JP3623090B2 - Control device for refrigeration cycle having injection function - Google Patents

Control device for refrigeration cycle having injection function Download PDF

Info

Publication number
JP3623090B2
JP3623090B2 JP33650297A JP33650297A JP3623090B2 JP 3623090 B2 JP3623090 B2 JP 3623090B2 JP 33650297 A JP33650297 A JP 33650297A JP 33650297 A JP33650297 A JP 33650297A JP 3623090 B2 JP3623090 B2 JP 3623090B2
Authority
JP
Japan
Prior art keywords
gas
heat exchanger
compressor
liquid separator
pressure reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33650297A
Other languages
Japanese (ja)
Other versions
JPH11153363A (en
Inventor
雄一 薬丸
正廣 新
伸二 渡辺
成人 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP33650297A priority Critical patent/JP3623090B2/en
Publication of JPH11153363A publication Critical patent/JPH11153363A/en
Application granted granted Critical
Publication of JP3623090B2 publication Critical patent/JP3623090B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Description

【0001】
【発明の属する技術分野】
本発明は、気液分離器を備え、この気液分離器で分離した後のガス成分を、運転状態に応じて、圧縮機にインジェクションするようにした冷凍サイクル装置に関する。
【0002】
【従来の技術】
従来からインジェクションを行うことにより、圧縮機の入力を増加させることが行われており、例えば特開平5ー60402号公報には、除霜運転中にインジェクションを行う冷凍サイクル装置が示されている。
同公報に記載の技術は、蒸発器の除霜を高圧ガス冷媒にて行う場合に、インジェクションを行うための冷媒が不足することを防止し、液インジェクションを安定して行い、圧縮機の冷却を確実に行うことを目的になされたものである。
【0003】
【発明が解決しようとする課題】
しかし、インジェクションを行うことは、圧縮機の入力を高める一方で、圧縮機の温度を低下させるため、除霜運転時に、圧縮機の吐出温度が必要以上に低下してしまうと、暖房運転の立ち上がり性能が低下してしまうという課題を有してしまう。
【0004】
そこで本発明は、インジェクションする冷媒量や冷媒状態を運転状態に応じて制御できるインジェクション機能を有する冷凍サイクルの制御装置を提供することを目的とする。
また本発明は、除霜運転時間を短縮するとともに、除霜運転終了後の暖房運転立ち上がり性能を高めることのできるインジェクション機能を有する冷凍サイクルの制御装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明の請求項1記載のインジェクション機能を有する冷凍サイクルの制御装置は、圧縮機、四方弁、室外熱交換器、第一の減圧装置、気液分離器、第二の減圧装置、室内熱交換器を配管によってそれぞれ順に環状に接続し、前記気液分離器と前記圧縮機とをガスインジェクション用配管で接続した冷凍サイクル装置において、前記第一の減圧装置及び前記第二の減圧装置を弁開度可変の減圧装置とし、前記第一の減圧装置及び前記第二の減圧装置の弁開度を冷凍サイクルの運転状態に応じて変更し、前記四方弁の切り換えによって、前記圧縮機から吐出された冷媒を、前記室外熱交換器、前記第一の減圧装置、前記気液分離器、前記第二の減圧装置、前記室内熱交換器にそれぞれ順に流す除霜運転時に、前記第一の減圧装置の弁開度を73%以上に開いてガスインジェクションを行うことを特徴とする。
本発明の請求項2記載のインジェクション機能を有する冷凍サイクルの制御装置は、請求項1に記載のインジェクション機能を有する冷凍サイクルの制御装置において、除霜運転時に、前記第二の減圧装置の弁開度を73%以下に絞ってガスインジェクションを行うことを特徴とする。
本発明の請求項3記載のインジェクション機能を有する冷凍サイクルの制御装置は、圧縮機、四方弁、室外熱交換器、第一の減圧装置、気液分離器、第二の減圧装置、室内熱交換器を配管によってそれぞれ順に環状に接続し、前記気液分離器と前記圧縮機とをガスインジェクション用配管で接続した冷凍サイクル装置において、前記第一の減圧装置及び前記第二の減圧装置を弁開度可変の減圧装置とし、前記第一の減圧装置及び前記第二の減圧装置の弁開度を冷凍サイクルの運転状態に応じて変更し、前記四方弁の切り換えによって、前記圧縮機から吐出された冷媒を、前記室外熱交換器、前記第一の減圧装置、前記気液 分離器、前記第二の減圧装置、前記室内熱交換器にそれぞれ順に流す除霜運転を終了した後、暖房運転再開後の所定時間は前記第二の減圧装置の弁開度を73%以下に絞ってガスインジェクションを行い、その後前記第二の減圧装置の弁開度を前記所定時間内の弁開度よりも開いてガスインジェクションを行うことを特徴とする。
本発明の請求項4記載のインジェクション機能を有する冷凍サイクルの制御装置は、請求項1に記載のインジェクション機能を有する冷凍サイクルの制御装置において、除霜運転終了前の所定時間、前記第一の減圧装置の弁開度を73%以下に絞ってガスインジェクションを行うことを特徴とする。
本発明の請求項5記載のインジェクション機能を有する冷凍サイクルの制御装置は、圧縮機、四方弁、室外熱交換器、減圧装置、気液分離器、室内熱交換器を配管によって環状に接続し、前記気液分離器と前記圧縮機とをガスインジェクション用配管で接続した冷凍サイクル装置において、冷媒としてR410Aを用い、前記四方弁の切り換えによって、前記圧縮機から吐出された冷媒を、前記室外熱交換器、前記第一の減圧装置、前記気液分離器、前記第二の減圧装置、前記室内熱交換器にそれぞれ順に流す除霜運転終了後の暖房運転時、圧縮機の吐出温度が所定値以上になったときにガスインジェクションを行うことを特徴とする。
本発明の請求項6記載のインジェクション機能を有する冷凍サイクルの制御装置は、圧縮機、四方弁、室外熱交換器、減圧装置、気液分離器、室内熱交換器を配管によって環状に接続し、前記気液分離器と前記圧縮機とをガスインジェクション用配管で接続した冷凍サイクル装置において、冷媒としてR410Aを用い、前記四方弁の切り換えによって、前記圧縮機から吐出された冷媒を、前記室外熱交換器、前記第一の減圧装置、前記気液分離器、前記第二の減圧装置、前記室内熱交換器にそれぞれ順に流す除霜運転終了後の暖房運転時、暖房運転再開からの所定時間経過後にガスインジェクションを行うことを特徴とする。
本発明の請求項7記載のインジェクション機能を有する冷凍サイクルの制御装置は、圧縮機、四方弁、室外熱交換器、減圧装置、気液分離器、室内熱交換器を配管によって環状に接続し、前記気液分離器と前記圧縮機とをガスインジェクション用配管で接続した冷凍サイクル装置において、冷媒としてR410Aを用い、前記四方弁の切り換えによって、前記圧縮機から吐出された冷媒を、前記室外熱交換器、前記第一の減圧装置、前記気液分離器、前記第二の減圧装置、前記室内熱交換器にそれぞれ順に流す除霜運転終了前の所定時間、ガスインジェクションを行わないことを特徴とする。
本発明の請求項8記載のインジェクション機能を有する冷凍サイクルの制御装置は、請求項1から請求項4のいずれかに記載のインジェクション機能を有する冷凍サイクルの制御装置において、冷媒としてR410Aを用いたことを特徴とする。
【0006】
【発明の実施の形態】
本発明の第1の実施の形態は、第一の減圧装置及び第二の減圧装置を弁開度可変の減圧装置とし、これらの減圧装置の弁開度を冷凍サイクルの運転状態に応じて変更し、四方弁の切り換えによって、圧縮機から吐出された冷媒を、室外熱交換器、第一の減圧装置、気液分離器、第二の減圧装置、室内熱交換器にそれぞれ順に流す除霜運転時に、第一の減圧装置の弁開度を73%以上に開いてガスインジェクションを行うものである。この実施の形態によれば、気液分離器の前後に配置したそれぞれの減圧装置の弁開度を制御することで、気液分離器内に貯留される冷媒状態やガスインジェクション用配管を流れる冷媒量を制御することができる。従って、運転状態に応じてインジェクションする冷媒量や、冷媒の状態を制御できるため、除霜運転時間を短縮したり、除霜運転を終了した後の暖房運転の立ち上がり性能を高めたりすることができる。また、インジェクションの量を増加させることができるので、圧縮機の入力を高めることができる。従って、除霜運転時間を短縮することができ、省エネを実現することができる。
【0007】
本発明の第2の実施の形態は、第1の実施形態において、除霜運転時に、第二の減圧装置の弁開度を73%以下に絞るものである。この実施の形態によれば、気液分離器内に貯留する冷媒量が増加するため、インジェクションされる冷媒は、液リッチの冷媒となる。従って、圧縮機の入力を増加させることができ、除霜運転時間を短縮することができる。
【0008】
本発明の第3の実施の形態は、第一の減圧装置及び第二の減圧装置を弁開度可変の減圧装置とし、第一の減圧装置及び第二の減圧装置の弁開度を冷凍サイクルの運転状態に応じて変更し、四方弁の切り換えによって、圧縮機から吐出された冷媒を、室外熱交換器、第一の減圧装置、気液分離器、第二の減圧装置、室内熱交換器にそれぞれ順に流す除霜運転を終了した後、暖房運転再開後の所定時間は第二の減圧装置の弁開度を73%以下に絞ってガスインジェクションを行い、その後第二の減圧装置の弁開度を所定時間内の弁開度よりも開いてガスインジェクションを行うものである。この実施の形態によれば、暖房運転再開後の所定時間は、インジェクション量を少なくすることができる。従って、圧縮機内の大幅な温度低下を防ぐとともに、蒸発器のエンタルピを増加させることができ、暖房性能の向上を図ることができる。
【0009】
本発明の第4の実施の形態は、第1の実施形態において、除霜運転終了前の所定時間、第一の減圧装置の弁開度を73%以下に絞ってガスインジェクションを行うものである。この実施の形態によれば、除霜運転終了前の所定時間、インジェクション量を減少させるので、除霜運転終了時点での圧縮機内の大幅な温度低下を防止することができる。従って、暖房運転再開後の立ち上がり特性を高めることができる。なお、除霜運転終了前にインジェクション量を減少させても除霜運転時間に大きな影響を与えることはない。すなわち、通常除霜運転は、室外熱交換器である蒸発器の着霜を完全に除去するまで行う。一部に霜が残った状態では、暖房運転復帰後の霜の成長が早いために除霜運転の間隔が短くなってしまうためである。しかし、この部分的に残った霜は、既に蒸発器に与えられている熱の着霜部分への伝導によって十分除去が可能である反面、着霜部分への熱伝導が行われない限り、十分な除去は行えない。従って、圧縮機能力を高めたとしても熱伝導のための所定時間は必ず必要となり、導入する高温ガス量を増加させても部分的に残った霜の除去時間を大きく短縮することはできないためである。
【0010】
本発明の第5の実施の形態は、冷媒としてR410Aを用い、四方弁の切り換えによって、圧縮機から吐出された冷媒を、室外熱交換器、第一の減圧装置、気液分離器、第二の減圧装置、室内熱交換器にそれぞれ順に流す除霜運転終了後の暖房運転時、圧縮機の吐出温度が所定値以上になったときにガスインジェクションを行うものである。この実施の形態によれば、圧縮機の吐出温度が低いときには、ガスインジェクションを行わないため、圧縮機内の温度上昇を早くすることができ、暖房運転再開後の立ち上がり性能を向上させることができる。
【0011】
本発明の第6の実施の形態は、冷媒としてR410Aを用い、四方弁の切り換えによって、圧縮機から吐出された冷媒を、室外熱交換器、第一の減圧装置、気液分離器、第二の減圧装置、室内熱交換器にそれぞれ順に流す除霜運転終了後の暖房運転時、暖房運転再開からの所定時間経過後にガスインジェクションを行うものである。この実施の形態も第6の実施の形態と同様の作用により、暖房運転再開後の立ち上がり性能を向上させることができる。なお、この実施の形態によれば、圧縮機の吐出温度を検知することなく制御するため、簡便に行うことができる。
【0012】
本発明の第7の実施の形態は、冷媒としてR410Aを用い、四方弁の切り換えによって、圧縮機から吐出された冷媒を、室外熱交換器、第一の減圧装置、気液分離器、第二の減圧装置、室内熱交換器にそれぞれ順に流す除霜運転終了前の所定時間、ガスインジェクションを行わないものである。この実施の形態によれば、除霜運転終了前の所定時間、インジェクションを行わないので、除霜運転終了時点での圧縮機内の大幅な温度低下を防止することができる。従って、暖房運転再開後の立ち上がり特性を高めることができる。なお、除霜運転終了前にインジェクションを行わなくても除霜運転時間に大きな影響を与えることはないことは、上記第5の実施の形態で説明した通りであり、圧縮機能力を高めたとしても熱伝導のための所定時間は必ず必要となり、導入する高温ガス量を増加させても部分的に残った霜の除去時間を大きく短縮することはできないためである。
