JPH0135261B2 - - Google Patents
Info
- Publication number
- JPH0135261B2 JPH0135261B2 JP1671482A JP1671482A JPH0135261B2 JP H0135261 B2 JPH0135261 B2 JP H0135261B2 JP 1671482 A JP1671482 A JP 1671482A JP 1671482 A JP1671482 A JP 1671482A JP H0135261 B2 JPH0135261 B2 JP H0135261B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- compressor
- refrigerant
- electric expansion
- expansion valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003507 refrigerant Substances 0.000 claims description 42
- 238000005057 refrigeration Methods 0.000 claims description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
Landscapes
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Air Conditioning Control Device (AREA)
Description
【発明の詳細な説明】
この発明は空気調和機あるいは冷凍機に用いら
れる冷凍回路の起動特性と減圧装置の制御を改善
し、高効率で運転できるものである。DETAILED DESCRIPTION OF THE INVENTION The present invention improves the starting characteristics of a refrigeration circuit used in an air conditioner or a refrigerator and the control of a pressure reducing device, thereby enabling highly efficient operation.
従来、冷凍回路の減圧装置としては一般にキヤ
ピラリーチユーブが使われており、このキヤピラ
リーチユーブを使用した場合は、熱源側、利用側
熱交換器の外界条件の変化によつて、冷凍回路の
動作状況が変化した場合には、充分に減圧機能が
追従しきれず能力が低下するという欠点を有して
いた。 Conventionally, a capillary reach tube has generally been used as a pressure reducing device for a refrigeration circuit. When the situation changes, the decompression function cannot sufficiently follow the situation, resulting in a decrease in capacity.
また電気式膨張弁を減圧装置として用いる冷凍
回路は時定数が大きく、起動時の立ち上りに長い
時間を要しこの定常運転に移行するまで効率が悪
いという欠点があつた。 In addition, refrigeration circuits that use electric expansion valves as pressure reducing devices have a large time constant, take a long time to start up, and have low efficiency until steady operation is reached.
この発明は上記のような従来の冷凍回路装置の
欠点をなくし、冷凍回路をサブクールコントロー
ルおよびスーパーヒートコントロールし、減圧装
置に電気式膨張弁を用いて、この膨張弁の弁開度
を調節して、電気式膨張弁入口管々壁温度と圧縮
機吸入管々壁温度との差を所定範囲内に保ち効率
よく運転できるようにするとともに、開閉手段に
より電気式膨張弁に流入する冷媒を圧縮機の停止
時には停止して、圧縮機停止時冷凍回路の高・低
圧差を保持し、起動時の立ち上り時間を早め、起
動特性を改善し、この面からの効率向上をも図る
ものである。 This invention eliminates the drawbacks of the conventional refrigeration circuit device as described above, performs subcool control and superheat control on the refrigeration circuit, uses an electric expansion valve in the pressure reducing device, and adjusts the opening degree of the expansion valve. In addition to keeping the difference between the wall temperature of the inlet pipe of the electric expansion valve and the wall temperature of the suction pipe of the compressor within a predetermined range to ensure efficient operation, the refrigerant flowing into the electric expansion valve is controlled by the compressor using the opening/closing means. The system stops when the compressor is stopped, maintains the high-low pressure difference in the refrigeration circuit when the compressor is stopped, speeds up the start-up time at startup, improves startup characteristics, and improves efficiency from this perspective.
即ちこの発明の構成は、圧縮機、凝縮器、電気
式膨張弁、蒸発器、アキユムレータを順次直列に
接続して冷凍回路を構成し、上記凝縮器出口冷媒
と上記圧縮機入口冷媒とを熱交換する手段と、こ
の熱交換手段で熱交換された上記凝縮器を出た冷
媒と上記蒸発器出口冷媒とを熱交換する手段と、
上記圧縮機起動時に開、停止時に閉し上記電気式
膨張弁への冷媒の流れを制御する開閉手段と、上
記電気式膨張弁入口管々壁温度を検出する第1の
温度センサーと、上記圧縮機吸入管々壁温度を検
出する第2の温度センサーと、上記第1、第2の
温度センサーによる検知温度の差を演算して、こ
の温度差が所定範囲内に保たれるよう上記電気式
膨張の弁開度を調節する信号を発する制御器とを
備えたものである。 That is, the configuration of the present invention is to construct a refrigeration circuit by sequentially connecting a compressor, a condenser, an electric expansion valve, an evaporator, and an accumulator in series, and to exchange heat between the refrigerant at the outlet of the condenser and the refrigerant at the inlet of the compressor. means for exchanging heat between the refrigerant exiting the condenser and the refrigerant at the outlet of the evaporator, which have been heat exchanged by the heat exchange means;
an opening/closing means that opens when the compressor is started and closes when the compressor is stopped to control the flow of refrigerant to the electric expansion valve; a first temperature sensor that detects the temperature of the wall of the electric expansion valve inlet; The second temperature sensor detects the machine suction pipe wall temperature, and the electric sensor calculates the difference between the temperatures detected by the first and second temperature sensors, and maintains this temperature difference within a predetermined range. The device is equipped with a controller that issues a signal to adjust the opening degree of the expansion valve.
