JPH02298761A - Refrigerating cycle for heat pump - Google Patents

Refrigerating cycle for heat pump

Info

Publication number
JPH02298761A
JPH02298761A JP11670189A JP11670189A JPH02298761A JP H02298761 A JPH02298761 A JP H02298761A JP 11670189 A JP11670189 A JP 11670189A JP 11670189 A JP11670189 A JP 11670189A JP H02298761 A JPH02298761 A JP H02298761A
Authority
JP
Japan
Prior art keywords
accumulator
compressor
heat exchanger
pipe
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11670189A
Other languages
Japanese (ja)
Inventor
Fumio Matsuoka
文雄 松岡
Koji Yamashita
浩司 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11670189A priority Critical patent/JPH02298761A/en
Publication of JPH02298761A publication Critical patent/JPH02298761A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To obtain a refrigerating cycle of a heat pump having excellent comfortability and efficiency by providing solenoid valves at an inlet tube connected to a pipe between an indoor heat exchanger and a throttle unit and opened within an accumulator, and an outlet tube opened within the accumulator and connected to a suction pipe to a compressor. CONSTITUTION:Solenoid valves 14, 15 are respectively provided at an inlet tube 16 connected to a pipe 18 between an indoor heat exchanger 3 and a capillary tube 5 and opened within an accumulator 9, and an outlet tube 17 opened within the accumulator 9 and connected to a suction pipe 19 to a compressor 1. As a result, when the compressor 1 is started, refrigerant stored in the lower part of the accumulator 9 is guided to a heat exchanger 13 of a bypass pipe 11 for high temperature refrigerant gas to be discharged from the compressor 11, overheated, and extracted from the accumulator 9 via the tube 17. The refrigerant gas is guided to the suction side of the compressor 1, recovered to the accumulator 9 as liquid refrigerant from the tube 16 after a refrigerating cycle is started, and high pressure of the refrigerant gas from the compressor 1 can be abruptly raised.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用弁W!】[Industrial use valve W! ]

この発明は、空気調和機に用いるヒートポンプの冷凍サ
イクルに関するものである。
The present invention relates to a refrigeration cycle for a heat pump used in an air conditioner.

【従来の技術】[Conventional technology]

第3図は例えば、実開昭63〜150258号公報に示
された従来の空気調和機に用いるヒートポンプの冷凍サ
イクルの冷媒系統図、第4図は第3図の制御構成を示す
ブロック図である。第3図において、1は圧11am、
 2は四方弁、3は室内熱交換器、4は逆止弁、5は逆
止弁4と並列に設けた毛細管、6は逆止弁、7は逆比弁
6と並列に設けた毛細管、8は室外熱交換器、9はアキ
ュムレータであ秒、これらが配管によって環状に接続さ
れ、冷凍サイクルが構成されている。 次に、この冷凍サイクルの動作について説明する。圧縮
機1のハウジング温度を検出し、さらに外気温度を検出
し、これらの検出値から液冷媒の寝込み状況を判断する
。この判断によって圧縮機1起動時の周波数パターンを
決定する。これは、圧縮機1起動前にそのハウジング内
に液冷媒が多量に寝込んでいる時に、圧縮機1起動時の
周波数の加速をはやくすると、低圧引込みなどを起こし
、立ち上がり速度がかえって遅れるのを避けるためであ
る。
FIG. 3 is a refrigerant system diagram of a refrigeration cycle of a heat pump used in a conventional air conditioner disclosed in, for example, Japanese Utility Model Application No. 63-150258, and FIG. 4 is a block diagram showing the control configuration of FIG. 3. . In Figure 3, 1 is a pressure of 11am,
2 is a four-way valve, 3 is an indoor heat exchanger, 4 is a check valve, 5 is a capillary tube installed in parallel with the check valve 4, 6 is a check valve, 7 is a capillary tube installed in parallel with the reverse ratio valve 6, 8 is an outdoor heat exchanger, 9 is an accumulator, and these are connected in a ring by piping to constitute a refrigeration cycle. Next, the operation of this refrigeration cycle will be explained. The housing temperature of the compressor 1 is detected, and the outside air temperature is also detected, and the stagnation status of the liquid refrigerant is determined from these detected values. Based on this judgment, the frequency pattern when the compressor 1 is started is determined. This is to avoid that if the frequency at the time of starting the compressor 1 is accelerated when a large amount of liquid refrigerant is lying in the housing before starting the compressor 1, low pressure will be drawn in and the start-up speed will be delayed. It's for a reason.

【発明が解決しようとする課題】[Problem to be solved by the invention]

従来の空気調和用ピー1−ポンプの冷凍サイクルは、以
上のように構成されているので、急速スフ−1−暖房時
などに圧縮機の周波数を急速にアップすることができず
、このため、温風吹き出し時間まで遅くなるという問題
点があった。 この発明は、上記のような問題点を解決するためになさ
れたもので、圧縮機起動時に最高周波数まで1度に急加
速しても運転ができ、また低圧の引込み減少を発生せず
、高圧圧力もいつきに立ち上が吟、温風の吹き出しを早
くでき、快適性および効率がすぐれたヒートポンプの冷
凍装置を得ることを目的としている。
The refrigeration cycle of the conventional air-conditioning P1-pump is configured as described above, so the frequency of the compressor cannot be rapidly increased during rapid heating. There was a problem that the hot air blowing time was delayed. This invention was made in order to solve the above-mentioned problems. It is possible to operate the compressor even if it suddenly accelerates to the maximum frequency at once when starting up the compressor, and it does not reduce the drawdown of low pressure, and can maintain high pressure. The objective is to obtain a heat pump refrigeration system that can quickly raise the pressure, quickly blow out hot air, and is highly comfortable and efficient.

【課題を解決するための手段】[Means to solve the problem]

この発明に係るヒートポンプの冷凍サイクルは、圧縮機
の吐出口と四方弁との間の吐出配管に一端が三方弁を介
して接続し上記吐出配管の上記三方弁と上記四方弁との
同に他端が接続するバイパス管に熱交換器を設け、この
熱交換器を7キユムレータ内に設置し、室内熱交換器と
絞り装置との間の配管に一端が接続し他端が上記アキュ
ムレータ内に開口する流入管と、一端が上記アキュムレ
ータ内に開口し他端が上記圧縮機への吸入配管に接続す
る流出管とにそれぞれ電磁弁を設けたものである。
In the heat pump refrigeration cycle according to the present invention, one end is connected to the discharge pipe between the discharge port of the compressor and the four-way valve via the three-way valve, and the three-way valve and the four-way valve of the discharge pipe are connected to each other. A heat exchanger is installed in the bypass pipe whose end is connected, and this heat exchanger is installed in the 7 accumulator, and one end is connected to the piping between the indoor heat exchanger and the throttling device, and the other end opens into the accumulator. A solenoid valve is provided in each of the inflow pipe and the outflow pipe, which opens into the accumulator at one end and connects to the suction pipe to the compressor at the other end.

【作用】[Effect]