【0013】
本発明の第8の実施の形態は、第1から第4の実施の形態において、冷媒としてR410Aを用いたものである。R410Aは、例えば現在一般に用いられているR22冷媒と比較すると圧力損失は小さい。従って、冷媒として、R410Aを用いることによって、減圧装置をさらに絞ることができ、冷凍能力を高めることができる。また第一の減圧装置をさらに絞ることによって、蒸発器のエンタルピを増加することができる。
【0014】
【実施例】
以下本発明の実施例について図面に基づいて説明する。
図1は本発明の一実施例における冷凍サイクル図、図2は同実施例に用いる減圧装置の流量特性図である。
図1に示すように、冷凍サイクルは、圧縮機1、四方弁2、室外熱交換器3、第一の減圧装置4、気液分離器5、第二の減圧装置6、室内熱交換器7を配管によってそれぞれ順に環状に接続している。また、気液分離器5と圧縮機1とをガスインジェクション用配管8で接続している。また、ガスインジェクション用配管8には、インジェクションのオン・オフを行うための開閉弁9が設けられている。同冷凍サイクルは、四方弁2の切り換えによって冷房・暖房・除霜運転を行う。そして、冷房又は除霜運転時には、室外熱交換器3は凝縮器として、室内熱交換器7は蒸発器として使用される。また、暖房運転時には、室外熱交換器3は蒸発器として、室内熱交換器7は凝縮器として使用される。
【0015】
ここで、第一の減圧装置4及び第二の減圧装置6は、弁開度可変の減圧装置を用いている。これら第一の減圧装置4及び第二の減圧装置6の流量特性を図2に示す。同図に示すように、弁は0パルスで閉状態となり、500パルスで全開状態となる。なお全開状態では絞り量は0である。350パルス(73%の弁開度)を越えると、冷媒は流れやすくなり流量は増加する。すなわち減圧作用は低下する。
【0016】
次に、図1をもとに運転状態に応じた制御方法及びその時の冷媒の流れについて説明する。
同図の配管接続状態、及び矢印の冷媒流れは、冷房又は除霜運転時を示している。
まず、通常の冷房又は除霜運転時には、図示のように、圧縮機1から吐出された冷媒は、室外熱交換器3、第一の減圧装置4、気液分離器5、第二の減圧装置6、室内熱交換器7を経由して圧縮機1に戻される。この時、開閉弁9を開くことにより、気液分離器5で分離されたガス冷媒は、ガスインジェクション用配管8を通って圧縮機1に導入される。
ここで、第一の減圧装置4の弁開度を大きくすると気液分離器5に導入される冷媒量は増加するために、ガスインジェクション用配管8を流れる冷媒量は増加する。逆に第一の減圧装置4の弁開度を小さくすると気液分離器5に導入される冷媒量は減少するために、ガスインジェクション用配管8を流れる冷媒量は減少する。また、第二の減圧装置6の弁開度を小さくすると気液分離器5に貯留される冷媒量が増加するために、ガスインジェクション用配管8を流れる冷媒は液リッチの冷媒となる。逆に第二の減圧装置6の弁開度を大きくすると気液分離器5に貯留される冷媒量が減少するために、ガスインジェクション用配管8を流れる冷媒はガスリッチの冷媒となる。
【0017】
次に、暖房運転時の冷媒の流れについて説明する。この時、四方弁2と気液分離器5での接続は点線で示すように切り換えられる。
従って、圧縮機1から吐出された冷媒は、室内熱交換器7、第二の減圧装置6、気液分離器5、第一の減圧装置4、室外熱交換器3を経由して圧縮機1に戻される。この時、開閉弁9を開くことにより、気液分離器5で分離されたガス冷媒は、ガスインジェクション用配管8を通って圧縮機1に導入される。
【0018】
ここで、上記のような暖房運転の状態から、除霜運転に切り換えた場合について説明する。四方弁2及び気液分離器5の接続は、実線で示す状態に切り換えられる。
この時、開閉弁9は開としてガスインジェクションを行う。また第一の減圧装置4の弁開度を全開とする。このように第一の減圧装置4の弁開度を全開とすることによって、除霜運転時の圧縮機入力を増加させることができる。また、第二の減圧装置6の弁開度を絞ることによって前述の通り液リッチの冷媒をインジェクションすることができるのでさらに圧縮機入力を増加させることができる。
このようにして除霜運転時間を短縮することができる。なお、第一の減圧装置4は、必ずしも全開である必要はなく、図2の流量特性から、全開に対して73%以上の弁開度が好ましい。また第二の減圧装置6については73%以下に絞るものとすれば絞り効果が高く好ましい。
【0019】
上記の状態で除霜運転を行うが、除霜運転終了前に開閉弁9を閉としてインジェクションをオフとする。このインジェクションオフから除霜運転終了までの所定時間は約15秒から30秒程度である。
このように、除霜運転終了前の所定時間、インジェクションを行わないことで、除霜運転終了時点での圧縮機内の大幅な温度低下を防止することができる。従って、暖房運転再開後の立ち上がり特性を高めることができる。なお、除霜運転終了前にインジェクションを行わなくても除霜運転時間に大きな影響を与えることはない。すなわち、除霜運転は、一部に霜が残った状態では、暖房運転復帰後の霜の成長が早いために除霜運転の間隔が短くなってしまうため、室外熱交換器である蒸発器の着霜を完全に除去するまで行う。しかし、この部分的に残った霜は、既に蒸発器に与えられている熱の着霜部分への伝導によって十分除去が可能である反面、着霜部分への熱伝導が行われない限り、十分な除去は行えない。従って、圧縮機能力を高めたとしても熱伝導のための所定時間は必ず必要となり、導入する高温ガス量を増加させても部分的に残った霜の除去時間を大きく短縮することはできないためである。
上記の場合には、除霜運転終了前の所定時間、インジェクションを行わない場合で説明したが、第一の減圧装置の弁開度を73%以下に絞ってガスインジェクションを行うようにしてもよい。この場合にもインジェクション量を減少させるので、除霜運転終了時点での圧縮機内の大幅な温度低下を防止することができる。
【0020】
次に、除霜運転終了後の暖房運転再開時の運転状態について説明する。
まず、前述のように四方弁2を点線のように切り換えて暖房運転を行う。この時、開閉弁9を閉として、インジェクションをオフとする。そしてインジェクションをオフの状態で所定時間運転した後に、インジェクションをオンとする。この時の所定時間は、約5分程度である。なお、所定時間をあらかじめ決めた時間としてもよいが、圧縮機1の吐出温度を検知して、吐出温度が所定値以上になったことを検知したときに、インジェクションをオンとするものであってもよい。この場合には、圧縮機1の正確な状態に基づいて制御することができるので、暖房立ち上がり性能をより向上させることができる。
なお、インジェクションを完全にオフとする場合の他、第二の減圧装置6を73%以下に絞ることによってインジェクションされる冷媒量を減少させてもよい。
【0021】
上記の冷凍サイクルに冷媒としてR410Aを用いるとさらに効果的である。R410Aは、例えば現在一般に用いられているR22冷媒と比較すると圧力損失は小さい。従って、冷房・除霜運転時には第一の減圧装置4を、暖房運転時には第二の減圧装置6をさらに絞ることによって、蒸発器のエンタルピを増加することができる。
【0022】
【発明の効果】
以上説明から明らかなように、本発明は、気液分離器の前後に配置したそれぞれの減圧装置の弁開度を制御することで、気液分離器内に貯留される冷媒状態やガスインジェクション用配管を流れる冷媒量を制御することができる。従って、運転状態に応じてインジェクションする冷媒量や、冷媒の状態を制御できるため、除霜運転時間を短縮したり、除霜運転を終了した後の暖房運転の立ち上がり性能を高めたりすることができる。
【図面の簡単な説明】
【図1】本発明の一実施例による冷凍サイクル図
【図2】同実施例による減圧装置の流量特性図
【符号の説明】
1 圧縮機
2 四方弁
3 凝縮器
4 第一の減圧装置
5 気液分離器
6 第二の減圧装置
7 蒸発器
8 ガスインジェクション用配管
9 開閉弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigeration cycle apparatus including a gas-liquid separator and injecting a gas component separated by the gas-liquid separator into a compressor according to an operating state.
[0002]
[Prior art]
Conventionally, injection is performed by increasing the input of the compressor. For example, Japanese Patent Laid-Open No. 5-60402 discloses a refrigeration cycle apparatus that performs injection during a defrosting operation.
The technology described in this publication prevents a shortage of refrigerant for performing injection when performing defrosting of the evaporator with a high-pressure gas refrigerant, stably performing liquid injection, and cooling the compressor. It was made for the purpose of ensuring.
[0003]
[Problems to be solved by the invention]
However, the injection increases the input of the compressor while lowering the temperature of the compressor. Therefore, when the discharge temperature of the compressor decreases more than necessary during the defrosting operation, the heating operation starts. It has the subject that performance will fall.
[0004]
Then, an object of this invention is to provide the control apparatus of the refrigerating cycle which has an injection function which can control the refrigerant | coolant amount and refrigerant | coolant state to inject according to an operating state.
Another object of the present invention is to provide a control apparatus for a refrigeration cycle having an injection function capable of shortening the defrosting operation time and enhancing the heating operation start-up performance after the completion of the defrosting operation.
[0005]
[Means for Solving the Problems]
The control apparatus for a refrigeration cycle having an injection function according to claim 1 of the present invention includes a compressor, a four-way valve, an outdoor heat exchanger, a first decompression device, a gas-liquid separator, a second decompression device, and an indoor heat exchange. In the refrigeration cycle apparatus, in which the gas-liquid separator and the compressor are connected by a pipe for gas injection, the first decompressor and the second decompressor are opened. The valve opening degree of the first pressure reducing device and the second pressure reducing device is changed according to the operating state of the refrigeration cycle, and discharged from the compressor by switching the four-way valve. During the defrosting operation in which the refrigerant flows through the outdoor heat exchanger, the first pressure reducing device, the gas-liquid separator, the second pressure reducing device, and the indoor heat exchanger in order, the first pressure reducing device Set the valve opening to 73 And performing gas injection opening above.