そして、その作用は凝縮器出口冷媒と圧縮機入
口冷媒とを熱交換する手段でスーパーヒートコン
トロールを行い、凝縮器を出て、上記スーパーヒ
ートコントロール用熱交換した冷媒と蒸発器出口
冷媒とを熱交換する手段でサブクールコントロー
ルを行う。このようにスーパーヒートコントロー
ルおよびサブクールコントロールを行う冷凍回路
にあつては利用側および熱源側熱交換器の外界温
度が変化しても最も効率よく運転される電気式膨
張弁入口冷媒温度と圧縮機入口冷媒温度との差は
一定である。第2図はこの冷凍回路を空気調和装
置に用い、暖房運転した場合、最高能力を出す減
圧値としたときの電気式膨張弁入口冷媒温度T1
と圧縮機入口冷媒温度T2との温度差ΔT=T1−
T2の値を外気温度T0をパラメータとして示すも
のである。 The action is to perform super heat control by exchanging heat between the refrigerant at the condenser outlet and the refrigerant at the compressor inlet, and after exiting the condenser, the refrigerant that has undergone heat exchange for super heat control and the refrigerant at the evaporator outlet are heated. Perform subcool control by means of exchange. In a refrigeration circuit that performs super heat control and subcool control in this way, the refrigerant temperature at the inlet of the electric expansion valve and the compressor inlet are used to operate the electric expansion valve most efficiently even if the outside temperature of the heat exchanger on the user side and the heat source side changes. The difference with the refrigerant temperature is constant. Figure 2 shows the electric expansion valve inlet refrigerant temperature T 1 when this refrigeration circuit is used in an air conditioner and the pressure is reduced to the maximum capacity when the heating operation is performed.
Temperature difference ΔT between and compressor inlet refrigerant temperature T 2 = T 1 −
The value of T 2 is shown using the outside air temperature T 0 as a parameter.
なお図中△印は実験値のバラツキを示す。 Note that the △ marks in the figure indicate variations in experimental values.
この第2図からも判るようにスーパーヒートコ
ントロールおよびサブクールコントロールを行う
冷凍回路にあつては、外気温度T0(℃)が変化し
てもΔTは所定範囲内に保たれている。従つて逆
に電気式膨張弁の入口冷媒温度T1(℃)と圧縮機
の入口冷媒温度との差ΔTを上記範囲内に保てば
最高の能力を出す減圧値とすることができる。 As can be seen from FIG. 2, in a refrigeration circuit that performs super heat control and subcool control, ΔT is maintained within a predetermined range even if the outside temperature T 0 (° C.) changes. Therefore, conversely, if the difference ΔT between the inlet refrigerant temperature T 1 (° C.) of the electric expansion valve and the inlet refrigerant temperature of the compressor is kept within the above range, a pressure reduction value that provides the highest performance can be obtained.
ところが一方減圧器としてキヤピラリーチユー
ブを用い、サブクールコントロールやスーパーヒ
ートコントロールをしない冷凍回路にあつては外
気温度T0(℃)の変化によつて最高能力を示す電
気式膨張弁入口冷媒温度T1と圧縮機入口冷媒温
度T2との差ΔTは大幅に変化する。従つてこの
ΔTを所定範囲内に制御しても如何なる外気温度
に対しても常に最高能力を発揮するものではな
い。そのためこの温度差ΔTを所定範囲内に制御
して外気温度、即ち外界条件に関係なく冷凍回路
を最高能力で運転しようとするときはサブクール
コントロールおよびスーパーヒートコントロール
が必要条件となる。 However, in the case of a refrigeration circuit that uses a capillary reach tube as a pressure reducer and does not perform subcool control or superheat control, the refrigerant temperature at the inlet of the electric expansion valve, which exhibits the maximum capacity due to changes in the outside air temperature T 0 (°C), decreases to T 1 . The difference ΔT between the refrigerant temperature T2 and the compressor inlet refrigerant temperature T2 changes significantly. Therefore, even if this ΔT is controlled within a predetermined range, the maximum performance will not always be exhibited regardless of the outside temperature. Therefore, in order to control this temperature difference ΔT within a predetermined range and operate the refrigeration circuit at its maximum capacity regardless of the outside temperature, that is, the external conditions, subcool control and superheat control are required.