この発明における冷凍サイクル(よ、圧縮機起動時に、
アキュムレータ内の下部に貯溜されている液冷媒を、上
記圧縮機から吐出される高温の冷媒ガスをバイパス管の
熱交換器に導いて過熱することにより、アキュムレータ
内から流出管を経て追い出し、追い出した冷媒ガスを圧
縮機の吸入側に導き、冷凍サイクルが立ち上がった後に
、流入管から冷媒を液として上記アキュムレータに回収
し、圧縮機から吐出する冷媒ガスの高圧圧力を急速に立
ち上がらせることができる。 【実施例] 以下、この発明の一実施例を第1図について説明する。 第1図において、1は圧縮機、2は四方弁、3は室内熱
交換器、5は絞り装置である毛m管、8ば室内熱交換器
であり、以上の各部が配管によって環状に接続されてい
る。9はアキュムレータ、10は三方弁、11はバイパ
ス管であり、バイパス管11は一端が圧ma1の吐出口
と四方弁2との間の吐出配管12に三方弁10を介して
接続され、バイパス管11の途中に設けた熱交換@13
がアキュムレータ9内の下部に配設され、バイパス管1
1の他端が吐出配管12の三方弁10と四方弁2との間
に接続されている。また、14,15は流入管16.流
出管17の途中にそれぞれ設けられた第1.第2電磁弁
であり、流入w16は、室内熱交換@3と毛細管5との
間の配管18に一端が接続され、他端が上記アキュムレ
ータ9内の上部に開口されており、流出’ll”17は
一端がアキュムレータ9内の上部に一端が開口され、他
端が四方弁2と圧縮機1の吸入口と・の間の吸入配管1
9に接続されている。20は圧力センサ、21は温度セ
ンサであり、これらのセンサ20,21は室内熱交y!
、器3と毛m管5との間の配管18の流入管16接続部
に近いこれより室内熱交換器3側に配設されている。 次に、この実施例の動作について説明する。暖房運転時
に、圧縮機1の起動とともに三方弁10がバイパス管1
1に接続し、圧縮[1から吐出された高温高圧の冷媒ガ
スがバイパス管11の上流部11aから熱交換器13に
送られ、アキュムレータ9内の下部に貯溜された冷媒液
と熱交換し、これを加熱することによりガス化する。熱
交換器13を出た冷媒ガスは少しエンタルピを下げてバ
イパス管11の下流部11bG!経て四方弁2を通り室
内熱交換N3に送られ、ここで熱交換して室内の暖房(
ζ供せられ、凝縮液化されろ。凝縮液化された冷媒は、
毛細管5で減圧されて室外熱交換Wj8に送られ、ここ
で蒸発気化されて四方弁2を通り、圧縮機1に吸入され
る。一方、流入管16に設けた第1電磁弁14は閉、流
出管17に設けた第2電磁弁15は開にされ、アキュム
レータ9内の冷媒ガスが流出w17を介して圧縮IIJ
11に吸入され、アキュムレータ9内が低圧にされる。 このため、アキュムレータ9内の冷媒液はガス化が促進
されると共に、上述したようにアキュムレータ9内の熱
交換器13を通る高温高圧の冷媒ガスによって加熱され
てさらに一部ガス化が進み、従って圧wI機1に過剰に
冷媒ガスが吸入されて冷凍サイクル内に供給される。そ
して、圧縮機1の起動後に、冷凍サイクルが立ち上がり
、安定してくると、第2電磁弁15を閉じるとともに、
三方弁10を四方弁2側に切り換える。これによって、
アキュムレータ9内からの流出W17による冷媒ガスの
放出が停止されるとともに、バイパス管1工に設けた熱
交換器13に圧縮機1から吐出された高温高圧の冷媒ガ
スが流れなくなって、アキュムレータ9内の冷媒液のガ
ス化も止められる。なお、乙の状態では圧縮機lから吐
出された冷媒ガスは四方弁2へ直接送られ、これから室
内熱交換器3に導かれる。さらに、冷凍サイクルが充分
に立ち上がると、このサイクル内には過剰の冷媒がある
ため、室内熱交a器3の出口では過冷却が進んで(る。 これを圧力センサ20と温度センサ21とで検知して、
図示しない制御装置の検知信号を入力させ、この制御装
置からの指令によって第1電磁弁14を開き、室内熱交
換器3で凝縮された冷媒の一部を流入管16を経てアキ
ュムレータ9内に回収し、冷凍サイクル内の冷媒を適正
な量にする。 なお、第2図はこの発明に至るために冷凍サイクル起動
時における冷媒の過渡的分布を、この発明のアキュムレ
ータのない従来の冷凍サイクルで測定した結果を表した
実験データであり、この結果に塞づいてこの発明がなさ
れたものである。 この発明において、絞り装置は上記実施例の毛細管に代
えて、第3図の従来例に示すように逆止弁と毛細管とを
並列に設けた絞り装置の2組を室内熱交換器と室外熱交
換器との間の配管に設けてもよい。 【発明の効果] 以上説明したように、この発明によれば、冷凍サイクル
の起動時のような系内を循環する冷媒の不足時には、積
極的に冷媒ガスを補給し、系内を循環する冷媒が余った
時には、余った冷媒を回収するアキュムレータと、この
アキュムレータの制御611機能とを備えているので、
暖房運転における起動の過渡時にも最適な冷媒分布を実
現でき、快適性および効率がすぐれたと−トポンプの冷
凍サイクルが得られろという効果がある。
The refrigeration cycle in this invention (when starting the compressor,
The liquid refrigerant stored in the lower part of the accumulator is expelled from the accumulator through the outflow pipe by superheating the high-temperature refrigerant gas discharged from the compressor by guiding it to the heat exchanger in the bypass pipe. After the refrigerant gas is guided to the suction side of the compressor and the refrigeration cycle is started up, the refrigerant is collected as a liquid from the inflow pipe into the accumulator, and the high pressure of the refrigerant gas discharged from the compressor can be rapidly raised. [Embodiment] An embodiment of the present invention will be described below with reference to FIG. In Figure 1, 1 is a compressor, 2 is a four-way valve, 3 is an indoor heat exchanger, 5 is a capillary tube which is a throttling device, and 8 is an indoor heat exchanger, and each of the above parts is connected in a ring by piping. has been done. 9 is an accumulator, 10 is a three-way valve, and 11 is a bypass pipe. One end of the bypass pipe 11 is connected to the discharge pipe 12 between the discharge port of pressure ma1 and the four-way valve 2 via the three-way valve 10, and the bypass pipe Heat exchanger installed in the middle of 11 @13
is arranged at the lower part of the accumulator 9, and the bypass pipe 1
The other end of the discharge pipe 12 is connected between the three-way valve 10 and the four-way valve 2 of the discharge pipe 12. Further, 14 and 15 are inflow pipes 16. The first pipes provided in the middle of the outflow pipes 17, respectively. It is a second solenoid valve, and one end of the inflow w16 is connected to the pipe 18 between the indoor heat exchange @3 and the capillary tube 5, the other end is opened to the upper part of the accumulator 9, and the outflow 'll' 17 has one end opened in the upper part of the accumulator 9, and the other end is the suction pipe 1 between the four-way valve 2 and the suction port of the compressor 1.