The control apparatus for a refrigeration cycle having an injection function according to claim 2 of the present invention is the control apparatus for a refrigeration cycle having an injection function according to claim 1 , wherein the valve opening of the second decompression device is opened during the defrosting operation. The gas injection is performed by reducing the degree to 73% or less.
A control apparatus for a refrigeration cycle having an injection function according to claim 3 of the present invention includes a compressor, a four-way valve, an outdoor heat exchanger, a first decompression device, a gas-liquid separator, a second decompression device, and an indoor heat exchange. In the refrigeration cycle apparatus, in which the gas-liquid separator and the compressor are connected by a pipe for gas injection, the first decompressor and the second decompressor are opened. The valve opening degree of the first pressure reducing device and the second pressure reducing device is changed according to the operating state of the refrigeration cycle, and discharged from the compressor by switching the four-way valve. After completing the defrosting operation in which the refrigerant flows through the outdoor heat exchanger, the first pressure reducing device, the gas-liquid separator, the second pressure reducing device, and the indoor heat exchanger in this order, and then restarting the heating operation Predetermined time Gas injection is performed by reducing the valve opening of the second pressure reducing device to 73% or less, and then performing gas injection by opening the valve opening of the second pressure reducing device beyond the valve opening within the predetermined time. It is characterized by that.
The control apparatus for a refrigeration cycle having an injection function according to claim 4 of the present invention is the control apparatus for a refrigeration cycle having an injection function according to claim 1 , wherein the first depressurization is performed for a predetermined time before the end of the defrosting operation. Gas injection is performed by restricting the valve opening of the apparatus to 73% or less.
A control device for a refrigeration cycle having an injection function according to claim 5 of the present invention comprises a compressor, a four-way valve, an outdoor heat exchanger, a pressure reducing device, a gas-liquid separator, and an indoor heat exchanger connected in a ring shape by piping, In the refrigeration cycle apparatus in which the gas-liquid separator and the compressor are connected by a gas injection pipe, R410A is used as a refrigerant, and the refrigerant discharged from the compressor is switched to the outdoor heat exchange by switching the four-way valve. The discharge temperature of the compressor is equal to or higher than a predetermined value during the heating operation after completion of the defrosting operation in which each of the first depressurizing device, the gas-liquid separator, the second depressurizing device, and the indoor heat exchanger is sequentially flowed to the indoor heat exchanger. It is characterized in that gas injection is performed when
A control device for a refrigeration cycle having an injection function as set forth in claim 6 of the present invention comprises a compressor, a four-way valve, an outdoor heat exchanger, a decompression device, a gas-liquid separator, and an indoor heat exchanger connected in a ring shape by piping, In the refrigeration cycle apparatus in which the gas-liquid separator and the compressor are connected by a gas injection pipe, R410A is used as a refrigerant, and the refrigerant discharged from the compressor is exchanged by the outdoor heat exchange by switching the four-way valve. , The first pressure reducing device, the gas-liquid separator, the second pressure reducing device, and the indoor heat exchanger, which are sequentially supplied to the indoor heat exchanger, during the heating operation after completion of the defrosting operation, after the elapse of a predetermined time from the resumption of the heating operation Gas injection is performed.
A control device for a refrigeration cycle having an injection function according to claim 7 of the present invention comprises a compressor, a four-way valve, an outdoor heat exchanger, a decompression device, a gas-liquid separator, and an indoor heat exchanger connected in a ring shape by piping, In the refrigeration cycle apparatus in which the gas-liquid separator and the compressor are connected by a gas injection pipe, R410A is used as a refrigerant, and the refrigerant discharged from the compressor is exchanged by the outdoor heat exchange by switching the four-way valve. Gas injection is not performed for a predetermined time before the end of the defrosting operation , which is sequentially flowed to the heat exchanger, the first pressure reducing device, the gas-liquid separator, the second pressure reducing device, and the indoor heat exchanger, respectively. .
