JP2008032251A - Method and device for controlling refrigerating air-conditioning system - Google Patents

Method and device for controlling refrigerating air-conditioning system Download PDF

Info

Publication number
JP2008032251A
JP2008032251A JP2006203122A JP2006203122A JP2008032251A JP 2008032251 A JP2008032251 A JP 2008032251A JP 2006203122 A JP2006203122 A JP 2006203122A JP 2006203122 A JP2006203122 A JP 2006203122A JP 2008032251 A JP2008032251 A JP 2008032251A
Authority
JP
Japan
Prior art keywords
evaporation
completion point
temperature
temperature distribution
evaporation completion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006203122A
Other languages
Japanese (ja)
Other versions
JP4840007B2 (en
Inventor
Hideyuki Ito
秀之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Retail Systems Co Ltd
Original Assignee
Fuji Electric Retail Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Retail Systems Co Ltd filed Critical Fuji Electric Retail Systems Co Ltd
Priority to JP2006203122A priority Critical patent/JP4840007B2/en
Publication of JP2008032251A publication Critical patent/JP2008032251A/en
Application granted granted Critical
Publication of JP4840007B2 publication Critical patent/JP4840007B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of controlling a refrigerating air-conditioning system capable of higher accuracy, and to provide its device. <P>SOLUTION: In the method of controlling the refrigerating air-conditioning system, a refrigerating cycle is constructed with a compressor, a condenser, an expansion valve and an evaporator connected together via pipes for refrigerant to be circulated in the pipes. The method includes an evaporation completing point position calculating step of calculating the position of an evaporation completing point as a boundary between a vapor-liquid two-phase region and a superheated vapor region of the refrigerant in the evaporation pipe in accordance with temperature distribution in the evaporation pipe of the evaporator, and an opening control step of controlling the opening of the expansion valve so that a deviation between the calculated position of the evaporation completing point and a target position of the evaporation completing point falls in a predetermined permissible range. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、冷凍空調装置の制御方法および制御装置に関し、さらに詳しくは、圧縮機と凝縮器と膨張弁と蒸発器とを配管によって接続し、この配管に冷媒を循環させる冷凍サイクルを構成した冷凍空調装置の制御方法および制御装置に関する。   The present invention relates to a control method and a control device for a refrigeration air conditioner, and more specifically, a refrigeration cycle in which a compressor, a condenser, an expansion valve, and an evaporator are connected by a pipe and a refrigerant is circulated through the pipe. The present invention relates to a control method and a control device for an air conditioner.

従来から圧縮機と凝縮器と膨張弁と蒸発器とを配管によって接続し、この配管に冷媒を循環させる冷凍サイクルを構成した冷凍空調装置が開示されている(特許文献1、2参照)。   Conventionally, a refrigerating and air-conditioning apparatus having a refrigeration cycle in which a compressor, a condenser, an expansion valve, and an evaporator are connected by a pipe and a refrigerant is circulated through the pipe has been disclosed (see Patent Documents 1 and 2).

この種の冷凍空調装置においては、まず、蒸発器を出て低温低圧の気体となった冷媒は、圧縮機により圧縮されて高温高圧の気体となる。つぎにこの高温高圧の気体となった冷媒は、凝縮器を通過することで熱を奪われて凝縮し高温高圧の液体となる。つぎにこの高温高圧の液体となった冷媒は、電子膨張弁を通過して絞り膨張し低温低圧の液体となる。この低温低圧の液体となった冷媒は、蒸発器に入ると飽和液と飽和蒸気とが混合した気液二相の状態となり、周囲から蒸発潜熱として吸熱するにしたがって徐々に飽和蒸気の割合が増えていき、ある位置で飽和液の割合がゼロとなりすべて飽和蒸気となる。この位置を蒸発完了点と呼び、蒸発完了点以前の領域を気液二相領域とよぶ。冷媒は、蒸発完了点までの気液二相領域では蒸発潜熱によって基本的に温度変化しないが、それ以降の位置では吸熱した分の熱は飽和蒸気の温度上昇に寄与し、冷媒は過熱蒸気となる。この蒸発完了点以降の領域を過熱蒸気領域とよび、過熱蒸気領域における冷媒の温度上昇分を過熱度とよぶ。その後、低温低圧の過熱蒸気となった冷媒は蒸発器を出て再び圧縮機に入り、上記のサイクルを繰り返す。このサイクルを冷凍サイクルと呼ぶ。   In this type of refrigerating and air-conditioning apparatus, first, the refrigerant that has exited the evaporator and turned into a low-temperature and low-pressure gas is compressed by the compressor into a high-temperature and high-pressure gas. Next, the refrigerant that has become the high-temperature and high-pressure gas is deprived of heat by passing through the condenser and condensed to become a high-temperature and high-pressure liquid. Next, the refrigerant that has become a high-temperature and high-pressure liquid passes through an electronic expansion valve and expands and becomes a low-temperature and low-pressure liquid. When entering the evaporator, the refrigerant that has become a low-temperature and low-pressure liquid enters a gas-liquid two-phase state in which saturated liquid and saturated vapor are mixed, and the ratio of saturated vapor gradually increases as heat is absorbed from the surroundings as latent heat of vaporization. At a certain position, the ratio of saturated liquid becomes zero and all becomes saturated steam. This position is called the evaporation completion point, and the area before the evaporation completion point is called a gas-liquid two-phase area. The refrigerant basically does not change in temperature due to the latent heat of vaporization in the gas-liquid two-phase region up to the point of completion of evaporation, but the heat absorbed in the subsequent positions contributes to the temperature rise of the saturated vapor, and the refrigerant is superheated vapor. Become. The area after the evaporation completion point is called the superheated steam area, and the temperature rise of the refrigerant in the superheated steam area is called the superheat degree. Thereafter, the refrigerant that has become low-temperature and low-pressure superheated steam exits the evaporator, enters the compressor again, and repeats the above cycle. This cycle is called a refrigeration cycle.

上記の冷凍空調装置において、電子膨張弁の制御の役割は、蒸発完了点を蒸発器の出口部付近に保持することによって、冷媒が飽和液を含んだまま圧縮機に入って圧縮機を破損させる液バックとよばれる現象を防止するとともに蒸発器全体を有効に利用することである。蒸発完了点の位置は過熱蒸気領域の長さに関係し、蒸発完了点が蒸発器の出口部から離れるほど過熱度は大きくなる。すなわち、電子膨張弁の開度を制御して冷媒の流量を調整することによって、蒸発器が適度な過熱度を保つようにする。   In the above refrigerating and air-conditioning apparatus, the role of the electronic expansion valve is to maintain the evaporation completion point near the outlet of the evaporator, so that the refrigerant enters the compressor while containing the saturated liquid and breaks the compressor. This is to prevent the phenomenon called liquid back and to effectively use the entire evaporator. The position of the evaporation completion point is related to the length of the superheated steam region, and the degree of superheat increases as the evaporation completion point moves away from the outlet of the evaporator. That is, the evaporator is maintained at an appropriate degree of superheat by adjusting the flow rate of the refrigerant by controlling the opening of the electronic expansion valve.

従来の電子膨張弁の制御は、蒸発器の出口部の温度と入口部または中央部の温度とを検出し、検出した出口部の温度と入口部または中央部の温度との差を過熱度として算出し、算出した過熱度が外部から指示された目標の過熱度と一致するように、指示された過熱度と算出した過熱度との偏差を用いてPID制御やファジィ制御で制御する制御装置により行っている。電子膨張弁は制御装置が出力する弁の開度指令に応じて自由に開度を調整でき、また開度指令は制御装置によって任意のアルゴリズムで制御が可能であるから、冷媒の流量の制御特性や流量の制御範囲を自由に設定した制御が可能である。なお、特許文献2では、蒸発器の運転効率を最大化するために過熱度がゼロ付近になるように制御するための電子膨張弁の開度の調整方法が開示されている。   The conventional control of the electronic expansion valve detects the temperature of the outlet portion of the evaporator and the temperature of the inlet portion or the central portion, and uses the difference between the detected temperature of the outlet portion and the temperature of the inlet portion or the central portion as the superheat degree. By a control device that controls by PID control or fuzzy control using a deviation between the instructed superheat degree and the calculated superheat degree so that the calculated superheat degree matches the target superheat degree instructed from outside Is going. The electronic expansion valve can freely adjust the opening according to the opening command of the valve output from the control device, and the opening command can be controlled by the control device with an arbitrary algorithm. Control with freely setting the control range of the flow rate is possible. Patent Document 2 discloses a method for adjusting the opening degree of an electronic expansion valve for controlling the degree of superheat to be close to zero in order to maximize the operation efficiency of the evaporator.

特公昭58−47628号公報Japanese Examined Patent Publication No. 58-47628 特開平9−303885号公報Japanese Patent Laid-Open No. 9-303885

しかしながら、従来の冷凍空調装置の制御装置は、過熱度を用いて電子膨張弁を制御しているため、高精度の制御を行うことが困難な場合があるという問題点があった。   However, since the control device of the conventional refrigeration air conditioner controls the electronic expansion valve using the degree of superheat, there is a problem that it may be difficult to perform high-precision control.

本発明は、上記に鑑みてなされたものであって、より高精度の制御を行うことができる冷凍空調装置の制御方法および制御装置を提供することを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at providing the control method and control apparatus of the refrigerating air-conditioner which can perform more highly accurate control.

上述した課題を解決し、目的を達成するために、本発明に係る冷凍空調装置の制御方法は、圧縮機と凝縮器と膨張弁と蒸発器とを配管によって接続し該配管に冷媒を循環させる冷凍サイクルを構成した冷凍空調装置の制御方法であって、前記蒸発器の蒸発管内の温度分布に基づいて前記蒸発管内における冷媒の気液二相領域と過熱蒸気領域との境界である蒸発完了点の位置を算出する蒸発完了点位置算出ステップと、前記算出した蒸発完了点の位置と目標とする蒸発完了点の位置との偏差が所定の許容範囲内に収まるように前記膨張弁の開度を制御する開度制御ステップと、を含むことを特徴とする。   In order to solve the above-described problems and achieve the object, a control method for a refrigerating and air-conditioning apparatus according to the present invention connects a compressor, a condenser, an expansion valve, and an evaporator with a pipe and circulates the refrigerant through the pipe. A method for controlling a refrigeration air conditioner that constitutes a refrigeration cycle, wherein an evaporation completion point that is a boundary between a gas-liquid two-phase region and a superheated steam region of a refrigerant in the evaporator pipe based on a temperature distribution in the evaporator pipe of the evaporator The evaporation completion point position calculating step for calculating the position of the expansion valve, and the opening of the expansion valve so that the deviation between the calculated evaporation completion point position and the target evaporation completion point position is within a predetermined allowable range. And an opening degree control step to be controlled.

また、本発明に係る冷凍空調装置の制御装置は、圧縮機と凝縮器と膨張弁と蒸発器とを配管によって接続し該配管に冷媒を循環させる冷凍サイクルを構成した冷凍空調装置の制御装置であって、前記蒸発器の蒸発管内の温度分布に基づいて前記蒸発管内における冷媒の気液二相領域と過熱蒸気領域との境界である蒸発完了点の位置を算出する蒸発完了点位置算出手段と、前記算出した蒸発完了点の位置と目標とする蒸発完了点の位置との偏差が所定の許容範囲内に収まるように前記膨張弁の開度を制御する開度制御手段と、を備えることを特徴とする。   In addition, the control device for a refrigeration air conditioner according to the present invention is a control device for a refrigeration air conditioner that configures a refrigeration cycle in which a compressor, a condenser, an expansion valve, and an evaporator are connected by a pipe and a refrigerant is circulated through the pipe. An evaporation completion point position calculating means for calculating a position of an evaporation completion point which is a boundary between a gas-liquid two-phase region and a superheated steam region of the refrigerant in the evaporation tube based on a temperature distribution in the evaporation tube of the evaporator; Opening degree control means for controlling the opening degree of the expansion valve so that the deviation between the calculated evaporation completion point position and the target evaporation completion point position is within a predetermined allowable range. Features.

また、本発明に係る冷凍空調装置の制御装置は、上記の発明において、前記蒸発完了点位置算出手段は、前記蒸発管上の離隔した位置に設けた該離隔した位置の温度を検出する温度検出手段と、前記検出した温度を用いて前記蒸発管内の温度分布を算定する温度分布算定手段と、前記算定した温度分布を用いて前記蒸発完了点の位置を算出する位置算出手段と、を備えることを特徴とする。   Further, in the control device for a refrigerating and air-conditioning apparatus according to the present invention, in the above invention, the evaporation completion point position calculating means detects a temperature at the separated position provided at a separated position on the evaporation pipe. Means, temperature distribution calculating means for calculating the temperature distribution in the evaporation pipe using the detected temperature, and position calculating means for calculating the position of the evaporation completion point using the calculated temperature distribution. It is characterized by.

また、本発明に係る冷凍空調装置の制御装置は、上記の発明において、前記温度分布算定手段は、近似曲線として折れ線または一次遅れ特性曲線を用いて前記温度分布を算定することを特徴とする。   Moreover, the control apparatus of the refrigerating and air-conditioning apparatus according to the present invention is characterized in that, in the above invention, the temperature distribution calculating means calculates the temperature distribution using a polygonal line or a first-order lag characteristic curve as an approximate curve.

また、本発明に係る冷凍空調装置の制御装置は、上記の発明において、前記蒸発完了点位置算出手段は、前記蒸発管上に長さ方向の所定区間にわたって連続して設けた抵抗体と、前記抵抗体に接続し該抵抗体の両端間の抵抗値を測定する抵抗値測定手段と、前記蒸発管内の温度分布を示す所定の温度分布曲線を用いて前記抵抗値から逆算して前記蒸発完了点の位置を算出する位置算出手段と、を備えることを特徴とする。   Further, in the control device for a refrigerating and air-conditioning apparatus according to the present invention, in the above invention, the evaporation completion point position calculating means includes a resistor continuously provided over a predetermined section in the length direction on the evaporation pipe, A resistance value measuring means connected to a resistor and measuring a resistance value between both ends of the resistor, and a predetermined temperature distribution curve showing a temperature distribution in the evaporation tube, and using the predetermined temperature distribution curve, the evaporation completion point And a position calculating means for calculating the position.

また、本発明に係る冷凍空調装置の制御装置は、上記の発明において、前記蒸発完了点位置算出手段は、前記蒸発器の入口部に設けた該入口部の温度を検出する入口部温度検出手段を備え、前記位置算出手段は、前記入口部の温度を用いて前記蒸発完了点の位置を算出することを特徴とする。   The control device for a refrigerating and air-conditioning apparatus according to the present invention is the above-described invention, wherein the evaporation completion point position calculating means detects the temperature of the inlet portion provided at the inlet portion of the evaporator. The position calculation means calculates the position of the evaporation completion point using the temperature of the inlet.

また、本発明に係る冷凍空調装置の制御装置は、上記の発明において、前記蒸発完了点位置算出手段は、前記蒸発器の出口部に設けた該出口部の温度を検出する出口部温度検出手段を備え、前記位置算出手段は、前記出口部の温度を用いて前記蒸発完了点の位置を算出することを特徴とする。   Moreover, the control device for a refrigerating and air-conditioning apparatus according to the present invention is the above-described invention, wherein the evaporation completion point position calculating means detects the temperature of the outlet provided at the outlet of the evaporator. The position calculation means calculates the position of the evaporation completion point using the temperature of the outlet portion.

また、本発明に係る冷凍空調装置の制御装置は、上記の発明において、前記位置算出手段は、折れ線または一次遅れ特性曲線を用いて近似した温度分布曲線を用いて前記蒸発完了点の位置を算出することを特徴とする。   In the control device for a refrigerating and air-conditioning apparatus according to the present invention, in the above invention, the position calculating means calculates the position of the evaporation completion point using a temperature distribution curve approximated using a polygonal line or a first-order lag characteristic curve. It is characterized by doing.

また、本発明に係る冷凍空調装置の制御装置は、上記の発明において、前記抵抗体は、前記蒸発管にらせん状に巻き付けたものであることを特徴とする。   Moreover, the control apparatus of the refrigerating and air-conditioning apparatus according to the present invention is characterized in that, in the above invention, the resistor is spirally wound around the evaporation pipe.

本発明によれば、蒸発器の蒸発管内の温度分布に基づいて蒸発完了点の位置を直接的に算出し、算出した蒸発完了点の位置と目標とする蒸発完了点の位置との偏差が所定の範囲内に収まるように膨張弁の開度を制御するので、従来のように蒸発完了点の位置を間接的に表す量である過熱度を制御量として用いる場合よりも高精度に冷凍空調装置を制御できるという効果を奏する。   According to the present invention, the position of the evaporation completion point is directly calculated based on the temperature distribution in the evaporation pipe of the evaporator, and the deviation between the calculated evaporation completion point position and the target evaporation completion point position is predetermined. Since the opening degree of the expansion valve is controlled so as to be within the range, the refrigeration and air-conditioning apparatus with higher accuracy than when using the degree of superheat, which is an amount that indirectly represents the position of the evaporation completion point, as a control amount as in the past There is an effect that can be controlled.

以下に、図面を参照して本発明に係る冷凍空調装置の制御方法および制御装置の実施の形態を詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of a control method and a control device for a refrigeration air-conditioning apparatus according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1に係る制御装置を備えた冷凍空調装置の構成を示すブロック図である。また、図2は、図1に示す制御装置の制御ブロック図である。図1、2に示すように、この制御装置10aは、圧縮機2と凝縮器3と電磁弁4と電子膨張弁5と蒸発器6とを配管13によって接続し、配管13に冷媒を循環させる従来と同様の冷凍サイクルを構成した冷凍空調装置1aに備えたものである。そして、この制御装置10aは、蒸発器6の蒸発管61上の離隔した位置に設けたn個(nは3以上の整数)の温度検出手段である温度センサ8−1〜8−nと、制御器7aとを備える。また、制御器7aは、温度分布算定部71と、位置算出部72と、開度制御部73とを備える。
(Embodiment 1)
FIG. 1 is a block diagram showing a configuration of a refrigerating and air-conditioning apparatus including a control device according to Embodiment 1 of the present invention. FIG. 2 is a control block diagram of the control device shown in FIG. As shown in FIGS. 1 and 2, the control device 10 a connects the compressor 2, the condenser 3, the electromagnetic valve 4, the electronic expansion valve 5, and the evaporator 6 through a pipe 13 and circulates a refrigerant through the pipe 13. This is provided in the refrigeration air conditioner 1a constituting the same refrigeration cycle as in the prior art. The control device 10a includes n temperature sensors 8-1 to 8-n which are n (n is an integer of 3 or more) temperature detection means provided at spaced positions on the evaporation pipe 61 of the evaporator 6, and And a controller 7a. Further, the controller 7 a includes a temperature distribution calculation unit 71, a position calculation unit 72, and an opening degree control unit 73.

温度センサ8−1〜8−nと温度分布算定部71と位置算出部72とは蒸発完了点位置検出手段を構成する。温度分布算定部71は、温度センサ8−1〜8−nが検出した温度であるθ1〜θnを用いて蒸発管61内の温度分布を算定する。位置算出部72は、温度分布算定部71が算出した温度分布を用いて蒸発完了点の位置であるxpを算出する。 The temperature sensors 8-1 to 8-n, the temperature distribution calculating unit 71, and the position calculating unit 72 constitute evaporation completion point position detecting means. The temperature distribution calculation unit 71 calculates the temperature distribution in the evaporation pipe 61 using θ1 to θn that are temperatures detected by the temperature sensors 8-1 to 8-n. Position calculating unit 72 calculates the the position of the evaporation completion point x p using the temperature distribution temperature distribution calculator 71 has calculated.

開度制御部73は、算出した蒸発完了点の位置xpが目標とする蒸発完了点の位置になるように電子膨張弁5の開度を制御する。この開度制御部73は減算器731と開度演算部732とを備える。減算器731は、目標とする蒸発完了点の位置xprと算出した蒸発完了点の位置xpとの差すなわち位置偏差であるxpe=xpr−xpを算出する。目標とする蒸発完了点の位置xprは、たとえばユーザが設定した冷凍空調装置の温度に応じて、冷凍空調装置の主制御装置から指示される。 The opening degree control unit 73 controls the opening degree of the electronic expansion valve 5 so that the calculated evaporation completion point position xp becomes the target evaporation completion point position. The opening degree control unit 73 includes a subtracter 731 and an opening degree calculation unit 732. The subtracter 731 calculates a difference between the target evaporation completion point position x pr and the calculated evaporation completion point position x p , that is, a position deviation, x pe = x pr −x p . The target evaporation completion point position x pr is instructed from the main controller of the refrigeration air conditioner according to, for example, the temperature of the refrigeration air conditioner set by the user.

一方、開度演算部732は、位置偏差xpeを用いて電子膨張弁5の開度に対する指令値νを算出して電子膨張弁5に出力し、位置偏差xpeが所定の許容範囲内に収まるように電子膨張弁5の開度を制御する。上記のように位置偏差を制御量として膨張弁の開度を制御するので、高精度に冷凍空調装置を制御できる。 On the other hand, the opening calculation unit 732 calculates a command value ν for the opening of the electronic expansion valve 5 using the position deviation x pe and outputs the command value ν to the electronic expansion valve 5 so that the position deviation x pe falls within a predetermined allowable range. The opening degree of the electronic expansion valve 5 is controlled so as to be accommodated. Since the opening degree of the expansion valve is controlled using the position deviation as a control amount as described above, the refrigeration air conditioner can be controlled with high accuracy.

つぎに、図2に示す制御装置の制御ブロック図を参照して、冷凍空調装置の制御方法について説明する。まず、温度センサ8−1〜8−nは、蒸発管61上の離隔した位置の温度θ1〜θnを検出し、制御器7aに出力する。つぎに、制御器7aにおいて、温度分布算定部71は、温度θ1〜θnを受け付け、これらの温度を用いて蒸発管61内の温度分布を算定し、その温度分布の情報を位置算出部72に出力する。つぎに、位置算出部72は、温度分布情報を受け付け、この温度分布情報を用いて蒸発完了点の位置を算出し、算出した蒸発完了点の位置xpを開度制御部73に出力する。開度制御部73において、減算器731は、冷凍空調装置1aの主制御装置などから指示された目標とする蒸発完了点の位置xprを受け付けるとともに位置算出部72が算出した蒸発完了点の位置xpを受け付け、位置偏差であるxpeを算出して開度演算部732に出力する。 Next, a control method for the refrigerating and air-conditioning apparatus will be described with reference to a control block diagram of the control apparatus shown in FIG. First, the temperature sensors 8-1 to 8-n detect the temperatures θ1 to θn at spaced positions on the evaporation pipe 61 and output them to the controller 7a. Next, in the controller 7a, the temperature distribution calculation unit 71 receives the temperatures θ1 to θn, calculates the temperature distribution in the evaporation pipe 61 using these temperatures, and sends the temperature distribution information to the position calculation unit 72. Output. Next, the position calculation unit 72 receives temperature distribution information, calculates the position of the evaporation completion point using this temperature distribution information, and outputs the calculated position x p of the evaporation completion point to the opening degree control unit 73. In the opening degree control unit 73, the subtractor 731 receives the target evaporation completion point position x pr instructed from the main control device of the refrigerating and air-conditioning apparatus 1a, and the position of the evaporation completion point calculated by the position calculation unit 72. x p is received, x pe which is a position deviation is calculated and output to the opening calculation unit 732.

つぎに、開度演算部732は、位置偏差xpeを用いて電子膨張弁5の開度に対する指令値νを算出する。そして、開度演算部732は、電子膨張弁5に開度に対する指令値νを出力し、位置偏差xpeが所定の許容範囲内に収まるように電子膨張弁5の開度を制御する。上記の位置偏差を制御量として電子膨張弁5の開度をフィードバック制御するので、高精度に冷凍空調装置を制御できる。なお、上記のフィードバック制御は、PID制御またはファジィ制御などを用いることができる。また、上記の許容範囲は、冷凍空調装置1aの運転状態や算出した位置偏差xpeなどに応じて、所望する制御の精度、応答速度や安定性を実現できるようにたとえば目標蒸発完了点位置xprの±1〜5%程度の範囲とする。 Next, the opening degree calculation unit 732 calculates a command value ν for the opening degree of the electronic expansion valve 5 using the position deviation xpe . Then, the opening calculation unit 732 outputs a command value ν for the opening to the electronic expansion valve 5 and controls the opening of the electronic expansion valve 5 so that the position deviation x pe falls within a predetermined allowable range. Since the opening degree of the electronic expansion valve 5 is feedback controlled using the position deviation as a control amount, the refrigeration air conditioner can be controlled with high accuracy. Note that PID control, fuzzy control, or the like can be used for the feedback control. In addition, the above allowable range is, for example, the target evaporation completion point position x so that desired control accuracy, response speed, and stability can be realized according to the operating state of the refrigeration air conditioner 1a, the calculated position deviation xpe, and the like. The range is about ± 1 to 5% of pr .

つぎに、図3を参照して、実施の形態1において温度分布算定部71と位置算出部72とが蒸発完了点の位置を算出する具体的な方法について説明する。本実施の形態1に係る温度分布算定部71は、温度分布を示す温度分布曲線に対する近似曲線として折れ線を用いて温度分布を算定する。   Next, a specific method for calculating the position of the evaporation completion point by the temperature distribution calculating unit 71 and the position calculating unit 72 in the first embodiment will be described with reference to FIG. The temperature distribution calculating unit 71 according to the first embodiment calculates a temperature distribution using a broken line as an approximate curve for the temperature distribution curve indicating the temperature distribution.

図3は、実施の形態1において蒸発完了点の位置を算出する具体的な方法について説明する図であって、蒸発管61内の各領域と温度分布を示す図である。図3の上側に示すように、冷媒が図面左方から右方へ流れる蒸発管61の内部は飽和液と飽和蒸気とが混合した気液二相領域と飽和蒸気のみからなる過熱蒸気領域とからなり、気液二相領域と過熱蒸気領域との境界が蒸発完了点である。なお、蒸発管61の周囲温度をTa、冷媒の蒸発温度をTeとする。図3の下側は蒸発管61内の入口を原点とした位置xと温度Tとの関係を示すが、本実施の形態1に係る温度分布算定部71は、温度分布曲線を示すT(x)を気液二相領域においては直線C1で近似し、過熱蒸気領域においては直線C2で近似する。蒸発完了点の位置xp1は直線C1と直線C2との交点である。なお、直線C1が負の傾きを持っているのは圧力損失による影響である。また、直線C2は一定の正の傾きa2を持っていると仮定する。また、蒸発管61の入口部から蒸発完了点位置xp1までが蒸発管61の有効伝熱面積に相当する。 FIG. 3 is a diagram for explaining a specific method for calculating the position of the evaporation completion point in the first embodiment, and is a diagram showing each region in the evaporation pipe 61 and the temperature distribution. As shown in the upper side of FIG. 3, the inside of the evaporation pipe 61 in which the refrigerant flows from the left to the right of the drawing is composed of a gas-liquid two-phase region in which saturated liquid and saturated steam are mixed, and a superheated steam region consisting of only saturated steam. Thus, the boundary between the gas-liquid two-phase region and the superheated steam region is the evaporation completion point. It is assumed that the ambient temperature of the evaporation pipe 61 is Ta and the evaporation temperature of the refrigerant is Te. The lower side of FIG. 3 shows the relationship between the position x and the temperature T with the inlet in the evaporation pipe 61 as the origin, but the temperature distribution calculation unit 71 according to the first embodiment is T (x ) Is approximated by a straight line C 1 in the gas-liquid two-phase region, and approximated by a straight line C 2 in the superheated steam region. The position x p1 of the evaporation completion point is the intersection of the straight line C 1 and the straight line C 2 . Note that the straight line C 1 has a negative slope due to the pressure loss. Further, it is assumed that the straight line C 2 has a constant positive slope a 2 . Further, the area from the inlet portion of the evaporation pipe 61 to the evaporation completion point position x p1 corresponds to the effective heat transfer area of the evaporation pipe 61.

以下では、蒸発管61上において気液二相領域に対応する位置に備えた温度センサ8−k1,8−k3と、過熱蒸気領域に対応する位置に備えた温度センサ8−k2を温度検出に用いる。3つの温度センサ8−k1〜8−k3は、温度センサ8−1〜8−nのいずれかから適宜選択できる。これらの3つの温度センサ8−k1〜8−k3の位置と検出温度との組み合わせをそれぞれ(x1、T1)、(x2、T2)、(x3、T3)とすると、温度分布曲線を示すT(x)は数式(1)、(2)で表される。なお、T2は周囲温度Ta以下の値であり、T1、T3は蒸発器6と電子膨張弁5との間の区間における圧力から算出した蒸発温度Te以下であって蒸発器6と圧縮機2との間の区間における圧力から算出した蒸発温度Te以上の値である。 Hereinafter, temperature sensors 8-k1 and 8-k3 provided at positions corresponding to the gas-liquid two-phase region on the evaporation pipe 61 and a temperature sensor 8-k2 provided at a position corresponding to the superheated steam region are used for temperature detection. Use. The three temperature sensors 8-k1 to 8-k3 can be appropriately selected from any one of the temperature sensors 8-1 to 8-n. If the combinations of the positions of these three temperature sensors 8-k1 to 8-k3 and the detected temperatures are (x 1 , T 1 ), (x 2 , T 2 ), (x 3 , T 3 ), respectively, the temperature T (x) indicating the distribution curve is expressed by Equations (1) and (2). T 2 is a value equal to or lower than the ambient temperature Ta, and T 1 and T 3 are equal to or lower than the evaporation temperature Te calculated from the pressure in the section between the evaporator 6 and the electronic expansion valve 5 and are compressed with the evaporator 6. It is a value equal to or higher than the evaporation temperature Te calculated from the pressure in the section with the machine 2.

Figure 2008032251
Figure 2008032251
なお、数式(2)において、傾きa2は過熱蒸気領域の温度上昇特性を表現している。傾きa2の値は温度上昇特性の一次遅れ特性曲線を微分して折れ線近似することにより求めたり、温度上昇特性の実測値からも同様に求めることができる。傾きa2の値はたとえば2.1[℃/m]である。
Figure 2008032251
Figure 2008032251
In Equation (2), the slope a 2 represents the temperature rise characteristic in the superheated steam region. The value of the slope a 2 can be obtained by differentiating the first-order lag characteristic curve of the temperature rise characteristic and approximating a polygonal line, or can be obtained in the same manner from the measured value of the temperature rise characteristic. The value of the slope a 2 is 2.1 [° C./m], for example.

温度分布算定部71は、直線C1、直線C2の情報を位置算出部72に出力する。そして、位置算出部72は、数式(3)を用いて直線C1と直線C2との交点である蒸発完了点位置xp1を算出する。以上のように、蒸発管61内の温度分布に基づいて蒸発完了点の位置が算出される。

Figure 2008032251
The temperature distribution calculation unit 71 outputs information on the straight lines C 1 and C 2 to the position calculation unit 72. Then, the position calculation unit 72 calculates the evaporation completion point position x p1 that is the intersection of the straight line C 1 and the straight line C 2 using Equation (3). As described above, the position of the evaporation completion point is calculated based on the temperature distribution in the evaporation pipe 61.
Figure 2008032251

つぎに、本実施の形態1の変形例として、温度分布算定部71は、近似曲線として一次遅れ特性曲線を用いて温度分布を算出する場合について説明する。図4は、本変形例において蒸発完了点の位置を算出する具体的な方法について説明する図であって、図3と同様に蒸発管61内の各領域と温度分布を示す図である。図4の上側は、図3と同様に、蒸発管61の内部は気液二相領域と過熱蒸気領域とからなり、気液二相領域と過熱蒸気領域との境界が蒸発完了点であることを示す。   Next, as a modification of the first embodiment, a case where the temperature distribution calculation unit 71 calculates a temperature distribution using a first-order lag characteristic curve as an approximate curve will be described. FIG. 4 is a diagram for explaining a specific method for calculating the position of the evaporation completion point in this modification, and is a diagram showing each region in the evaporation pipe 61 and the temperature distribution as in FIG. 4, as in FIG. 3, the inside of the evaporation pipe 61 is composed of a gas-liquid two-phase region and a superheated steam region, and the boundary between the gas-liquid two-phase region and the superheated steam region is an evaporation completion point. Indicates.

図4の下側は蒸発管61内の入口を原点とした位置xと温度Tとの関係を示すが、本変形例に係る温度分布算定部71は、温度分布曲線を示すT(x)を気液二相領域においては直線C3で近似し、過熱蒸気領域においては曲線C4で近似する。蒸発完了点の位置xp1は直線C3と曲線C4との交点である。本変形例で用いる近似では、気液二相領域において蒸発管61内は蒸発温度Teに近い温度であり、蒸発完了点において蒸発温度Teからの温度上昇が始まる。また、本変形例では、過熱蒸気領域において温度分布特性を一次遅れ特性で近似する。 The lower side of FIG. 4 shows the relationship between the position x and the temperature T with the inlet in the evaporation pipe 61 as the origin, but the temperature distribution calculation unit 71 according to this modification uses T (x) indicating the temperature distribution curve. The gas-liquid two-phase region is approximated by a straight line C 3 , and the superheated steam region is approximated by a curve C 4 . The position x p1 of the evaporation completion point is the intersection of the straight line C 3 and the curve C 4 . In the approximation used in this modification, the inside of the evaporation pipe 61 is close to the evaporation temperature Te in the gas-liquid two-phase region, and the temperature rise from the evaporation temperature Te starts at the evaporation completion point. In this modification, the temperature distribution characteristic is approximated by a first-order lag characteristic in the superheated steam region.

以下では、蒸発管61上において気液二相領域に対応する位置に備えた温度センサ8−k4と、過熱蒸気領域に対応する位置に備えた温度センサ8−k5を温度検出に用いる。2つの温度センサ8−k4、8−k5は、温度センサ8−1〜8−nのいずれかから適宜選択できる。これらの2つの温度センサ8−k4、8−k5の位置と検出温度との組み合わせをそれぞれ(x4、T4)、(x5、T5)とすると、温度分布曲線を示すT(x)は数式(4)、(5)で表される。 Below, temperature sensor 8-k4 provided in the position corresponding to a gas-liquid two-phase area | region on the evaporation pipe | tube 61, and temperature sensor 8-k5 provided in the position corresponding to a superheated steam area | region are used for temperature detection. The two temperature sensors 8-k4 and 8-k5 can be appropriately selected from any one of the temperature sensors 8-1 to 8-n. If the combination of the position of these two temperature sensors 8-k4, 8-k5 and the detected temperature is (x 4 , T 4 ), (x 5 , T 5 ), T (x) indicating a temperature distribution curve Is expressed by equations (4) and (5).

Figure 2008032251
Figure 2008032251
Figure 2008032251
Figure 2008032251

なお、ΔTは過熱蒸気領域における温度上昇分の上限値であり、ΔT≒Ta−Teである。また、τは所定のパラメータである。また、上述のように気液二相領域において蒸発管61内は蒸発温度Teに近い温度であるから、T4=Teとしてもよい。また、Teは冷凍空調装置1aの冷凍サイクルの低圧部に圧力センサを設置し、この圧力センサによって検出した冷媒の圧力から算出してもよい。ここで冷凍サイクルの低圧部とは、電子膨張弁5の出口から圧縮機2の入口までの間の部分である。また、ΔTは周囲温度TaとT4からΔT=Ta−T4として求めてもよい。ここで、曲線C4が(x5、T5)を通ることから、数式(6)が成り立つ。 Note that ΔT is the upper limit of the temperature rise in the superheated steam region, and ΔT≈Ta−Te. Τ is a predetermined parameter. Further, since the inside of the evaporation pipe 61 is close to the evaporation temperature Te in the gas-liquid two-phase region as described above, T 4 = Te may be set. Te may be calculated from the pressure of the refrigerant detected by the pressure sensor installed in the low pressure part of the refrigeration cycle of the refrigeration air conditioner 1a. Here, the low pressure portion of the refrigeration cycle is a portion between the outlet of the electronic expansion valve 5 and the inlet of the compressor 2. ΔT may be obtained as ΔT = Ta−T 4 from the ambient temperature Ta and T 4 . Here, since the curve C 4 passes through (x 5 , T 5 ), Expression (6) is established.

Figure 2008032251
Figure 2008032251

温度分布算定部71は、直線C3、曲線C4の情報を位置算出部72に出力する。そして、位置算出部72は、数式(7)を用いて直線C3と曲線C4との交点である蒸発完了点の位置xp2を算出する。以上のように、蒸発管61内の温度分布に基づいて蒸発完了点の位置が算出される。 The temperature distribution calculation unit 71 outputs information on the straight line C 3 and the curve C 4 to the position calculation unit 72. Then, the position calculation unit 72 calculates the position x p2 of the evaporation completion point that is the intersection of the straight line C 3 and the curve C 4 using Equation (7). As described above, the position of the evaporation completion point is calculated based on the temperature distribution in the evaporation pipe 61.

Figure 2008032251
Figure 2008032251

以上説明したように、本実施の形態1およびその変形例に係る冷凍空調装置の制御装置10aは、蒸発管61上の離隔した位置の温度を検出し、検出した温度を用いて蒸発管61内の温度分布を算定し、この温度分布を用いて蒸発完了点の位置を直接的に算出し、目標とする蒸発完了点の位置と算出した蒸発完了点の位置との差である位置偏差を制御量として電子膨張弁5の開度をフィードバック制御するので、高精度に冷凍空調装置を制御できる。特に蒸発完了点が蒸発器の入口側に近い場合は蒸発完了点の位置の変化に対する過熱度の変化の感度が著しく低下するので、従来の過熱度を用いる方法では蒸発完了点の位置を高精度に制御することはほとんどできなかったが、本実施の形態1に係る冷凍空調装置の制御装置では高精度に制御できる。また、蒸発完了点位置を高精度に制御できるので、液バックの防止も一層確実にできるとともに、蒸発完了点位置を蒸発器出口に近い位置に安定して制御することができるので、蒸発器6の利用効率を安定して高めることができ、冷凍空調装置1aの省エネルギー化を図れるという効果も奏する。   As described above, the control device 10a of the refrigerating and air-conditioning apparatus according to the first embodiment and the modification thereof detects the temperature at the separated position on the evaporation pipe 61, and uses the detected temperature in the evaporation pipe 61. This temperature distribution is used to directly calculate the position of the evaporation completion point, and control the position deviation, which is the difference between the target evaporation completion point position and the calculated evaporation completion point position. Since the opening degree of the electronic expansion valve 5 is feedback controlled as an amount, the refrigeration air conditioner can be controlled with high accuracy. Especially when the evaporation completion point is close to the inlet side of the evaporator, the sensitivity of the change in superheat to the change in the position of the evaporation completion point is significantly reduced, so the conventional method using superheat has a high accuracy in the position of the evaporation completion point. However, the control device for the refrigerating and air-conditioning apparatus according to the first embodiment can control with high accuracy. Further, since the evaporation completion point position can be controlled with high accuracy, liquid back can be prevented more reliably, and the evaporation completion point position can be stably controlled near the evaporator outlet. The use efficiency of the refrigeration and air-conditioning apparatus 1a can be improved stably, and there is an effect that energy saving of the refrigeration air conditioner 1a can be achieved.

(実施の形態2)
つぎに、本発明の実施の形態2に係る冷凍空調装置の制御装置について説明する。本実施の形態2に係る冷凍空調装置の制御装置は、蒸発管内の温度分布に基づいて蒸発管内における蒸発完了点の位置を算出する点については実施の形態1に係る冷凍空調装置の制御装置と同様であるが、蒸発管上に長さ方向の所定区間にわたって連続して設けた抵抗体の両端間の抵抗値を測定し、蒸発管内の温度分布を示す所定の温度分布曲線を用いて抵抗値から逆算して蒸発完了点の位置を算出する点が異なる。
(Embodiment 2)
Next, a control device for a refrigerating and air-conditioning apparatus according to Embodiment 2 of the present invention will be described. The control device for the refrigeration air conditioner according to the second embodiment is the same as the control device for the refrigeration air conditioner according to the first embodiment in that the position of the evaporation completion point in the evaporation tube is calculated based on the temperature distribution in the evaporation tube. Similarly, the resistance value between both ends of a resistor continuously provided over a predetermined section in the length direction on the evaporation tube is measured, and the resistance value is determined using a predetermined temperature distribution curve indicating the temperature distribution in the evaporation tube. The difference is that the position of the evaporation completion point is calculated by calculating backward from.

図5は、本実施の形態2に係る制御装置を備えた冷凍空調装置の構成を示すブロック図である。また、図6は、図5に示す制御装置の制御ブロック図である。図5、6に示すように、この制御装置10bは、実施の形態1に係る冷凍空調装置1aと同様の構成を備えた冷凍空調装置1bに備えたものである。そして、この制御装置10bは、蒸発管61上に設けた抵抗体9aと、制御器7bとを備える。また、制御器7bは、抵抗値測定部74と、位置算出部75と、開度制御部73とを備える。   FIG. 5 is a block diagram illustrating a configuration of a refrigerating and air-conditioning apparatus including the control device according to the second embodiment. FIG. 6 is a control block diagram of the control device shown in FIG. As shown in FIGS. 5 and 6, the control device 10 b is provided in a refrigeration air conditioner 1 b having the same configuration as the refrigeration air conditioner 1 a according to the first embodiment. The control device 10b includes a resistor 9a provided on the evaporation pipe 61 and a controller 7b. The controller 7b includes a resistance value measuring unit 74, a position calculating unit 75, and an opening degree controlling unit 73.

抵抗体9aは蒸発管61の長さ方向の所定区間にわたって連続して直線的に設けた帯状または線状の単一の抵抗体である。この抵抗体9aは蒸発管61と比較して熱容量を無視できるほどに十分に薄いまたは細いものとする。その結果、この抵抗体9aは長さ方向にわたって蒸発管内と同じ温度分布をもつものとなるので、抵抗率分布についても蒸発管内の温度分布を反映したものとなる。   The resistor 9 a is a single strip-like or linear resistor continuously and linearly provided over a predetermined section in the length direction of the evaporation tube 61. The resistor 9a is sufficiently thin or thin so that the heat capacity can be ignored as compared with the evaporation tube 61. As a result, the resistor 9a has the same temperature distribution as the inside of the evaporator tube over the length direction, so that the resistivity distribution also reflects the temperature distribution in the evaporator tube.

抵抗値測定部74と位置算出部75とは蒸発完了点位置算出手段を構成する。抵抗値測定部74は、抵抗体9aに接続しており、抵抗体9aの両端間の抵抗値を測定し、その抵抗値であるRを位置算出部75に出力する。位置算出部75は、所定の温度分布曲線を用いて抵抗値Rから逆算して蒸発完了点の位置を算出する。すなわち、抵抗値Rは蒸発完了点の位置の情報を含む温度分布を反映した抵抗率分布を用いて表現できるので、本実施の形態2においては逆にこの関係を利用して、抵抗値Rから逆算して蒸発完了点の位置であるxpが算出される。 The resistance value measuring unit 74 and the position calculating unit 75 constitute evaporation completion point position calculating means. The resistance value measuring unit 74 is connected to the resistor 9 a, measures the resistance value between both ends of the resistor 9 a, and outputs R that is the resistance value to the position calculating unit 75. The position calculation unit 75 calculates the position of the evaporation completion point by calculating backward from the resistance value R using a predetermined temperature distribution curve. That is, since the resistance value R can be expressed by using a resistivity distribution that reflects the temperature distribution including information on the position of the evaporation completion point, in the second embodiment, on the contrary, by using this relationship, The reverse calculation is performed to calculate x p which is the position of the evaporation completion point.

また、開度制御部73は、実施の形態1の場合と同様に、算出した蒸発完了点の位置xpが目標とする蒸発完了点の位置になるように電子膨張弁5の開度を制御する。その結果、高精度に冷凍空調装置を制御できる。 Similarly to the case of the first embodiment, the opening degree control unit 73 controls the opening degree of the electronic expansion valve 5 so that the calculated evaporation completion point position xp becomes the target evaporation completion point position. To do. As a result, the refrigeration air conditioner can be controlled with high accuracy.

つぎに、図6に示す制御装置の制御ブロック図を参照して、冷凍空調装置の制御方法について説明する。まず、制御器7bにおいて、抵抗値測定部74は、抵抗体9aの両端間の抵抗値を測定し、抵抗値Rを位置算出部75に出力する。つぎに、位置算出部75は、この抵抗値Rから逆算して蒸発完了点の位置xpを算出し、算出した蒸発完了点の位置xpを開度制御部73に出力する。開度制御部73においては、実施の形態1の場合と同様に、減算器731が位置偏差であるxpeを算出して開度演算部732に出力し、開度演算部732が位置偏差xpeを用いて電子膨張弁5の開度に対する指令値νを算出して電子膨張弁5に出力し、位置偏差xpeが所定の許容範囲内に収まるように電子膨張弁5の開度を制御する。その結果、高精度に冷凍空調装置を制御できる。 Next, a control method for the refrigerating and air-conditioning apparatus will be described with reference to a control block diagram of the control apparatus shown in FIG. First, in the controller 7 b, the resistance value measuring unit 74 measures the resistance value between both ends of the resistor 9 a and outputs the resistance value R to the position calculating unit 75. Then, the position calculating unit 75 calculates and outputs the position x p of the evaporation completion point by back calculation from the resistance value R, the position x p of the calculated evaporation completion point in the opening control unit 73. In the opening degree control unit 73, as in the case of the first embodiment, the subtractor 731 calculates xpe , which is a position deviation, and outputs it to the opening degree calculation unit 732, which then calculates the position deviation x. Using pe , a command value ν for the opening degree of the electronic expansion valve 5 is calculated and output to the electronic expansion valve 5, and the opening degree of the electronic expansion valve 5 is controlled so that the position deviation x pe falls within a predetermined allowable range. To do. As a result, the refrigeration air conditioner can be controlled with high accuracy.

つぎに、図7、8を参照して、実施の形態2において位置算出部75が蒸発完了点の位置を算出する具体的な方法について説明する。本実施の形態2に係る蒸発完了点位置算出部75は、蒸発管61内の温度分布曲線の近似曲線として一次遅れ特性曲線を用いる。   Next, with reference to FIGS. 7 and 8, a specific method by which the position calculation unit 75 calculates the position of the evaporation completion point in the second embodiment will be described. The evaporation completion point position calculation unit 75 according to the second embodiment uses a first-order lag characteristic curve as an approximate curve of the temperature distribution curve in the evaporation pipe 61.

図7は、実施の形態2において蒸発完了点位置を算出する具体的な方法について説明する図であって、蒸発管61内の各領域と温度分布を示す図である。図7の上側に示すように、蒸発管61の内部は気液二相領域と過熱蒸気領域とからなり、気液二相領域と過熱蒸気領域との境界が蒸発完了点である。なお、蒸発管61の周囲温度をTa、冷媒の蒸発温度をTeとする。また、蒸発管61上に帯状の抵抗体9aを設けている。   FIG. 7 is a diagram for explaining a specific method for calculating the evaporation completion point position in the second embodiment, and is a diagram showing each region in the evaporation pipe 61 and the temperature distribution. As shown in the upper side of FIG. 7, the inside of the evaporation pipe 61 is composed of a gas-liquid two-phase region and a superheated steam region, and a boundary between the gas-liquid two-phase region and the superheated steam region is an evaporation completion point. It is assumed that the ambient temperature of the evaporation pipe 61 is Ta and the evaporation temperature of the refrigerant is Te. A strip-shaped resistor 9 a is provided on the evaporation pipe 61.

図7の下側は蒸発管61の入口に近い抵抗体9a端部の位置を原点とした位置xと温度Tとの関係を示すが、本実施の形態2に係る蒸発完了点位置算出部75は、温度分布曲線を示すT(x)を気液二相領域においては直線C5で近似し、過熱蒸気領域においては曲線C6で近似する。蒸発完了点位置xp3は直線C5と曲線C6との交点である。本実施の形態2で用いる近似では、気液二相領域において蒸発管61内は蒸発温度Teに近い温度であり、蒸発完了点において蒸発温度Teからの温度上昇が始まる。そして、抵抗体9aの長さをL、過熱蒸気領域の長さをlとすると、蒸発完了点の位置はL−lであり、温度分布曲線を示すT(x)は数式(8)、(9)で表される。 The lower side of FIG. 7 shows the relationship between the position x and the temperature T with the position of the end of the resistor 9a close to the inlet of the evaporation pipe 61 as the origin, and the evaporation completion point position calculation unit 75 according to the second embodiment. Is approximated by a straight line C 5 in the gas-liquid two-phase region and approximated by a curve C 6 in the superheated steam region. The evaporation completion point position x p3 is the intersection of the straight line C 5 and the curve C 6 . In the approximation used in the second embodiment, the inside of the evaporation pipe 61 is close to the evaporation temperature Te in the gas-liquid two-phase region, and the temperature rise from the evaporation temperature Te starts at the evaporation completion point. When the length of the resistor 9a is L and the length of the superheated steam region is l, the position of the evaporation completion point is Ll, and T (x) indicating the temperature distribution curve is expressed by Equations (8), ( 9).

Figure 2008032251
Figure 2008032251
Figure 2008032251
Figure 2008032251

なお、ΔTは過熱蒸気領域における温度上昇分の上限値であり、ΔT≒Ta−Teである。また、τは所定のパラメータである。また、気液二相領域の温度T0としては、蒸発温度Teで近似してよく、その場合はT0の代わりにTeを用いてもよい。また、蒸発器6の入口部に温度センサを設けて入口部の温度を検出し、検出した入口部温度をT0の代わりに用いてもよい。また、Teは冷凍空調装置1aの冷凍サイクルの低圧部に圧力センサを設置し、この圧力センサによって検出した冷媒の圧力から算出してもよい。また、ΔTは周囲温度TaとT0からΔT=Ta−T0として求めてもよい。また、蒸発器6の出口部に温度センサを設けて出口部の温度を検出し、検出した出口部温度をTaの代わりに用いてもよい。 Note that ΔT is the upper limit of the temperature rise in the superheated steam region, and ΔT≈Ta−Te. Τ is a predetermined parameter. Further, the temperature T 0 of the gas-liquid two-phase region may be approximated by the evaporation temperature Te. In that case, Te may be used instead of T 0 . Further, a temperature sensor may be provided at the inlet of the evaporator 6 to detect the temperature of the inlet, and the detected inlet temperature may be used instead of T 0 . Te may be calculated from the pressure of the refrigerant detected by the pressure sensor installed in the low pressure part of the refrigeration cycle of the refrigeration air conditioner 1a. ΔT may be obtained as ΔT = Ta−T 0 from the ambient temperature Ta and T 0 . Further, a temperature sensor may be provided at the outlet of the evaporator 6 to detect the temperature of the outlet, and the detected outlet temperature may be used instead of Ta.

つぎに、位置算出部75が抵抗体9aの抵抗値Rから蒸発完了点を算出する方法を説明する。図8に蒸発管61上に設けた抵抗体9aとその温度分布および抵抗率分布を示す。抵抗体9aは抵抗率がρの均一の材質からなり、その断面積は蒸発管61の長さ方向に依らず一定値Sをもつものとする。また、抵抗率ρは数式(10)で示される温度特性を有するとする。   Next, a method in which the position calculation unit 75 calculates the evaporation completion point from the resistance value R of the resistor 9a will be described. FIG. 8 shows the resistor 9a provided on the evaporation tube 61 and its temperature distribution and resistivity distribution. The resistor 9 a is made of a uniform material having a resistivity ρ, and the cross-sectional area thereof has a constant value S regardless of the length direction of the evaporation pipe 61. Further, it is assumed that the resistivity ρ has a temperature characteristic represented by Expression (10).

Figure 2008032251
Figure 2008032251

なお、ρ0は温度T=0における抵抗率、α0は温度T=0における温度係数である。このとき、抵抗率分布曲線を示すρ(x)は気液二相領域においては直線C7で近似され、過熱蒸気領域においては曲線C8で近似される。直線C7、曲線C8はそれぞれ数式(8)、(9)を数式(10)に代入して得られるものである。その結果、抵抗値Rは数式(11)で表され、単位断面積あたりの抵抗値は数式(12)で表される。 Note that ρ 0 is the resistivity at the temperature T = 0, and α 0 is the temperature coefficient at the temperature T = 0. At this time, ρ (x) indicating the resistivity distribution curve is approximated by a straight line C 7 in the gas-liquid two-phase region, and is approximated by a curve C 8 in the superheated steam region. The straight line C 7 and the curve C 8 are obtained by substituting Equations (8) and (9) into Equation (10), respectively. As a result, the resistance value R is expressed by Equation (11), and the resistance value per unit cross-sectional area is expressed by Equation (12).

Figure 2008032251
Figure 2008032251
Figure 2008032251
Figure 2008032251

なお、数式(12)においては数式(13)を用いて変形を行った。   In addition, in Formula (12), it deform | transformed using Formula (13).

Figure 2008032251
Figure 2008032251

さらに、数式(12)を変形すると、数式(14)が求められる。   Further, when Expression (12) is transformed, Expression (14) is obtained.

Figure 2008032251
Figure 2008032251

数式(14)の左辺はlの関数f(l)である一方、右辺は測定した抵抗値Rをはじめとして、測定値と既知の値より計算できる量であり、これをl0とした。したがって、数式(14)を逆算して数式(15)から求められる値lを用いて、蒸発完了点の位置xp3は、L−lとして求められる。 The left side of Equation (14) is a function f (l) of l, while the right side is a quantity that can be calculated from a measured value and a known value including the measured resistance value R, and this is defined as l 0 . Therefore, the position x p3 of the evaporation completion point is obtained as L−1 using the value l obtained from the equation (15) by calculating back the equation (14).

Figure 2008032251
Figure 2008032251

位置算出部75は上記の手順で蒸発完了点位置xp3を求める。ただし、f(l)=l0はlに関する陰関数表現であり、陽関数f-1(・)の形に表すことができないので、位置算出部75が(l、f(l))の対応表を予め記憶しておき、補間演算を併用することによって数式(13)を満たすlを求めてもよい。 The position calculation unit 75 obtains the evaporation completion point position x p3 by the above procedure. However, since f (l) = l 0 is an implicit function expression related to l and cannot be expressed in the form of an explicit function f −1 (•), the position calculation unit 75 can handle (l, f (l)). A table may be stored in advance, and l satisfying Equation (13) may be obtained by using an interpolation operation together.

なお、上記のl0は数式(9)においてτ→0として温度分布曲線を矩形近似した場合の過熱蒸気領域の長さと考えることができる。したがって、蒸発完了点の位置の近似値として、L−l0を用いることができる。このように考えていくと、過熱蒸気領域および蒸発完了点位置の計算誤差eは数式(16)で表される。 The above l 0 can be considered as the length of the superheated steam region when the temperature distribution curve is approximated by a rectangle with τ → 0 in Equation (9). Therefore, L-l 0 can be used as an approximate value of the position of the evaporation completion point. When considered in this way, the calculation error e of the superheated steam region and the evaporation completion point position is expressed by Expression (16).

Figure 2008032251
Figure 2008032251

通常はτ≧0なので、計算誤差eは通常は負の値を取る。すなわち、過熱蒸気領域の長さの計算値は現実の値よりも短くなるように誤差を生じることになる。したがって、上記の手順で算出した蒸発完了点の位置を制御に用いれば、蒸発完了点の位置は蒸発器の出口部から遠ざかる方向に誤差が生じるので、液バックの防止の意味で安全な方向に誤差が生じることになる。   Since τ ≧ 0 normally, the calculation error e usually takes a negative value. That is, an error occurs so that the calculated value of the length of the superheated steam region is shorter than the actual value. Therefore, if the position of the evaporation completion point calculated in the above procedure is used for control, an error occurs in the direction of the evaporation completion point away from the outlet of the evaporator. An error will occur.

なお、蒸発完了点位置算出部75が、以下のようにlの近似値を求めれば、上記の計算誤差はより改善される。1つの方法は、まず、l0を用いて数式(17)によって計算誤差の近似値e0を求める。そしてこれを用いてl0に対する補正値l1を数式(18)によって求める。そして蒸発完了点の位置の近似値としてL−l1を用いれば、より誤差の少ない蒸発完了点の位置を算出できる。 If the evaporation completion point position calculation unit 75 obtains an approximate value of l as follows, the above calculation error is further improved. In one method, first, an approximate value e 0 of a calculation error is obtained by Equation (17) using l 0 . Then, using this, a correction value l 1 for l 0 is obtained by equation (18). If L- 11 is used as an approximate value of the position of the evaporation completion point, the position of the evaporation completion point with fewer errors can be calculated.

Figure 2008032251
Figure 2008032251
Figure 2008032251
Figure 2008032251

また別の方法は、まず、l≫τを仮定して、数式(19)によって計算誤差の近似値e1を求める。そしてこれを用いてl0に対する補正値l2を数式(20)によって求める。そして蒸発完了点位置の近似値としてL−l2を用いれば、より誤差の少ない蒸発完了点位置を算出できる。 In another method, first, assuming that l >> τ, an approximate value e 1 of a calculation error is obtained by Expression (19). Then, using this, a correction value l 2 for l 0 is obtained by equation (20). And the use of the L-l 2 as an approximation of the evaporation completion point position can be calculated more error less evaporation completion point position.

Figure 2008032251
Figure 2008032251
Figure 2008032251
Figure 2008032251

以上説明したように、本実施の形態2に係る冷凍空調装置の制御装置10bは、実施の形態1に係る冷凍空調装置の制御装置10aと同様に、高精度に冷凍空調装置を制御できるとともに、液バックの防止も一層確実にでき、冷凍空調装置1bの省エネルギー化を図れるという効果も奏する。また、蒸発完了点の位置を算出するために単一の抵抗体を用いるので多数の温度センサを設けなくてもよく、温度センサの使用数を削減できる。   As described above, the control device 10b of the refrigeration air conditioner according to the second embodiment can control the refrigeration air conditioner with high accuracy, similarly to the control device 10a of the refrigeration air conditioner according to the first embodiment. The liquid back can be prevented more reliably, and there is an effect that energy saving of the refrigeration air conditioner 1b can be achieved. In addition, since a single resistor is used to calculate the position of the evaporation completion point, it is not necessary to provide a large number of temperature sensors, and the number of temperature sensors used can be reduced.

なお、本実施の形態2の変形例として、蒸発管上に設ける抵抗体は、蒸発管にらせん状に巻き付けたものであってもよい。図9は、本変形例に係る抵抗体を設けた蒸発管の断面と側面とを示した図である。図9に示すように、本変形例に係る抵抗体9bは、蒸発管61にらせん状に巻き付けたものである。なお、符号91b、92bは抵抗体9bの両端に設けた抵抗値測定用の端子を示す。   As a modification of the second embodiment, the resistor provided on the evaporation tube may be a spiral wound around the evaporation tube. FIG. 9 is a view showing a cross section and a side surface of an evaporation tube provided with a resistor according to this modification. As shown in FIG. 9, the resistor 9 b according to this modification is wound around the evaporator tube 61 in a spiral shape. Reference numerals 91b and 92b denote resistance value measuring terminals provided at both ends of the resistor 9b.

本変形例によれば、蒸発管内の冷媒やオイルの分布特性が複雑であるために蒸発管の断面の円周方向において温度分布が生じている場合であっても、らせん状に巻きつけた抵抗体9bの両端の抵抗値は上述の円周方向の温度分布を平均化した値となるので、安定して高精度な蒸発完了点の位置の算出が可能となる。さらに、らせん状に巻きつけた抵抗体9bの長さが蒸発管61上において抵抗体9bを巻き付けた区間の長さのk倍である場合は、実施の形態2に係る抵抗体9aのように直線的に設けた場合よりも温度の位置分解能をk倍に高めることができる。なお、らせん状に巻き付けた抵抗体の抵抗率分布を位置方向で1/k倍することで、直線的に設けた抵抗体の抵抗率分布に容易に変換することができる。   According to this modification, even when the temperature distribution occurs in the circumferential direction of the cross section of the evaporator tube due to the complicated distribution characteristics of the refrigerant and oil in the evaporator tube, the resistance wound in a spiral shape Since the resistance value at both ends of the body 9b is a value obtained by averaging the temperature distribution in the circumferential direction described above, the position of the evaporation completion point can be calculated stably and accurately. Further, when the length of the spirally wound resistor 9b is k times the length of the section around which the resistor 9b is wound on the evaporation tube 61, as in the resistor 9a according to the second embodiment. The temperature position resolution can be increased by a factor of k compared to a case where the temperature is linearly provided. In addition, by multiplying the resistivity distribution of the spirally wound resistor by 1 / k in the position direction, it can be easily converted into the resistivity distribution of the linearly provided resistor.

本発明の実施の形態1に係る制御装置を備えた冷凍空調装置の構成を示すブロック図である。It is a block diagram which shows the structure of the refrigerating air conditioning apparatus provided with the control apparatus which concerns on Embodiment 1 of this invention. 図1に示す制御装置の制御ブロック図である。It is a control block diagram of the control apparatus shown in FIG. 実施の形態1において蒸発完了点の位置を算出する具体的な方法について説明する図である。6 is a diagram illustrating a specific method for calculating the position of the evaporation completion point in the first embodiment. FIG. 実施の形態1の変形例において蒸発完了点の位置を算出する具体的な方法について説明する図である。FIG. 10 is a diagram for explaining a specific method for calculating the position of the evaporation completion point in the modification of the first embodiment. 本発明の実施の形態2に係る制御装置を備えた冷凍空調装置の構成を示すブロック図である。It is a block diagram which shows the structure of the refrigerating air conditioner provided with the control apparatus which concerns on Embodiment 2 of this invention. 図5に示す制御装置の制御ブロック図である。FIG. 6 is a control block diagram of the control device shown in FIG. 5. 実施の形態2において蒸発完了点の位置を算出する具体的な方法について説明する図である。FIG. 10 is a diagram for describing a specific method for calculating the position of an evaporation completion point in the second embodiment. 実施の形態2において蒸発管上に設けた抵抗体とその温度分布および抵抗率分布を示す図である。It is a figure which shows the resistor provided on the evaporation pipe in Embodiment 2, its temperature distribution, and resistivity distribution. 実施の形態2の変形例に係る抵抗体を設けた蒸発管の断面と側面とを示した図である。It is the figure which showed the cross section and side surface of the evaporation pipe | tube which provided the resistor which concerns on the modification of Embodiment 2. FIG.

符号の説明Explanation of symbols

1a、1b 冷凍空調装置
10a、10b 冷凍空調装置の制御装置
2 圧縮機
3 凝縮器
4 電磁弁
5 電子膨張弁
6 蒸発器
61 蒸発管
7a、7b 制御器
71 温度分布算定部
72、75 位置算出部
73 開度制御部
731 減算器
732 開度演算部
74 抵抗値測定部
8−1〜8−n、8−k1〜8−k5 温度センサ
9a、9b 抵抗体
91b、92b 端子
13 配管
DESCRIPTION OF SYMBOLS 1a, 1b Refrigeration air conditioner 10a, 10b Control apparatus of refrigeration air conditioner 2 Compressor 3 Condenser 4 Electromagnetic valve 5 Electronic expansion valve 6 Evaporator 61 Evaporating pipe 7a, 7b Controller 71 Temperature distribution calculation part 72, 75 Position calculation part 73 Opening Control Unit 731 Subtractor 732 Opening Calculation Unit 74 Resistance Measurement Units 8-1 to 8-n, 8-k1 to 8-k5 Temperature Sensors 9a and 9b Resistors 91b and 92b Terminals 13 Piping

Claims (9)

圧縮機と凝縮器と膨張弁と蒸発器とを配管によって接続し該配管に冷媒を循環させる冷凍サイクルを構成した冷凍空調装置の制御方法であって、
前記蒸発器の蒸発管内の温度分布に基づいて前記蒸発管内における冷媒の気液二相領域と過熱蒸気領域との境界である蒸発完了点の位置を算出する蒸発完了点位置算出ステップと、
前記算出した蒸発完了点の位置と目標とする蒸発完了点の位置との偏差が所定の許容範囲内に収まるように前記膨張弁の開度を制御する開度制御ステップと、
を含むことを特徴とする冷凍空調装置の制御方法。
A control method for a refrigeration air conditioner comprising a refrigeration cycle in which a compressor, a condenser, an expansion valve, and an evaporator are connected by piping and a refrigerant is circulated through the piping,
An evaporation completion point position calculating step for calculating a position of an evaporation completion point which is a boundary between a gas-liquid two-phase region and a superheated steam region of the refrigerant in the evaporation tube based on a temperature distribution in the evaporation tube of the evaporator;
An opening degree control step for controlling the opening degree of the expansion valve so that the deviation between the calculated evaporation completion point position and the target evaporation completion point position is within a predetermined allowable range;
The control method of the refrigerating air-conditioning apparatus characterized by including.
圧縮機と凝縮器と膨張弁と蒸発器とを配管によって接続し該配管に冷媒を循環させる冷凍サイクルを構成した冷凍空調装置の制御装置であって、
前記蒸発器の蒸発管内の温度分布に基づいて前記蒸発管内における冷媒の気液二相領域と過熱蒸気領域との境界である蒸発完了点の位置を算出する蒸発完了点位置算出手段と、
前記算出した蒸発完了点の位置と目標とする蒸発完了点の位置との偏差が所定の許容範囲内に収まるように前記膨張弁の開度を制御する開度制御手段と、
を備えることを特徴とする冷凍空調装置の制御装置。
A control device for a refrigerating and air-conditioning apparatus comprising a refrigeration cycle in which a compressor, a condenser, an expansion valve, and an evaporator are connected by piping and a refrigerant is circulated through the piping,
An evaporation completion point position calculating means for calculating a position of an evaporation completion point which is a boundary between a gas-liquid two-phase region and a superheated steam region of the refrigerant in the evaporation tube based on a temperature distribution in the evaporation tube of the evaporator;
An opening degree control means for controlling the opening degree of the expansion valve so that a deviation between the calculated evaporation completion point position and a target evaporation completion point position is within a predetermined allowable range;
A control device for a refrigerating and air-conditioning apparatus, comprising:
前記蒸発完了点位置算出手段は、
前記蒸発管上の離隔した位置に設けた該離隔した位置の温度を検出する温度検出手段と、
前記検出した温度を用いて前記蒸発管内の温度分布を算定する温度分布算定手段と、
前記算定した温度分布を用いて前記蒸発完了点の位置を算出する位置算出手段と、
を備えることを特徴とする請求項2に記載の冷凍空調装置の制御装置。
The evaporation completion point position calculating means includes:
Temperature detecting means for detecting the temperature at the separated position provided at a separated position on the evaporation pipe;
A temperature distribution calculating means for calculating a temperature distribution in the evaporation tube using the detected temperature;
Position calculating means for calculating the position of the evaporation completion point using the calculated temperature distribution;
The control apparatus of the refrigerating and air-conditioning apparatus according to claim 2, comprising:
前記温度分布算定手段は、近似曲線として折れ線または一次遅れ特性曲線を用いて前記温度分布を算定することを特徴とする請求項3に記載の冷凍空調装置の制御装置。   The said temperature distribution calculation means calculates the said temperature distribution using a broken line or a first-order lag characteristic curve as an approximated curve, The control apparatus of the refrigeration air conditioner of Claim 3 characterized by the above-mentioned. 前記蒸発完了点位置算出手段は、
前記蒸発管上に長さ方向の所定区間にわたって連続して設けた抵抗体と、
前記抵抗体に接続し該抵抗体の両端間の抵抗値を測定する抵抗値測定手段と、
前記蒸発管内の温度分布を示す所定の温度分布曲線を用いて前記抵抗値から逆算して前記蒸発完了点の位置を算出する位置算出手段と、
を備えることを特徴とする請求項2に記載の冷凍空調装置の制御装置。
The evaporation completion point position calculating means includes:
A resistor provided continuously over a predetermined section in the length direction on the evaporation tube;
A resistance value measuring means connected to the resistor and measuring a resistance value between both ends of the resistor;
Position calculating means for calculating the position of the evaporation completion point by calculating backward from the resistance value using a predetermined temperature distribution curve indicating the temperature distribution in the evaporation pipe;
The control apparatus of the refrigerating and air-conditioning apparatus according to claim 2, comprising:
前記蒸発完了点位置算出手段は、前記蒸発器の入口部に設けた該入口部の温度を検出する入口部温度検出手段を備え、
前記位置算出手段は、前記入口部の温度を用いて前記蒸発完了点の位置を算出することを特徴とする請求項5に記載の冷凍空調装置の制御装置。
The evaporation completion point position calculating means includes an inlet temperature detecting means for detecting the temperature of the inlet provided at the inlet of the evaporator,
The said position calculation means calculates the position of the said evaporation completion point using the temperature of the said inlet part, The control apparatus of the refrigerating air conditioner of Claim 5 characterized by the above-mentioned.
前記蒸発完了点位置算出手段は、前記蒸発器の出口部に設けた該出口部の温度を検出する出口部温度検出手段を備え、
前記位置算出手段は、前記出口部の温度を用いて前記蒸発完了点の位置を算出することを特徴とする請求項5または6に記載の冷凍空調装置の制御装置。
The evaporation completion point position calculating means includes outlet temperature detecting means for detecting the temperature of the outlet provided at the outlet of the evaporator,
The control device for a refrigerating and air-conditioning apparatus according to claim 5 or 6, wherein the position calculating means calculates the position of the evaporation completion point using the temperature of the outlet.
前記位置算出手段は、折れ線または一次遅れ特性曲線を用いて近似した温度分布曲線を用いて前記蒸発完了点の位置を算出することを特徴とする請求項5〜7のいずれか一つに記載の冷凍空調装置の制御装置。   The said position calculation means calculates the position of the said evaporation completion point using the temperature distribution curve approximated using the broken line or the first-order lag characteristic curve, The one of Claims 5-7 characterized by the above-mentioned. Control device for refrigeration air conditioner. 前記抵抗体は、前記蒸発管にらせん状に巻き付けたものであることを特徴とする請求項5〜8のいずれか一つに記載の冷凍空調装置の制御装置。   The control device for a refrigerating and air-conditioning apparatus according to any one of claims 5 to 8, wherein the resistor is spirally wound around the evaporation pipe.
JP2006203122A 2006-07-26 2006-07-26 Control device for refrigeration air conditioner Expired - Fee Related JP4840007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006203122A JP4840007B2 (en) 2006-07-26 2006-07-26 Control device for refrigeration air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006203122A JP4840007B2 (en) 2006-07-26 2006-07-26 Control device for refrigeration air conditioner

Publications (2)

Publication Number Publication Date
JP2008032251A true JP2008032251A (en) 2008-02-14
JP4840007B2 JP4840007B2 (en) 2011-12-21

Family

ID=39121877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006203122A Expired - Fee Related JP4840007B2 (en) 2006-07-26 2006-07-26 Control device for refrigeration air conditioner

Country Status (1)

Country Link
JP (1) JP4840007B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080688A (en) * 2009-10-07 2011-04-21 Mitsubishi Electric Corp Waste heat regenerative system
CN102927729A (en) * 2012-11-13 2013-02-13 东华大学 Early stage monitoring and controlling method used for multi-parallel-connection evaporator refrigerating system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6080001A (en) * 1983-10-11 1985-05-07 日本鋼管株式会社 Method of controlling quantity of medium fed to boiler usinglow boiling-point medium
JPS62238946A (en) * 1986-04-11 1987-10-19 株式会社日立製作所 Refrigerator
JPS6323467B2 (en) * 1979-10-01 1988-05-17 Matsushita Electric Ind Co Ltd
JPH0541904B2 (en) * 1986-12-26 1993-06-24 Fuji Koki Mfg
JPH06259104A (en) * 1993-03-04 1994-09-16 Hachiyou Eng Kk Pid control method and cooling device applying the control method
JPH07120091A (en) * 1993-10-26 1995-05-12 Toshiba Ave Corp Air conditioner
JPH10220881A (en) * 1997-02-05 1998-08-21 Toshiba Corp Method of controlling air conditioner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6323467B2 (en) * 1979-10-01 1988-05-17 Matsushita Electric Ind Co Ltd
JPS6080001A (en) * 1983-10-11 1985-05-07 日本鋼管株式会社 Method of controlling quantity of medium fed to boiler usinglow boiling-point medium
JPS62238946A (en) * 1986-04-11 1987-10-19 株式会社日立製作所 Refrigerator
JPH0541904B2 (en) * 1986-12-26 1993-06-24 Fuji Koki Mfg
JPH06259104A (en) * 1993-03-04 1994-09-16 Hachiyou Eng Kk Pid control method and cooling device applying the control method
JPH07120091A (en) * 1993-10-26 1995-05-12 Toshiba Ave Corp Air conditioner
JPH10220881A (en) * 1997-02-05 1998-08-21 Toshiba Corp Method of controlling air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080688A (en) * 2009-10-07 2011-04-21 Mitsubishi Electric Corp Waste heat regenerative system
CN102927729A (en) * 2012-11-13 2013-02-13 东华大学 Early stage monitoring and controlling method used for multi-parallel-connection evaporator refrigerating system

Also Published As

Publication number Publication date
JP4840007B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
EP2588818B1 (en) A method for operating a vapour compression system using a subcooling value
EP0750166A2 (en) Refrigerant circulating system
EP2729743B1 (en) A method for controlling operation of a vapour compression system in a subcritical and a supercritical mode
CN104350342B (en) System and method for dynamic control of evaporator
CN104520655B (en) For the method that the temperature sensor of vapor compression system is calibrated
JPS61175458A (en) Controller for flow rate of refrigerant
JP2016169893A (en) Expansion valve device
CN110726225B (en) Multi-split system and control method thereof
EP2912389B1 (en) A control arrangement for controlling superheat
EP3023711A1 (en) Energy control for vapour injection
JP4840007B2 (en) Control device for refrigeration air conditioner
US8978484B2 (en) Drive torque estimation device for compressor and condenser used for the device
JPH08121917A (en) Refrigerant quantity determining device
JP4930353B2 (en) Cooling system
JP2008032250A (en) Method and device for controlling refrigerating air-conditioning system
JP2007322051A (en) Heat pump type water heater
JPH1038398A (en) Controller of electric expansion valve
CN106595145A (en) Control system and method for preventing compressor from liquid returning
US11343946B2 (en) Cooling system and refrigerant control method for cooling system
CN112955702A (en) Diagnostics for refrigerant composition verification
JP2017015327A (en) Refrigeration cycle device
JP4131509B2 (en) Refrigeration cycle controller
JP2008008555A (en) Refrigerant flow controller
EP2242966B1 (en) Method of controlling a heat-rejection heat exchanging side of a refrigerant circuit
JPH06159819A (en) Air conditioner and method for controlling the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090415

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100818

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100819

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110919

R150 Certificate of patent or registration of utility model

Ref document number: 4840007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees