JPH0226145B2 - - Google Patents

Info

Publication number
JPH0226145B2
JPH0226145B2 JP1912383A JP1912383A JPH0226145B2 JP H0226145 B2 JPH0226145 B2 JP H0226145B2 JP 1912383 A JP1912383 A JP 1912383A JP 1912383 A JP1912383 A JP 1912383A JP H0226145 B2 JPH0226145 B2 JP H0226145B2
Authority
JP
Japan
Prior art keywords
expansion valve
electric expansion
superheat
compressor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1912383A
Other languages
Japanese (ja)
Other versions
JPS59145451A (en
Inventor
Hitoshi Iijima
Eiji Saito
Fumio Matsuoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1912383A priority Critical patent/JPS59145451A/en
Publication of JPS59145451A publication Critical patent/JPS59145451A/en
Publication of JPH0226145B2 publication Critical patent/JPH0226145B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 本発明は、冷凍サイクル装置に設けられた電気
式膨張弁の圧縮機起動時の制御に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to control of an electric expansion valve provided in a refrigeration cycle device when starting a compressor.

従来、この種の装置として、第1図に示すもの
があつた。図において、1は圧縮機、2は凝縮
器、3は感温式膨張弁で4は感温筒、5は蒸発
器、6はアキユムレータである。
Conventionally, there has been a device of this type as shown in FIG. In the figure, 1 is a compressor, 2 is a condenser, 3 is a temperature-sensitive expansion valve, 4 is a temperature-sensitive tube, 5 is an evaporator, and 6 is an accumulator.

次に動作について説明する。圧縮機1が起動す
ると、圧縮機1で高温高圧に圧縮された冷媒は、
凝縮器2に流入し熱交換するが圧力がまだ十分に
高くないため、十分に液化されず、液とガスの混
合した二相状態となつて、膨張弁3に流入する。
従つて冷媒が二相状態であることと、この種の膨
張弁は弁リフトが0.2mm〜0.3mm程度と小さいこと
から膨張弁を通過する冷媒量は極端に減少し、低
圧側圧力が低下する結果となつて、圧縮機1入口
冷媒の比容積が大きくなり冷媒押しのけ量が減る
ため、安定状態に到達するまで相当時間を要する
とともに、高圧側の温度条件の低い場合は低圧カ
ツトが働き運転ができなくなる欠点があつた。
Next, the operation will be explained. When the compressor 1 starts, the refrigerant compressed to high temperature and high pressure by the compressor 1 is
It flows into the condenser 2 and exchanges heat, but since the pressure is not yet high enough, it is not sufficiently liquefied, and flows into the expansion valve 3 as a two-phase mixture of liquid and gas.
Therefore, since the refrigerant is in a two-phase state and this type of expansion valve has a small valve lift of about 0.2 mm to 0.3 mm, the amount of refrigerant passing through the expansion valve is extremely reduced, and the pressure on the low pressure side is reduced. As a result, the specific volume of the refrigerant at the inlet of the compressor 1 increases and the amount of refrigerant displaced decreases, so it takes a considerable amount of time to reach a stable state, and if the temperature condition on the high pressure side is low, the low pressure cut works and operation is interrupted. There was a flaw that made it impossible to do it.

この発明は、上記のような従来のものの欠点を
除去するためになされたもので、圧縮機起動時
に、スーパーヒート量を検知してそのスーパーヒ
ート量がピーク値を越えるまで電気式膨張弁の開
度を全開で保持するとともに、定常運転時の弁開
度を上記検知されたスーパーヒート量に基づいて
制御することにより、起動時の低圧側圧力をあま
り低下させず、早く定常状態にすることができ、
かつ起動時のスーパーヒート量を小さく抑えるこ
とができる冷凍サイクル装置を提供することを目
的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and when the compressor is started, the amount of superheat is detected and the electric expansion valve is opened until the amount of superheat exceeds the peak value. By keeping the valve opening fully open and controlling the valve opening during steady operation based on the detected amount of superheat, it is possible to quickly reach a steady state without lowering the low pressure side pressure at startup. I can,
Another object of the present invention is to provide a refrigeration cycle device that can suppress the amount of superheat at startup.