9 is connected. 20 is a pressure sensor, 21 is a temperature sensor, and these sensors 20 and 21 are indoor heat exchangers y!
, is disposed closer to the connection part of the inlet pipe 16 of the pipe 18 between the vessel 3 and the capillary tube 5, and closer to the indoor heat exchanger 3 than this. Next, the operation of this embodiment will be explained. During heating operation, the three-way valve 10 closes the bypass pipe 1 when the compressor 1 starts.
1, the high-temperature, high-pressure refrigerant gas discharged from the compressor [1 is sent from the upstream section 11a of the bypass pipe 11 to the heat exchanger 13, where it exchanges heat with the refrigerant liquid stored in the lower part of the accumulator 9, This is gasified by heating. The refrigerant gas leaving the heat exchanger 13 has its enthalpy slightly lowered and the downstream portion 11bG of the bypass pipe 11! After that, it passes through the four-way valve 2 and is sent to the indoor heat exchanger N3, where it exchanges heat and heats the room (
ζ Provided, condensed and liquefied. The condensed and liquefied refrigerant is
The pressure is reduced in the capillary tube 5 and sent to the outdoor heat exchanger Wj8, where it is evaporated and vaporized, passes through the four-way valve 2, and is sucked into the compressor 1. On the other hand, the first solenoid valve 14 provided in the inflow pipe 16 is closed, the second solenoid valve 15 provided in the outflow pipe 17 is opened, and the refrigerant gas in the accumulator 9 is compressed through the outflow w17.
11, and the pressure inside the accumulator 9 is made low. For this reason, the gasification of the refrigerant liquid in the accumulator 9 is promoted, and as described above, it is heated by the high temperature and high pressure refrigerant gas passing through the heat exchanger 13 in the accumulator 9, and further gasification progresses partially. An excessive amount of refrigerant gas is sucked into the pressure wI machine 1 and supplied into the refrigeration cycle. After the compressor 1 is started, the refrigeration cycle starts up and becomes stable, and the second solenoid valve 15 is closed.
Switch the three-way valve 10 to the four-way valve 2 side. by this,
The release of refrigerant gas by the outflow W17 from inside the accumulator 9 is stopped, and the high temperature and high pressure refrigerant gas discharged from the compressor 1 stops flowing into the heat exchanger 13 installed in the bypass pipe 1, and the inside of the accumulator 9 is stopped. Gasification of the refrigerant liquid is also stopped. In addition, in the state B, the refrigerant gas discharged from the compressor 1 is sent directly to the four-way valve 2, and is then guided to the indoor heat exchanger 3. Furthermore, when the refrigeration cycle starts up sufficiently, there is an excess of refrigerant in this cycle, so supercooling progresses at the outlet of the indoor heat exchanger 3. Detect and
