JPS6323467B2 - - Google Patents

Info

Publication number
JPS6323467B2
JPS6323467B2 JP54127136A JP12713679A JPS6323467B2 JP S6323467 B2 JPS6323467 B2 JP S6323467B2 JP 54127136 A JP54127136 A JP 54127136A JP 12713679 A JP12713679 A JP 12713679A JP S6323467 B2 JPS6323467 B2 JP S6323467B2
Authority
JP
Japan
Prior art keywords
valve
heat exchanger
refrigerant
indoor heat
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54127136A
Other languages
Japanese (ja)
Other versions
JPS5649867A (en
Inventor
Akira Nakazawa
Kenichiro Imasu
Masataka Yamane
Kengo Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12713679A priority Critical patent/JPS5649867A/en
Priority to AU56894/80A priority patent/AU538000B2/en
Priority to US06/135,930 priority patent/US4375753A/en
Priority to DE3012686A priority patent/DE3012686C2/en
Priority to GB8011092A priority patent/GB2046481B/en
Publication of JPS5649867A publication Critical patent/JPS5649867A/en
Publication of JPS6323467B2 publication Critical patent/JPS6323467B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/30Oxides other than silica
    • C04B14/303Alumina

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 本発明は冷凍回路中の冷媒絞り機構として正逆
流式にしてかつ常開式の熱電形膨張弁を用いたこ
とにより、冷暖房いずれにおいても効率のよい冷
凍サイクルを構成すると共に、立ち上り特性を良
好にすることを目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses a normal and reverse flow type thermoelectric expansion valve as the refrigerant throttling mechanism in the refrigeration circuit, thereby constructing a refrigeration cycle that is efficient in both heating and cooling operations. In addition, the purpose is to improve the rise characteristics.

従来より熱電形膨張弁を用いた冷凍回路は構成
されているが、この従来の熱電形膨張弁は一方向
性のものであることから冷房専用装置にのみ用い
られており、冷暖房装置には用いられなかつた。
Conventionally, refrigeration circuits have been constructed using thermoelectric expansion valves, but because these conventional thermoelectric expansion valves are unidirectional, they are used only in cooling-only equipment, and are not used in air-conditioning equipment. I couldn't help it.

従来からの熱電形膨張弁を用いた装置の例とし
て第1図に示すように室内熱交換器aの冷媒入口
部に第1の熱電対bを設け、出口部に第2の熱電
対cを設けてこの二つの熱電対b,cの温度差を
制御装置dを介して熱電形膨張弁eの開度を制御
することにより両熱電対b,cの取付け部におけ
る冷媒温度差を一定に保つようにして冷凍回路を
制御する冷房専用装置がある。
As an example of a device using a conventional thermoelectric expansion valve, as shown in Fig. 1, a first thermocouple b is provided at the refrigerant inlet of an indoor heat exchanger a, and a second thermocouple c is provided at the outlet. The temperature difference between the two thermocouples b and c is maintained constant by controlling the opening degree of the thermoelectric expansion valve e through the control device d. There is a dedicated cooling device that controls the refrigeration circuit in this way.

この構成であると、室内熱交換器aにおける冷
媒による流路抵抗が大きい場合においては熱電対
b,cの取り付け部における冷媒の飽和温度の差
が大きいことから熱電対cにおける冷媒の状態を
適切に検知することが困難となり圧縮機fへ流入
する冷媒の状態を精度良く制御することが極めて
困難である。
With this configuration, when the flow path resistance due to the refrigerant in the indoor heat exchanger a is large, the difference in the saturation temperature of the refrigerant at the attachment parts of the thermocouples b and c is large, so the state of the refrigerant in the thermocouple c is adjusted appropriately. This makes it extremely difficult to accurately control the state of the refrigerant flowing into the compressor f.

しかも、この従来の熱電形膨張弁を用いて冷暖
房装置の冷凍回路を構成しようとする場合には、
熱電形膨張弁が一方向性であつたため、二つの熱
電形膨張弁と二つの逆止弁が必要となる欠点を有
し、さらに、従来の熱電形膨張弁の場合は、常閉
式のものしかなかつたため、運転開始直後には熱
電形膨張弁は極めて大きく絞つた状態となつてお
り、冷媒の流通量が少なくなることから、特に、
冷房時の立ち上り特性を良好に保つことが困難で
あつた等の欠点を有していた。
Moreover, when attempting to construct a refrigeration circuit for an air conditioning system using this conventional thermoelectric expansion valve,
Since thermoelectric expansion valves were unidirectional, they had the disadvantage of requiring two thermoelectric expansion valves and two check valves, and furthermore, conventional thermoelectric expansion valves were only normally closed. Immediately after the start of operation, the thermoelectric expansion valve is in an extremely constricted state, and the flow rate of refrigerant is reduced.
It had drawbacks such as difficulty in maintaining good rise characteristics during cooling.

そこで本発明は上記従来の欠点を解消した冷暖
房装置を提供するものであり、以下にその一実施
例について第2〜4図を参考に説明する。
Therefore, the present invention provides a heating and cooling device that eliminates the above-mentioned conventional drawbacks, and one embodiment thereof will be described below with reference to FIGS. 2 to 4.

第2図において1は圧縮機であり、四方弁より
なる冷暖切換え弁2を介して室外熱交換器3,正
逆流式でかつ常開式の熱電形膨張弁4及び室内熱
交換器5を環状に連結した冷凍回路を構成してい
る。6は圧縮機の吸入管4に設けた受液器であ
る。8は室外熱交換器3に取り付けたサーミス
タ、9は室内熱交換器5の流れの中央付近に取り
付けたサーミスタ、10は吸入管7に取り付けた
サーミスタである。11は両サーミスタ9,10
からの信号を受けて熱電形膨張弁4の開度を制御
する制御装置である。
In Fig. 2, reference numeral 1 denotes a compressor, which connects an outdoor heat exchanger 3, a normal and reverse flow type thermoelectric expansion valve 4, and an indoor heat exchanger 5 through a cooling/heating switching valve 2 consisting of a four-way valve. It constitutes a refrigeration circuit connected to the 6 is a liquid receiver provided in the suction pipe 4 of the compressor. 8 is a thermistor attached to the outdoor heat exchanger 3, 9 is a thermistor attached near the center of the flow of the indoor heat exchanger 5, and 10 is a thermistor attached to the suction pipe 7. 11 is both thermistor 9, 10
This is a control device that controls the opening degree of the thermoelectric expansion valve 4 in response to a signal from the thermoelectric expansion valve 4.

次に前記熱電形膨張弁4の構造について第3図
を参考に説明する熱電形膨張弁4は弁部分12と
弁駆動部分13とからなる。弁部分12は弁枠1
4と弁体15とからなる。弁枠14は弁座部16
を設けかつ流体が流出入する流出入ポート17,
18を有し、各ポート17,18にはそれぞれ冷
媒管19,20が接続されている。弁体15は連
結された二つの上下部材21,22からなり、こ
れら両部材21,22中に、ポート18側と弁駆
動部分13内とを連通させる通路23,24を形
成している。両通路23,24間には冷媒が通路
24から通路23へ向つて流れるのを阻止する逆
止弁25が設けられている。なお、弁体15は弁
枠14に形成した孔26内に上下に摺動自在に設
けられている。一方、弁駆動部分13は、上ケー
シング27と下ケーシング28と弁枠14とによ
り密閉された空間29を形成している。この空間
29内には二つのバイメタル30,31が収納さ
れており、両バイメタル30,31はその両端に
てスペーサ32,33を介して並設されている。
そして、両バイメタル30,31の中央部に孔3
4,35を穿設し、上ケーシング27の内面中央
部に固着させた支持ピン36を上バイメタルの孔
41に上方から挿入し、また弁体15の上端に形
成したピン部分37を、下バイメタル31の孔3
5に下方から挿入することにより、両バイメタル
30,31は空間29内に支持される。なお弁体
14は、座金38を介して、スプリング39によ
り常に上方向に付勢されている。40は上バイメ
タル30を強制加熱する電気ヒータであり、上バ
イメタル30に巻装されている。なお、この上バ
イメタル30は通常は弁部分12をほぼ全開状態
に保ち、電気ヒータ40により加熱されることに
より湾曲し弁部分12を絞るよう作用するもので
ある。41,42は前記電気ヒータ40の両端に
接続される端子であり、上ケーシング27を貫通
して設けられている。この上バイメタル30は電
気ヒータ40により強制加熱されることにより、
その両端が下方(図中矢印A方向)に移動するよ
う変形するものである。従つて電気ヒータ40に
通電すると、上バイメタル30が変形し、スプリ
ング39の弾性力に抗して弁体15を上方に押し
上げ、弁座16と弁体15の下端との間の隙間を
小さくさせる。すなわち、弁を絞る方向に作用す
る。この場合の弁の絞り度は、電気ヒータ40へ
の通電電力量により調整される。すなわち、大電
力を通せば、上バイメタル30は大きく変形湾曲
し、弁の絞り度が大きくなる。すなわち開度は小
さくなる。逆に電気ヒータ40への電力が小さい
場合には、上バイメタル30の変形量は少なく、
弁の絞り度は小さい。なお、下バイメタル31
は、孔26と弁体15との摺動面から空間29内
に流入した冷媒及び周囲の空気温度による温度影
響を受け変形するもので、負荷状態補償用のバイ
メタルである。また、この熱電形膨張弁4は、正
逆流通式の膨張弁であり、冷媒は、ポート17か
ら流入し、弁体15と弁座16との間に形成され
る絞り部を通つてポート18から流出するよう流
れることはもちろんのこと、この逆に、ポート1
8から流入し、弁体15と弁座16との間に形成
される絞り部を通つてポート17より流出するよ
うに流れることもできる。なお、ポート17側が
高圧となり、ポート18側が低圧になつた場合に
は、冷媒の一部は、弁体15と孔26との摺動面
から空間内に流入するが、この流入した冷媒は、
通路23,24及び逆止弁25を通つてポート1
8へと流れ、空間内に溜ることはない。逆に、ポ
ート18側がポート17側より高圧になつた場合
には、逆止弁25が閉じ、空間29内に冷媒が流
入することはほとんどない。
Next, the structure of the thermoelectric expansion valve 4 will be explained with reference to FIG. 3.The thermoelectric expansion valve 4 consists of a valve portion 12 and a valve driving portion 13. The valve part 12 is the valve frame 1
4 and a valve body 15. The valve frame 14 is the valve seat part 16
an inflow/outflow port 17 through which fluid flows in and out;
18, and refrigerant pipes 19 and 20 are connected to each port 17 and 18, respectively. The valve body 15 consists of two connected upper and lower members 21 and 22, and passages 23 and 24 are formed in these members 21 and 22 to communicate the port 18 side and the inside of the valve driving portion 13. A check valve 25 is provided between the passages 23 and 24 to prevent the refrigerant from flowing from the passage 24 to the passage 23. Note that the valve body 15 is provided in a hole 26 formed in the valve frame 14 so as to be vertically slidable. On the other hand, the valve driving portion 13 forms a sealed space 29 with the upper casing 27, the lower casing 28, and the valve frame 14. Two bimetals 30 and 31 are housed in this space 29, and both bimetals 30 and 31 are arranged in parallel at both ends with spacers 32 and 33 interposed therebetween.
Then, a hole 3 is provided in the center of both bimetals 30 and 31.
4 and 35 are bored and fixed to the center of the inner surface of the upper casing 27. The support pin 36 is inserted into the hole 41 of the upper bimetal from above, and the pin portion 37 formed at the upper end of the valve body 15 is inserted into the lower bimetal. 31 hole 3
5 from below, both bimetals 30 and 31 are supported within the space 29. Note that the valve body 14 is always urged upward by a spring 39 via a washer 38. 40 is an electric heater that forcibly heats the upper bimetal 30, and is wound around the upper bimetal 30. The upper bimetal 30 normally maintains the valve portion 12 in a substantially fully open state, and when heated by the electric heater 40, bends and acts to narrow the valve portion 12. Terminals 41 and 42 are connected to both ends of the electric heater 40 and are provided through the upper casing 27. Furthermore, the bimetal 30 is forcibly heated by the electric heater 40, so that
Both ends are deformed so as to move downward (in the direction of arrow A in the figure). Therefore, when the electric heater 40 is energized, the upper bimetal 30 deforms and pushes the valve body 15 upward against the elastic force of the spring 39, reducing the gap between the valve seat 16 and the lower end of the valve body 15. . In other words, it acts in a direction to throttle the valve. The degree of aperture of the valve in this case is adjusted by the amount of power supplied to the electric heater 40. That is, when a large amount of electric power is passed through the upper bimetal 30, the upper bimetal 30 is greatly deformed and curved, and the degree of restriction of the valve increases. In other words, the opening degree becomes smaller. Conversely, when the electric power to the electric heater 40 is small, the amount of deformation of the upper bimetal 30 is small;
The degree of restriction of the valve is small. In addition, the lower bimetal 31
is a bimetal for load condition compensation, and deforms under the influence of the refrigerant flowing into the space 29 from the sliding surface between the hole 26 and the valve body 15 and the temperature of the surrounding air. The thermoelectric expansion valve 4 is a forward and reverse flow type expansion valve, and the refrigerant flows into the port 17 through the port 17 and passes through the constriction formed between the valve body 15 and the valve seat 16. Of course, it flows out from port 1, and vice versa.
It is also possible for the liquid to flow in from port 8 and flow out through port 17 through a constriction formed between valve body 15 and valve seat 16 . Note that when the pressure on the port 17 side becomes high and the pressure on the port 18 side becomes low, a part of the refrigerant flows into the space from the sliding surface between the valve body 15 and the hole 26, but this flowed refrigerant
Port 1 through passages 23, 24 and check valve 25
It flows to 8 and does not accumulate in the space. Conversely, when the pressure on the port 18 side becomes higher than that on the port 17 side, the check valve 25 closes and almost no refrigerant flows into the space 29.

以上の構造において、次に動作の説明をする。
まず、冷房運転について説明する。冷暖切換え弁
2を図の状態にして圧縮機1を運転すると冷媒は
第2図中の実線矢印で示すごとく流れ、圧縮機1
から吐出された高温高圧ガス冷媒は冷暖切換え弁
2を通り室外熱交換器3にて冷却され、更に熱電
形膨張弁4で減圧されて室内熱交換器5に流入す
る。
Next, the operation of the above structure will be explained.
First, cooling operation will be explained. When the compressor 1 is operated with the cooling/heating switching valve 2 in the state shown in the figure, the refrigerant flows as shown by the solid arrow in Figure 2, and the compressor 1
The high-temperature, high-pressure gas refrigerant discharged from the cooling/heating switching valve 2 is cooled by the outdoor heat exchanger 3, further depressurized by the thermoelectric expansion valve 4, and flows into the indoor heat exchanger 5.

この室内熱交換器5で加熱され低圧ガス冷媒と
なり冷暖切換え弁2を通り受液器6を介して圧縮
機1に吸入される。
It is heated in the indoor heat exchanger 5 and becomes a low-pressure gas refrigerant, which passes through the cooling/heating switching valve 2 and is sucked into the compressor 1 via the liquid receiver 6.

上記の冷媒回路が運転されると室内熱交換器5
に取り付けたサーミスタ9及び吸入管7に取り付
けたサーミスタ10は各々の取り付け位置におけ
る冷媒温度に相当する電気抵抗値を示す。
When the above refrigerant circuit is operated, the indoor heat exchanger 5
The thermistor 9 attached to the suction pipe 7 and the thermistor 10 attached to the suction pipe 7 exhibit electrical resistance values corresponding to the refrigerant temperature at their respective attachment positions.

この二つのサーミスタ9,10の電気抵抗値差
と予じめ定めておいた値との差を制御装置11が
検出して、その検出した差に応じた電圧を熱電形
膨張弁4の電気ヒータ40に印加する。
The control device 11 detects the difference between the electric resistance values of the two thermistors 9 and 10 and a predetermined value, and applies a voltage corresponding to the detected difference to the electric heater of the thermoelectric expansion valve 4. 40.

つまり、二つのサーミスタ9,10の電気抵抗
値の差が予め定めておいた値よりも小さい場合は
熱電形膨張弁4の電気ヒータ40に印加する電圧
を大きくし、電気ヒータ40の加熱量を大きくす
ることにより弁体16を下方に移動させ弁開度を
小さくすることにより冷媒流量を小さくする。こ
の動作によりサーミスタ10の冷媒温度が上昇
し、両サーミスタ9,10の電気抵抗値差が大き
くなる。両サーミスタ9,10の電気抵抗値の差
が予め定められた値よりも大きい場合は逆に電気
ヒータ40への印加電圧を下げることによつて、
弁体15を上方に移動させ開度を大きくすること
により冷媒流量を大きくする。この動作によりサ
ーミスタ10の冷媒温度は下降し、両サーミスタ
9,10の電気抵抗値差を小さくする。
In other words, if the difference between the electrical resistance values of the two thermistors 9 and 10 is smaller than a predetermined value, the voltage applied to the electric heater 40 of the thermoelectric expansion valve 4 is increased, and the amount of heating by the electric heater 40 is increased. By increasing the size, the valve body 16 is moved downward and the valve opening is decreased, thereby reducing the refrigerant flow rate. This operation causes the temperature of the refrigerant in the thermistor 10 to rise, and the difference in electrical resistance between the thermistors 9 and 10 to increase. If the difference between the electrical resistance values of both thermistors 9 and 10 is larger than a predetermined value, conversely, by lowering the voltage applied to the electric heater 40,
By moving the valve body 15 upward and increasing its opening degree, the refrigerant flow rate is increased. This operation lowers the refrigerant temperature in the thermistor 10 and reduces the difference in electrical resistance between the thermistors 9 and 10.

上記の操作を両サーミスタ9,10の電気抵抗
値が予め定めておいた値となるまで繰り返えし行
うことにより負荷の変動に対しても常に二つのサ
ーミスタ8,9の取り付け部の電気抵抗値差、つ
まり冷媒温度の差を一定に保つことができ、圧縮
機1に流入する冷媒の状態が制御できることから
より適切な冷房運転を行うことができるとともに
圧縮機1の温度面での保護を行うことができる。
サーミスタ取付け位置について第2図と第4図を
参考に説明する。第2図は前述の通りであり説明
を省略し第4図を説明する。
By repeating the above operation until the electrical resistance value of both thermistors 9 and 10 reaches a predetermined value, the electrical resistance of the mounting part of the two thermistors 8 and 9 can be maintained even when the load changes. The temperature difference, that is, the difference in refrigerant temperature, can be kept constant, and the state of the refrigerant flowing into the compressor 1 can be controlled, which allows for more appropriate cooling operation and protects the compressor 1 from a temperature standpoint. It can be carried out.
The thermistor mounting position will be explained with reference to FIGS. 2 and 4. Since FIG. 2 is as described above, the explanation will be omitted and FIG. 4 will be explained.

第4図は冷房運転時における室内熱交換器5内
の冷媒の相状態をモデル的に示したものであり、
サーミスタ9は室内熱交換器5内のガス、液混相
域の位置に取り付けられている。斜線部44は液
冷媒を表わし、45はガス冷媒を表わす。46は
室内熱交換器5の入口部で、47は同出口部であ
る。
FIG. 4 is a model showing the phase state of the refrigerant in the indoor heat exchanger 5 during cooling operation.
The thermistor 9 is installed in the indoor heat exchanger 5 at a position in the gas/liquid multiphase region. The shaded area 44 represents liquid refrigerant, and 45 represents gas refrigerant. 46 is an inlet portion of the indoor heat exchanger 5, and 47 is an outlet portion thereof.

冷房運転時において、熱電膨張弁4を出た液割
合の多い混相冷媒は第4図において矢印の方向に
流れ室内熱交換器5の入口部46から流入し、次
第に加熱されてガス割合いの多い混相冷媒となり
位置43で全てガス冷媒となり更に過熱されて出
口部47から流出し冷暖切換え弁2及び受液器6
を介して圧縮機1に流入する。
During cooling operation, the multiphase refrigerant with a high liquid content that has exited the thermoelectric expansion valve 4 flows in the direction of the arrow in FIG. The refrigerant becomes a multiphase refrigerant, becomes a gas refrigerant at position 43, is further superheated, and flows out from the outlet section 47 to the cooling/heating switching valve 2 and the liquid receiver 6.
It flows into the compressor 1 via.

上記の冷凍回路が構成されると、室内熱交換器
5のサーミスタ9は取付け部の冷媒の飽和温度を
検出することができ、出口部47における冷媒の
飽和温度に近い値となり、出口部47から吸入管
7のサーミスタ10までの冷媒の流路抵抗が大き
くない場合はサーミスタ10の取付け位置におけ
る冷媒の飽和温度にも近い値を示す。このことか
らサーミスタ9,10の温度差により吸入管7で
の冷媒状態がより適格に検出されることにより、
圧縮機1に流入する冷媒の状態をより正確に制御
でき、適切な冷房運転を行うことができる。制御
も容易にできる。
When the above-mentioned refrigeration circuit is configured, the thermistor 9 of the indoor heat exchanger 5 can detect the saturation temperature of the refrigerant at the attachment part, and the value is close to the saturation temperature of the refrigerant at the outlet part 47. If the flow resistance of the refrigerant from the suction pipe 7 to the thermistor 10 is not large, the value will be close to the saturation temperature of the refrigerant at the mounting position of the thermistor 10. From this, the refrigerant state in the suction pipe 7 can be detected more accurately based on the temperature difference between the thermistors 9 and 10.
The state of the refrigerant flowing into the compressor 1 can be controlled more accurately, and appropriate cooling operation can be performed. Control is also easy.

次にサーミスタ9の取付位置について説明す
る。周知のように冷凍サイクルにおいて熱負荷が
変化する冷凍回路構成部品内における冷媒の状態
も変化する。
Next, the mounting position of the thermistor 9 will be explained. As is well known, in a refrigeration cycle, when the heat load changes, the state of the refrigerant in the refrigeration circuit components also changes.

冷房運転時における室内熱交換器5内の冷媒の
状態も変化するために、前記室内熱交換器5内で
全てガス域となる位置43も移動する。
Since the state of the refrigerant in the indoor heat exchanger 5 also changes during cooling operation, the position 43 in the indoor heat exchanger 5, which is entirely a gas region, also moves.

室内熱交換器5のサーミスタ9の取り付け位置
を前記熱交換器5において、冷房運転全範囲で、
常にガス液混相域でかつガス単相域に近い位置
(例えば、最大負荷時で設定される位置)とする
と、この位置においては、冷媒は広範囲の熱負荷
の変動が起きても常にガス,液混相域であり相と
して一定しており、常にその位置での冷媒の飽和
温度を検出することができる。従つてこの室内熱
交換器5のサーミスタ9と吸入管7のサーミスタ
10とによつて圧縮機1へ流入する冷媒の状態が
常に正しく検出され、より正確に制御され、適初
な冷房運転を行なうことができる。
The mounting position of the thermistor 9 of the indoor heat exchanger 5 is set in the heat exchanger 5 throughout the cooling operation range,
If the position is always in the gas-liquid multiphase region and close to the gas single-phase region (for example, the position set at maximum load), the refrigerant will always be in the gas-liquid state even if the heat load fluctuates over a wide range. It is a multiphase region and the phases are constant, so the saturation temperature of the refrigerant at that position can always be detected. Therefore, the state of the refrigerant flowing into the compressor 1 is always correctly detected by the thermistor 9 of the indoor heat exchanger 5 and the thermistor 10 of the suction pipe 7, and is controlled more accurately to perform the appropriate cooling operation. be able to.

前記サーミスタ9を出口部47付近に設ける
と、熱負荷の変動によつて、サーミスタ9はガ
ス,液混相域の温度を検出したり、ガス域を検出
したりすることとなり、検出する相が一定せず、
吸入管7に設けたサーミスタ10との温度関係だ
けでは吸入管7の冷媒の状態を適格に検出するこ
とができなくなる場合が生ずる。つまり熱電形膨
張弁4の制御装置11へ誤つた情報を送ることに
より熱電形膨張弁4を誤動作させたり、その動作
が不安定になつたりして熱負荷の変動に対しての
制御範囲を著るしく限定することとなる。
If the thermistor 9 is installed near the outlet 47, the thermistor 9 will detect the temperature in the gas/liquid mixed phase region or the gas region depending on the fluctuation of the heat load, and the phase to be detected will be constant. Without,
There may be cases where the state of the refrigerant in the suction pipe 7 cannot be properly detected based only on the temperature relationship with the thermistor 10 provided in the suction pipe 7. In other words, sending incorrect information to the control device 11 of the thermoelectric expansion valve 4 may cause the thermoelectric expansion valve 4 to malfunction, or its operation may become unstable, significantly reducing the control range for thermal load fluctuations. It will be very limited.

又暖房運転において冷媒は圧縮機1,冷暖切換
え弁2,室内熱交換器5,正逆流式の熱電形膨張
弁4,室外熱交換器3,冷暖切換え弁2,受液器
6を順次第2図に示す破線矢印の方向に流れ圧縮
機に流入する。
In addition, during heating operation, the refrigerant passes through the compressor 1, the cooling/heating switching valve 2, the indoor heat exchanger 5, the forward/reverse flow type thermoelectric expansion valve 4, the outdoor heat exchanger 3, the cooling/heating switching valve 2, and the liquid receiver 6 in order. The flow enters the compressor in the direction of the dashed arrow shown in the figure.

冷媒回路における冷媒の状態及び熱電形膨張弁
4の制御については冷房運転時の説明において室
内熱交換器5を室外熱交換器3に置き換え、サー
ミスタ9をサーミスタ10に置き換えることによ
り冷房運転時と同様となり効果も同様なものとな
る。
The state of the refrigerant in the refrigerant circuit and the control of the thermoelectric expansion valve 4 are the same as in the cooling operation by replacing the indoor heat exchanger 5 with the outdoor heat exchanger 3 and replacing the thermistor 9 with the thermistor 10 in the explanation for cooling operation. The effect will be the same.

なお、熱電形膨張弁4は常開式、すなわち、電
気ヒータ40に通電させていないときには、弁部
分12を全開状態に保つようにしたものであるた
め、冷房運転の立ち上り特性がきわめて良好に保
てる。すなわち、運転開始直後においては、熱電
形膨張弁4はほぼ全開状態にあるため、室内熱交
換器に多量の冷媒が流れることとなり、立ち上り
が迅速にでき、立ち上り特性を良好に保てる。な
お、立ち上りが完了し、安定運転に達した後は、
サーミスタ8又は9と10からの信号により熱電
形膨張弁4の開動調整が負荷に応じてなされるこ
とは、すでに述べた所である。又、何らかの原因
で制御装置11が故障したような場合であつて、
これを知らずに圧縮機1を運転させたとしても熱
電形膨張弁4はほぼ全開状態にあるため、圧縮機
に悪影響を与えることはない。また圧縮機1の運
転停止と同時に電気ヒータ40への通電を断つよ
うにすることにより、熱電形膨張弁4はほぼ全開
状態になるため、冷凍回路中の高低バランスは極
めて短時間でなされ、従来のように圧縮機1の再
起動まで所定時間(通常3分)待たなくてもよく
なる。
Note that the thermoelectric expansion valve 4 is a normally open type, that is, the valve portion 12 is kept fully open when the electric heater 40 is not energized, so that the start-up characteristics of the cooling operation can be maintained very well. . That is, immediately after the start of operation, the thermoelectric expansion valve 4 is almost fully open, so a large amount of refrigerant flows into the indoor heat exchanger, allowing quick startup and maintaining good startup characteristics. In addition, after startup is completed and stable operation is reached,
As already mentioned, the opening of the thermoelectric expansion valve 4 is adjusted according to the load based on the signals from the thermistor 8 or 9 and 10. In addition, in the case where the control device 11 breaks down for some reason,
Even if the compressor 1 is operated without knowing this, since the thermoelectric expansion valve 4 is almost fully open, the compressor will not be adversely affected. In addition, by cutting off the power to the electric heater 40 at the same time as the compressor 1 stops operating, the thermoelectric expansion valve 4 is almost fully open, so the height balance in the refrigeration circuit can be achieved in an extremely short time, and compared to the conventional method. There is no need to wait for a predetermined period of time (usually 3 minutes) until the compressor 1 is restarted.

次に本発明の他の実施例について第6図を参考
に説明する。
Next, another embodiment of the present invention will be described with reference to FIG.

本実施例は先の実施例における第2図内の吸入
管7のサーミスタ10を、冷房及び暖房運転時に
各々蒸発器となる熱交換器5又は3と冷暖切換え
弁2との間に各々設けたものであり、第2図と同
じものは同一番号を付記して説明を省略する。
In this embodiment, the thermistor 10 of the suction pipe 7 in FIG. 2 in the previous embodiment is installed between the heat exchanger 5 or 3, which serves as an evaporator during cooling and heating operations, and the cooling/heating switching valve 2. Components that are the same as those in FIG. 2 are given the same numbers and their explanations are omitted.

第5図において、48は暖房運転時に蒸発器と
なる室外熱交換器3と冷暖切換え弁2との間の冷
媒回路49に設けたサーミスタであり、50は冷
房運転時に蒸発器となる室内熱交換器5と冷暖切
換え弁2の間の冷媒回路51に設けたサーミスタ
である。
In FIG. 5, 48 is a thermistor installed in the refrigerant circuit 49 between the outdoor heat exchanger 3, which serves as an evaporator during heating operation, and the cooling/heating switching valve 2, and 50 indicates an indoor heat exchanger, which serves as an evaporator during cooling operation. This is a thermistor installed in the refrigerant circuit 51 between the heating and cooling switching valve 2.

本実施例の動作は先の実施例における動作説明
中の吸入管7のサーミスタ10の代わりに、暖房
運転時にはサーミスタ50を用いて熱電形膨張弁
4を制御し、又暖房運転時にはサーミスタ49を
用いて熱電形膨張弁4を制御するようにしたもの
であり先の実施例と同様の効果を得ることができ
る。
The operation of this embodiment uses a thermistor 50 to control the thermoelectric expansion valve 4 during heating operation, and a thermistor 49 during heating operation, instead of the thermistor 10 of the suction pipe 7 explained in the previous embodiment. The thermoelectric expansion valve 4 is controlled by the thermoelectric expansion valve 4, and the same effects as in the previous embodiment can be obtained.

上記のように本発明において吸入管部に設ける
検出器の位置は蒸発器となる熱交換器と圧縮機の
間のどの位置に設けてもよい。
As described above, in the present invention, the detector provided in the suction pipe portion may be provided at any position between the heat exchanger serving as the evaporator and the compressor.

上記実施例より明らかなように本発明は圧縮機
に冷暖切換え弁を介して室外熱交換器,正逆流式
の熱電形膨張弁及び室内熱交換器を環状に連結し
て冷凍回路を形成し、前記熱電形膨張弁の制御の
ための検出器を前記室内熱交換器,前記室外熱交
換器及び圧縮機への吸入部に設けることにより、
冷暖房いずれの運転においても前記圧縮機に流入
する冷媒の制御が容易に行え、かつ適切な冷暖房
運転を行うことができるとともに前記圧縮機の温
度面での保護もできるという利点を有する。しか
も、本発明の熱電形膨張弁は、常開式であるた
め、特に冷房時の立ち上り特性が良好に保て、ま
た冷暖房時いずれの場合にも、従来の常閉式の熱
電形膨張弁を開いた場合には、運転開始直後に、
熱電形膨張弁と強制的に開放する手段を設けねば
ならなかつたが、本発明ではかかる手段は不要と
なり、立ち上り時の制御は簡単となる。さらに、
何らかの原因で熱電形膨張弁への通電回路が作動
しなくなつたとしても、熱電形膨張弁は開放状態
にあるため、圧縮機に悪影響を与えることがな
い。
As is clear from the above embodiments, the present invention forms a refrigeration circuit by connecting an outdoor heat exchanger, a forward/reverse flow type thermoelectric expansion valve, and an indoor heat exchanger to a compressor via a cooling/heating switching valve in an annular manner. By providing a detector for controlling the thermoelectric expansion valve in the indoor heat exchanger, the outdoor heat exchanger, and the suction part to the compressor,
It has the advantage that the refrigerant flowing into the compressor can be easily controlled in both cooling and heating operations, and that appropriate cooling and heating operations can be performed and the temperature of the compressor can be protected. Moreover, since the thermoelectric expansion valve of the present invention is a normally open type, it can maintain good rise characteristics especially during cooling, and can open the conventional normally closed thermoelectric expansion valve in both cases of cooling and heating. Immediately after starting operation,
Although it was necessary to provide a thermoelectric expansion valve and a means for forcibly opening the valve, the present invention eliminates the need for such means and simplifies control during startup. moreover,
Even if the current supply circuit to the thermoelectric expansion valve stops working for some reason, the thermoelectric expansion valve is in an open state, so there will be no adverse effect on the compressor.

また、室内熱交換器及び室外熱交換器に取り付
ける検出器の位置を冷房時において、常に、前記
室内熱交換器内の冷媒がガス単相域となる位置付
近で、ガス,液混相域の位置とし、暖房時におい
て、常に、前記室外熱交換器内の冷媒がガス単相
域となる位置付近で、ガス,液混相域の位置とす
ることにより、広範囲な熱負荷の変動に対しても
前記検出器の取り付け部は常にガス,液混相域と
なり安定した相の状態を検出することができる。
このことから、吸入部に設けた検出器と併用する
ことにより、吸入部の冷媒状態を常に正確に検出
することができ、広範囲な熱負荷の変動に対して
も冷凍サイクルを正確に制御し、適切な冷暖房運
転を行うことができるという利点を有する。
In addition, the position of the detector attached to the indoor heat exchanger and the outdoor heat exchanger should always be set near the position where the refrigerant in the indoor heat exchanger is in the gas single-phase region during cooling, and the position in the gas-liquid multiphase region. During heating, the refrigerant in the outdoor heat exchanger is always located near the position where it is in the gas single-phase region and in the gas-liquid multiphase region, so that the refrigerant can be maintained even against wide-ranging heat load fluctuations. The mounting part of the detector is always in a gas/liquid multiphase region, and stable phase conditions can be detected.
Therefore, by using it in conjunction with a detector installed in the suction part, the refrigerant state in the suction part can be detected accurately at all times, and the refrigeration cycle can be accurately controlled even over a wide range of heat load fluctuations. It has the advantage of being able to perform appropriate heating and cooling operations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の冷暖房装置の概略冷凍回路図、
第2図は本発明の実施例をなす冷暖房装置の概略
冷凍回路図、第3図は同冷暖房装置に用いた正逆
流式の熱電膨張弁の断面図、第4図は室内熱交換
器内の冷媒の相状態をモデル的に示した説明図、
第5図は本発明の他の実施例をなす冷暖房装置の
概略冷凍回路図である。 1…圧縮機、2…冷暖切換え弁、3…室外熱交
換器、4…熱電形膨張弁、5…室内熱交換器、
8,9,10…サーミスタ(検出器)、11…制
御装置、12…弁部分、13…弁駆動部分、15
…弁体、30…上バイメタル、40…電気ヒー
タ。
Figure 1 is a schematic refrigeration circuit diagram of a conventional heating and cooling system.
Fig. 2 is a schematic refrigeration circuit diagram of an air conditioning system according to an embodiment of the present invention, Fig. 3 is a cross-sectional view of a forward and reverse flow type thermoelectric expansion valve used in the air conditioning system, and Fig. 4 is a diagram of a refrigeration circuit in an indoor heat exchanger. An explanatory diagram showing a model of the phase state of a refrigerant,
FIG. 5 is a schematic refrigeration circuit diagram of a heating and cooling system according to another embodiment of the present invention. 1...Compressor, 2...Cooling/heating switching valve, 3...Outdoor heat exchanger, 4...Thermoelectric expansion valve, 5...Indoor heat exchanger,
8, 9, 10...Thermistor (detector), 11...Control device, 12...Valve portion, 13...Valve drive portion, 15
...Valve body, 30...Upper bimetal, 40...Electric heater.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機に冷暖切換え弁を介して室外熱交換
器、熱電形膨張弁及び室内熱交換器を環状に連結
して冷凍回路を形成し、前記熱電形膨張弁を正逆
式の弁部分と弁駆動部分とから形成し、前記弁駆
動部分には前記弁部分に設けた弁体を作動させて
弁の絞り度を変えるバイメタルとこのバイメタル
を加熱変形させる電気ヒータとを設け、冷媒状態
を検出し前記電気ヒータへの供給電力を制御する
ための信号を発する温度検出器を前記室内熱交換
器、前記室外熱交換器及び前記圧縮機への吸入部
にそれぞれ設け、さらに前記室内熱交換器の温度
検出器の取付け位置を冷房時において前記室内熱
交換器内の冷媒がガス単相域となる位置付近でガ
ス液混相域の位置とし、前記室外熱交換器の取付
け位置を暖房時において前記室外熱交換器内の冷
媒がガス単相域となる位置付近でガス液混相域の
位置としたことを特徴とする冷暖房装置。
1 A refrigeration circuit is formed by connecting an outdoor heat exchanger, a thermoelectric expansion valve, and an indoor heat exchanger to a compressor via a cooling/heating switching valve in an annular manner, and the thermoelectric expansion valve is connected to a forward/reverse valve part and a valve. The valve driving part is provided with a bimetal that operates a valve body provided in the valve part to change the degree of restriction of the valve, and an electric heater that heats and deforms this bimetal, and detects the state of the refrigerant. Temperature detectors that emit signals for controlling the power supplied to the electric heater are provided in the indoor heat exchanger, the outdoor heat exchanger, and the suction section to the compressor, respectively, and the temperature detectors are arranged to control the temperature of the indoor heat exchanger. The detector is installed at a gas-liquid multiphase region near the position where the refrigerant in the indoor heat exchanger becomes a gas single-phase region during cooling, and the outdoor heat exchanger is installed at a location near the location where the refrigerant in the indoor heat exchanger becomes a gas single-phase region during heating. A heating and cooling system characterized in that the refrigerant in the exchanger is located in a gas-liquid multiphase region near a position where the gas is in a single-phase region.
JP12713679A 1979-04-02 1979-10-01 Air conditioner Granted JPS5649867A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP12713679A JPS5649867A (en) 1979-10-01 1979-10-01 Air conditioner
AU56894/80A AU538000B2 (en) 1979-04-02 1980-03-27 Air conditioner
US06/135,930 US4375753A (en) 1979-04-02 1980-03-31 Air conditioner
DE3012686A DE3012686C2 (en) 1979-04-02 1980-04-01 Device for regulating the superheating temperature at the evaporator outlet of a reversible refrigeration machine
GB8011092A GB2046481B (en) 1979-04-02 1980-04-02 Air conditioners

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12713679A JPS5649867A (en) 1979-10-01 1979-10-01 Air conditioner

Publications (2)

Publication Number Publication Date
JPS5649867A JPS5649867A (en) 1981-05-06
JPS6323467B2 true JPS6323467B2 (en) 1988-05-17

Family

ID=14952499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12713679A Granted JPS5649867A (en) 1979-04-02 1979-10-01 Air conditioner

Country Status (1)

Country Link
JP (1) JPS5649867A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008555A (en) * 2006-06-29 2008-01-17 Fuji Electric Retail Systems Co Ltd Refrigerant flow controller
JP2008032251A (en) * 2006-07-26 2008-02-14 Fuji Electric Retail Systems Co Ltd Method and device for controlling refrigerating air-conditioning system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5995353A (en) * 1982-11-24 1984-06-01 太平洋工業株式会社 Heat pump type air-conditioning circuit
JPH0330769Y2 (en) * 1985-11-05 1991-06-28
JPS62258968A (en) * 1986-04-19 1987-11-11 ダイキン工業株式会社 Heat pump type air conditioner
DE4324959C1 (en) * 1993-07-24 1994-08-18 Giulini Chemie Use of basic aluminium sulphates as low-alkali setting accelerators for cement
ATA239993A (en) * 1993-11-26 1994-08-15 Zementwerk Leube Ges M B H CEMENT FOR PRODUCING SPRAY CONCRETE AND METHOD AND DEVICE FOR PRODUCING SPRAY CONCRETE FROM THIS CEMENT

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5491773U (en) * 1977-12-12 1979-06-28
JPS5493863U (en) * 1977-12-15 1979-07-03

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008555A (en) * 2006-06-29 2008-01-17 Fuji Electric Retail Systems Co Ltd Refrigerant flow controller
JP2008032251A (en) * 2006-07-26 2008-02-14 Fuji Electric Retail Systems Co Ltd Method and device for controlling refrigerating air-conditioning system

Also Published As

Publication number Publication date
JPS5649867A (en) 1981-05-06

Similar Documents

Publication Publication Date Title
US4688390A (en) Refrigerant control for multiple heat exchangers
US6149066A (en) Method and apparatus for controlling supplemental heat in a heat pump system
US4375753A (en) Air conditioner
JPH0728545Y2 (en) Liquid temperature controller
US3405535A (en) Temperature controlled flow control device and refrigeration system including such device
JPS6323467B2 (en)
US3113439A (en) Heat pump having outdoor temperature compensating control
JP3662238B2 (en) Cooling device and thermostatic device
US3133424A (en) Controls for heat pumps having air exposed outdoor air coils
JP4232567B2 (en) Refrigeration cycle equipment
JPS63712B2 (en)
JPS6212218Y2 (en)
JPH11148572A (en) Flow control valve
JPS6034855Y2 (en) Bypass valve for refrigeration equipment
JPS6325270B2 (en)
US3538716A (en) Heat pump system
WO2001001053A1 (en) Electro-thermal expansion valve system
JPH0325105Y2 (en)
JPH0226145B2 (en)
JPS5984052A (en) Method of controlling capability of refrigerator
JPS58129147A (en) Control method of coolant flow for heat pump type hot water supply device
JPH04190060A (en) Expansion valve for air-conditioner
JPS59180264A (en) Refrigeration cycle device
JPS5835973Y2 (en) Control device for throttle mechanism in air conditioner
JPS6124955A (en) Air conditioner