JPH089580Y2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH089580Y2
JPH089580Y2 JP3201591U JP3201591U JPH089580Y2 JP H089580 Y2 JPH089580 Y2 JP H089580Y2 JP 3201591 U JP3201591 U JP 3201591U JP 3201591 U JP3201591 U JP 3201591U JP H089580 Y2 JPH089580 Y2 JP H089580Y2
Authority
JP
Japan
Prior art keywords
valve
heat exchanger
compressor
way switching
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3201591U
Other languages
Japanese (ja)
Other versions
JPH04129074U (en
Inventor
幸正 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP3201591U priority Critical patent/JPH089580Y2/en
Publication of JPH04129074U publication Critical patent/JPH04129074U/en
Application granted granted Critical
Publication of JPH089580Y2 publication Critical patent/JPH089580Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】本考案は、いわゆるホットガスバ
イパス方式の除霜機能を有する空気調和装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner having a so-called hot gas bypass type defrosting function.

【0002】[0002]

【従来の技術】ホットガスバイパス方式の除霜は、四路
切換弁の切換音がないため騒音が少なく、また除霜運転
中の室温低下を防止できる等の利点があることから、多
用されている。従来、この除霜方式を採用した空気調和
装置として、例えば図3に示すようなものが知られてい
る(特開昭57−169567号公報)。この空気調和装
置は、圧縮機11,四路切換弁12,室内熱交換器13,
減圧装置14および室外熱交換器15を順次管路16a
〜16fで接続するとともに、減圧装置14の室外熱交
換器15側の管路16dを、電磁開閉弁17を有するバ
イパス管路18で四路切換弁12の圧縮機11側の管路
16aに接続している。
2. Description of the Related Art Hot gas bypass defrosting is widely used because it has no noise due to no switching noise of the four-way selector valve and has the advantage of preventing room temperature drop during defrosting operation. There is. Conventionally, as an air conditioner adopting this defrosting method, for example, one as shown in FIG. 3 is known (Japanese Patent Laid-Open No. 57-169567). This air conditioner includes a compressor 11, a four-way switching valve 12, an indoor heat exchanger 13,
The pressure reducing device 14 and the outdoor heat exchanger 15 are sequentially connected to the pipe line 16a.
16 f, and the conduit 16 d on the outdoor heat exchanger 15 side of the decompression device 14 is connected to the compressor 16 side conduit 16 a of the four-way switching valve 12 by a bypass conduit 18 having an electromagnetic opening / closing valve 17. are doing.

【0003】そして、冷房運転時には、四路切換弁12
を破線で示す通路に切り換え、圧縮機11から吐出され
たガス冷媒を、図3の破線矢印の如く、室外熱交換器1
5内で凝縮させ、室内熱交換器13内で蒸発させる方向
に循環させる。一方、暖房運転時には、四路切換弁12
を実線で示す通路に切り換え、上記ガス冷媒を図3の実
線矢印の如く、室内熱交換器13内で凝縮させ、室外熱
交換器15内で蒸発させる方向に循環させる。また、暖
房運転の際に室外熱交換器15に霜が付着した場合、図
示しない室外ファンおよび室内ファンを停止するととも
に、四路切換弁12を暖房運転状態のままとして、電磁
開閉弁17を開成する。そして、圧縮機11からのホッ
トガス(ガス冷媒)を、図3の一点鎖線矢印の如く、管路
16a,バイパス管路18,管路16d,室外熱交換器15,
管路16e,16fを経て圧縮機11に戻すことによって
除霜を行う。これによって、吐出されたホットガスを室
外熱交換器15に流して、除霜運転時間の短縮と暖房運
転率の向上を図っている。
During the cooling operation, the four-way switching valve 12
To the passage indicated by the broken line, and the gas refrigerant discharged from the compressor 11 is transferred to the outdoor heat exchanger 1 as indicated by the broken line arrow in FIG.
5 is circulated in the direction in which it is condensed in the indoor heat exchanger 5 and evaporated in the indoor heat exchanger 13. On the other hand, during heating operation, the four-way switching valve 12
To the passage indicated by the solid line, and the gas refrigerant is circulated in the direction in which it is condensed in the indoor heat exchanger 13 and evaporated in the outdoor heat exchanger 15 as indicated by the solid arrow in FIG. When frost adheres to the outdoor heat exchanger 15 during the heating operation, the outdoor fan and the indoor fan (not shown) are stopped, the four-way switching valve 12 is left in the heating operation state, and the electromagnetic opening / closing valve 17 is opened. To do. Then, the hot gas (gas refrigerant) from the compressor 11 is transferred to the pipeline 16a, the bypass pipeline 18, the pipeline 16d, the outdoor heat exchanger 15, as indicated by the one-dot chain line arrow in FIG.
Defrosting is performed by returning to the compressor 11 via the pipelines 16e and 16f. Thereby, the discharged hot gas is caused to flow to the outdoor heat exchanger 15 to shorten the defrosting operation time and improve the heating operation rate.

【0004】[0004]

【考案が解決しようとする課題】さて、上記従来の空気
調和装置において、冷房運転中に停止ボタンが押された
り、あるいは室温センサによる検出温度が設定温度より
一定値だけ低くなる(いわゆる 「サーモオフ」 になる)
と、圧縮機11は制御部により停止せしめられるが、こ
の場合、圧縮機の次の起動を容易化すべく、四路切換弁
12が実線で示す暖房時の通路に切り換えられ、それま
で高圧であった管路16eが低圧側の管路16fに、それ
まで低圧であった管路16bが高圧側の管路16aに夫々
連通して、管路の均圧化が行なわれる。このとき、除霜
運転以外は閉じている電磁開閉弁17の前後の圧力は、
吐出の止まった管路16aに直接連通するAポートが、
図4の曲線Aで示すように急速に低下し、室外熱交換器
15を介して圧縮機の吸込側管路16fに連通するBポ
ートが、図4の曲線Bで示すように緩慢に低下するた
め、圧縮機の停止からt0秒経過後には、Bポートの圧力
がAポートの圧力より高くなる。ところが、上記電磁開
閉弁17は、除霜運転以外の消磁時には、ばねがBポー
トに作用する圧力に抗して弁体を着座させて通路を閉じ
る構造であるため、上述のようにBポートの圧力が勝る
と、弁体が弁座に対して短周期で接離を繰り返すいわゆ
るチャタリングが生じ、騒音が発生し、弁が損傷する虞
れもあるという欠点がある。そして、この欠点を解消す
るには、ばねを大きくして付勢力を増す必要があり、そ
うするとソレノイドも、励磁力を増すべく大型化するこ
とが必要になって、空気調和装置のコストアップをもた
らすという問題が生じる。
In the above conventional air conditioner, the stop button is pressed during the cooling operation, or the temperature detected by the room temperature sensor becomes lower than the set temperature by a certain value (so-called "thermo off"). become)
Then, the compressor 11 is stopped by the control unit. In this case, in order to facilitate the next start of the compressor, the four-way switching valve 12 is switched to the heating passage shown by the solid line, and the pressure is high until then. The pipeline 16e communicates with the pipeline 16f on the low pressure side, and the pipeline 16b having a low pressure until then communicates with the pipeline 16a on the high pressure side, so that the pipelines are pressure-equalized. At this time, the pressure before and after the electromagnetic on-off valve 17 closed except the defrosting operation is
The A port that directly communicates with the pipeline 16a where the discharge has stopped
As shown by the curve A in FIG. 4, the port B, which rapidly decreases and communicates with the suction side conduit 16f of the compressor through the outdoor heat exchanger 15, gradually decreases as shown by the curve B in FIG. Therefore, the pressure at the B port becomes higher than the pressure at the A port after t 0 seconds have elapsed from the stop of the compressor. However, since the solenoid on-off valve 17 has a structure in which the valve body is seated against the pressure applied by the spring against the pressure acting on the B port to close the passage at the time of demagnetization other than the defrosting operation, as described above, When the pressure is increased, so-called chattering occurs in which the valve element repeatedly comes into contact with and separates from the valve seat in a short cycle, which causes noise and may damage the valve. Then, in order to eliminate this drawback, it is necessary to enlarge the spring to increase the urging force. Then, the solenoid also needs to be increased in size to increase the exciting force, resulting in an increase in the cost of the air conditioner. The problem arises.

【0005】そこで、本考案の目的は、電磁開閉弁等の
制御を工夫することによって、電磁開閉弁を大型化する
ことなくチャタリングを防止し、安価な構成でもって弁
の長寿命と騒音の低減を図ることができる空気調和装置
を提供することにある。
Therefore, an object of the present invention is to prevent chattering without increasing the size of the solenoid on-off valve by devising control of the solenoid on-off valve and the like, and to prolong the life of the valve and reduce noise with an inexpensive structure. An object is to provide an air conditioner capable of achieving the above.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本考案の空気調和装置は、図1に例示するように、
圧縮機11,四路切換弁12,室内熱交換器13,減圧装
置14および室外熱交換器15を順次管路16a〜16f
で接続し、上記減圧装置14の室外熱交換器15側の管
路16dを、電磁開閉弁17を有するバイパス管路18
で上記四路切換弁12の圧縮機11側または室内熱交換
器13側の管路16a,16bに接続したものにおいて、
冷房運転中断時に、上記四路切換弁12にこの弁を暖房
運転側に切り換える切換信号を出力すると同時に、上記
電磁開閉弁17にこの弁を一定時間開成させる制御信号
を出力する制御器1を設けたことを特徴とする。
In order to achieve the above object, the air conditioner of the present invention is, as illustrated in FIG.
The compressor 11, the four-way switching valve 12, the indoor heat exchanger 13, the pressure reducing device 14, and the outdoor heat exchanger 15 are sequentially connected to the pipelines 16a to 16f.
And the conduit 16d on the outdoor heat exchanger 15 side of the pressure reducing device 14 is connected to the bypass conduit 18 having the electromagnetic opening / closing valve 17.
In the four-way switching valve 12 connected to the compressor 11 side or the indoor heat exchanger 13 side pipe lines 16a, 16b,
When the cooling operation is interrupted, the four-way switching valve 12 is provided with a switching signal for switching the valve to the heating operation side, and at the same time, the electromagnetic opening / closing valve 17 is provided with a controller 1 for outputting a control signal for opening the valve for a predetermined time. It is characterized by that.

【0007】[0007]

【作用】制御器1は、冷房運転中断時に、四路切換弁1
2に切換信号を、電磁開閉弁17に制御信号を夫々出力
する。すると、四路切換弁12は、暖房時の通路側に切
り換えられて、それまで高圧だった四路切換弁12より
室外熱交換器15側の管路16eが、圧縮機11の吸込
側の管路16fに連通し、それまで低圧だった四路切換
弁12より室内熱交換器13側の管路16bが、圧縮機
11の吐出側の管路16aに連通して管路の均圧化が行
なわれる。同時に、電磁開閉弁17は、一定時間開成し
て、減圧装置14の室外熱交換器15側の管路16dと
四路切換弁12の圧縮機11側または室内熱交換器13
側の管路16a,16bとを接続するバイパス管路18を
開放する。従って、電磁開閉弁17の前後の圧力は等し
くなり、電磁開閉弁17が消磁状態でばね力にて閉成し
ていた従来の場合と異なり、電磁開閉弁17が前後の圧
力差によりチャタリングを生じることがない。
The controller 1 controls the four-way switching valve 1 when the cooling operation is interrupted.
2 and a control signal to the electromagnetic on-off valve 17, respectively. Then, the four-way switching valve 12 is switched to the passage side at the time of heating, and the pipe line 16e on the outdoor heat exchanger 15 side of the four-way switching valve 12 that has been at a high pressure until then becomes the suction side pipe of the compressor 11. The pipe 16b, which is in communication with the passage 16f and which is on the indoor heat exchanger 13 side of the four-way switching valve 12 which has been low in pressure until then, is communicated with the discharge-side pipe 16a of the compressor 11, so that the equalization of the pipe is achieved. Done. At the same time, the electromagnetic opening / closing valve 17 is opened for a certain period of time, and the pipe line 16d on the outdoor heat exchanger 15 side of the decompression device 14 and the compressor 11 side of the four-way switching valve 12 or the indoor heat exchanger 13 is opened.
The bypass pipe line 18 connecting the side pipe lines 16a and 16b is opened. Therefore, the pressure before and after the electromagnetic on-off valve 17 becomes equal, and unlike the conventional case in which the electromagnetic on-off valve 17 is closed by the spring force in the demagnetized state, the electromagnetic on-off valve 17 causes chattering due to the pressure difference between the front and back. Never.