A detection signal from a control device (not shown) is input, the first electromagnetic valve 14 is opened in response to a command from the control device, and a part of the refrigerant condensed in the indoor heat exchanger 3 is recovered into the accumulator 9 through the inflow pipe 16. and maintain the appropriate amount of refrigerant in the refrigeration cycle. Furthermore, Fig. 2 shows experimental data representing the results of measuring the transient distribution of refrigerant at the start of the refrigeration cycle in a conventional refrigeration cycle without an accumulator according to the present invention in order to arrive at this invention. This invention was then made. In this invention, instead of the capillary tube in the above-described embodiment, the throttling device has two sets of throttling devices in which a check valve and a capillary tube are arranged in parallel, as shown in the conventional example shown in FIG. It may also be provided in the piping between the exchanger and the exchanger. [Effects of the Invention] As explained above, according to the present invention, when there is a shortage of refrigerant circulating in the system, such as when starting a refrigeration cycle, refrigerant gas is actively replenished, and the refrigerant circulating in the system is It is equipped with an accumulator that collects the excess refrigerant when there is excess, and a control function 611 for this accumulator.
Optimum refrigerant distribution can be achieved even during the startup transition during heating operation, and the effect is that a top pump refrigeration cycle with excellent comfort and efficiency can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるヒートポンプの冷凍
サイクルを示す冷媒系統図、第2図は起動からの冷媒の
過渡的分布を示す実験データの図、第3図は従来のヒー
トポンプの冷凍サイクルを示す冷媒系統図、第4図は第
3図の冷凍サイクルのf!ilJ御構成を示すブロック
図である。 1・−圧縮機、2・四方弁、3−室内熱交換器、5 ・
毛細管(絞り装置)、8・・室外熱交換器、9アキユム
レータ、10・・・三方弁、11 ・バイパス配管、1
2 吐出配管、13・・熱交換器、14゜15 g4磁
弁、16・・流入配管、17 ・流出配管、18 ・配
管、19・・・吸入配管、20 圧力センサ、21 温
度センサ。 なお、図中同一符号は同−又は相当部分を示す。
Fig. 1 is a refrigerant system diagram showing a refrigeration cycle of a heat pump according to an embodiment of the present invention, Fig. 2 is a diagram of experimental data showing the transient distribution of refrigerant from startup, and Fig. 3 is a refrigeration cycle of a conventional heat pump. Fig. 4 is a refrigerant system diagram showing f! of the refrigeration cycle shown in Fig. 3. FIG. 2 is a block diagram showing the configuration of ilJ. 1. - Compressor, 2. Four-way valve, 3. Indoor heat exchanger, 5.
Capillary tube (throttle device), 8... Outdoor heat exchanger, 9 Accumulator, 10... Three-way valve, 11 ・Bypass piping, 1
2 Discharge piping, 13... Heat exchanger, 14゜15 g4 magnetic valve, 16... Inflow piping, 17 - Outflow piping, 18 - Piping, 19... Suction piping, 20 Pressure sensor, 21 Temperature sensor. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、四方弁、室内熱交換器、絞り装置および室外熱
交換器を配管によって環状に接続したヒートポンプの冷
凍サイクルにおいて、上記圧縮機の吐出口と四方弁との
間の吐出配管に一端が三方弁を介して接続し上記吐出配
管の上記三方弁と上記四方弁との間に他端が接続するバ
イパス管に熱交換器を設け、この熱交換器をアキュムレ
ータ内に設置し、室内熱交換器と絞り装置との間の配管
に一端が接続し他端が上記アキュムレータ内に開口する
流入管と、一端が上記アキュムレータ内に開口し他端が
上記圧縮機への吸入配管に接続する流出管とにそれぞれ
電磁弁を設けたことを特徴とするヒートポンプの冷凍サ
イクル。
In a heat pump refrigeration cycle in which a compressor, a four-way valve, an indoor heat exchanger, a throttle device, and an outdoor heat exchanger are connected in a ring through piping, one end of the discharge piping between the compressor discharge port and the four-way valve is A heat exchanger is provided in a bypass pipe connected via a valve and whose other end is connected between the three-way valve and the four-way valve of the discharge pipe, and this heat exchanger is installed in an accumulator, and the indoor heat exchanger an inflow pipe having one end connected to a pipe between the and the throttle device and the other end opening into the accumulator; and an outflow pipe having one end opening into the accumulator and the other end connecting to the suction pipe to the compressor. A heat pump refrigeration cycle characterized by each having a solenoid valve.
JP11670189A 1989-05-10 1989-05-10 Refrigerating cycle for heat pump Pending JPH02298761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11670189A JPH02298761A (en) 1989-05-10 1989-05-10 Refrigerating cycle for heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11670189A JPH02298761A (en) 1989-05-10 1989-05-10 Refrigerating cycle for heat pump