電気式膨張弁は凝縮された冷媒液を減圧するも
ので電気信号によりその減圧値を自在に変化でき
るものであり、キヤピラリーチユーブではその減
圧値は外界条件の変化によつて成り行きまかせと
なり意図的に目的値に変化させることができな
い。 Electric expansion valves reduce the pressure of condensed refrigerant liquid, and can freely change the pressure reduction value using electrical signals.In capillary reach tubes, the pressure reduction value is left to change depending on changes in external conditions, and cannot be intentionally controlled. cannot be changed to the target value.
第1、第2の温度センサーはそれぞれ電気式膨
張弁入口管々壁温度と、圧縮機吸入管々壁温度を
検知し、それぞれこの管路内を流れる冷媒温度を
間接的に検出するものである。 The first and second temperature sensors detect the wall temperature of the electric expansion valve inlet pipe and the wall temperature of the compressor suction pipe, respectively, and indirectly detect the temperature of the refrigerant flowing in the pipe. .
制御器は上記第1、第2の温度センサーにより
それぞれ間接的に検出された電気式膨張弁入口冷
媒温度T1と圧縮機入口冷媒温度T2との温度差ΔT
=T1−T2を演算し、この値が所定範囲内に入る
よう電気式膨張弁の弁開度を調節する電気信号を
出力する。 The controller detects a temperature difference ΔT between the electric expansion valve inlet refrigerant temperature T 1 and the compressor inlet refrigerant temperature T 2 which are indirectly detected by the first and second temperature sensors.
=T 1 -T 2 is calculated, and an electric signal is output to adjust the valve opening of the electric expansion valve so that this value falls within a predetermined range.
また開閉手段は圧縮機の起動時に開、停止時に
閉するもので、圧縮機停止時冷凍回路の高圧側と
低圧側とを分離してこの高低圧差をつけたまゝと
し、再起動時における定常運転への立ちり時間を
短縮し、この起動時における効率向上を図るもの
である。 In addition, the opening/closing means opens when the compressor starts up and closes when it stops.When the compressor stops, the high-pressure side and low-pressure side of the refrigeration circuit are separated and this high-low pressure difference is maintained, and steady operation is maintained when the compressor is restarted. This aims to shorten the startup time and improve efficiency during startup.
以下図示実施例に基づきこの発明の詳細につき
さらに説明する。 The details of this invention will be further explained below based on the illustrated embodiments.
第1図はこの発明の基本的な冷凍回路を示し、
図中1は圧縮機、2は凝縮器、3は電気式膨張
弁、4は蒸発器、5は上記凝縮器2を出た高圧高
温冷媒と蒸発器4の出口冷媒との熱交換を行う機
能を有するアキユムレータ熱交換器、6は上記凝
縮器を出てこのアキユムレータ熱交換器に入る前
の冷媒と、アキユムレータ熱交換器5から出て上
記圧縮器1に入る冷媒と熱交換を行う熱交換パイ
プ、7は電磁弁で上記圧縮機1のモータ部の回路
にリレーを設け(図示せず)モータの駆動および
停止に同期して動作するもので、圧縮機1起動時
に開し、また停止時に閉じるよう制御されてい
る。8は上記圧縮機1入口側配管に設けられ、こ
の管壁温度を検出して圧縮機1入口冷媒温度T2
を間接的に検出する第2の温度センサー、9は上
記電気式膨張弁3の入口側配管に設けられ、この
管壁温度を検出して電気式膨張弁3入口冷媒温度
T1を間接的に検出する第1の温度センサー、1
0はこの温度センサー8,9の検出値が入力さ
れ、この両温度差T1−T2=ΔTを演算して、この
温度差ΔTが所定範囲になるよう電気式膨張弁3
の弁開度を調節する信号を発する制御器である。 Figure 1 shows the basic refrigeration circuit of this invention.
In the figure, 1 is a compressor, 2 is a condenser, 3 is an electric expansion valve, 4 is an evaporator, and 5 is a function for exchanging heat between the high-pressure, high-temperature refrigerant leaving the condenser 2 and the refrigerant at the outlet of the evaporator 4. 6 is a heat exchange pipe that exchanges heat with the refrigerant that exits the condenser and enters the accumulator heat exchanger, and the refrigerant that exits the accumulator heat exchanger 5 and enters the compressor 1. , 7 is a solenoid valve that is equipped with a relay (not shown) in the circuit of the motor section of the compressor 1 and operates in synchronization with the driving and stopping of the motor, and is opened when the compressor 1 is started and closed when it is stopped. It's controlled like that. Reference numeral 8 is provided in the pipe on the inlet side of the compressor 1, and detects the pipe wall temperature to determine the refrigerant temperature T 2 at the inlet of the compressor 1.
A second temperature sensor 9 that indirectly detects the refrigerant temperature at the inlet of the electric expansion valve 3 is provided on the inlet side pipe of the electric expansion valve 3, and detects the pipe wall temperature to determine the refrigerant temperature at the inlet of the electric expansion valve 3.
a first temperature sensor that indirectly detects T 1 ;
0 is inputted with the detected values of the temperature sensors 8 and 9, calculates the temperature difference T 1 −T 2 =ΔT, and operates the electric expansion valve 3 so that this temperature difference ΔT falls within a predetermined range.
This is a controller that emits a signal to adjust the valve opening of the valve.
第1図のように構成された冷凍回路の制御装置
において、電気式膨張弁3入口側にとりつけられ
た第1の温度センサー9と圧縮機1入口側にとり
つけられた第2の温度センサー8の信号が制御器
10に送られ、その温度差ΔTが所定範囲以外と
なり、所定範囲上限より大きいときは電気式膨張
弁3の弁開度を小さく、また所定範囲下限より小
さいときは、弁開度を大きくするよう電気式膨張
弁3に信号を発する。電気式膨張弁3は信号に応
じてその弁開度が調節され、これに流れる冷媒量
を調整することにより減圧値を調節する。 In the refrigeration circuit control device configured as shown in FIG. A signal is sent to the controller 10, and when the temperature difference ΔT is outside the predetermined range and is larger than the upper limit of the predetermined range, the valve opening of the electric expansion valve 3 is reduced, and when it is smaller than the lower limit of the predetermined range, the valve opening is reduced. A signal is sent to the electric expansion valve 3 to increase the value. The opening degree of the electric expansion valve 3 is adjusted according to the signal, and the pressure reduction value is adjusted by adjusting the amount of refrigerant flowing therein.
この実施例は以上のように構成されているた
め、第2図に示すように外気温度T0(℃)が変化
しても、電気式膨張弁入口冷媒温度T1と圧縮機
入口冷媒温度T2との差が所定の範囲内(この実
施例では7.5℃±1℃)に保たれ、最も効率よい
運転ができる。 Since this embodiment is configured as described above, even if the outside air temperature T 0 (℃) changes, the electric expansion valve inlet refrigerant temperature T 1 and the compressor inlet refrigerant temperature T 2 is maintained within a predetermined range (7.5°C±1°C in this example), allowing for the most efficient operation.
そしてさらにこの発明の制御装置では電気式膨
張弁3入口側に電磁弁7を設け、圧縮機1のモー
タ部の回路にリレーを設け、モータの起動及び停
止により動作するようにし、圧縮機1の起動時に
開し、停止時に閉じるよう制御しているので、圧
縮機1が停止すると同時に電磁弁7が閉じて管路
を閉路し、圧縮機1停止中にわたつて高圧側と低
圧側がほぼ運転時の状態に保持されるので、圧縮
機1が起動するとすぐに定常状態となり立ち上り
を早くすることができる。またさらに上記実施例
においては、圧縮機1の起動及び停止を検出して
電磁弁7を開閉するものについて述べたが、この
電磁弁7を開閉する信号は、例えばこの冷凍回路
を空気調和機に用いた場合、室温を検出して圧縮
機1を起動・停止する室温検知器のオン―オフ信
号によつてもよく、さらに水を加熱または冷却
し、この水を媒体として種々の用途に用いる場合
には、水温を検出して圧縮機1を起動・停止する
水温検知器のオン―オフ信号によつてもよいもの
である。そしてさらに上記実施例では冷凍回路を
開閉する手段を電磁弁としたが、電動弁であつて
も全く同様の効果が得られる。そしてまた上記実
施例では圧縮機の起動および停止に同期して開閉
動作しているが、起動時および停止時から少しの
時間遅れをもたせて開閉しても同様な効果が得ら
れる。 Furthermore, in the control device of the present invention, a solenoid valve 7 is provided on the inlet side of the electric expansion valve 3, and a relay is provided in the circuit of the motor section of the compressor 1, so that it is activated by starting and stopping the motor. Since the control is such that it opens at startup and closes at stop, the solenoid valve 7 closes at the same time as the compressor 1 stops, closing the pipeline, and the high-pressure side and low-pressure side are almost in operation while the compressor 1 is stopped. Since the compressor 1 is maintained in a steady state as soon as it is started, it can quickly start up. Furthermore, in the above embodiment, the solenoid valve 7 is opened and closed by detecting the start and stop of the compressor 1. However, the signal for opening and closing the solenoid valve 7 can be used, for example, to connect this refrigeration circuit to an air conditioner. When used, it may be based on an on-off signal of a room temperature detector that detects the room temperature and starts and stops the compressor 1. Furthermore, when water is heated or cooled and this water is used as a medium for various purposes. Alternatively, an on/off signal from a water temperature detector that detects the water temperature and starts/stops the compressor 1 may be used. Further, in the above embodiment, a solenoid valve is used as a means for opening and closing the refrigeration circuit, but even if an electric valve is used, exactly the same effect can be obtained. Further, in the above embodiment, the opening and closing operations are performed in synchronization with the start and stop of the compressor, but the same effect can be obtained by opening and closing with a slight time delay from the start and stop of the compressor.
以上述べたようにこの発明はサブクールコント
ロールおよびスーパーヒートコントロールを行う
冷凍回路にあつて電気式膨張弁入口冷媒温度と圧
縮機入口冷媒温度との差が所定範囲内となるよう
電気式膨張弁の弁開度を調節し、かつ電気式膨張
弁入口に開閉手段を設け、圧縮機起動時に開し、
停止時に閉じるようにしているので高い能力が得
られるとともに立ち上りを早くでき、併せて高効
率運転が可能となる。 As described above, the present invention provides a refrigeration circuit that performs subcool control and superheat control, and the electric expansion valve is operated so that the difference between the refrigerant temperature at the inlet of the electric expansion valve and the refrigerant temperature at the compressor inlet is within a predetermined range. The degree of opening is adjusted, and an opening/closing means is provided at the inlet of the electric expansion valve, which opens when the compressor is started.
Since it closes when stopped, it not only provides high capacity but also enables quick startup and highly efficient operation.
第1図はこの発明の一実施例を示す冷凍回路の
制御装置の構成図、第2図は電気式膨張弁入口冷
媒温度と圧縮機入口温度との差ΔTと外気温度と
の関係を示す特性図である。
図中同一符号は同一または相当部分を示し、1
は圧縮機、2は凝縮器、3は電気式膨張弁、4は
蒸発器、5はアキユムレータ熱交換器、6は熱交
換パイプ、7は電磁弁、8,9は温度センサー、
10は制御器である。
Fig. 1 is a configuration diagram of a refrigeration circuit control device showing an embodiment of the present invention, and Fig. 2 is a characteristic showing the relationship between the difference ΔT between the refrigerant temperature at the electric expansion valve inlet and the compressor inlet temperature and the outside air temperature. It is a diagram. The same symbols in the figures indicate the same or corresponding parts, 1
is a compressor, 2 is a condenser, 3 is an electric expansion valve, 4 is an evaporator, 5 is an accumulator heat exchanger, 6 is a heat exchange pipe, 7 is a solenoid valve, 8 and 9 are temperature sensors,
10 is a controller.
Claims (1)
器と、アキユムレータとを順次直列に接続してな
る冷凍回路において、上記凝縮器出口冷媒と上記
圧縮機入口冷媒とを熱交換する手段と、この熱交
換手段で熱交換された上記凝縮器を出た冷媒と上
記蒸発器出口冷媒とを熱交換する手段と、上記電
気式膨張弁入口に設けられ管路を上記圧縮機起動
時に開、停止時に閉する開閉手段と、上記電気式
膨張弁入口管々壁温度を検出する第1の温度セン
サーと、上記圧縮機吸入管々壁温度を検出する第
2の温度センサーと、上記第1、第2の温度セン
サーの検知温度差を演算し、この温度差が所定範
囲内に保たれるよう上記電気式膨張弁へ弁開度を
調節する信号を発する制御器とを備えたことを特
徴とする冷凍回路の制御装置。 2 上記開閉手段を電磁弁で構成したことを特徴
とする特許請求の範囲第1項記載の冷凍回路の制
御装置。 3 上記電磁弁の開閉動作がこの冷凍回路によつ
て加熱・冷却される被制御物の温度を検出して上
記圧縮機を起動・停止させる温度検知器の出力に
より行われることを特徴とする特許請求の範囲第
2項記載の冷凍回路の制御装置。[Scope of Claims] 1. In a refrigeration circuit comprising a compressor, a condenser, an electric expansion valve, an evaporator, and an accumulator connected in series, the condenser outlet refrigerant and the compressor inlet refrigerant a means for exchanging heat between the refrigerant exiting the condenser and the refrigerant at the outlet of the evaporator, and a means for exchanging heat between the refrigerant exiting the condenser and the refrigerant at the outlet of the evaporator; an opening/closing means that opens when the compressor is started and closes when the compressor is stopped; a first temperature sensor that detects the temperature of the walls of the inlet pipes of the electric expansion valve; and a second temperature sensor that detects the temperature of the walls of the suction pipes of the compressor. a controller that calculates a temperature difference detected by the sensor and the first and second temperature sensors and issues a signal to the electric expansion valve to adjust the valve opening so that the temperature difference is maintained within a predetermined range; A refrigeration circuit control device comprising: 2. The control device for a refrigeration circuit according to claim 1, wherein the opening/closing means is constituted by a solenoid valve. 3. A patent characterized in that the opening/closing operation of the electromagnetic valve is performed by the output of a temperature detector that detects the temperature of a controlled object heated or cooled by the refrigeration circuit and starts or stops the compressor. A control device for a refrigeration circuit according to claim 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1671482A JPS58133574A (en) | 1982-02-03 | 1982-02-03 | Controller for refrigeration circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1671482A JPS58133574A (en) | 1982-02-03 | 1982-02-03 | Controller for refrigeration circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58133574A JPS58133574A (en) | 1983-08-09 |
JPH0135261B2 true JPH0135261B2 (en) | 1989-07-24 |
Family
ID=11923929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1671482A Granted JPS58133574A (en) | 1982-02-03 | 1982-02-03 | Controller for refrigeration circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58133574A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60133267A (en) * | 1983-12-21 | 1985-07-16 | ダイキン工業株式会社 | Separate type air conditioner |
EP0511562B1 (en) * | 1991-04-19 | 1996-07-10 | Oji Yuka Goseishi Co., Ltd. | Lid of container and container for instant foods using the same |
ES2748573T3 (en) | 2011-11-29 | 2020-03-17 | Mitsubishi Electric Corp | Cooling / air conditioning device |
-
1982
- 1982-02-03 JP JP1671482A patent/JPS58133574A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58133574A (en) | 1983-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7730729B2 (en) | Refrigerating machine | |
JP3574447B2 (en) | Startup control system for air conditioner and control method thereof | |
US20090266093A1 (en) | Refrigerating air conditioning system | |
JPH09178274A (en) | Refrigerating system | |
JP2008096033A (en) | Refrigerating device | |
JP2004354017A (en) | Cooling device | |
JP3086813B2 (en) | Control method of electronic expansion valve in air conditioner | |
WO2006112157A1 (en) | Refrigeration cycle device and method of operating the same | |
JP2512986B2 (en) | Heat pump device | |
JP3668750B2 (en) | Air conditioner | |
KR100845847B1 (en) | Control Metheod for Airconditioner | |
JPH06341720A (en) | Refrigerator | |
JPH0135261B2 (en) | ||
JPH1073328A (en) | Cooler | |
JP2004286266A (en) | Refrigeration device and heat pump type cooling and heating machine | |
JP2005214442A (en) | Refrigerator | |
JP2001280756A (en) | Refrigerating unit | |
JP3661014B2 (en) | Refrigeration equipment | |
JP4286064B2 (en) | Cooling system | |
JPH0627588B2 (en) | Air conditioner | |
JPH07305903A (en) | Controller for freezer | |
KR20150048350A (en) | Air conditioner | |
JP3353367B2 (en) | Air conditioner | |
JPS6144125Y2 (en) | ||
JP2503785B2 (en) | Operation control device for air conditioner |