【0008】[0008]

【実施例】以下、本考案を図示の実施例により詳細に説
明する。図1は、本考案の空気調和装置の一例を示して
おり、この空気調和装置は、図3で述べたと同じ冷媒回
路に、新たに制御器1を設けた点のみが異なる。即ち、
この空気調和装置は、圧縮機11,四路切換弁12,室内
熱交換器13,減圧装置14,室外熱交換器15を順次管
路16a〜16fで接続するとともに、管路16dと管路
16aを電磁開閉弁17を有するバイパス管路18で接
続してなる冷媒回路に、新たに制御器1を設けている。
なお、圧縮機11の吸込側の管路16fには、アキュム
レータ19を設けている。上記制御器1は、いわゆる
「サーモオフ」 または停止ボタンの押下で冷房運転が中
断されたとき、上記四路切換弁12にこの弁を暖房運転
側に切り換える(図1の実線の通路参照)切換信号を出力
するとともに、上記電磁開閉弁17に励磁信号を一定時
間(例えば30秒)出力する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the illustrated embodiments. FIG. 1 shows an example of the air conditioner of the present invention. This air conditioner is different only in that a controller 1 is newly provided in the same refrigerant circuit as described in FIG. That is,
In this air conditioner, the compressor 11, the four-way switching valve 12, the indoor heat exchanger 13, the pressure reducing device 14, and the outdoor heat exchanger 15 are sequentially connected by pipelines 16a to 16f, and the pipelines 16d and 16a are connected. The controller 1 is newly provided in the refrigerant circuit formed by connecting the above with a bypass line 18 having an electromagnetic opening / closing valve 17.
An accumulator 19 is provided in the suction-side conduit 16f of the compressor 11. The controller 1 is a so-called
When the cooling operation is interrupted by "thermo off" or by pressing the stop button, the four-way switching valve 12 is switched to the heating operation side (refer to the path indicated by the solid line in FIG. 1) and a switching signal is output. An excitation signal is output to the on-off valve 17 for a fixed time (for example, 30 seconds).

【0009】上記構成の制御器1は、次のように動作す
る。制御器1は、冷房運転時に 「サーモオフ」 または停
止ボタンの押下で圧縮機11が停止せしめられると(図
2のステップS1参照)、四路切換弁12に切換信号
を、電磁開閉弁17に制御信号を夫々出力する(図2の
ステップS2参照)。すると、四路切換弁12は、図1
の破線で示す冷房時の通路から実線で示す暖房時の通路
側に切り換えられて、それまで高圧だった四路切換弁1
2より室外熱交換器15側の管路16eが、圧縮機11
の吸込側の管路16fに連通し、それまで低圧だった四
路切換弁12より室内熱交換器13側の管路16bが、
圧縮機11の吐出側の管路16aに連通して管路の均圧
化が行なわれる。同時に、電磁開閉弁17は、一定時間
開成して、減圧装置14の室外熱交換器15側の管路1
6dと四路切換弁12の圧縮機11側の管路16aとを接
続するバイパス管路18を開放する。従って、電磁開閉
弁17の前後のポートA,Bの圧力は、図4で示した従
来の場合(消磁状態でばね力にて閉成)と異なり、圧縮機
の停止直後から等しくなり、前後の圧力差により弁体が
チャタリングを生じることがない。よって、大きなばね
やソレノイドがいらず、小型かつ安価な電磁開閉弁でも
って、チャタリングを防止して、弁の長寿命と騒音の低
減を図ることができる。なお、圧縮機11が停止してい
て管路の均圧化は短時間に終了するので、電磁開閉弁1
7への励磁信号は、30秒程度出力すれば十分である。
上記実施例では、バイパス管路18により減圧装置14
の室外熱交換器15側の管路16dを圧縮機11の吐出
側の管路16aに接続したが、これを室内熱交換器13
側の管路16bに接続しても、上述と同じ作用,効果が得
られる。
The controller 1 having the above structure operates as follows. The controller 1 controls a switching signal to the four-way switching valve 12 and a solenoid opening / closing valve 17 when the compressor 11 is stopped by "thermo off" or pressing the stop button during the cooling operation (see step S1 in FIG. 2). The signals are output respectively (see step S2 in FIG. 2). Then, the four-way switching valve 12 is
The four-way switching valve 1 that was switched from the cooling passage shown by the broken line to the heating passage shown by the solid line and was at high pressure until then.
2, the pipe line 16e on the outdoor heat exchanger 15 side is closer to the compressor 11
Of the four-way switching valve 12, which was in low pressure until then, is connected to the suction-side pipe line 16f, and the pipe line 16b on the indoor heat exchanger 13 side is
The pipe line 16a is communicated with the discharge side pipe line 16a of the compressor 11 to equalize the pressure of the pipe line. At the same time, the electromagnetic opening / closing valve 17 is opened for a certain period of time, and the conduit 1 on the outdoor heat exchanger 15 side of the pressure reducing device 14 is
The bypass pipe line 18 connecting the 6d and the pipe line 16a of the four-way switching valve 12 on the compressor 11 side is opened. Therefore, the pressures of the ports A and B before and after the electromagnetic on-off valve 17 are equalized immediately after the compressor is stopped, unlike the conventional case shown in FIG. 4 (closed by the spring force in the demagnetized state). The valve body does not chatter due to the pressure difference. Therefore, it is possible to prevent chattering by using a small-sized and inexpensive electromagnetic on-off valve without requiring a large spring or solenoid, and to achieve a long service life of the valve and a reduction in noise. Since the compressor 11 is stopped and pressure equalization of the pipeline is completed in a short time, the electromagnetic opening / closing valve 1
It is enough to output the excitation signal to 7 for about 30 seconds.
In the above embodiment, the pressure reducing device 14 is provided by the bypass line 18.
The pipe line 16d on the side of the outdoor heat exchanger 15 was connected to the pipe line 16a on the discharge side of the compressor 11.
Even if it is connected to the conduit 16b on the side, the same action and effect as described above can be obtained.

【0010】[0010]

【考案の効果】以上の説明で明らかなように、本考案の
空気調和装置は、圧縮機,四路切換弁,室内熱交換器,減
圧装置および室外熱交換器を順次管路で接続し、上記減
圧装置の室外熱交換器側の管路を、電磁開閉弁を有する
バイパス管路で上記四路切換弁の圧縮機側または室内熱
交換器側の管路に接続したものにおいて、冷房運転中断
時に、上記四路切換弁にこの弁を暖房運転側に切り換え
る切換信号を出力すると同時に、上記電磁開閉弁にこの
弁を一定時間開成させる制御信号を出力する制御器を設
けているので、電磁開閉弁を大型化することなくチャタ
リングを防止でき、簡素かつ安価な構成でもって弁の長
寿命と騒音の低減を図ることができる。
As is apparent from the above description, in the air conditioner of the present invention, the compressor, the four-way switching valve, the indoor heat exchanger, the decompression device, and the outdoor heat exchanger are sequentially connected by pipelines. The outdoor heat exchanger side pipe of the decompression device is connected to the compressor side or indoor heat exchanger side pipe of the four-way switching valve by a bypass line having an electromagnetic opening / closing valve, and the cooling operation is interrupted. At the same time, the four-way switching valve is provided with a controller that outputs a switching signal for switching this valve to the heating operation side, and at the same time a controller for outputting a control signal for opening the valve for a certain time to the electromagnetic opening / closing valve. Chattering can be prevented without increasing the size of the valve, and the valve can have a long life and noise with a simple and inexpensive structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本考案の空気調和装置の一例を示す冷媒回路
図である。
FIG. 1 is a refrigerant circuit diagram showing an example of an air conditioner of the present invention.

【図2】 図1の制御器の制御の流れを示すフローチャ
ートである。
FIG. 2 is a flowchart showing a control flow of the controller of FIG.

【図3】 従来の空気調和装置の冷媒回路図である。FIG. 3 is a refrigerant circuit diagram of a conventional air conditioner.

【図4】 圧縮機停止後の図3の電磁開閉弁のA,Bポ
ートの圧力変化を示す図である。
FIG. 4 is a diagram showing changes in pressure at ports A and B of the solenoid opening / closing valve of FIG. 3 after the compressor is stopped.

【符号の説明】[Explanation of symbols]

1…制御器、11…圧縮機、12…四路切換弁、13…
室内熱交換器、14…減圧装置、15…室外熱交換器、
16a〜16f…管路、17…電磁開閉弁、18…バイパ
ス管路。
1 ... Controller, 11 ... Compressor, 12 ... Four-way switching valve, 13 ...
Indoor heat exchanger, 14 ... Pressure reducing device, 15 ... Outdoor heat exchanger,
16a to 16f ... Pipe line, 17 ... Electromagnetic on-off valve, 18 ... Bypass pipe line.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 圧縮機(11),四路切換弁(12),室内熱
交換器(13),減圧装置(14)および室外熱交換器(1
5)を順次管路(16a〜16f)で接続し、上記減圧装置
(14)の室外熱交換器(15)側の管路(16d)を、電磁
開閉弁(17)を有するバイパス管路(18)で上記四路切
換弁(12)の圧縮機(11)側または室内熱交換器(13)
側の管路(16a,16b)に接続した空気調和装置におい
て、冷房運転中断時に、上記四路切換弁(12)にこの弁
を暖房運転側に切り換える切換信号を出力すると同時
に、上記電磁開閉弁(17)にこの弁を一定時間開成させ
る制御信号を出力する制御器(1)を設けたことを特徴と
する空気調和装置。
1. A compressor (11), a four-way switching valve (12), an indoor heat exchanger (13), a pressure reducing device (14) and an outdoor heat exchanger (1).
5) are sequentially connected by pipelines (16a to 16f),
The conduit (16d) of the outdoor heat exchanger (15) of (14) is connected to the compressor (11) side of the four-way switching valve (12) by a bypass conduit (18) having an electromagnetic opening / closing valve (17). Or indoor heat exchanger (13)
In the air conditioner connected to the side pipes (16a, 16b), when the cooling operation is interrupted, a switching signal for switching the valve to the heating operation side is output to the four-way switching valve (12), and at the same time, the solenoid opening / closing valve An air conditioner characterized in that (17) is provided with a controller (1) for outputting a control signal for opening this valve for a certain period of time.
JP3201591U 1991-05-09 1991-05-09 Air conditioner Expired - Fee Related JPH089580Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3201591U JPH089580Y2 (en) 1991-05-09 1991-05-09 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3201591U JPH089580Y2 (en) 1991-05-09 1991-05-09 Air conditioner

Publications (2)

Publication Number Publication Date
JPH04129074U JPH04129074U (en) 1992-11-25
JPH089580Y2 true JPH089580Y2 (en) 1996-03-21

Family

ID=31915061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3201591U Expired - Fee Related JPH089580Y2 (en) 1991-05-09 1991-05-09 Air conditioner

Country Status (1)

Country Link
JP (1) JPH089580Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2597634Y2 (en) * 1993-03-17 1999-07-12 ヤンマーディーゼル株式会社 Pressure equalizer in multi-room air-conditioning heat pump system

Also Published As

Publication number Publication date
JPH04129074U (en) 1992-11-25

Similar Documents

Publication Publication Date Title
JP2007051805A (en) Air conditioner
JP2003240391A (en) Air conditioner
JPH089580Y2 (en) Air conditioner
JP2597634Y2 (en) Pressure equalizer in multi-room air-conditioning heat pump system
JPH05264113A (en) Operation control device of air conditioner
EP0077414A1 (en) Air temperature conditioning system
JP3099574B2 (en) Air conditioner pressure equalizer
JPH07120116A (en) Cooler
JP3708245B2 (en) Motorized valve controller for multi-function heat pump system
JP3291886B2 (en) Air conditioner and control method thereof
JPH089573Y2 (en) Refrigeration equipment
JPH05256496A (en) Operation controller for air conditioner
JP2503785B2 (en) Operation control device for air conditioner
KR880000935B1 (en) Control device for refrigeration cycle
JPH0772647B2 (en) Pressure equalizer for air conditioner
JPS6221889Y2 (en)
JPH0213906Y2 (en)
JPH1183212A (en) Operation controller for refrigerator
JP3082304B2 (en) Air conditioner
KR100471439B1 (en) A controller and control method of the air-conditioner
JPH0339656Y2 (en)
JPH0633910B2 (en) Heat pump refrigeration system
JPS5971963A (en) Heat pump type refrigeration cycle
JPH044513B2 (en)
JPS58187761A (en) Refrigerator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees