JPS59145451A - Refrigeration cycle device - Google Patents

Refrigeration cycle device

Info

Publication number
JPS59145451A
JPS59145451A JP1912383A JP1912383A JPS59145451A JP S59145451 A JPS59145451 A JP S59145451A JP 1912383 A JP1912383 A JP 1912383A JP 1912383 A JP1912383 A JP 1912383A JP S59145451 A JPS59145451 A JP S59145451A
Authority
JP
Japan
Prior art keywords
expansion valve
compressor
accumulator
inlet
electric expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1912383A
Other languages
Japanese (ja)
Other versions
JPH0226145B2 (en
Inventor
等 飯島
斎藤 英二
文雄 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1912383A priority Critical patent/JPS59145451A/en
Publication of JPS59145451A publication Critical patent/JPS59145451A/en
Publication of JPH0226145B2 publication Critical patent/JPH0226145B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、冷凍サイクル装置に設けられた電気式膨張弁
の圧縮機起動時の制御に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to control of an electric expansion valve provided in a refrigeration cycle device when starting a compressor.

従来、この種の装置として、第1図に示すものがあった
0図において、(1)は圧縮機、(2)は凝縮器。
Conventionally, there was a device of this type as shown in FIG. 1. In FIG. 0, (1) is a compressor, and (2) is a condenser.

(3)は感温式膨張弁で(4)は感温筒、(5)は蒸発
器、(6)はアキュムレータである。
(3) is a temperature-sensitive expansion valve, (4) is a temperature-sensitive cylinder, (5) is an evaporator, and (6) is an accumulator.

次に動作について説明する。圧縮機+11が起動すると
、圧縮機(1)で高温高圧に圧縮された冷媒は。
Next, the operation will be explained. When compressor +11 starts, the refrigerant compressed to high temperature and pressure by compressor (1).

凝縮器(2)に流入し熱交換するが圧力がまだ十分に高
くないため、十分に液化されず、液とガスの混合した二
相状態となって、膨張弁(3)K流入する。
It flows into the condenser (2) and exchanges heat, but since the pressure is not yet high enough, it is not sufficiently liquefied and becomes a two-phase mixture of liquid and gas, which flows into the expansion valve (3)K.

従って冷媒が二相状態であることと、この種の膨張弁は
弁リフトがα2■〜0.3−程度と小さいことから膨張
弁を通過する冷媒量は極端に減少し、低圧側圧力の低下
とスーパーヒートの増大する結果となって、圧縮機+1
1人口冷媒の比容積が大きくなシ冷媒押しのけ量が減る
ため、安定状態に到達するまで相当時間を要するととも
に、高圧側の温度条件の低い場合は低圧カットが働き運
転ができなくなる欠点があった。
Therefore, since the refrigerant is in a two-phase state and this type of expansion valve has a small valve lift of approximately α2~0.3-, the amount of refrigerant passing through the expansion valve is extremely reduced, resulting in a decrease in the pressure on the low pressure side. As a result, the superheat increases, and the compressor increases by +1.
1 Since the specific volume of the artificial refrigerant is large, the amount of refrigerant displacement is reduced, so it takes a considerable amount of time to reach a stable state, and if the temperature condition on the high pressure side is low, the low pressure cut occurs and operation becomes impossible. .

この発明は、上記のような従来のものの欠点を除去する
ためになされたもので、圧縮機起動時に電気式膨張弁の
開度をスーパーヒートのピークを越えるまで全開で保持
し、かつ次の弁開度をこのピーク値によシ設定すること
によシア起動時のスーパーヒートを小さく、かつ低圧圧
力をあまシ低下させずに安定状態にすることができる冷
凍サイクル装置を提供することを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and when the compressor is started, the electric expansion valve is kept fully open until the peak of superheat is exceeded, and the next valve is opened. The purpose of the present invention is to provide a refrigeration cycle device that can reduce the superheat at the time of shear startup and achieve a stable state without significantly reducing the low pressure by setting the opening degree to this peak value. There is.