The control apparatus for a refrigeration cycle having an injection function according to claim 8 of the present invention uses R410A as a refrigerant in the control apparatus for a refrigeration cycle having an injection function according to any one of claims 1 to 4. It is characterized by.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the first embodiment of the present invention, the first decompression device and the second decompression device are variable decompression devices, and the valve openings of these decompression devices are changed according to the operating state of the refrigeration cycle. The defrosting operation allows the refrigerant discharged from the compressor to flow through the outdoor heat exchanger, the first pressure reducing device, the gas-liquid separator, the second pressure reducing device, and the indoor heat exchanger in this order by switching the four-way valve. Sometimes the gas opening is performed with the valve opening of the first pressure reducing device opened to 73% or more . According to this embodiment, the refrigerant state stored in the gas-liquid separator and the refrigerant flowing through the gas injection pipe are controlled by controlling the valve opening degree of each decompression device arranged before and after the gas-liquid separator. The amount can be controlled. Therefore, since the amount of refrigerant to be injected and the state of the refrigerant can be controlled according to the operating state, the defrosting operation time can be shortened or the start-up performance of the heating operation after finishing the defrosting operation can be improved. . Further, since the amount of injection can be increased, the input of the compressor can be increased. Therefore, the defrosting operation time can be shortened and energy saving can be realized.
[0007]
The 2nd Embodiment of this invention restrict | squeezes the valve opening degree of a 2nd decompression device to 73% or less at the time of a defrost operation in 1st Embodiment. According to this embodiment, since the amount of refrigerant stored in the gas-liquid separator increases, the injected refrigerant becomes a liquid-rich refrigerant. Therefore, the input of the compressor can be increased and the defrosting operation time can be shortened.
[0008]
In the third embodiment of the present invention, the first pressure reducing device and the second pressure reducing device are variable pressure reducing devices, and the valve opening degrees of the first pressure reducing device and the second pressure reducing device are set to the refrigeration cycle. The refrigerant discharged from the compressor by changing the four-way valve is changed according to the operation state of the outdoor heat exchanger, the first pressure reducing device, the gas-liquid separator, the second pressure reducing device, the indoor heat exchanger. After the defrosting operation to flow in order is completed, gas injection is performed with the valve opening of the second pressure reducing device being reduced to 73% or less for a predetermined time after the heating operation is resumed, and then the valve opening of the second pressure reducing device is opened. The gas injection is performed with the degree opened more than the valve opening within a predetermined time. According to this embodiment, the injection amount can be reduced for a predetermined time after resuming the heating operation. Therefore, it is possible to prevent a significant temperature drop in the compressor, increase the enthalpy of the evaporator, and improve the heating performance.
[0009]
In the first embodiment, the fourth embodiment of the present invention performs gas injection by restricting the valve opening of the first pressure reducing device to 73% or less for a predetermined time before the end of the defrosting operation. . According to this embodiment, since the injection amount is reduced for a predetermined time before the end of the defrosting operation, a significant temperature drop in the compressor at the end of the defrosting operation can be prevented. Accordingly, it is possible to improve the rising characteristics after resuming the heating operation. Note that even if the injection amount is decreased before the defrosting operation is completed, the defrosting operation time is not greatly affected. That is, the normal defrosting operation is performed until the frost formation of the evaporator which is the outdoor heat exchanger is completely removed. This is because, in a state where frost remains in part, the frost grows quickly after returning to the heating operation, so that the interval between the defrosting operations is shortened. However, this partially remaining frost can be sufficiently removed by the conduction of heat already applied to the evaporator to the frosted part, but it is sufficient unless heat conduction to the frosted part is performed. Cannot be removed. Therefore, even if the compression function is increased, a predetermined time for heat conduction is always required, and even if the amount of high-temperature gas introduced is increased, the time for removing partially remaining frost cannot be greatly shortened. is there.
[0010]
In the fifth embodiment of the present invention, R410A is used as the refrigerant, and the refrigerant discharged from the compressor by switching the four-way valve is converted into the outdoor heat exchanger, the first pressure reducing device, the gas-liquid separator, the second The gas injection is performed when the discharge temperature of the compressor becomes a predetermined value or higher during the heating operation after the defrosting operation that sequentially flows through the decompression device and the indoor heat exchanger . According to this embodiment, since gas injection is not performed when the discharge temperature of the compressor is low, the temperature rise in the compressor can be accelerated, and the startup performance after resuming the heating operation can be improved.
[0011]
In the sixth embodiment of the present invention, R410A is used as the refrigerant, and the refrigerant discharged from the compressor by switching the four-way valve is converted into the outdoor heat exchanger, the first pressure reducing device, the gas-liquid separator, the second During the heating operation after completion of the defrosting operation, the gas injection is performed after elapse of a predetermined time from the resumption of the heating operation. This embodiment can also improve the stand-up performance after resuming the heating operation by the same operation as that of the sixth embodiment. In addition, according to this embodiment, since it controls without detecting the discharge temperature of a compressor, it can carry out simply.