Publications (1)

Publication Number Publication Date
JPH02298761A true JPH02298761A (en) 1990-12-11

Family

ID=14693698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11670189A Pending JPH02298761A (en) 1989-05-10 1989-05-10 Refrigerating cycle for heat pump

Country Status (1)

Country Link
JP (1) JPH02298761A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100624638B1 (en) * 2004-12-17 2006-09-21 이태한 A heat pump system
JP2009243846A (en) * 2008-03-31 2009-10-22 Mitsubishi Heavy Ind Ltd Air conditioner
JP2012247182A (en) * 2012-08-13 2012-12-13 Mitsubishi Heavy Ind Ltd Air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100624638B1 (en) * 2004-12-17 2006-09-21 이태한 A heat pump system
JP2009243846A (en) * 2008-03-31 2009-10-22 Mitsubishi Heavy Ind Ltd Air conditioner
JP2012247182A (en) * 2012-08-13 2012-12-13 Mitsubishi Heavy Ind Ltd Air conditioner

Similar Documents

Publication Publication Date Title
CN105509364B (en) Air-conditioning system and jet degree of superheat adjusting method
WO2006057141A1 (en) Air conditioner
CN205505497U (en) Compressor oily system of accuse and air conditioner that has this system
US11892209B2 (en) Multi-air conditioner for heating and cooling including a shut-off valve between indoor and outdoor units and control method thereof
JPH04295566A (en) Engine-driven air-conditioning machine
JPH02298761A (en) Refrigerating cycle for heat pump
CN215930177U (en) Air conditioner
JP4832954B2 (en) Air conditioner
KR101160351B1 (en) Multi air conditioner and control method thereof
JP2002213839A (en) Multichamber air conditioner
EP3961126B1 (en) Multi-air conditioner for heating and cooling operations
JPH0285647A (en) Air conditioner
CN216432102U (en) Hot water device and water heater
CN216693770U (en) Multi-split system for reducing noise of multi-split indoor unit
CN218787637U (en) Four-pipe system, control device and air conditioner
JP3326322B2 (en) Air conditioner and air conditioner system equipped with this air conditioner
JPH0395359A (en) Air conditioner
JPH046371A (en) Multi-room type air-conditioning machine
JPH0212543Y2 (en)
JPS6021717Y2 (en) air conditioner
JPH04136470U (en) Refrigeration equipment
JP2923058B2 (en) Heat pump type air conditioner
JPH0633910B2 (en) Heat pump refrigeration system
CN113566446A (en) Air conditioner and control method thereof
CN113819531A (en) Heat exchange system and control method thereof