以下、この発明の一実施例を図について説明する。第2
図において、(7)は電気式膨張弁、(8)は上記電気
式膨張弁(7)の両側よシアアキエムレータ(6)の入
口にバイパスするバイパス路で、中途に減圧機構(9)
として毛細管が設けられている。 Qlはバイパス路出
口に設けられた第1の温度センサー、 (10はアキエ
ムレータ(6)入口側(バイパス接続部よシ蒸発器側)
に設けられた第2の温度センサー、 63は、第1及び
第2の温度センサーα1α0と圧縮機(1)の発停を横
細するリレー(図示せず)が接続され(5) 電気式膨張弁(7)を制御する制御器、 +11はリー
ド線である。他は第1図に示す従来の装置と同様な構成
である。第3図は電気式膨張弁(7)の構造を示すもの
で、 Ollは電磁コイル、(至)はプランジャー、&
lはシリンダーでスリット(ロ)が設けられている。(
至)はピストン、0unはバネ、(至)(至)は冷媒管
で、リード線(Ilに制御器02から電流が入力される
と、電磁コイルC(I)に通電電流に比例してプランジ
ャー(イ)を矢印方向に引く力が発生し、バネ(至)0
71との力関係によりバランスした位置で停止する。従
って通電電流を増加するほどプランジャー(イ)、ピス
トン(至)の停止位ft、矢印方向に移動し、シリンダ
(至)に設けられたスリット(財)の開口面積が増加す
る。また第4図は、圧縮機起動時に電気式膨張弁(7)
の弁開度を全開に保持した時の起動時のスーパーヒート
shのピークと安定時の冷媒流量Gとの相関関係を示し
、第5図は、安定時の冷媒流量Gと電気式膨張弁(7)
の弁開vxとの相関関係を示すものであるまず定常運転
時の動作について説明する。圧縮機filで高温高圧に
なった冷媒蒸気は、凝縮器(2)で(4) 熱交換され液となって膨張弁(7)に流入する。そして
膨張弁+71で減圧され、低温低圧となって蒸発器(5
)で熱交換され過熱蒸気となってアキュムレータ(6)
を通り圧縮機(1)に戻る循環サイクルを形成する。
An embodiment of the present invention will be described below with reference to the drawings. Second
In the figure, (7) is an electric expansion valve, and (8) is a bypass path that bypasses both sides of the electric expansion valve (7) to the inlet of the shear achievator (6).
A capillary tube is provided as a. Ql is the first temperature sensor installed at the exit of the bypass path, (10 is the Achiemulator (6) inlet side (bypass connection part and evaporator side)
The second temperature sensor 63 provided in the first and second temperature sensors α1α0 and a relay (not shown) for starting and stopping the compressor (1) are connected to the electric expansion (5). A controller that controls the valve (7), +11 is a lead wire. The rest of the configuration is similar to that of the conventional device shown in FIG. Figure 3 shows the structure of the electric expansion valve (7), where Oll is the electromagnetic coil, (to) is the plunger, &
L is a cylinder with a slit (b). (
) is the piston, 0un is the spring, (to) (to) is the refrigerant pipe, and when a current is input from the controller 02 to the lead wire (Il), the electromagnetic coil C (I) is programmed in proportion to the energized current. A force is generated to pull the jar (A) in the direction of the arrow, and the spring (to) becomes 0.
It stops at a balanced position due to the force relationship with 71. Therefore, as the applied current increases, the plunger (a) and the piston (to) move to the stop position ft in the direction of the arrow, and the opening area of the slit provided in the cylinder (to) increases. Figure 4 also shows the electric expansion valve (7) when the compressor is started.
Figure 5 shows the correlation between the peak of superheat sh at startup and the stable refrigerant flow rate G when the valve opening of the electric expansion valve ( 7)
First, the operation during steady operation will be explained, which shows the correlation with the valve opening vx. The refrigerant vapor that has become high temperature and high pressure in the compressor fil undergoes heat exchange (4) in the condenser (2), becomes liquid, and flows into the expansion valve (7). The pressure is then reduced by the expansion valve +71, resulting in low temperature and low pressure in the evaporator (5
), the heat is exchanged and the resulting superheated steam is sent to the accumulator (6).
forming a circulation cycle through which the compressor returns to the compressor (1).