[0012]
The seventh embodiment of the present invention uses R410A as the refrigerant, and converts the refrigerant discharged from the compressor by switching the four-way valve into the outdoor heat exchanger, the first pressure reducing device, the gas-liquid separator, the second The gas injection is not performed for a predetermined time before the defrosting operation , which is sequentially flowed through the decompression device and the indoor heat exchanger . According to this embodiment, since the injection is not performed for a predetermined time before the end of the defrosting operation, a significant temperature drop in the compressor at the end of the defrosting operation can be prevented. Accordingly, it is possible to improve the rising characteristics after resuming the heating operation. It should be noted that the fact that the defrosting operation time is not greatly affected even if the injection is not performed before the end of the defrosting operation is as described in the fifth embodiment, and that the compression function is enhanced. This is because a predetermined time for heat conduction is always required, and even if the amount of high-temperature gas to be introduced is increased, the time for removing partially remaining frost cannot be greatly shortened.
[0013]
The eighth embodiment of the present invention uses R410A as a refrigerant in the first to fourth embodiments. R410A has a small pressure loss compared to, for example, the R22 refrigerant that is currently generally used. Therefore, by using R410A as the refrigerant, the decompression device can be further throttled and the refrigerating capacity can be increased. Further, the enthalpy of the evaporator can be increased by further restricting the first pressure reducing device.
[0014]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a refrigeration cycle diagram in one embodiment of the present invention, and FIG. 2 is a flow characteristic diagram of a decompression device used in the embodiment.
As shown in FIG. 1, the refrigeration cycle includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, a first decompression device 4, a gas-liquid separator 5, a second decompression device 6, and an indoor heat exchanger 7. Are connected to each other in an annular manner by piping. Further, the gas-liquid separator 5 and the compressor 1 are connected by a gas injection pipe 8. Further, the gas injection pipe 8 is provided with an on-off valve 9 for turning on / off the injection. The refrigeration cycle performs cooling, heating, and defrosting operations by switching the four-way valve 2. During the cooling or defrosting operation, the outdoor heat exchanger 3 is used as a condenser, and the indoor heat exchanger 7 is used as an evaporator. In the heating operation, the outdoor heat exchanger 3 is used as an evaporator, and the indoor heat exchanger 7 is used as a condenser.
[0015]
Here, the first decompression device 4 and the second decompression device 6 use decompression devices with variable valve opening. The flow rate characteristics of the first decompressor 4 and the second decompressor 6 are shown in FIG. As shown in the figure, the valve is closed at 0 pulse and fully opened at 500 pulses. In the fully opened state, the aperture amount is zero. When 350 pulses (73% valve opening) are exceeded, the refrigerant easily flows and the flow rate increases. That is, the pressure reducing action is reduced.
[0016]
Next, based on FIG. 1, the control method according to the driving | running state and the flow of the refrigerant | coolant at that time are demonstrated.
The pipe connection state and the refrigerant flow indicated by the arrows in the same figure indicate the cooling or defrosting operation.
First, at the time of normal cooling or defrosting operation, as shown in the figure, the refrigerant discharged from the compressor 1 is the outdoor heat exchanger 3, the first decompressor 4, the gas-liquid separator 5, and the second decompressor. 6 Returned to the compressor 1 via the indoor heat exchanger 7. At this time, by opening the on-off valve 9, the gas refrigerant separated by the gas-liquid separator 5 is introduced into the compressor 1 through the gas injection pipe 8.
Here, since the amount of refrigerant introduced into the gas-liquid separator 5 increases when the valve opening degree of the first decompression device 4 is increased, the amount of refrigerant flowing through the gas injection pipe 8 increases. Conversely, if the valve opening degree of the first pressure reducing device 4 is reduced, the amount of refrigerant introduced into the gas-liquid separator 5 is reduced, so the amount of refrigerant flowing through the gas injection pipe 8 is reduced. Further, if the valve opening degree of the second decompression device 6 is reduced, the amount of refrigerant stored in the gas-liquid separator 5 increases, so the refrigerant flowing through the gas injection pipe 8 becomes a liquid-rich refrigerant. Conversely, if the valve opening degree of the second decompression device 6 is increased, the amount of refrigerant stored in the gas-liquid separator 5 decreases, so the refrigerant flowing through the gas injection pipe 8 becomes a gas-rich refrigerant.
[0017]
Next, the flow of the refrigerant during the heating operation will be described. At this time, the connection between the four-way valve 2 and the gas-liquid separator 5 is switched as indicated by a dotted line.
Therefore, the refrigerant discharged from the compressor 1 passes through the indoor heat exchanger 7, the second decompression device 6, the gas-liquid separator 5, the first decompression device 4, and the outdoor heat exchanger 3, so that the compressor 1 Returned to At this time, by opening the on-off valve 9, the gas refrigerant separated by the gas-liquid separator 5 is introduced into the compressor 1 through the gas injection pipe 8.
[0018]
Here, the case where it switches to the defrost operation from the state of the above heating operation is demonstrated. The connection between the four-way valve 2 and the gas-liquid separator 5 is switched to the state indicated by the solid line.
At this time, the on-off valve 9 is opened to perform gas injection. The valve opening degree of the first pressure reducing device 4 is fully opened. Thus, the compressor input at the time of a defrost operation can be increased by fully opening the valve opening degree of the 1st pressure reduction apparatus 4. FIG. Moreover, since the liquid-rich refrigerant can be injected as described above by narrowing the valve opening degree of the second decompression device 6, the compressor input can be further increased.
In this way, the defrosting operation time can be shortened. Note that the first pressure reducing device 4 does not necessarily need to be fully open, and a valve opening of 73% or more with respect to the fully open state is preferable from the flow rate characteristics of FIG. Further, it is preferable that the second decompression device 6 has a throttling effect if it is narrowed to 73% or less.
[0019]
Although the defrosting operation is performed in the above state, the on-off valve 9 is closed and the injection is turned off before the defrosting operation is finished. The predetermined time from this injection off to the end of the defrosting operation is about 15 to 30 seconds.
Thus, by not performing the injection for a predetermined time before the end of the defrosting operation, a significant temperature drop in the compressor at the end of the defrosting operation can be prevented. Accordingly, it is possible to improve the rising characteristics after resuming the heating operation. In addition, even if it does not perform injection before completion | finish of a defrost operation, it does not have big influence on a defrost operation time. That is, in the defrosting operation, in the state where frost remains in part, the growth of frost after the return to heating operation is fast and the interval between the defrosting operations is shortened. Continue until frost formation is completely removed. However, this partially remaining frost can be sufficiently removed by the conduction of heat already applied to the evaporator to the frosted part, but it is sufficient unless heat conduction to the frosted part is performed. Cannot be removed. Therefore, even if the compression function is increased, a predetermined time for heat conduction is always required, and even if the amount of high-temperature gas introduced is increased, the time for removing partially remaining frost cannot be greatly shortened. is there.
In the above case, the case where the injection is not performed for a predetermined time before the end of the defrosting operation has been described. However, the gas injection may be performed by restricting the valve opening of the first pressure reducing device to 73% or less. . Also in this case, since the injection amount is reduced, it is possible to prevent a significant temperature drop in the compressor at the end of the defrosting operation.
[0020]
Next, the operation state at the time of resuming the heating operation after the completion of the defrosting operation will be described.
First, the heating operation is performed by switching the four-way valve 2 as indicated by the dotted line as described above. At this time, the on-off valve 9 is closed and the injection is turned off. Then, after driving for a predetermined time with the injection turned off, the injection is turned on. The predetermined time at this time is about 5 minutes. The predetermined time may be a predetermined time, but when the discharge temperature of the compressor 1 is detected and it is detected that the discharge temperature has become a predetermined value or more, the injection is turned on. Also good. In this case, since it can control based on the exact state of the compressor 1, heating start-up performance can be improved more.
In addition to the case where the injection is completely turned off, the amount of refrigerant injected may be reduced by restricting the second pressure reducing device 6 to 73% or less.
[0021]
It is more effective to use R410A as a refrigerant in the above refrigeration cycle. R410A has a small pressure loss compared to, for example, the R22 refrigerant that is currently generally used. Therefore, the enthalpy of the evaporator can be increased by further restricting the first decompression device 4 during the cooling / defrosting operation and the second decompression device 6 during the heating operation.
[0022]
【The invention's effect】
As is clear from the above description, the present invention controls the valve opening degree of each decompression device arranged before and after the gas-liquid separator, so that the refrigerant state stored in the gas-liquid separator and the gas injection The amount of refrigerant flowing through the pipe can be controlled. Therefore, since the amount of refrigerant to be injected and the state of the refrigerant can be controlled according to the operation state, the defrosting operation time can be shortened or the start-up performance of the heating operation after the defrosting operation can be improved. .
[Brief description of the drawings]
FIG. 1 is a refrigeration cycle diagram according to an embodiment of the present invention. FIG. 2 is a flow characteristic diagram of a decompression device according to the embodiment.
DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 Condenser 4 First decompression device 5 Gas-liquid separator 6 Second decompression device 7 Evaporator 8 Gas injection piping 9 On-off valve

Claims (8)

圧縮機、四方弁、室外熱交換器、第一の減圧装置、気液分離器、第二の減圧装置、室内熱交換器を配管によってそれぞれ順に環状に接続し、前記気液分離器と前記圧縮機とをガスインジェクション用配管で接続した冷凍サイクル装置において、前記第一の減圧装置及び前記第二の減圧装置を弁開度可変の減圧装置とし、前記第一の減圧装置及び前記第二の減圧装置の弁開度を冷凍サイクルの運転状態に応じて変更し、前記四方弁の切り換えによって、前記圧縮機から吐出された冷媒を、前記室外熱交換器、前記第一の減圧装置、前記気液分離器、前記第二の減圧装置、前記室内熱交換器にそれぞれ順に流す除霜運転時に、前記第一の減圧装置の弁開度を73%以上に開いてガスインジェクションを行うことを特徴とするインジェクション機能を有する冷凍サイクルの制御装置。A compressor, a four-way valve, an outdoor heat exchanger, a first pressure reducing device, a gas-liquid separator, a second pressure reducing device, and an indoor heat exchanger are connected in an annular manner in order by piping, and the gas-liquid separator and the compression In the refrigeration cycle apparatus connected to the machine with a pipe for gas injection, the first decompressor and the second decompressor are the decompressors with variable valve opening, and the first decompressor and the second decompressor The valve opening of the device is changed according to the operating state of the refrigeration cycle, and the refrigerant discharged from the compressor is changed to the outdoor heat exchanger, the first pressure reducing device, the gas-liquid by switching the four-way valve During the defrosting operation in which the separator, the second decompression device, and the indoor heat exchanger are sequentially flowed, the valve opening degree of the first decompression device is opened to 73% or more to perform gas injection. Injection function The control device of the refrigeration cycle with. 除霜運転時に、前記第二の減圧装置の弁開度を73%以下に絞ってガスインジェクションを行うことを特徴とする請求項1に記載のインジェクション機能を有する冷凍サイクルの制御装置。2. The control device for a refrigeration cycle having an injection function according to claim 1 , wherein during the defrosting operation, gas injection is performed by restricting a valve opening of the second decompression device to 73% or less. 圧縮機、四方弁、室外熱交換器、第一の減圧装置、気液分離器、第二の減圧装置、室内熱交換器を配管によってそれぞれ順に環状に接続し、前記気液分離器と前記圧縮機とをガスインジェクション用配管で接続した冷凍サイクル装置において、前記第一の減圧装置及び前記第二の減圧装置を弁開度可変の減圧装置とし、前記第一の減圧装置及び前記第二の減圧装置の弁開度を冷凍サイクルの運転状態に応じて変更し、前記四方弁の切り換えによって、前記圧縮機から吐出された冷媒を、前記室外熱交換器、前記第一の減圧装置、前記気液分離器、前記第二の減圧装置、前記室内熱交換器にそれぞれ順に流す除霜運転を終了した後、暖房運転再開後の所定時間は前記第二の減圧装置の弁開度を73%以下に絞ってガスインジェクションを行い、その後前記第二の減圧装置の弁開度を前記所定時間内の弁開度よりも開いてガスインジェクションを行うことを特徴とするインジェクション機能を有する冷凍サイクルの制御装置。 A compressor, a four-way valve, an outdoor heat exchanger, a first pressure reducing device, a gas-liquid separator, a second pressure reducing device, and an indoor heat exchanger are connected in an annular manner in order by piping, and the gas-liquid separator and the compression In the refrigeration cycle apparatus connected to the machine with a pipe for gas injection, the first decompressor and the second decompressor are the decompressors with variable valve opening, and the first decompressor and the second decompressor The valve opening of the device is changed according to the operating state of the refrigeration cycle, and the refrigerant discharged from the compressor is changed to the outdoor heat exchanger, the first pressure reducing device, the gas-liquid by switching the four-way valve After completing the defrosting operation that sequentially flows to the separator, the second decompression device, and the indoor heat exchanger, the valve opening of the second decompression device is reduced to 73% or less for a predetermined time after the heating operation is resumed. Squeeze and perform gas injection, The second control unit of the refrigeration cycle with the features and to Louis Njekushon function to carry out gas injection open than the valve opening in the valve opening said predetermined time decompressor after. 除霜運転終了前の所定時間、前記第一の減圧装置の弁開度を73%以下に絞ってガスインジェクションを行うことを特徴とする請求項1に記載のインジェクション機能を有する冷凍サイクルの制御装置。2. The control apparatus for a refrigeration cycle having an injection function according to claim 1 , wherein gas injection is performed by restricting the valve opening of the first decompression device to 73% or less for a predetermined time before the end of the defrosting operation. . 圧縮機、四方弁、室外熱交換器、減圧装置、気液分離器、室内熱交換器を配管によって環状に接続し、前記気液分離器と前記圧縮機とをガスインジェクション用配管で接続した冷凍サイクル装置において、冷媒としてR410Aを用い、前記四方弁の切り換えによって、前記圧縮機から吐出された冷媒を、前記室外熱交換器、前記第一の減圧装置、前記気液分離器、前記第二の減圧装置、前記室内熱交換器にそれぞれ順に流す除霜運転終了後の暖房運転時、圧縮機の吐出温度が所定値以上になったときにガスインジェクションを行うことを特徴とするインジェクション機能を有する冷凍サイクルの制御装置。A compressor, a four-way valve, an outdoor heat exchanger, a pressure reducing device, a gas-liquid separator, and an indoor heat exchanger are connected in a ring shape by piping, and the gas-liquid separator and the compressor are connected by gas injection piping. In the cycle apparatus, R410A is used as a refrigerant, and the refrigerant discharged from the compressor by switching the four-way valve is converted into the outdoor heat exchanger, the first pressure reducing device, the gas-liquid separator, the second Refrigeration having an injection function characterized by performing gas injection when the discharge temperature of the compressor becomes a predetermined value or more during heating operation after completion of the defrosting operation that sequentially flows through the decompression device and the indoor heat exchanger, respectively. Cycle control device. 圧縮機、四方弁、室外熱交換器、減圧装置、気液分離器、室内熱交換器を配管によって環状に接続し、前記気液分離器と前記圧縮機とをガスインジェクション用配管で接続した冷凍サイクル装置において、冷媒としてR410Aを用い、前記四方弁の切り換えによって、前記圧縮機から吐出された冷媒を、前記室外熱交換器、前記第一の減圧装置、前記気液分離器、前記第二の減圧装置、前記室内熱交換器にそれぞれ順に流す除霜運転終了後の暖房運転時、暖房運転再開からの所定時間経過後にガスインジェクションを行うことを特徴とするインジェクション機能を有する冷凍サイクルの制御装置。A compressor, a four-way valve, an outdoor heat exchanger, a pressure reducing device, a gas-liquid separator, and an indoor heat exchanger are connected in a ring shape by piping, and the gas-liquid separator and the compressor are connected by gas injection piping. In the cycle apparatus, R410A is used as a refrigerant, and the refrigerant discharged from the compressor by switching the four-way valve is converted into the outdoor heat exchanger, the first pressure reducing device, the gas-liquid separator, the second A controller for a refrigeration cycle having an injection function, wherein gas injection is performed after elapse of a predetermined time from the resumption of heating operation during heating operation after completion of the defrosting operation that sequentially flows through the decompression device and the indoor heat exchanger, respectively . 圧縮機、四方弁、室外熱交換器、減圧装置、気液分離器、室内熱交換器を配管によって環状に接続し、前記気液分離器と前記圧縮機とをガスインジェクション用配管で接続した冷凍サイクル装置において、冷媒としてR410Aを用い、前記四方弁の切り換えによって、前記圧縮機から吐出された冷媒を、前記室外熱交換器、前記第一の減圧装置、前記気液分離器、前記第二の減圧装置、前記室内熱交換器にそれぞれ順に流す除霜運転終了前の所定時間、ガスインジェクションを行わないことを特徴とするインジェクション機能を有する冷凍サイクルの制御装置。A compressor, a four-way valve, an outdoor heat exchanger, a pressure reducing device, a gas-liquid separator, and an indoor heat exchanger are connected in a ring shape by piping, and the gas-liquid separator and the compressor are connected by gas injection piping. In the cycle apparatus, R410A is used as a refrigerant, and the refrigerant discharged from the compressor by switching the four-way valve is converted into the outdoor heat exchanger, the first pressure reducing device, the gas-liquid separator, the second A control apparatus for a refrigeration cycle having an injection function, characterized in that gas injection is not performed for a predetermined time before the defrosting operation is sequentially performed through the decompression device and the indoor heat exchanger . 冷媒としてR410Aを用いたことを特徴とする請求項1から請求項4のいずれかに記載のインジェクション機能を有する冷凍サイクルの制御装置。5. The control apparatus for a refrigeration cycle having an injection function according to claim 1, wherein R410A is used as a refrigerant.
JP33650297A 1997-11-20 1997-11-20 Control device for refrigeration cycle having injection function Expired - Fee Related JP3623090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33650297A JP3623090B2 (en) 1997-11-20 1997-11-20 Control device for refrigeration cycle having injection function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33650297A JP3623090B2 (en) 1997-11-20 1997-11-20 Control device for refrigeration cycle having injection function

