated water, the enthalpy i2 of superheated steam, and the dryness x of wet steam. Is possible.
[0042]
[Another embodiment]
Next, another embodiment will be described.
(A) In the above embodiment, the embodiment of the wet steam dryness measuring device has been described. Hereinafter, based on FIG. 1, the saturated water enthalpy measuring device, the saturated water evaporation latent heat measuring device, and Each embodiment of the enthalpy measuring device for superheated steam will be described.
The saturated water enthalpy measuring device includes the measuring steam supply path 1, the wet steam pressure sensor 5, the processing unit 8, the operation unit 9, and the display unit 10 among the wet steam dryness measuring devices described in the above embodiment. The processing unit 8 includes wet steam index value deriving means 81 and saturated water enthalpy deriving means 82.
[0043]
The saturated water evaporative latent heat measuring device includes the measuring steam supply path 1, the wet steam pressure sensor 5, the processing unit 8, the operation unit 9, and the display unit among the wet steam dryness measuring devices described in the above embodiments. The processing unit 8 includes a wet steam index value deriving unit 81 and a saturated water evaporation latent heat deriving unit 83.
[0044]
The superheated steam enthalpy measuring device includes the measuring steam supply path 1, the adiabatic expander 2, the steam discharge path 3, the flow rate adjusting valve 4, the superheated steam among the wet steam dryness measuring apparatuses described in the above embodiment. The pressure sensor 6, the superheated steam temperature sensor 7, the processing unit 8, the operation unit 9, and the display unit 10 are configured. The processing unit 8 includes a superheated steam index value deriving unit 84 and a superheated steam enthalpy deriving unit 85.
[0045]
(B) In the above embodiment, a quadratic polynomial is set as the nth-order equation for deriving saturated water enthalpy and the nth-order equation for deriving saturated water evaporation latent heat, respectively. A third or higher order polynomial may be set. However, since a first-order polynomial has a large error, it is preferable to set it to a second-order or higher polynomial.
[0046]
(C) The saturated water enthalpy i1 is artificially calculated by the equation for deriving the wet steam index value expressed by the above equation 6 and the secondary equation for deriving the saturated water enthalpy expressed by the equation 7 above. You may ask.
The saturated water evaporative latent heat r is obtained by artificially calculating by the above equation for deriving the wet steam index value expressed by Equation 6 and the secondary equation for deriving the saturated water evaporative latent heat expressed by Equation 8. May be.
The enthalpy i2 of the superheated steam is defined as the linear expression for deriving the index value for the coefficient represented by the above formula 9, the primary formula for deriving the index value for the constant term represented by the formula 10, and the superheated steam represented by the formula 11. It may be obtained by artificial calculation using a linear expression for enthalpy derivation.
You may obtain | require the dryness x of wet steam by calculating artificially as follows. That is, as described above, the enthalpy i1 of saturated water, the latent heat of evaporation r1 of saturated water, and the enthalpy i2 of superheated steam are calculated, and the enthalpy i1 of saturated water, the latent heat of evaporation r of saturated water, and the enthalpy i2 of superheated steam are calculated. Based on the above, the dryness x of the wet steam is obtained by the above equation (5).
[0047]
(D) Constant k1, K2, KThree, KFour, KFive, K6, K7, K8, K9, KTen, K11The specific values are not limited to the values exemplified in the above embodiment, and can be set in various ways so that each value for the derivation purpose can be obtained with high accuracy. For example, when the wet steam dryness is divided into a plurality of ranges of 0 to 100% and each constant is set so that the dryness can be measured accurately for each range, It becomes possible to further improve the measurement accuracy of the dryness.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a wet steam dryness measuring apparatus according to an embodiment of the present invention.
[Explanation of symbols]
2 Adiabatic inflator
5 Wet steam pressure detection means
6 Superheated steam pressure detection means
7 Superheated steam temperature detection means
81 Wet steam index value deriving means
82 Means for deriving saturated water enthalpy
83 Means for deriving latent heat of saturated water evaporation
84 Superheated steam index value deriving means
85 Deriving means for superheated steam enthalpy
86 Dryness derivation means

Claims (8)

測定対象の湿り蒸気の絶対圧力の4乗根に係数を乗じて湿り蒸気指標値を求め、その湿り蒸気指標値を変数とする飽和水エンタルピ導出用のn次式にて飽和水のエンタルピi1を求める飽和水のエンタルピ測定方法。  The wet steam index value is obtained by multiplying the fourth root of the absolute pressure of the wet steam to be measured by a coefficient, and the saturated water enthalpy i1 is calculated by the nth-order equation for deriving the saturated water enthalpy using the wet steam index value as a variable. How to measure enthalpy of saturated water. 測定対象の湿り蒸気の圧力を検出する湿り蒸気圧力検出手段と、
その湿り蒸気圧力検出手段の検出情報に基づいて、湿り蒸気の絶対圧力の4乗根に係数を乗じて湿り蒸気指標値を求める湿り蒸気指標値導出手段と、
前記湿り蒸気指標値を変数とする飽和水エンタルピ導出用のn次式にて飽和水のエンタルピi1を求める飽和水エンタルピ導出手段とが設けられている飽和水のエンタルピ測定装置。
Wet steam pressure detecting means for detecting the pressure of the wet steam to be measured;
Wet steam index value deriving means for obtaining the wet steam index value by multiplying the fourth root of the absolute pressure of the wet steam by a coefficient based on the detection information of the wet steam pressure detecting means;
A saturated water enthalpy measuring device provided with saturated water enthalpy deriving means for obtaining an enthalpy i1 of saturated water by an n-order equation for deriving saturated water enthalpy using the wet steam index value as a variable.
測定対象の湿り蒸気の絶対圧力の4乗根に係数を乗じて湿り蒸気指標値を求め、その湿り蒸気指標値を変数とする飽和水蒸発潜熱導出用のn次式にて飽和水の蒸発潜熱rを求める飽和水の蒸発潜熱測定方法。  Calculate the wet steam index value by multiplying the fourth root of the absolute pressure of the wet steam to be measured by a coefficient, and use the nth-order equation for deriving the saturated water evaporation latent heat with the wet steam index value as a variable. A method for measuring the latent heat of evaporation of saturated water to obtain r. 測定対象の湿り蒸気の圧力を検出する湿り蒸気圧力検出手段と、
その湿り蒸気圧力検出手段の検出情報に基づいて、湿り蒸気の絶対圧力の4乗根に係数を乗じて湿り蒸気指標値を求める湿り蒸気指標値導出手段と、
前記湿り蒸気指標値を変数とする飽和水蒸発潜熱導出用のn次式にて飽和水の蒸発潜熱rを求める飽和水蒸発潜熱導出手段とが設けられている飽和水の蒸発潜熱測定装置。
Wet steam pressure detecting means for detecting the pressure of the wet steam to be measured;
Wet steam index value deriving means for obtaining the wet steam index value by multiplying the fourth root of the absolute pressure of the wet steam by a coefficient based on the detection information of the wet steam pressure detecting means;
An apparatus for measuring latent heat of evaporation of saturated water, comprising: saturated water evaporation latent heat deriving means for obtaining saturated water evaporation latent heat r by an n-order equation for deriving saturated water evaporation latent heat using the wet steam index value as a variable.
測定対象の過熱蒸気の圧力を変数とする係数用指標値導出用の一次式にて係数用指標値を求め、測定対象の過熱蒸気の圧力を変数とする定数項用指標値導出用の一次式にて定数項用指標値を求め、前記係数用指標値を過熱蒸気の温度を変数とする項の係数とし且つ前記定数項用指標値を定数項とする過熱蒸気エンタルピ導出用の一次式にて、過熱蒸気のエンタルピi2を求める過熱蒸気のエンタルピ測定方法。  A linear expression for deriving an index value for a constant term using a primary expression for deriving an index value for a coefficient with the pressure of the superheated steam to be measured as a variable, and deriving an index value for the constant term using the pressure of the superheated steam to be measured as a variable The index value for the constant term is obtained by a linear expression for deriving superheated steam enthalpy using the index value for the coefficient as the coefficient of the term with the temperature of the superheated steam as a variable and the index value for the constant term as the constant term. The method for measuring the enthalpy of superheated steam to obtain the enthalpy i2 of superheated steam. 測定対象の過熱蒸気の圧力を検出する過熱蒸気圧力検出手段と、温度を検出する過熱蒸気温度検出手段とが設けられ、
前記過熱蒸気圧力検出手段の検出情報に基づいて、過熱蒸気の圧力を変数とする係数用指標値導出用の一次式にて係数用指標値を求め、且つ、過熱蒸気の圧力を変数とする定数項用指標値導出用の一次式にて定数項用指標値を求める過熱蒸気指標値導出手段と、
前記過熱蒸気温度検出手段の検出情報に基づいて、前記係数用指標値を過熱蒸気の温度を変数とする項の係数とし且つ前記定数項用指標値を定数項とする過熱蒸気エンタルピ導出用の一次式により、過熱蒸気のエンタルピi2を求める過熱蒸気エンタルピ導出手段とが設けられている過熱蒸気のエンタルピ測定装置。
Superheated steam pressure detecting means for detecting the pressure of the superheated steam to be measured, and superheated steam temperature detecting means for detecting the temperature are provided,
Based on the detection information of the superheated steam pressure detecting means, a coefficient index value is obtained by a linear expression for deriving a coefficient index value using the superheated steam pressure as a variable, and a constant using the superheated steam pressure as a variable Superheated steam index value deriving means for obtaining an index value for a constant term with a linear expression for deriving an index value for a term;
Based on the detection information of the superheated steam temperature detecting means, the coefficient index value is a coefficient of a term having the temperature of superheated steam as a variable, and the primary for deriving superheated steam enthalpy having the constant term index value as a constant term The superheated steam enthalpy measuring device provided with the superheated steam enthalpy deriving means for obtaining the enthalpy i2 of the superheated steam by the equation.
測定対象の湿り蒸気の絶対圧力の4乗根に係数を乗じて湿り蒸気指標値を求め、その湿り蒸気指標値を変数とする飽和水エンタルピ導出用のn次式にて飽和水のエンタルピi1を求め、前記湿り蒸気指標値を変数とする飽和水蒸発潜熱導出用のn次式にて飽和水の蒸発潜熱rを求め、
前記測定対象の湿り蒸気を断熱膨張させて生成した過熱蒸気の圧力を変数とする係数用指標値導出用の一次式にて係数用指標値を求め、前記過熱蒸気の圧力を変数とする定数項用指標値導出用の一次式にて定数項用指標値を求め、前記係数用指標値を過熱蒸気の温度を変数とする項の係数とし且つ前記定数項用指標値を定数項とする過熱蒸気エンタルピ導出用の一次式にて、過熱蒸気のエンタルピi2を求め、
前記飽和水のエンタルピi1、前記飽和水の蒸発潜熱r及び前記過熱蒸気のエンタルピi2に基づいて、湿り蒸気の乾き度xを、
Figure 0003949044
にて求める湿り蒸気の乾き度測定方法。
The wet steam index value is obtained by multiplying the fourth root of the absolute pressure of the wet steam to be measured by a coefficient, and the saturated water enthalpy i1 is calculated by the nth-order equation for deriving the saturated water enthalpy using the wet steam index value as a variable. Determining the evaporation latent heat r of saturated water by the nth order equation for deriving the latent heat of saturated water evaporation using the wet steam index value as a variable,
Obtain a coefficient index value by a linear expression for deriving a coefficient index value using the pressure of the superheated steam generated by adiabatic expansion of the measurement target wet steam as a variable, and a constant term using the pressure of the superheated steam as a variable The index value for the constant term is obtained by a linear expression for deriving the index value for the index, the index value for the coefficient is used as a coefficient of a term whose temperature is the temperature of the superheated steam, and the index value for the constant term is used as the constant term Obtain the enthalpy i2 of the superheated steam using the primary equation for enthalpy derivation
Based on the enthalpy i1 of the saturated water, the latent heat of vaporization r of the saturated water and the enthalpy i2 of the superheated steam, the dryness x of the wet steam is expressed as follows:
Figure 0003949044
Method for measuring dryness of wet steam obtained by
測定対象の湿り蒸気の圧力を検出する湿り蒸気圧力検出手段と、
前記測定対象の湿り蒸気を断熱膨張させて過熱蒸気にする断熱膨張器と、
その断熱膨張器により生成された過熱蒸気の圧力を検出する過熱蒸気圧力検出手段と、
前記過熱蒸気の温度を検出する過熱蒸気温度検出手段とが設けられ、
前記湿り蒸気圧力検出手段の検出情報に基づいて、湿り蒸気の絶対圧力の4乗根に係数を乗じて湿り蒸気指標値を求める湿り蒸気指標値導出手段と、
前記湿り蒸気指標値を変数とする飽和水エンタルピ導出用のn次式にて飽和水のエンタルピi1を求める飽和水エンタルピ導出手段と、
前記湿り蒸気指標値を変数とする飽和水蒸発潜熱導出用のn次式にて飽和水の蒸発潜熱rを求める飽和水蒸発潜熱導出手段と、
前記過熱蒸気圧力検出手段の検出情報に基づいて、過熱蒸気の圧力を変数とする係数用指標値導出用の一次式にて係数用指標値を求め、且つ、過熱蒸気の圧力を変数とする定数項用指標値導出用の一次式にて定数項用指標値を求める過熱蒸気指標値導出手段と、
前記過熱蒸気温度検出手段の検出情報に基づいて、前記係数用指標値を過熱蒸気の温度を変数とする項の係数とし且つ前記定数項用指標値を定数項とする過熱蒸気エンタルピ導出用の一次式により、過熱蒸気のエンタルピi2を求める過熱蒸気エンタルピ導出手段とが設けられ、
前記飽和水のエンタルピi1、前記飽和水の蒸発潜熱r及び前記過熱蒸気のエンタルピi2に基づいて、
Figure 0003949044
により湿り蒸気の乾き度xを求める乾き度導出手段が設けられている湿り蒸気の乾き度測定装置。
Wet steam pressure detecting means for detecting the pressure of the wet steam to be measured;
An adiabatic expander that adiabatically expands the wet steam to be measured into superheated steam;
Superheated steam pressure detecting means for detecting the pressure of the superheated steam generated by the adiabatic expander;
And a superheated steam temperature detecting means for detecting the temperature of the superheated steam,
Wet steam index value deriving means for obtaining the wet steam index value by multiplying the fourth root of the absolute pressure of the wet steam by a coefficient based on the detection information of the wet steam pressure detecting means;
Saturated water enthalpy derivation means for obtaining an enthalpy i1 of saturated water by an n-order equation for deriving saturated water enthalpy using the wet steam index value as a variable;
Saturated water evaporation latent heat deriving means for obtaining saturated water evaporation latent heat r by an nth-order equation for deriving saturated water evaporation latent heat with the wet steam index value as a variable;
Based on the detection information of the superheated steam pressure detecting means, a coefficient index value is obtained by a linear expression for deriving a coefficient index value using the superheated steam pressure as a variable, and a constant using the superheated steam pressure as a variable Superheated steam index value deriving means for obtaining an index value for a constant term with a linear expression for deriving an index value for a term;
Based on the detection information of the superheated steam temperature detecting means, the coefficient index value is a coefficient of a term having the temperature of superheated steam as a variable, and the primary for deriving superheated steam enthalpy having the constant term index value as a constant term The superheated steam enthalpy deriving means for obtaining the superheated steam enthalpy i2 according to the equation is provided,
Based on the enthalpy i1 of the saturated water, the latent heat of vaporization r of the saturated water and the enthalpy i2 of the superheated steam,
Figure 0003949044
The wet steam dryness measuring device is provided with a dryness deriving means for obtaining the dryness x of the wet steam.
JP2002293677A 2002-10-07 2002-10-07 Enthalpy of saturated water, latent heat of vaporization of saturated water, enthalpy of superheated steam, dryness measurement method and apparatus for wet steam Expired - Fee Related JP3949044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002293677A JP3949044B2 (en) 2002-10-07 2002-10-07 Enthalpy of saturated water, latent heat of vaporization of saturated water, enthalpy of superheated steam, dryness measurement method and apparatus for wet steam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002293677A JP3949044B2 (en) 2002-10-07 2002-10-07 Enthalpy of saturated water, latent heat of vaporization of saturated water, enthalpy of superheated steam, dryness measurement method and apparatus for wet steam

Publications (2)

Publication Number Publication Date
JP2004125736A JP2004125736A (en) 2004-04-22
JP3949044B2 true JP3949044B2 (en) 2007-07-25

Family

ID=32284523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002293677A Expired - Fee Related JP3949044B2 (en) 2002-10-07 2002-10-07 Enthalpy of saturated water, latent heat of vaporization of saturated water, enthalpy of superheated steam, dryness measurement method and apparatus for wet steam

Country Status (1)

Country Link
JP (1) JP3949044B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101935580B1 (en) * 2017-02-28 2019-01-04 (주)엔피홀딩스 Apparatus for steam cleaning
CN113960109A (en) * 2021-11-15 2022-01-21 西安热工研究院有限公司 Self-feedback online monitoring system and method for dryness of wet steam
CN113969776B (en) * 2021-11-16 2024-04-26 中国石油天然气股份有限公司 Device and method for measuring dryness of underground steam based on overheating method
CN114235896A (en) * 2021-12-23 2022-03-25 中国核动力研究设计院 Saturated steam dryness measuring device

Also Published As

Publication number Publication date
JP2004125736A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
TWI413880B (en) Method and apparatus for controlling flow of fluid using multi-mode control algorithm
US5623426A (en) Failure diagnosing system for absorption chillers
CN109470324B (en) Gas flow calibration method and device, control system and storage medium
BRPI0013033B1 (en) process and apparatus for determining an estimate of a parameter associated with a process control loop
US9976552B2 (en) Performance prediction device and performance prediction method for compressor
Hasegawa et al. The NBS two-pressure humidity generator, mark 2
JP3949044B2 (en) Enthalpy of saturated water, latent heat of vaporization of saturated water, enthalpy of superheated steam, dryness measurement method and apparatus for wet steam
US5020000A (en) Measuring dryness fraction
JP2010043639A (en) Heat loss evaluation system and evaluation method of steam line
Wedekind An experimental investigation into the oscillatory motion of the mixture-vapor transition point in horizontal evaporating flow
Shen et al. Improved methodologies for simulating unitary air conditioners at off-design conditions
EP0959354A2 (en) Noncombustive method of determining the calorific value of fuel gas
JP4371575B2 (en) Method and apparatus for monitoring water process equipment
JP2017053758A (en) Relevant information setting method, flow velocity measurement method, relevant information setting system and flow velocity measurement system
JP2017156278A (en) Flow velocity evaluation method and flow velocity evaluation system
US5433122A (en) Method of measuring the length of winding material running onto a winding beam
CN115374648A (en) Method and device for determining average wind speed of full section of roadway
JP2019132445A (en) Humidity generation device
JP2017053757A (en) Relevant information setting method, flow velocity measurement method, relevant information setting system and flow velocity measurement system
JP2001329855A (en) Predicting method for turbine inlet temperature of gas turbine
JP2008032251A (en) Method and device for controlling refrigerating air-conditioning system
JP2013200297A (en) Steam table value computation system, steam table value computation method, and control device
KR100317155B1 (en) Fault diagnosis system of absorption chiller
Cheng et al. Nonlinear observer design and experimental verification for heat exchangers during the start-up process
KR940002495B1 (en) Determining fluid properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees