JPH06259104A - Pid control method and cooling device applying the control method - Google Patents

Pid control method and cooling device applying the control method

Info

Publication number
JPH06259104A
JPH06259104A JP6945293A JP6945293A JPH06259104A JP H06259104 A JPH06259104 A JP H06259104A JP 6945293 A JP6945293 A JP 6945293A JP 6945293 A JP6945293 A JP 6945293A JP H06259104 A JPH06259104 A JP H06259104A
Authority
JP
Japan
Prior art keywords
control
control method
differential value
differential
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6945293A
Other languages
Japanese (ja)
Inventor
Hiroshi Nishida
博 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HACHIYOU ENG KK
Original Assignee
HACHIYOU ENG KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HACHIYOU ENG KK filed Critical HACHIYOU ENG KK
Priority to JP6945293A priority Critical patent/JPH06259104A/en
Publication of JPH06259104A publication Critical patent/JPH06259104A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To provide a PID control method which can set the priority of the differential control operation of a control system in response to the attribute to which the differential value, i.e., an input signal is optionally defined and also to provide a cooling device which applies the PID control method in regard of the PID control where the proportional control, the integral control and the differential control are carried out together or selectively. CONSTITUTION:A cooling device which applies a PID control method consists of a controller O, an expansion valve V, and an evaporator R. The controller O is set at different priority levels of a D operation in accordance with the attribute of the differential value, i.e., the positive or negative value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の目的】[Object of the Invention]

【産業上の利用分野】本発明は、新規なP.I.D制御
ならびにこれを応用した冷却装置に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a novel P. I. The present invention relates to D control and a cooling device to which the D control is applied.

【0002】[0002]

【発明の背景】例えば冷却装置においては、その温度制
御に比例制御と積分制御と微分制御とを合成或いは選択
的に行ういわゆるP.I.D制御を用いて膨張弁の開閉
を制御しているものが多い。そしてP.I.D制御は比
例動作(以下P動作と呼ぶ)を主動作として膨張弁を制
御し、積分動作(以下I動作と呼ぶ)、微分動作(以下
D動作と呼ぶ)はP動作では不充分な制御を補うもので
ある。そして具体的なP.I.Dコントローラからの制
御出力はこれらP,I,D動作の優先度を適宜選択して
出力されたものである。
BACKGROUND OF THE INVENTION For example, in a cooling device, a so-called P.P. I. Many control the opening and closing of the expansion valve using D control. And P. I. The D control controls the expansion valve with a proportional operation (hereinafter referred to as P operation) as a main operation, and an integral operation (hereinafter referred to as I operation) and a differential operation (hereinafter referred to as D operation) perform insufficient control in the P operation. It is a supplement. And a specific P. I. The control output from the D controller is output by appropriately selecting the priority of these P, I, and D operations.

【0003】しかしながら、このようなP,I,D動作
の優先度を適宜選択して出力する方式のものにおいて
は、特にD動作の際、サンプルたる微分値の属性によっ
て被制御系のレスポンスが異なる場合に、優先度は双方
に最適でない妥協的値を採用するしかなかった。例えば
図3(a)に示すような冷却装置の温度特性の場合、温
度が上昇して変曲点を過ぎると急激に下がり始め、設定
値を大きく下回って、設定値への回復に時間を要する。
この状況が検出される微分値で見ると微分値が正から負
になると一気にこのような傾向となるものであり、この
ためD動作がより支配的に制御を行うことが要求され
る。逆に温度が下降して変曲点を過ぎるとなだらかに上
昇していく、つまり微分値が負から正に変わる場合はむ
しろP動作が支配的な制御を行うことが要求される。し
かし従来のP.I.D制御では微分値の属性による優先
度の設定ができなかったため優先度は双方に最適でない
妥協的値を採用し、結果的に正確な制御ができなかっ
た。
However, in the system in which the priorities of the P, I, and D operations are appropriately selected and output, particularly in the D operation, the response of the controlled system varies depending on the attribute of the sampled differential value. In this case, the priority had to adopt a compromise value that was not optimal for both parties. For example, in the case of the temperature characteristic of the cooling device as shown in FIG. 3 (a), when the temperature rises and passes the inflection point, the temperature starts to sharply decrease, greatly falls below the set value, and it takes time to recover to the set value. .
When viewed from the differential value for detecting this situation, such a tendency occurs at once when the differential value changes from positive to negative. Therefore, it is required that the D operation be controlled more predominantly. On the contrary, when the temperature falls and rises gently after passing the inflection point, that is, when the differential value changes from negative to positive, it is required that the P operation dominates the control. However, the conventional P. I. In the D control, the priority cannot be set by the attribute of the differential value, so that the priority uses a compromise value that is not optimal for both sides, and as a result, accurate control cannot be performed.

【0004】[0004]

【開発を試みた技術的事項】本発明はこのような背景に
鑑みなされたものであって、D動作の際サンプルたる微
分値の任意の属性に応じてそれぞれD動作の優先度が異
なる様に設定することのできるPIDコントローラによ
って制御される新規な冷却装置の開発を試みたものであ
る。
[Technical Items Attempted to Develop] The present invention has been made in view of such a background, and the priorities of the D motions are different according to arbitrary attributes of the differential value which is a sample during the D motions. This is an attempt to develop a new cooling device controlled by a configurable PID controller.

【0005】[0005]

【発明の構成】[Constitution of the invention]

【目的達成の手段】本出願に係る第一の発明たるP.
I.D制御方法は、比例制御と積分制御と微分制御とを
合成或いは選択的に行うP.I.D制御において、微分
制御動作の優先度を、入力信号たる微分値についての任
意に定義される属性に応じて設定できるようにしたこと
を特徴として成る。
[Means for Achieving the Object] The first invention according to the present application, P.
I. The D control method is a P.D. method that performs proportional control, integral control, and derivative control in a combined or selective manner. I. In the D control, the priority of the differential control operation can be set according to an arbitrarily defined attribute of the differential value as an input signal.

【0006】また本出願に係る第二の発明たるP.I.
D制御方法を適用した冷却装置は、比例制御と積分制御
と微分制御とを合成或いは選択的に行うP.I.D制御
を受けて熱交換出力を制御される装置において、制御系
における微分制御動作の優先度を、入力信号たる微分値
についての任意に定義される属性に応じて設定できるこ
とを特徴として成る。そして上記手段を持って前記目的
を達成しようというものである。
A second invention according to the present application, P. I.
The cooling device to which the D control method is applied is a P.I. system that performs proportional control, integral control, and derivative control in a combined or selective manner. I. In a device in which the heat exchange output is controlled by receiving the D control, the priority of the differential control operation in the control system can be set according to an arbitrarily defined attribute of the differential value as the input signal. Then, the above means is used to achieve the above object.

【0007】[0007]

【発明の作用】本発明の作用を冷却装置についてみる
と、膨張弁の開閉を制御する際、蒸発器内に設けられた
2基の温度センサの出力差(以下過熱度と呼ぶ)の微分
値の正負によって例えば、前記微分値が正に相当する過
熱度上昇時にはD動作の優先度を低くしP動作を支配的
にし、前記微分値が負に相当する過熱度下降時にはD動
作の優先度を高くしD動作を支配的にする様設定するこ
とができる。
The operation of the present invention will be described with respect to the cooling device. When the opening / closing of the expansion valve is controlled, the differential value of the output difference (hereinafter referred to as superheat degree) of the two temperature sensors provided in the evaporator. For example, when the degree of superheat corresponding to the positive differential value is high, the priority of the D operation is lowered to make the P operation dominant, and when the degree of superheat is negative corresponding to the negative differential value, the priority of the D operation is set. It can be set higher so that the D motion is dominant.

【0008】[0008]

【実施例】以下、本発明を、適用対象たる冷却装置を例
に、図面に基づいて具体的に説明する。図1中符号Pに
示すものが冷媒パイプでありこの中をフロン等の冷媒L
が循環する、冷媒パイプPはコンプレッサCから制御弁
Vを介して冷却作用部F内に設置された蒸発器Rを通り
ふたたびコンプレッサCに入る。該蒸発器Rには温度セ
ンサT1,T2が設置されておりこれらはコントローラ
Oに接続される。コントローラOはT1,T2からの信
号によって膨張弁Vの開放度を調節し該蒸発器Rに送り
込まれるコンプレッサCにより液化された冷媒の量を調
整し、冷却作用部F内の過熱度を制御する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings by taking a cooling device to which the present invention is applied as an example. A reference numeral P in FIG. 1 is a refrigerant pipe in which a refrigerant L such as CFC is supplied.
The refrigerant pipe P, which circulates, passes through the evaporator C installed in the cooling action part F from the compressor C via the control valve V and enters the compressor C again. Temperature sensors T1 and T2 are installed in the evaporator R, and these are connected to a controller O. The controller O adjusts the degree of opening of the expansion valve V by the signals from T1 and T2, adjusts the amount of the refrigerant liquefied by the compressor C sent to the evaporator R, and controls the degree of superheat in the cooling action part F. .

【0009】まず蒸発器R内の冷媒Lの量と過熱度の関
係を説明する。図2(a)に過熱度変化を示す。また図
2(a)中,,のポイントでの蒸発器R内の冷媒
Lの量を図2(b)に示す。図2(b)−に示す状態
は冷媒量が不足し設定温度以上である。図2(b)−
に示す状態は理論的運転状態であり設定温度である。図
2(b)−に示す状態は冷媒Lが過多であり設定温度
以下である。これらを基にコントローラCの制御動作が
PD動作(比例+微分動作)の場合について説明する。
First, the relationship between the amount of refrigerant L in the evaporator R and the degree of superheat will be described. FIG. 2A shows the change in superheat degree. 2B shows the amount of the refrigerant L in the evaporator R at points of and in FIG. In the state shown in FIG. 2B, the amount of refrigerant is insufficient and the temperature is above the set temperature. Figure 2 (b)-
The state shown in is the theoretical operating state and the set temperature. In the state shown in FIG. 2B, the amount of the refrigerant L is excessive and the temperature is below the set temperature. Based on these, the case where the control operation of the controller C is the PD operation (proportional + differential operation) will be described.

【0010】コントローラCはT2−T1(過熱度)を
検出信号として膨張弁Vの制御を行い理想的運転状態図
2(b)−に近い状態にしようとするものである。図
3(a)に過熱度変化を示す。またこの時P動作によっ
て制御された膨張弁Vの開放度は図3(b)に示す様に
設定過熱度とそのときの過熱度との差に比例した開放度
となり、本例の場合は設定温度時に50%の開放度とな
る。但し上記図3(a)(b)の関係は冷媒Lの伝達時
間等を無視した理論値であり、実際は例えばXのポイン
トで多量に供給された冷媒が蒸発器R内で気化しきる前
にYのポイントでも冷媒が供給され、過熱度下降は急な
カーブになる。またこのとき蒸発器R内に冷媒が過剰に
存在することになり、冷媒が液状のままコンプレッサC
に戻るいわゆる液バック現象が起き、コンプレッサCの
破損につながる。
The controller C controls the expansion valve V by using T2-T1 (degree of superheat) as a detection signal and tries to bring the state close to the ideal operating state shown in FIG. 2 (b). FIG. 3A shows the change in superheat degree. Further, at this time, the opening degree of the expansion valve V controlled by the P operation becomes an opening degree proportional to the difference between the set superheat degree and the superheat degree at that time as shown in FIG. At temperature, the openness is 50%. However, the relations of FIGS. 3 (a) and 3 (b) are theoretical values in which the transmission time of the refrigerant L and the like are ignored, and in reality, for example, before a large amount of the refrigerant supplied at the point X is completely vaporized in the evaporator R, Y Refrigerant is also supplied at the point of, and the decrease in superheat becomes a sharp curve. Further, at this time, the refrigerant is excessively present in the evaporator R, so that the refrigerant remains in a liquid state and the compressor C
The so-called liquid back phenomenon occurs, which causes damage to the compressor C.

【0011】上記した液バック現象を防ぐためにD動作
による制御が必要になる。つまり過熱度の変化速度(微
分値)を敏感に反映して制御信号を出力することが求め
られる。図3(c)にD動作によって制御された膨張弁
Vの開放度を示す。この場合Xのポイントで多量に供給
された冷媒が蒸発器R内で気化し、過熱度が下降し始め
たZのポイントで冷媒の供給が停止されるため蒸発器R
内への冷媒の過剰供給を防ぐことになり液バック現象を
防ぐことができる。ここでの留意点は、いったん下がっ
た過熱度が冷媒不足状態になり上昇し始めたときであ
る。図中Wで示すポイントがこの状態であり、D動作と
しての優先度が過熱度下降時つまり微分値負のときと同
一であると弁の開放度は0%から一気に高い開放度とな
り蒸発器R内に多量の冷媒Lが供給される、この結果装
置運転状態は不安定となる。
In order to prevent the liquid back phenomenon described above, control by the D operation is required. That is, it is required to sensitively reflect the change rate (differential value) of the degree of superheat and output the control signal. FIG. 3C shows the opening degree of the expansion valve V controlled by the D operation. In this case, a large amount of the refrigerant supplied at the point of X is vaporized in the evaporator R, and the supply of the refrigerant is stopped at the point of Z at which the degree of superheat starts to decrease.
The excessive supply of the refrigerant into the inside is prevented, and the liquid back phenomenon can be prevented. The point to be noted here is when the once lowered superheat degree starts to rise due to the lack of refrigerant. If the point indicated by W in the figure is in this state and the priority for the D operation is the same as when the superheat degree is decreasing, that is, when the differential value is negative, the open degree of the valve suddenly becomes high open degree and the evaporator R Since a large amount of the refrigerant L is supplied into the inside, the operating state of the device becomes unstable.

【0012】ここで本発明の特徴的手法として、過熱度
の変化速度(微分値)の属性、具体的には微分値が正か
負か、によってD動作としての優先度を変える。図3
(d)にこのときの膨張弁Vの開放度を示す。ここでW
のポイントつまり微分値が正のときにP動作が支配的と
なるようD動作としての優先度を低く設定し、一方微分
値が負のときにはD動作が支配的になるようD動作とし
ての優先度を高く設定する。結果として装置運転状態の
安定化を図ることができる。なお本例においては微分値
の属性として正負を用いているが、差の絶対値の大小、
n乗の大小、等を属性として用いることも可能である。
Here, as a characteristic method of the present invention, the priority of the D operation is changed depending on the attribute of the change rate (differential value) of the degree of superheat, specifically, whether the differential value is positive or negative. Figure 3
(D) shows the degree of opening of the expansion valve V at this time. Where W
Point, that is, when the differential value is positive, the priority of the D operation is set low so that the P operation becomes dominant, while when the differential value is negative, the priority of the D operation becomes dominant. Set higher. As a result, the operating state of the device can be stabilized. In this example, positive and negative are used as the attribute of the differential value, but the absolute value of the difference is
It is also possible to use the size of the n-th power or the like as an attribute.

【0013】[0013]

【発明の効果】本発明のP.I.D制御は、微分値の属
性に応じて被制御系のレスポンスが異なる場合例えば、
前記微分値が正に相当する時にはD動作の優先度を低く
し、P動作を支配的にし、一方前記微分値が負に相当す
る時にはD動作の優先度を高くしてD動作を支配的にす
るよう設定することが必要な場合でも正確な制御ができ
る。また本発明の冷却装置は、膨張弁Vの開閉を制御す
る際、過熱度の微分値の正負によって例えば、前記微分
値が正に相当する過熱度上昇時にはD動作の優先度を低
くして、P動作を支配的にし、一方前記微分値が負に相
当する過熱度下降時にはD動作の優先度を高くする様に
設定しD動作を支配的にすることができる。その結果冷
媒Lの過剰供給を防止することができ、装置運転状態の
安定化が図られるとともに消費電力が低減される。
EFFECT OF THE INVENTION I. In the D control, when the response of the controlled system differs depending on the attribute of the differential value, for example,
When the differential value is positive, the priority of the D operation is lowered and the P operation is dominant, while when the differential value is negative, the priority of the D operation is high and the D operation is dominant. Accurate control is possible even when it is necessary to make settings. Further, when controlling the opening and closing of the expansion valve V, the cooling device of the present invention lowers the priority of the D operation when the superheat degree corresponding to the positive differential value rises, depending on whether the differential value of the superheat degree is positive or negative, It is possible to make the P operation dominant and, on the other hand, set the priority of the D operation to be high when the degree of superheat is decreased when the differential value is negative, so that the D operation can be made dominant. As a result, it is possible to prevent excessive supply of the refrigerant L, stabilize the operating state of the device, and reduce power consumption.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のP.I.D制御方法を適用した冷却装
置のブロック図である。
FIG. 1 shows the P. I. It is a block diagram of the cooling device to which the D control method is applied.

【図2】同上過熱度変化を示すグラフ並びにそのときの
蒸発器内の冷媒を示す透視図である。
FIG. 2 is a perspective view showing a graph showing changes in superheat degree and a refrigerant in the evaporator at that time.

【図3】同上過熱度変化を示すグラフ並びにP,D,P
D制御による弁開放度を示すグラフである。
FIG. 3 is a graph showing changes in superheat and P, D, P
It is a graph which shows the valve opening degree by D control.

【符号の説明】[Explanation of symbols]

C コンプレッサ F 冷却作用部 L 冷媒 O コントローラ P 冷媒パイプ R 蒸発器 T1 温度センサ T2 温度センサ V 膨張弁 C Compressor F Cooling part L Refrigerant O Controller P Refrigerant pipe R Evaporator T1 Temperature sensor T2 Temperature sensor V Expansion valve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 比例制御と積分制御と微分制御とを合成
或いは選択的に行うP.I.D制御において、微分制御
動作の優先度を、入力信号たる微分値についての任意に
定義される属性に応じて設定できるようにしたことを特
徴とするP.I.D制御方法。
1. A P.I. that performs proportional control, integral control and derivative control in combination or selectively. I. In the D control, the priority of the differential control operation can be set according to an arbitrarily defined attribute of the differential value as the input signal. I. D control method.
【請求項2】 比例制御と積分制御と微分制御とを合成
或いは選択的に行うP.I.D制御を受けて熱交換出力
を制御される装置において、制御系における微分制御動
作の優先度を、入力信号たる微分値についての任意に定
義される属性に応じて設定できることを特徴とした冷却
装置。
2. A P.I. which performs proportional control, integral control and derivative control synthetically or selectively. I. In a device in which a heat exchange output is controlled by receiving D control, the priority of differential control operation in a control system can be set according to an arbitrarily defined attribute of a differential value as an input signal. .
JP6945293A 1993-03-04 1993-03-04 Pid control method and cooling device applying the control method Pending JPH06259104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6945293A JPH06259104A (en) 1993-03-04 1993-03-04 Pid control method and cooling device applying the control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6945293A JPH06259104A (en) 1993-03-04 1993-03-04 Pid control method and cooling device applying the control method

Publications (1)

Publication Number Publication Date
JPH06259104A true JPH06259104A (en) 1994-09-16

Family

ID=13403056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6945293A Pending JPH06259104A (en) 1993-03-04 1993-03-04 Pid control method and cooling device applying the control method

Country Status (1)

Country Link
JP (1) JPH06259104A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032251A (en) * 2006-07-26 2008-02-14 Fuji Electric Retail Systems Co Ltd Method and device for controlling refrigerating air-conditioning system
KR101287971B1 (en) * 2011-09-28 2013-07-18 국방과학연구소 Cooling device regardless of variation of envronment, flight vehicle having the same and cooling method for high temperature fluid
JP2014119138A (en) * 2012-12-13 2014-06-30 Fuji Electric Co Ltd Cooling device
CN106196786A (en) * 2016-07-04 2016-12-07 青岛海尔空调器有限总公司 The method of regulation outdoor machine of air-conditioner electronic expansion valve
CN106196785A (en) * 2016-07-04 2016-12-07 青岛海尔空调器有限总公司 A kind of method controlling air conditioner electronic expansion valve

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032251A (en) * 2006-07-26 2008-02-14 Fuji Electric Retail Systems Co Ltd Method and device for controlling refrigerating air-conditioning system
KR101287971B1 (en) * 2011-09-28 2013-07-18 국방과학연구소 Cooling device regardless of variation of envronment, flight vehicle having the same and cooling method for high temperature fluid
JP2014119138A (en) * 2012-12-13 2014-06-30 Fuji Electric Co Ltd Cooling device
CN106196786A (en) * 2016-07-04 2016-12-07 青岛海尔空调器有限总公司 The method of regulation outdoor machine of air-conditioner electronic expansion valve
CN106196785A (en) * 2016-07-04 2016-12-07 青岛海尔空调器有限总公司 A kind of method controlling air conditioner electronic expansion valve

Similar Documents

Publication Publication Date Title
JPH06259104A (en) Pid control method and cooling device applying the control method
JP3623090B2 (en) Control device for refrigeration cycle having injection function
JP4110716B2 (en) Refrigeration equipment
KR20010069120A (en) Method for starting an electronic expansion valve of a cooling apparatus
JPH0650614A (en) Freezing device
JPS61116255A (en) Method and device for controlling flow rate of refrigerant
JPH0275858A (en) Refrigerating air conditioner
JPH03122440A (en) Method for controlling operation of air conditioner
JPH05118625A (en) Air conditioner
JPS63254370A (en) Refrigerator
JP2646917B2 (en) Refrigeration equipment
JPH0518618A (en) Method of controlling operation of air conditioner
JPH089573Y2 (en) Refrigeration equipment
JPS63204087A (en) Refrigerator
JPS63201470A (en) Refrigerator
JPS6011047A (en) Operation control of air-conditioner
JPH089580Y2 (en) Air conditioner
JPS61237982A (en) Flow controller for refrigerant
JPH05189651A (en) Cooling device for automatic vending machine
JPS629165A (en) Controller for operation of refrigerator
JPH0360395A (en) Operation frequency control method for inverter
CN111854207A (en) Refrigerator equipment, refrigerating system and control method of refrigerating system
JPS644029Y2 (en)
KR20040069621A (en) Method for controlling a stepping motor in a refrigerator
JPH0379961A (en) Refrigeration cycle apparatus