以下、この発明の一実施例を図について説明す
る。第2図において、7は電気式膨張弁、8は上
記電気式膨張弁7の両側より、アキユムレータ6
の入口にバイパスするバイパス路で、中途に減圧
機構9として毛細管が設けられている。10はバ
イパス路8出口に設けられた第1の温度センサ
ー、11はアキユムレータ6入口側(バイパス接
続部より蒸発器側)に設けられた第2の温度セン
サー、12は、第1及び第2の温度センサー1
0,11と圧縮機1の発停を検知するリレー(図
示せず)が接続され電気式膨張弁7を制御する制
御器、13はリード線である。他は第1図に示す
従来の装置と同様な構成である。第3図は電気式
膨張弁7の構造を示すもので、31は電磁コイ
ル、32はプランジヤー、33はシリンダーでス
リツト34が設けられている。35はピストン、
36,37はバネ、38,39は冷媒管で、リー
ド線13に制御器12から電流が入力されると、
電磁コイル31に通電電流に比例してプランジヤ
ー32を矢印方向に引く力が発生し、バネ36,
37との力関係によりバランスした位置で停止す
る。従つて通電電流を増加するほどプランジヤー
32、ピストン35の停止位置も矢印方向に移動
し、シリンダ33に設けられたスリツト34の開
口面積が増加する。第6図は、圧縮機起動時か
ら、電気式膨張弁7の弁開度を全開に保持したと
きの経過時間tに対するスーパーヒート量Shの
変化を示す特性図であり、スーパーヒート量Sh
は圧縮機起動時から立ち上がつてピーク値に至
り、その後低下して定常状態に移行していく。ま
た第4図は、圧縮機起動時から電気式膨張弁7の
弁開度を全開に保持した時に第6図に示したよう
に変化するスーパーヒート量Shにおけるピーク
値が、圧縮機1の回転周波数できまる定常運転時
の冷媒流量Gによつて変化する様子を示す特性図
であり、圧縮機の回転周波数が高く定常時の流量
Gが多ければ、スーパーヒート量のピーク値も大
きくなることを示す。さらに、第5図は定常時の
冷媒流量Gと電気式膨張弁7の定常運転時の最適
弁開度Xと相関関係を示すものである。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 2, 7 is an electric expansion valve, and 8 is an accumulator 6 from both sides of the electric expansion valve 7.
A capillary tube is provided as a pressure reducing mechanism 9 in the middle of the bypass path that bypasses the inlet of the pump. 10 is a first temperature sensor provided at the exit of the bypass path 8; 11 is a second temperature sensor provided on the inlet side of the accumulator 6 (on the evaporator side from the bypass connection); 12 is a first and second temperature sensor provided Temperature sensor 1
0 and 11 are connected to a relay (not shown) for detecting start/stop of the compressor 1, and a controller for controlling the electric expansion valve 7; 13 is a lead wire. The rest of the configuration is similar to that of the conventional device shown in FIG. FIG. 3 shows the structure of the electric expansion valve 7, which includes an electromagnetic coil 31, a plunger 32, a cylinder 33, and a slit 34. 35 is a piston,
36 and 37 are springs, 38 and 39 are refrigerant pipes, and when a current is input from the controller 12 to the lead wire 13,
A force that pulls the plunger 32 in the direction of the arrow is generated in the electromagnetic coil 31 in proportion to the current flowing, and the spring 36,
It stops at a balanced position due to the force relationship with 37. Therefore, as the applied current increases, the stopping positions of the plunger 32 and the piston 35 also move in the direction of the arrow, and the opening area of the slit 34 provided in the cylinder 33 increases. FIG. 6 is a characteristic diagram showing the change in the amount of superheat Sh with respect to the elapsed time t when the valve opening degree of the electric expansion valve 7 is kept fully open from the start of the compressor.
rises from the start of the compressor, reaches a peak value, and then decreases to a steady state. Furthermore, FIG. 4 shows that the peak value of the superheat amount Sh that changes as shown in FIG. 6 when the electric expansion valve 7 is kept fully open from the start of the compressor is This is a characteristic diagram showing how the refrigerant flow rate G during steady operation, which is determined by the frequency, changes depending on the refrigerant flow rate. show. Furthermore, FIG. 5 shows the correlation between the refrigerant flow rate G during steady state and the optimum valve opening X during steady operation of the electric expansion valve 7.

まず定常運転時の動作について説明する。圧縮
機1で高温高圧になつた冷媒蒸気は、凝縮機2で
熱交換され液となつて膨張弁7に流入する。そし
て膨張弁7で減圧され、低温低圧となつて蒸発器
5で熱交換され過熱蒸気となつてアキユムレータ
6を通り圧縮機1に戻る循環サイクルを形成す
る。一方電気式膨張弁7の両側からアキユムレー
タ6入口にバイパスするバイパス路8を通過する
冷媒は、凝縮器2側に接続された方が圧力が高い
ために、一部は電気式膨張弁7流出側(蒸発器5
側)へバイパスし、また一部は、毛細管9よりア
キユムレータ6入口圧力まで減圧され二相状態と
なつて、蒸発器5を出た加熱蒸気と混合しアキユ
ムレータ6を通り圧縮機1に戻る。従つてバイパ
ス路8の圧力はアキユムレータ6入口冷媒圧力と
等しい圧力となつているので、この部分の温度は
アキユムレータ6入口圧力の飽和温度となる。従
つて、第1の温度センサー10をこの飽和温度の
冷媒が流れるバイパス路出口付近に、また第2の
温度センサー11を蒸発器5から過熱蒸気が送ら
れてくるアキユムレータ6入口側に設けているの
で両温度センサー10,11の検出値の差よりア
キユムレータ6入口における冷媒の正確なスーパ
ーヒート量が制御器12で演算できる。そしてこ
のスーパーヒート量から電気式膨張弁7を最適な
弁開度に調節する電流を出力し所定のスーパーヒ
ート量に制御する。
First, the operation during steady operation will be explained. Refrigerant vapor that has become high temperature and high pressure in the compressor 1 undergoes heat exchange in the condenser 2, becomes liquid, and flows into the expansion valve 7. Then, it is depressurized by the expansion valve 7, becomes low temperature and low pressure, undergoes heat exchange in the evaporator 5, becomes superheated steam, and returns to the compressor 1 through the accumulator 6, forming a circulation cycle. On the other hand, the refrigerant passing through the bypass passage 8 that bypasses the inlet of the accumulator 6 from both sides of the electric expansion valve 7 has a higher pressure when connected to the condenser 2 side. (Evaporator 5
A part of the vapor is depressurized through the capillary tube 9 to the inlet pressure of the accumulator 6, becomes a two-phase state, mixes with the heated steam exiting the evaporator 5, and returns to the compressor 1 through the accumulator 6. Therefore, since the pressure in the bypass passage 8 is equal to the refrigerant pressure at the inlet of the accumulator 6, the temperature in this portion becomes the saturation temperature of the inlet pressure of the accumulator 6. Therefore, the first temperature sensor 10 is provided near the exit of the bypass path through which the refrigerant at the saturated temperature flows, and the second temperature sensor 11 is provided near the inlet of the accumulator 6 where superheated steam is sent from the evaporator 5. Therefore, the accurate superheat amount of the refrigerant at the inlet of the accumulator 6 can be calculated by the controller 12 from the difference between the detected values of both temperature sensors 10 and 11. Then, from this amount of superheat, a current is outputted to adjust the electric expansion valve 7 to the optimum valve opening degree, thereby controlling the amount of superheat to a predetermined amount.

次に圧縮機1の起動時について説明する。起動
時に電気式膨張弁7の弁開度を全開に保持した場
合、第4図に示すように、安定時冷媒流量の大き
い時、起動時のスーパーヒートshが大きくなる。
そしてまた安定時の弁開度は第5図に示すよう
に、流量Gが大きいときほど弁開度xを大きくす
る必要がある。従つてスーパーヒートのピークsh
が大きいときは安定時の弁開度も大きくすること
がわかる。圧縮機1が起動されると、圧縮機1の
発停を検知するリレーが働き、制御器12は電気
式膨張弁7に大電流を通じ弁開度を全開にする。
温度センサー10,11により検知されるアキユ
ムレータ6入口側のスーパーヒートは、停止時に
蒸発器5中に溜まつていた冷媒が圧縮機1側に戻
るため、この液がもどつている間、スーパーヒー
トゼロという検出値になる。そして一方、圧縮機
1を出た冷媒は、凝縮器2で熱交換されるが十分
高くないため完全に液化せず二相状態となつて電
気式膨張弁7に流入するが弁開度が全開とされて
いるため極端に流量が減少することがない。従つ
て低圧側の圧力低下も少なく、早く安定した運転
にすることができる。また、低圧側の圧力低下に
ともないスーパーヒートの値が増加するが、上記
のように低圧側の圧力低下が抑えられることから
スーパーヒートのピーク値も従来のような感温式
膨張弁にくらべ小さくすることができる。起動時
よりスーパーヒート量が上昇し、定常運転時のス
ーパーヒート量になつても電気式膨張弁7の弁開
度は制御せずピークになるまで全開にしておく。
このスーパーヒートのピーク値は、例えば温度セ
ンサー10,11の検出温度の差からスーパーヒ
ート量を求め、第6図のようなスーパーヒート量
の変化からスーパーヒート量が上昇傾向から下降
傾向へ移る点を制御器12内の演算により検出す
ることで容易に求められる。温度センサー10,
11で検出したスーパーヒートがピークになる
と、このピーク値より第4図、第5図の関係を用
いて安定時の弁開度を制御器12で演算し、制御
器12より安定時の弁開度となる電流値を電気式
膨張弁7に出力するので早く安定した運転とな
り、起動時の立上りが早く、高効率な運転ができ
るものである。
Next, the startup of the compressor 1 will be explained. When the electric expansion valve 7 is kept fully open during startup, as shown in FIG. 4, when the stable refrigerant flow rate is large, the superheat sh at startup becomes large.
Furthermore, as shown in FIG. 5, the valve opening degree x in a stable state must be increased as the flow rate G becomes larger. Therefore, the peak of superheat sh
It can be seen that when the value is large, the valve opening degree when stable is also increased. When the compressor 1 is started, a relay that detects whether the compressor 1 starts or stops operates, and the controller 12 applies a large current to the electric expansion valve 7 to fully open the valve.
The superheat on the inlet side of the accumulator 6 detected by the temperature sensors 10 and 11 is reduced to zero because the refrigerant accumulated in the evaporator 5 returns to the compressor 1 side when the evaporator 5 is stopped. This is the detected value. On the other hand, the refrigerant that exits the compressor 1 undergoes heat exchange in the condenser 2, but because the temperature is not high enough, it does not completely liquefy and enters the electric expansion valve 7 in a two-phase state, but the valve opening is fully opened. Therefore, the flow rate will not decrease drastically. Therefore, there is little pressure drop on the low pressure side, and stable operation can be achieved quickly. In addition, the superheat value increases as the pressure decreases on the low pressure side, but as the pressure drop on the low pressure side is suppressed as mentioned above, the peak value of superheat is also smaller than with conventional temperature-sensitive expansion valves. can do. Even when the amount of superheat increases from the time of startup and reaches the amount of superheat during steady operation, the opening degree of the electric expansion valve 7 is not controlled and is kept fully open until it reaches its peak.
The peak value of this superheat is determined by determining the amount of superheat from the difference in temperature detected by the temperature sensors 10 and 11, for example, and determining the point at which the amount of superheat changes from an upward trend to a downward trend based on a change in the amount of superheat as shown in FIG. can be easily obtained by detecting it by calculation in the controller 12. temperature sensor 10,
When the superheat detected in step 11 reaches its peak, the controller 12 calculates the valve opening at a stable time based on this peak value using the relationships shown in Figures 4 and 5. Since the electric current value corresponding to the current value is outputted to the electric expansion valve 7, stable operation can be achieved quickly, and the start-up is quick and highly efficient operation can be achieved.

尚上記実施例では起動時のスーパーヒートがピ
ークになつたらすぐに安定時の弁開度となる電流
値を電気式膨張弁7に出力するものについて述べ
たが、起動時よりスーパーヒートのピークまでの
時間と同等の時間をもたせ除々に安定時の弁開度
となる電流値を電気式膨張弁7に出力するもので
あつても良い。更に、温度センサー11の位置を
圧縮機吸入付近の配管の温度を検出する位置に設
けてもよい。
In the above embodiment, the current value that corresponds to the valve opening at a stable state is output to the electric expansion valve 7 as soon as the superheat reaches its peak at startup. It is also possible to output a current value to the electric expansion valve 7 that gradually becomes a stable valve opening after a period of time equivalent to that of . Furthermore, the temperature sensor 11 may be located at a position that detects the temperature of the piping near the compressor suction.

以上のようにこの発明によれば、圧縮機起動
時、膨張弁の弁開度をスーパーヒートのピークま
で全開で保持し、このピーク値より安定時の弁開
度を制御器により演算して設定するため、起動時
の低圧の低下が小さく抑えられ、スーパーヒート
のピーク値じたいも小さくでき、安定した定常運
転時の弁開度に早く出来るため立上りが早く、高
効率な運転ができる効果がある。
As described above, according to the present invention, when the compressor is started, the valve opening of the expansion valve is kept fully open until the peak of superheat, and the controller calculates and sets the valve opening when stable from this peak value. As a result, the drop in low pressure at startup can be kept small, the peak value of superheat can also be reduced, and the valve opening can be quickly reached during stable steady-state operation, resulting in faster start-up and highly efficient operation. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の冷凍サイクル装置の冷媒回路
図、第2図はこの発明の一実施例を示す冷凍サイ
クル装置の冷媒回路図、第3図は電気式膨張弁の
構造断面図、第4図は圧縮機起動時電気式膨張弁
を全開にしたときのスーパーヒートshのピーク値
と安定時の冷媒流量Gとの関係を示す特性図、第
5図は安定時の冷媒流量Gと電気式膨張弁の弁開
度xとの関係を示す特性図、第6図は圧縮機起動
時電気式膨張弁を全開にしたときの時間経過に対
するスーパーヒート量の変化を示す特性図であ
る。 図中の同一符号は同一または相当部分を示し1
は圧縮機、2は凝縮器、3は感温式膨張弁、5は
蒸発器、6はアキユムレータ、7は電気式膨張
弁、8はバイパス路、9は毛細管、10,11は
温度センサー、12は制御器である。
Fig. 1 is a refrigerant circuit diagram of a conventional refrigeration cycle device, Fig. 2 is a refrigerant circuit diagram of a refrigeration cycle device showing an embodiment of the present invention, Fig. 3 is a structural sectional view of an electric expansion valve, and Fig. 4 Figure 5 is a characteristic diagram showing the relationship between the peak value of superheat sh when the electric expansion valve is fully opened when starting the compressor and the refrigerant flow rate G at a stable time, and Figure 5 shows the relationship between the refrigerant flow rate G and the electric expansion at a stable time. FIG. 6 is a characteristic diagram showing the relationship with the valve opening x of the valve. FIG. 6 is a characteristic diagram showing the change in the amount of superheat over time when the electric expansion valve is fully opened at the time of starting the compressor. The same reference numerals in the figures indicate the same or corresponding parts.1
is a compressor, 2 is a condenser, 3 is a temperature-sensitive expansion valve, 5 is an evaporator, 6 is an accumulator, 7 is an electric expansion valve, 8 is a bypass path, 9 is a capillary tube, 10 and 11 are temperature sensors, 12 is the controller.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機、凝縮器、電気式膨張弁、蒸発器、ア
キユムレータを順次接続してなる冷凍サイクル装
置において、上記電気式膨張弁の両側より上記ア
キユムレータ入口に接続されかつ中途に減圧機構
が設けられたバイパス路、このバイパス路の出口
温度を検知する第1の温度センサー、上記アキユ
ムレータ入口温度を検知する第2の温度センサ
ー、上記第1、第2の温度センサーの検出値の差
から上記アキユムレータ入口におけるスーパーヒ
ート量を演算し、上記圧縮機起動時からこのスー
パーヒート量がピーク値を越えるまでの間上記電
気式膨張弁の開度を全開とするとともに、上記演
算されたスーパーヒート量に基づき定常運転時の
上記電気式膨張弁の開度制御を行う制御器を備え
てなることを特徴とする冷凍サイクル装置。
1. In a refrigeration cycle device in which a compressor, a condenser, an electric expansion valve, an evaporator, and an accumulator are connected in sequence, the electric expansion valve is connected to the inlet of the accumulator from both sides, and a pressure reducing mechanism is provided in the middle. a bypass path, a first temperature sensor that detects the exit temperature of the bypass path, a second temperature sensor that detects the temperature at the inlet of the accumulator, and a temperature difference between the detected values of the first and second temperature sensors at the inlet of the accumulator. The amount of superheat is calculated, and the opening degree of the electric expansion valve is kept fully open from the time the compressor is started until the amount of superheat exceeds the peak value, and steady operation is performed based on the amount of superheat calculated above. A refrigeration cycle device comprising: a controller that controls the opening degree of the electric expansion valve when the electric expansion valve is opened.
JP1912383A 1983-02-08 1983-02-08 Refrigeration cycle device Granted JPS59145451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1912383A JPS59145451A (en) 1983-02-08 1983-02-08 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1912383A JPS59145451A (en) 1983-02-08 1983-02-08 Refrigeration cycle device

Publications (2)

Publication Number Publication Date
JPS59145451A JPS59145451A (en) 1984-08-20
JPH0226145B2 true JPH0226145B2 (en) 1990-06-07

Family

ID=11990685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1912383A Granted JPS59145451A (en) 1983-02-08 1983-02-08 Refrigeration cycle device

Country Status (1)

Country Link
JP (1) JPS59145451A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0830625B2 (en) * 1986-12-08 1996-03-27 松下冷機株式会社 Air conditioner
JP6109205B2 (en) * 2013-01-31 2017-04-05 三菱電機株式会社 Refrigeration cycle apparatus and control method of refrigeration cycle apparatus
JP6415612B2 (en) * 2017-02-01 2018-10-31 三菱電機株式会社 Refrigeration cycle equipment

Also Published As

Publication number Publication date
JPS59145451A (en) 1984-08-20

Similar Documents

Publication Publication Date Title
JPH09178274A (en) Refrigerating system
JPH062926A (en) Operation controller for air conditioner
GB2257244A (en) Air conditioner safety shutdown
JPH06101912A (en) Refrigerating cycle
JPH04295566A (en) Engine-driven air-conditioning machine
JPH04222353A (en) Operation controller for air conditioner
JPH0226145B2 (en)
JP3218419B2 (en) Air conditioner
JPH04340046A (en) Operation control device of air conditioner
JP3257044B2 (en) Injection type refrigeration equipment
JPH04222341A (en) Operation controller for air conditioner
JPS59180264A (en) Refrigeration cycle device
JP2002364937A (en) Refrigerator
KR880000935B1 (en) Control device for refrigeration cycle
EP0077414A1 (en) Air temperature conditioning system
JP3395449B2 (en) Air conditioner
JPH05248716A (en) Operation control device for air conditioner
JPH0518615A (en) Refrigerator
JPH06194008A (en) Discharge superheat degree control valve
JP2503785B2 (en) Operation control device for air conditioner
JP2001091064A (en) Refrigeration system
JPH0772648B2 (en) Refrigerant flow control method
JPS59145452A (en) Refrigeration cycle device
JPS59183255A (en) Air conditioner
JPH0135261B2 (en)