一方電気式膨張弁(7)の両側からアキュムレータ(6
)入口にバイパスするバイパス路(8)を通過する冷媒
は、凝縮器(2)側に接続された方が圧力が高いために
、一部は電気式膨張弁(7)流出側(蒸発器(5)側)
へバイパスし、また一部は2毛細管(9)よシアキュム
レータ(6)入口圧力まで減圧され二相状態となって、
蒸発器(5)を出た加熱蒸気と混合しアキュムレータ(
6)を涌シ圧縮機(1)に戻る。従ってバイパス路(8
)の圧力はアキュムレータ(6)入口冷媒圧力と等しい
圧力となっているので、この部分の温度はアキュムレー
タ(6)入口圧力の飽和温度となる。従って。
On the other hand, from both sides of the electric expansion valve (7),
) The refrigerant passing through the bypass passage (8) that bypasses the inlet has a higher pressure when connected to the condenser (2) side, so some of the refrigerant passes through the outlet side of the electric expansion valve (7) (the evaporator ( 5) side)
The pressure is reduced to the inlet pressure of the shear accumulator (6) through the two capillary tubes (9), and the pressure is reduced to a two-phase state.
It is mixed with the heated steam coming out of the evaporator (5) and sent to the accumulator (
6) and return to the compressor (1). Therefore, the bypass path (8
) is equal to the refrigerant pressure at the inlet of the accumulator (6), so the temperature of this part becomes the saturation temperature of the inlet pressure of the accumulator (6). Therefore.

第1の温度センサー(IQをバイパス路出口付近に。Place the first temperature sensor (IQ near the exit of the bypass path).

また第2の温度センサーαDをアキエムレータ(6)入
口側に設けているので両温度センサー顛αDの検出値よ
シアキエムレータ(6)入口における冷媒のスーパーヒ
ー)tが制御器aって演算できる。そしてこのスーパー
ヒート量から電気式膨張弁(7)の弁開度を調節する電
流を出力し所定のスーパーヒート量に制御する。
Also, since the second temperature sensor αD is provided on the inlet side of the air conditioner (6), the controller a can calculate the superheat (t) of the refrigerant at the inlet of the air conditioner (6) based on the detection value of both temperature sensors αD. Then, from this amount of superheat, a current for adjusting the opening degree of the electric expansion valve (7) is outputted to control the amount of superheat to a predetermined amount.

次に圧縮機+11の起動時について説明する。起動時に
電気式膨張弁(7)の弁開度を全開に保持した場合、第
4図に示すように、安定時冷媒流量の大きい時、起動時
のスーパーヒー) shが大きくなる。
Next, the startup of compressor +11 will be explained. When the electric expansion valve (7) is kept fully open during startup, as shown in FIG. 4, when the stable refrigerant flow rate is large, the superheat (sh) at startup becomes large.

そしてまた安定時の弁開度は第5図に示すように。Also, the valve opening degree when stable is as shown in Figure 5.

流量Gが大きいときほど弁開度Xは大きい、従ってスー
パーヒートのピークshが大きいとき安定時の弁開度も
大きくなることがわかる。圧縮機+11が起動されると
、圧縮機(!)の発停を検知するリレーが働き、制御器
a湯は電気式膨張弁(7)に大電流を通じ弁開度を全開
にする。温度センサーas anによシ検知されるアキ
ュムレータ(6)入口側のスーパーヒートは、停止時に
蒸発器(5)中に溜まっていた冷媒が圧縮機(11側に
戻るため、この液がもどっている間、スーパーヒートゼ
ロという検出値になる。そして一方、圧縮機+11を出
た冷媒は、凝縮器(2)で熱交換されるが圧力が十分高
くないため完全に液化せず二相状態となって電気式膨張
弁(7)に流入するが弁開度が全開とされているため極
端に流量が減少することがない、従って低圧側の圧力低
下も少なくスーパーヒートのピーク値も感温式膨張弁に
くらべ小さくするととができる。起動時よシス−パーヒ
ート量が上昇し、所定値になっても電気式膨張弁(7)
の弁開度は制御せずピークになるまで全開にしておく、
そして温度センサー+11 allで検出したスーパー
ヒートがピークになると、このピーク値よシ安定時の弁
開度を制御器aSで演算し、制御器αのよシ安定時の弁
開度となる電流値を電気式膨張弁(7)K出力するので
早く安定した運転となυ。
It can be seen that the larger the flow rate G is, the larger the valve opening degree X is. Therefore, when the peak sh of superheat is large, the valve opening degree during stability is also large. When the compressor +11 is started, a relay that detects whether the compressor (!) starts or stops works, and the controller A sends a large current to the electric expansion valve (7) to fully open the valve. The superheat on the inlet side of the accumulator (6) detected by the temperature sensor as an is due to the fact that the refrigerant that had accumulated in the evaporator (5) returns to the compressor (11 side) when it is stopped, so this liquid returns. During this time, the detected value is zero superheat.Then, on the other hand, the refrigerant leaving the compressor +11 undergoes heat exchange in the condenser (2), but because the pressure is not high enough, it does not completely liquefy and becomes a two-phase state. The flow flows into the electric expansion valve (7), but since the valve opening is fully open, the flow rate does not decrease drastically.Therefore, the pressure drop on the low pressure side is small, and the peak value of superheat is also reduced by temperature-sensitive expansion. If it is made smaller than the valve, it can be damaged.At startup, the amount of sys-per heat increases, and even if it reaches a predetermined value, the electric expansion valve (7)
The valve opening is not controlled and is left fully open until it reaches its peak.
When the superheat detected by the temperature sensor +11 all reaches its peak, the controller aS calculates the valve opening at a stable time based on this peak value, and the current value that becomes the valve opening at a stable time is calculated by the controller α. The electric expansion valve (7) outputs K for fast and stable operation.

起動時の立上りが早く、高効率な運転ができるものであ
る。
It has a quick start-up time and enables highly efficient operation.

尚上記実施例では起動時のスーパーヒートがピークにな
ったらすぐに安定時の弁開度となる電流値を電気式膨張
弁(7)に出力するものについて述べたが、起動時よシ
のスーパーヒートのピークまでの時間と同等の時間をも
たせ除々に安定時の弁開度となる電流値を電気式膨張弁
(7)に出力するもの(7) であっても良い。更に、温度センサー611の位置を圧
縮機吸入付近の配管の温度を検出する位置に設けてもよ
い。
In the above embodiment, as soon as the superheat at startup reaches its peak, a current value that corresponds to the valve opening at a stable state is output to the electric expansion valve (7). It may also be a device (7) that outputs a current value that becomes the valve opening degree in a stable state gradually to the electric expansion valve (7) after a period of time equivalent to the time to the peak of heat. Furthermore, the temperature sensor 611 may be provided at a position that detects the temperature of the piping near the compressor suction.

以上のようにこの発明によれば、圧縮機起動時。As described above, according to the present invention, when the compressor is started.

膨張弁の弁開度をスーパーヒートのピークまで全開で保
持し、このピーク値よシ安定時の弁開度を制御器により
演算し、設定するため起動時の低圧ノ低下が小さく、ス
ーパーヒートのピーク値じたいも小さくでき、しかも低
圧があまシ低下しないこと、安定時の弁開度に早く出来
るため立上りが早く、高効率な運転ができる効果がある
The valve opening of the expansion valve is kept fully open until the peak of superheat, and the controller calculates and sets the valve opening when stable based on this peak value, so the drop in low pressure at startup is small and superheat is maintained. The peak value can be made very small, the low pressure does not drop too much, and the valve opening can be quickly reached when it is stable, so the start-up is quick and highly efficient operation is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の冷凍サイクル装置の冷媒回路図。 第2図はこの発明の一実施例を示す冷凍サイクル装置の
冷媒回路図、第3図は電気式膨張弁の構造断面図、第4
図は圧縮機起動待電気式膨張弁を全開にしたときのスー
パーヒート8hのピーク値と安定時の冷媒流量Gとの関
係を示す特性図、第5図は安定時の冷媒流量Gと電気式
膨張弁の弁開度Xとの関係を示す特性図である。 (8) 図中の同一符号は同一または相当部分を示しく11は圧
縮機、(2)は凝縮器、(3)は感温式膨張弁、(5)
は蒸発器、(6)はアキュムレータ、(7)は電気式膨
張弁。 (8)はバイパス路、(9)は毛細管、Hallは温度
センサー、α擾は制御器である。 代理人 葛 野 信 − 11g 162 図 第8図 第4図 ′ 流jQ 第 5 図 り、b、4 6 手続補正書(方式) 1、事件の表示   特願昭511−19123号2、
発明の名称  冷凍サイクル装置 3、補正をする者 事件との関係 特許出願人 住 所    東京都千代田区丸の内二丁目2番3号名
 称  (601)三菱電機株式会社代表者片山仁八部 4、代理人 5、補正指令の日付  昭和58年5月31 日6、補
正の対象 +11  明細書全文 怖=員4 7、補正の内容 (1)明細書全文/ ’111$1を別紙のとおり浄書
する。 (内容に変更なし) 8、添付書類 +11  明細書 會=酢し 以上
FIG. 1 is a refrigerant circuit diagram of a conventional refrigeration cycle device. Fig. 2 is a refrigerant circuit diagram of a refrigeration cycle device showing one embodiment of the present invention, Fig. 3 is a structural sectional view of an electric expansion valve, and Fig. 4 is a sectional view of the structure of an electric expansion valve.
The figure is a characteristic diagram showing the relationship between the peak value of super heat 8 hours and the stable refrigerant flow rate G when the compressor startup electric expansion valve is fully open. Figure 5 shows the relationship between the stable refrigerant flow rate G and the electric FIG. 3 is a characteristic diagram showing the relationship between the expansion valve and the valve opening degree X. FIG. (8) The same symbols in the figures indicate the same or corresponding parts. 11 is a compressor, (2) is a condenser, (3) is a temperature-sensitive expansion valve, (5)
is an evaporator, (6) is an accumulator, and (7) is an electric expansion valve. (8) is a bypass path, (9) is a capillary, Hall is a temperature sensor, and α is a controller. Agent Shin Kuzuno - 11g 162 Figure 8 Figure 4' Flow jQ 5th diagram, b, 4 6 Procedural amendment (method) 1. Indication of case Patent Application No. 1987-19123 2.
Title of the invention: Refrigeration cycle device 3, relationship with the case of the person making the amendment Patent applicant address: 2-2-3 Marunouchi, Chiyoda-ku, Tokyo Name (601) Mitsubishi Electric Corporation Representative Hitoshi Katayama 4, Agent Person 5. Date of amendment order: May 31, 1980 6. Subject of amendment + 11 Full text of specification = Person 4 7. Contents of amendment (1) Full text of specification / '111 $1 is transcribed as shown in the attached sheet. (No change in content) 8. Attached documents + 11 Statement meeting = Vinegar or more

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、凝縮器2買気式膨張弁、蒸発器、アキュムレー
タを順次接続して外る冷凍サイクル装置において、上記
電気式膨張弁の両側または、何れか一方よシアキュムレ
ータ入口に接続されかつ中途に減圧機構が設けられたバ
イパス路、このバイパス路の出口温度を検知する第1の
温度センサーとアキュムレータ入口または圧縮機入口温
度を検知する第2の温度センサー、圧縮機の発停を検知
する検知器、上記第1.第2の温度センサーの検出値で
アキュムレータ入口におけるスーパーヒート量を演算し
て上記電気式膨張弁の開度制御を行なうとともに1発停
検知器の信号によシ上記圧縮機の起動時は上記電気式膨
張弁の開度をスーパーヒート量がピーク値を越えるまで
全開とする制御器を備えてなることを特徴とする冷凍サ
イクル装置。
In a refrigeration cycle device in which a compressor, a condenser, a purchase air expansion valve, an evaporator, and an accumulator are sequentially connected and disconnected, either side or one of the electric expansion valves is connected to the inlet of the shear accumulator, and A bypass path provided with a pressure reduction mechanism, a first temperature sensor that detects the outlet temperature of this bypass path, a second temperature sensor that detects the accumulator inlet or compressor inlet temperature, and a detector that detects whether the compressor starts or stops. , above No. 1. The amount of superheat at the inlet of the accumulator is calculated based on the detection value of the second temperature sensor to control the opening of the electric expansion valve, and when the compressor is started up, the electric A refrigeration cycle device characterized by comprising a controller that fully opens an expansion valve until the amount of superheat exceeds a peak value.
JP1912383A 1983-02-08 1983-02-08 Refrigeration cycle device Granted JPS59145451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1912383A JPS59145451A (en) 1983-02-08 1983-02-08 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1912383A JPS59145451A (en) 1983-02-08 1983-02-08 Refrigeration cycle device

Publications (2)

Publication Number Publication Date
JPS59145451A true JPS59145451A (en) 1984-08-20
JPH0226145B2 JPH0226145B2 (en) 1990-06-07

Family

ID=11990685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1912383A Granted JPS59145451A (en) 1983-02-08 1983-02-08 Refrigeration cycle device

Country Status (1)

Country Link
JP (1) JPS59145451A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148058A (en) * 1986-12-08 1988-06-20 松下冷機株式会社 Air conditioner
JPWO2014118952A1 (en) * 2013-01-31 2017-01-26 三菱電機株式会社 Refrigeration cycle apparatus and control method of refrigeration cycle apparatus
JP2017101918A (en) * 2017-02-01 2017-06-08 三菱電機株式会社 Freezing cycle apparatus and control method for the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148058A (en) * 1986-12-08 1988-06-20 松下冷機株式会社 Air conditioner
JPWO2014118952A1 (en) * 2013-01-31 2017-01-26 三菱電機株式会社 Refrigeration cycle apparatus and control method of refrigeration cycle apparatus
JP2017101918A (en) * 2017-02-01 2017-06-08 三菱電機株式会社 Freezing cycle apparatus and control method for the same

Also Published As

Publication number Publication date
JPH0226145B2 (en) 1990-06-07

Similar Documents

Publication Publication Date Title
JP2974974B2 (en) Refrigeration system
JPS5995350A (en) Controller for capacity control type refrigeration cycle
CN105509364B (en) Air-conditioning system and jet degree of superheat adjusting method
JP2010507770A (en) Refrigeration system with expander bypass
JP2014214913A (en) Oil return controller and refrigerator
JP5418253B2 (en) Refrigeration cycle equipment
JPS59145451A (en) Refrigeration cycle device
JPH04340046A (en) Operation control device of air conditioner
JP2966633B2 (en) Air conditioner
JP3455587B2 (en) Air conditioner
JP3134388B2 (en) Air conditioner
JPH062962A (en) Air conditioner
JP2511959B2 (en) Air conditioner
JP3395449B2 (en) Air conditioner
JPS59180264A (en) Refrigeration cycle device
JP3048658B2 (en) Refrigeration equipment
JPS63290368A (en) Heat pump type air conditioner
JP2512072B2 (en) Air conditioner refrigeration cycle
JPS60111851A (en) Heat pump type refrigerator
JPS5885042A (en) Cooling and heating apparatus
JPH02298761A (en) Refrigerating cycle for heat pump
JPH0245796B2 (en)
JP3446159B2 (en) Absorption type cold heat generator
JPS6345030B2 (en)
JPS59145458A (en) Refrigeration cycle device