Publications (2)

Publication Number Publication Date
JPH11153363A JPH11153363A (en) 1999-06-08
JP3623090B2 true JP3623090B2 (en) 2005-02-23

Family

ID=18299803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33650297A Expired - Fee Related JP3623090B2 (en) 1997-11-20 1997-11-20 Control device for refrigeration cycle having injection function

Country Status (1)

Country Link
JP (1) JP3623090B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4403300B2 (en) * 2004-03-30 2010-01-27 日立アプライアンス株式会社 Refrigeration equipment
JP4661725B2 (en) * 2006-08-01 2011-03-30 ダイキン工業株式会社 Refrigeration equipment
KR101162756B1 (en) * 2007-02-24 2012-07-05 삼성전자주식회사 A water-cooling type air conditioner and control method thereof
JP2010276239A (en) * 2009-05-27 2010-12-09 Mitsubishi Electric Corp Refrigerating air-conditioning device
JP2013203221A (en) * 2012-03-28 2013-10-07 Denso Corp Air conditioner for vehicle
DK4030115T3 (en) * 2019-09-09 2023-11-27 Mitsubishi Electric Corp OUTDOOR UNIT AND REFRIGERATION CIRCUIT

Also Published As

Publication number Publication date
JPH11153363A (en) 1999-06-08

Similar Documents

Publication Publication Date Title
AU740993B2 (en) Refrigerating apparatus
EP2015004B1 (en) Air conditioner
JP2007051805A (en) Air conditioner
JP2008096033A (en) Refrigerating device
JP2008116156A (en) Air conditioner
JP2936961B2 (en) Air conditioner
JP4804528B2 (en) Refrigeration cycle apparatus and control method for refrigeration cycle apparatus
JP3623090B2 (en) Control device for refrigeration cycle having injection function
JPH07120120A (en) Drive controller for air conditioner
JP4694457B2 (en) Air conditioner
US20040103676A1 (en) Method for controlling cooling/heating of heat pump system
JP2003172560A (en) Air-conditioner
CN107683395A (en) Cooling system and its control method
JPH07332814A (en) Heat pump system
JP3781880B2 (en) Refrigeration apparatus with injection function
JP3175709B2 (en) Binary refrigeration equipment
JPH09210515A (en) Refrigerating device
JP3594570B2 (en) Two-stage compression type compressor and refrigeration system using the same
JPH01179876A (en) Refrigerating device
JPH08327194A (en) Air conditioner
JPS6346350B2 (en)
JPH11118264A (en) Freezer adapted to hfc refrigerant
KR100389640B1 (en) System for controlling air conditioner and method thereof
KR100366449B1 (en) Control Device and Control Method of 3 way valve
JPS63273750A (en) Defrosting control device of air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees