JP2004124168A - Method for producing high strength steel pipe and high strength steel sheet having excellent deformability and weld zone toughness - Google Patents
Method for producing high strength steel pipe and high strength steel sheet having excellent deformability and weld zone toughness Download PDFInfo
- Publication number
- JP2004124168A JP2004124168A JP2002289971A JP2002289971A JP2004124168A JP 2004124168 A JP2004124168 A JP 2004124168A JP 2002289971 A JP2002289971 A JP 2002289971A JP 2002289971 A JP2002289971 A JP 2002289971A JP 2004124168 A JP2004124168 A JP 2004124168A
- Authority
- JP
- Japan
- Prior art keywords
- less
- toughness
- weld
- steel pipe
- strength steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Metal Rolling (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、米国石油協会(API)規格でX60〜X80の高強度と優れた変形能及び溶接部(溶接金属及び溶接熱影響部(HAZ))靭性を有する鋼管及び鋼板に関するものである。
【0002】
【従来の技術】
原油・天然ガスを長距離輸送するパイプラインに使用するラインパイプは、(1)高圧力による輸送効率の向上や、(2)薄肉化による現地での溶接効率向上のため、高張力化する傾向にある。これまでにAPI規格でX80までのラインパイプが実用化されている。これらのラインパイプに対するニーズがでてきた。現在、X100の高強度ラインパイプはX80級ラインパイプの製造法(例えば、非特許文献1及び2)を基本に検討されているが、低温靭性、特にHAZ靭性の点で問題を抱えており、これらを克服した画期的な高強度鋼管が望まれている。
【0003】
一方、パイプラインの敷設環境も多様化し、北極海やアラスカなどの厳寒地域や永久凍土或いは地震の多発する地域に敷設されるようになっている。このようなパイプライン自体に歪が加わることから、変形能が高く安全性に優れた鋼管が望まれている。
【0004】
低合金鋼のHAZ靭性は、(1)結晶粒のサイズ、(2)高炭素島状マルテンサイト(M*)、上部ベイナイト(Bu)などの硬化相の分散状態、(3)粒界脆化の有無、(4)元素のミクロ偏析など種々の冶金学的要因に支配される。なかでも、HAZの結晶粒のサイズは低温靭性に大きな影響を与えることが知られており、HAZ組織を微細化する数多くの技術が開発実用化されている。
【0005】
例えば、TiNを微細に分散させ、490MPa級高張力鋼の大入熱溶接時のHAZ靭性を改善する手段がある(例えば、非特許文献3)。しかし、これらの析出物は溶融線近傍においては1400℃以上の高温にさらされるため大部分が粗大化或いは溶解し、HAZ組織が粗大化してHAZ靭性が劣化するという欠点を有する。
【0006】
この問題に対して、鋼中にTi酸化物を微細分散させて、溶接時のHAZにおいて粒内アシキュラーフェライト(以下IGFと呼ぶ)を生成させることにより溶融線近傍のHAZ組織は微細化され、HAZ靭性を改善する技術がある(例えば、特許文献1及び2)。
【0007】
しかしながら、Ti酸化物からIGFの生成だけでは組織を十分に微細化することができず、HAZ靭性が劣化するため、厳寒地域に使用される高強度鋼のHAZ靭性の改善が強く望まれている。
【0008】
変形能に関して、面積分率で10〜50%の下部ベイナイトを含有する対座屈特性に優れた鋼管が知られている(例えば、特許文献6)。平均アスペクト比が2〜15である島状マルテンサイトを面積分率で2〜15%含有する耐座屈特性に優れた鋼管も知られている(例えば特許文献3)。しかしながらいずれの鋼管も、鋼管母材の耐局部座屈性を向上させることだけを目的としたものであり、厳しい低温靭性(母材及び溶接部)が要求される厳寒地域に敷設することを想定したものではない。
【0009】
【非特許文献1】
NKK技報 No.138(1992)、pp.24〜31
【非特許文献2】
The 7th offshore Mechanics Arctic Engineering(1988),volume V,pp.179〜185
【非特許文献3】
「鉄と鋼」(昭和54年6月発行、第65巻第8号1232頁)
【特許文献1】
特開昭63−210235号公報
【特許文献2】
特開平1−15321号公報
【特許文献3】
特開平11−279700号公報
【特許文献4】
特開平11−343542号公報
【0010】
【発明が解決しようとする課題】
本発明は優れた変形能及び溶接部靭性を有するX60〜X80級の高強度鋼管及びその鋼板の製造法を提供するものである。
【0011】
【課題を解決するための手段】
本発明の要旨は、以下のとおりである。
【0012】
(1) 質量%で、
C:0.03〜0.12%、
Si:0.2%以下、
Mn:0.8〜2.2%、
P:0.015%以下、
S:0.001〜0.005%、
Nb:0.005〜0.03%、
Ti:0.005〜0.03%、
Al:0.001〜0.005%、
Mg:0.0001〜0.005%、
N:0.001〜0.006%、
O:0.001〜0.006%
を含有し、残部が鉄及び不可避的不純物からなり、
Pb=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+Mo+V
で定義されるPb値が1.5〜2.5未満の範囲にあり、MgとAlからなる酸化物を内包する0.01〜0.5μmのTiNが10000個/mm2以上含有し、かつ酸化物と硫化物が複合した形態で0.3質量%以上のMnを含有する0.5〜10μmの粒子が10個/mm2以上含有する母材と
C:0.035〜0.12%、
Si:0.2%以下、
Mn:1.0〜2.2%、
P:0.015%以下、
S:0.005%以下、
Nb:0.005〜0.03%、
Ti:0.005〜0.03%、
B:0.0003〜0.002%、
Al:0.05%以下、
N:0.001〜0.01%、
O:0.015〜0.03%
を含有し、残部が鉄及び不可避的不純物からなり、かつ
Pw=C+0.11Si+0.03Mn+0.02Ni+0.04Cr+0.07Mo+1.46Nb
で定義されるPw値が0.13〜0.25の範囲にある溶接金属部を有し、溶接金属部の管軸方向の引張試験における一様伸びが7%以上であることを特徴とする変形能及び溶接部靭性に優れた高強度鋼管。
【0013】
(2) 質量%で、
C:0.03〜0.12%、
Si:0.2%以下、
Mn:0.8〜2.2%、
P:0.015%以下、
S:0.001〜0.005%、
Nb:0.005〜0.03%、
Ti:0.005〜0.03%、
Al:0.001〜0.005%以下、
Mg:0.0001〜0.005%、
N:0.001〜0.006%、
O:0.001〜0.006%
を含有し、さらに
Ni:0.1〜1.0%、
Cu:0.1〜1.0%、
Cr:0.1〜1.0%、
Mo:0.1〜1.0%、
V:0.01〜0.1%、
Ca:0.0005〜0.005%
の1種または2種以上を含有し、残部が鉄及び不可避的不純物からなり、
Pb=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+Mo+V
で定義されるPb値が1.5〜2.5未満の範囲にあり、MgとAlからなる酸化物を内包する0.01〜0.5μmのTiNが10000個/mm2以上含有し、かつ酸化物と硫化物が複合した形態で0.3質量%以上のMnを含有する0.5〜10μmの粒子が10個/mm2以上含有する母材と
C:0.035〜0.12%、
Si:0.2%以下、
Mn:1.0〜2.2%、
P:0.015%以下、
S:0.005%以下、
Nb:0.005〜0.03%、
Ti:0.005〜0.03%、
B:0.0003〜0.002%、
Al:0.05%以下、
N:0.001〜0.01%、
O:0.015〜0.03%
を含有し、残部が鉄及び不可避的不純物からなり、かつ
Pw=C+0.11Si+0.03Mn+0.02Ni+0.04Cr+0.07Mo+1.46Nb
で定義されるPw値が0.15〜0.30の範囲にある溶接金属部を有し、溶接金属部の管軸方向の引張試験における一様伸びが3%以上であることを特徴とする溶接部靭性及び変形能に優れた高強度鋼管。
【0014】
(3) 前記溶接金属が、さらに
Ni:0.1〜1.0%、
Cu:0.1〜1.0%、
Cr:0.1〜1.0%、
Mo:0.1〜1.0%、
V:0.01〜0.1%、
Ca:0.001〜0.005%
のうち1種または2種以上を含有していることを特徴とする上記(1)または(2)項のいずれかに記載の溶接部靭性及び変形能に優れた高強度鋼管。
【0015】
(4) 上記(1)〜(3)項のいずれかに記載の鋼管において、さらに母材部の金属組織が粒径20μm以下のフェライトを30〜70%含有することを特徴とする変形能及び溶接部靭性に優れた高強度鋼管。
【0016】
(5) 質量%で、
C:0.03〜0.12%、
Si:0.2%以下、
Mn:0.8〜2.2%、
P:0.015%以下、
S:0.001〜0.005%、
Nb:0.005〜0.03%、
Ti:0.005〜0.03%、
Al:0.001〜0.005%以下、
Mg:0.0001〜0.005%、
N:0.001〜0.006%、
O:0.001〜0.006%
を含有し、残部が鉄及び不可避的不純物からなり、
Pb=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+Mo+V
で定義されるPb値が1.5〜2.5未満の範囲にあり、MgとAlからなる酸化物を内包する0.01〜0.5μmのTiNが10000個/mm2以上含有し、かつ酸化物と硫化物が複合した形態で0.3質量%以上のMnを含有する0.5〜10μmの粒子が10個/mm2以上含有する鋳片を1000〜1200℃に加熱した後、950℃以下の圧下率を50%以上とし、650〜850℃の温度範囲で圧延を終了した後、650〜850℃の温度範囲から2℃/秒以上の冷却速度で450℃以下の任意の温度まで冷却し、その後空冷することを特徴とする溶接部靭性及び変形能に優れた高強度鋼板の製造法。
【0017】
(6) 鋳片がさらに
Ni:0.1〜1.0%、
Cu:0.1〜1.0%、
Cr:0.1〜1.0%、
Mo:0.1〜1.0%、
V:0.01〜0.1%、
Ca:0.0005〜0.005%
の1種または2種以上を含有することを特徴とする上記(5)項に記載の溶接部靭性及び変形能に優れた高強度鋼板の製造法。
【0018】
【発明の実施の形態】
以下に、本発明の高強度鋼管について詳細に説明する。
本発明の特徴は、低C―低Si−微量Nb−Ti系を基本にMg、N及びO量を厳格に制限し、かつMgとAlからなる酸化物を内包する微細な炭窒化物、及び酸化物と硫化物からなる複合物とを含有させた母材部と低C−Mn−Ti−B系の溶接金属部から構成される鋼管において、母材部のフェライト粒径、フェライト分率、島状マルテンサイト(MA)分率及び残留オーステナイト(γ)分率を適正に制御することにより、良好なHAZ靭性と高い一様伸びを有する高強度鋼管にある。
【0019】
低合金鋼の低温靭性は、(1)結晶粒のサイズ、(2)MAや上部ベイナイト(Bu)などの硬化相の分散状態など種々の冶金学的要因に支配される。なかでもHAZの結晶粒のサイズ及びMA は低温靭性に大きな影響を与えることが知られている。
【0020】
高強度鋼管のHAZにおいて、靭性に有害なMAが多量に生成するためにHAZ靭性が劣化する傾向にある。靭性に有害なMAの悪影響を排除するためにはHAZの結晶粒を徹底的に微細化しなければならない。そこで、HAZにおけるオーステナイト(γ)粒の粗大化を抑制する技術と共に、γ粒内からIGFを生成させる技術の複合効果により、HAZの結晶粒を微細化し、HAZ靭性を著しく改善できることを見出した。
【0021】
すなわち、Mgの添加によりMgとAlからなる酸化物を内包する微細なTiNなどの炭窒化物を鋼中に生成させることによりHAZにおけるγ粒の粗大化を抑制すること、及びMg、Mn、Sを含む酸化物・析出物からIGFを生成することにより結晶粒を微細化でき、HAZ靭性を向上させることが可能である。MgとAlからなる酸化物を内包する微細なTiNなどの炭窒化物及びMg、Mn、Sを含む酸化物・析出物は高温でも化学的に安定で溶解しないため、γ粒の粗大化抑制効果及びIGFの生成効果が維持される。
【0022】
そこで、溶融線近傍の1400℃以上に加熱されるHAZにおいても化学的に安定な微細な酸化物をピンニング粒子として用いること、及び0.5μm以上の酸化物・硫化物をIGFの生成核として用いることにより、HAZ組織を徹底的に微細化する方法を検討した。
【0023】
この結果、まず、微量のMgとAlを含有させることにより、0.01〜0.05μmの微細な(Mg,Al)酸化物が多量に生成することを見出した。0.01〜0.5μmのTiNがこの微細な(Mg,Al)酸化物を核として複合析出するため、1400℃以上の高温においても優れたγ粒のピンニング効果を維持できることを明らかにした。この時、鋼中に含有する0.01〜0.5μmのTiNが10000個/mm2未満の場合には、γ粒の粗大化抑制効果が不十分となり、良好なHAZ靭性を得ることができない。そこで、MgとAlからなる酸化物を内包する0.01〜0.5μmのTiNを10000個/mm2以上含有させる必要がある。さらに、このTiNを生成させるためには0.0001%以上のMgを添加する必要がある。Mg添加量が多すぎるとMg系酸化物が増加し、低温靭性を劣化させるのでその上限を0.0050%に限定した。さらに、TiNの核となる微細な(Mg,Al)酸化物を生成させるためには、微量のAlを含有させる必要がある。しかしながら、Alの添加により、粗大なアルミナのクラスターが生成し、低温靭性に悪影響を与える。このため、Alの含有量を0.001〜0.005%に限定した。0.001%以上のAl量であれば、微細な(Mg,Al)酸化物を生成させることができる。
【0024】
つぎに、IGF生成の核となる酸化物・硫化物の必要な要件として、酸化物・硫化物の複合体の個数、サイズ及び組成を制御することにより溶融線近傍のHAZにおいてもIGFが生成し、HAZ組織が微細化され、HAZ靭性が改善されることを見出した。
【0025】
まず、IGFの生成核となる酸化物・硫化物の複合体の個数は少なくとも10個/mm2以上必要である。IGF変態核が10個/mm2未満ではHAZ組織の微細化が不十分となり良好なHAZ靭性は得られない。
【0026】
また、IGFの変態核として機能するためには、0.5μm以上の大きさが必要である。0.5μm未満ではIGF変態核として十分に機能せず、HAZ組織の微細化効果が得られない。一方、10μmを超える酸化物・硫化物の複合体の場合、脆性破壊の発生点となるため、良好なHAZ靭性が得られない。
【0027】
さらに、IGFの変態核として機能するためには、0.3質量%以上のMnを含有する必要がある。本発明では、1400℃以上の高温においてγ粒のピンニングに有効な微細な粒子を生成させるために、Mnよりも脱酸力の強いMg、Al、Tiを含有するので、酸化物の中にMnを含有させることは難しい。そこで、Mnを含む硫化物を酸化物上に複合析出させる必要がある。酸化物・硫化物の複合体におけるMn量が0.3質量%未満の場合、十分なIGF生成機能が得られず、HAZ組織は微細化しない。
【0028】
地震多発地域や永久凍土に敷設されるパイプラインには歪が負荷される。この場合、従来は鋼管の母材部に対してだけ高い一様伸びが求められていた。しかしながら、パイプラインの全体の変形からみると、最も変形能の小さい溶接金属部がパイプライン全体の変形能に影響を及ぼす。そこで、X60〜X80級鋼管においては、溶接金属部の管軸方向の引張試験における一様伸びが7%以上であれば、パイプライン全体として十分な変形能が得られることが判明した。
【0029】
一方、母材部の一様伸びを増加させるためには、20μm以下のフェライトを30〜70%含有することが必要である。鋼板の製造法として、650〜850℃の温度範囲で圧延を終了し、650〜850℃の温度範囲から2℃/秒以上の冷却速度で450℃以下の任意の温度まで冷却し、その後空冷することにより、高強度と高一様伸びを両立する鋼板が得られる。
【0030】
母材の一様伸びを大きくするためにフェライトを30〜70%含有させた場合、強度は低下する傾向になるので、X60〜X80の十分な強度を確保する必要がある。鋼を高強度化させるためには合金元素の添加量を増加させる必要があるが、HAZ靭性は劣化する。そこで、HAZ靭性を大きく損なうことなく、目標とする強度を得るために合金元素の適正な添加量について検討した結果、Pb値で定義される値を所定の範囲に限定することにより、フェライトが30〜70%含有した場合でも十分な強度を確保することができることを見出した。また、溶接金属中の合金元素添加量についても、Pw値で定義される値を所定の範囲に限定することにより、溶接金属の靭性を大きく損なうことなく目標とする強度を満足できる合金元素の添加量を見出し、本発明に至った。
【0031】
すなわち、本発明の特徴は、鋼管母材として、低C−低Si−微量Nb−Ti−Mg系成分を適用するに際し、目標とする強度を確保するために、合金元素添加量をPb値で定義される適正な範囲に限定すること、及び溶接金属として、靭性の劣化を損なうことなく目標とする強度を満足させるために、合金元素添加量をPwで定義される適正な範囲に限定すること、さらに優れた変形能を確保するために溶接金属部の管軸方向の引張試験の一様伸びを7%以上にすること、母材部の一様伸びを大きくするために粒径20μm以下のフェライトを30〜70%含有することにある。
【0032】
以下に、鋼管母材の成分限定理由について説明する。
【0033】
Cは母材の強度、及び高い一様伸びを確保するために、0.03%以上の添加が必要である。しかし、0.12%を超えると母材及びHAZの靭性が低下すると共に溶接性が劣化するので、0.12%を上限の値とした。
【0034】
目標とするX60〜X80の強度を満足させるためには、合金元素の添加量の適正化が必要である。すなわち、Pb=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+Mo+Vの式で定義されるPb値を1.5〜2.5未満の範囲にしなければならない。Pb値が1.5未満では目標とするX60〜X80の強度が確保できない。また、Pb値が2.5以上となるとM*の生成が顕著となり、HAZ靭性が劣化する。このためPb値の範囲を1.5〜2.5未満に限定した。
【0035】
Siは脱酸や強度向上のため添加する元素であるが、多く添加すると現地溶接性、HAZ靭性を劣化させるので、上限を0.2%とした。鋼の脱酸はTiのみでも十分であり、Siは必ずしも添加する必要はない。
【0036】
Mnは強度、低温靭性を確保する上で不可欠な元素であり、その下限は0.8%である。しかし、Mnが多すぎると鋼の焼入性が増加して現地溶接性、HAZ靭性を劣化させるだけでなく、連続鋳造鋼片の中心偏析を助長し、低温靭性も劣化させるので上限を2.2%とした。
【0037】
本発明において、不可避的不純物であるP量を0.015%以下とする。この主たる理由は母材及びHAZの低温靭性をより一層向上させるためである。P量の低減は連続鋳造スラブの中心偏析を低減させて、粒界破壊を防止し低温靭性を向上させる。
【0038】
Sは本発明において重要な元素である。IGF変態核として酸化物上に硫化物を複合析出させるためには0.001%以上含有しなければならない。しかし、Sが0.005%を超えると母材及びHAZの靭性が劣化するので、0.005%を上限の値とする。
【0039】
Nbは制御圧延時にνの再結晶を抑制して結晶粒を微細化するだけでなく、析出硬化や焼入性の増大にも寄与し、鋼を強靭化する作用を有し、本発明において必須の元素である。この効果を得るためには最低0.005%のNbが必要である。しかしながら、Nb量が多すぎるとHAZ靭性が劣化するので、その上限の値を0.03%に限定した。
【0040】
Tiは微細なTiNを形成し、スラブ再加熱時及びHAZのν粒の粗大化を抑制して、ミクロ組織を微細化して、母材及びHAZの低温靭性を改善し、本発明において必須の元素である。この効果を発揮させるためには、0.005%以上の添加が必要である。また、多すぎるとTiNの粗大化やTiCによる析出硬化が生じ、低温靭性を劣化させるので、その上限の値を0.03%に限定した。
【0041】
NはTiNを形成し、スラブ再加熱時及びHAZのν粒の粗大化を抑制して母材、HAZの低温靭性を向上させる。このために必要な最小量は0.001%である。しかし、N量が多すぎるとスラブ表面疵や固溶NによるHAZ靭性の劣化の原因となるので、その上限の値は0.006%に抑える必要がある。
【0042】
Oは、超微細な(Mg、Al)酸化物を形成して、HAZのγ粒の粗大化抑制効果を発揮すると同時に、0.5μm〜10μmのMg含有酸化物を形成してHAZにおいてIGF変態核として機能する。これらの機能を発揮させるためには、0.001%以上のOが必要である。Oが0.001%未満の場合、10000個/mm2以上の超微細酸化物や10個/mm2以上の0.5〜10μm酸化物を確保することが困難である。しかし、Oが0.006%を超えると10μmを超える粗大な酸化物が生成し、母材やHAZにおいて脆性破壊の発生点となるため、0.006%を上限の値とした。
【0043】
つぎにNi、Cu、Cr、Mo、V、Caを添加する理由について説明する。基本成分はさらにこれらの元素を添加する主たる目的は本発明鋼の特徴を損なうことなく、強度・低温靭性などの特性の向上をはかるためである。したがってその添加量は自ら制限されるべき性質のものである。
【0044】
Niは溶接性、HAZ靭性に悪影響を及ぼすことなく母材の強度、低温靭性を向上させるが、0.1%未満では効果が薄く、1.0%を超えるの添加は溶接性に好ましくないためにその上限の値を1.0%とした。
【0045】
CuはNiとほぼ同様の効果を有すると共に耐食性、耐水素誘起割れ性などにも効果があり、0.1%以上の添加が必要である。しかし、過剰に添加すると析出硬化により母材、HAZ靭性劣化や熱間圧延時にCu−クラックが発生するために、その上限の値を1.0%とした。
【0046】
Crは母材、溶接部の強度を増加させる効果があり、0.1%以上の添加が必要である。しかし、多すぎると現地溶接性やHAZ靭性を著しく劣化させる。このためCr量の上限は1.0%とした。
【0047】
Moは母材及び溶接部の強度を上昇させる元素であるが、1.0%を超えるとCrと同様に母材、HAZ靭性及び溶接性を劣化させる。また、0.1%未満の添加ではその効果が薄い。
【0048】
Vは、ほぼNbと同様の効果を有するが、その効果はNbに比較して格段に弱い。その効果を発揮させるためには0.01%以上の添加が必要である。また、上限は現地溶接性、HAZ靭性の点から0.1%まで許容できる。
【0049】
Caは硫化物(MnS)の携帯を制御し、低温靭性を向上(シャルピー試験における吸収エネルギーの増加など)させるほか、耐サワー性の向上にも著しい効果を発揮する。0.0005%未満ではその効果が薄く、また0.005%を超えて添加するとCaO−CaSが大量に生成してクラスター、大型介在物となり、鋼の清浄度を害するだけでなく、現地溶接性にも悪影響を及ぼす。このためCa添加量を0.0005〜0.005%に制限した。
【0050】
つぎに溶接金属の成分限定理由について説明する。
【0051】
溶接金属の高温割れを防止するために、C量は0.035%以上必要である。0.035%未満では溶接後、凝固する過程でδ凝固が起こり、高温割れが発生するためである。しかしながら、C量が0.12%を超えると、溶接金属の低温靭性が劣化するために、その上限の値を0.12%とした。
【0052】
Siは脱酸や強度向上のため添加する元素であるが、多く添加すると低温靭性や現地溶接性を劣化させるので、上限を0.2%とした。
【0053】
Mnは強度、低温靭性を確保する上で不可欠な元素であり、その下限は1.0%である。しかし、Mnが多すぎると鋼の焼入性が増加して低温靭性や現地溶接性を劣化させるので、上限を2.2%とした。
【0054】
Nbは鋼を強靭化する作用を有し、0.005%以上必要である。しかし、Nbを0.03%以上添加すると現地溶接性や低温靭性に悪影響をもたらすので、その上限を0.03%とした。
【0055】
Ti添加は微細なTiNを形成し、低温靭性を改善する。このようなTiNの効果を発現させるためには、最低0.005%のTi添加が必要である。しかし、Ti量が多すぎるとTiNの粗大化やTiCによる析出硬化が生じ、低温靭性が劣化するので、その上限は0.03%に限定しなければならない。
【0056】
Bは極微量で鋼の焼入性を飛躍的に高める元素である。このような効果を得るためには、Bは最低でも0.0003%必要である。一方、過剰に添加すると、低温靭性を劣化させるだけでなく、かえってBの焼入性向上効果を消失せしめることもあるので、その上限を0.002%とした。
【0057】
Alは、通常脱酸元素として効果を有する。しかし、Al量が0.05%を超えるとAl系非金属介在物が増加して鋼の清浄度を害するので、上限を0.05%とした。
【0058】
NはTiNを形成して低温靭性を向上させる。このために必要な最小量は0.001%である。しかし、多すぎると低温靭性を劣化させるので、その上限は0.01%に抑える必要がある。
【0059】
Oは溶接金属中において酸化物を形成し、粒内変態フェライトの核として作用し、組織の微細化に効果がある。しかし、多すぎると溶接金属の低温靭性が劣化すると共に、スラグ巻きこみなどの溶接欠陥を起こす。このため、O量の下限を0.015%、上限を0.03%とした。
さらに本発明では、不純物元素であるP、S量をそれぞれ0.015%以下、0.005%以下とする。この主たる理由は低温靭性をより一層向上させるためである。P量の低減は粒界破壊を防止し、低温靭性を向上させる。また、S量の低減はMnSを低減して、延靭性を向上させる効果がある。
つぎにNi、Cu、Cr、Mo、V、Caを添加する理由について説明する。
【0060】
基本となる成分にさらに、必要に応じてこれらの元素を添加する主たる目的は本発明鋼の優れた特徴を損なうことなく、溶接金属の強度・低温靭性などの特性の向上をはかるためである。したがって、その添加量は自ら制限されるべき性質のものである。
【0061】
Niを添加する目的は、低温靭性や現地溶接性を劣化させることなく、強度を上昇させるためである。しかし、添加量が多すぎると経済性だけでなく、低温靭性などを劣化させるので、その上限を1.0%、下限を0.1%とした。
【0062】
CuはNiと同様に低温靭性や現地溶接性を劣化させることなく、強度を上昇させる。しかし、過剰に添加すると低温靭性が劣化するので、その上限を1.0%とした。Cuの下限0.1%は添加による材質上の効果が顕著になる最小値である。
【0063】
Crは強度を増加させるが、多すぎると低温靭性や現地溶接性を著しく劣化させる。このため、Cr量の上限を1.0%、下限を0.1%とした。
【0064】
Moを添加する理由は、鋼の焼入性を向上させるためである。この効果を得るためには、Moは最低0.1%必要であるが、好ましくは0.5%である。しかし、過剰なMo添加は低温靭性、現地溶接性を劣化させるので、その上限を1.0%とした。
【0065】
Vは、ほぼNbと同様の効果を有するが、その効果はNbに比較して弱い。Vは歪誘起析出し、強度を上昇させる。下限は0.01%、その上限は現地溶接性、低温靭性の観点から0.1%まで許容できる。
【0066】
Caは硫化物(MnS)の形態を制御し、低温靭性を向上(シャルピー試験における吸収エネルギーの増加など)させる。しかし、Ca量が0.001%以下では実用上効果がなく、また0.005%を超えて添加するとCaO−CaSが大量に発生して、溶接欠陥を発生させる。このためCa添加量を0.001〜0.005%に限定した。
【0067】
さらに、溶接金属部においてX60〜X80の強度を満足させるためには、合金元素添加量の適正化が必要である。すなわちPw=C+0.11Si+0.03Mn+0.02Ni+0.04Cr+0.07Mo+1.46Nbで定義されるPw値を0.13〜0.25の範囲に制限しなければならない。Pw値が0.13未満ではX60以上の溶接部強度が確保できない。また、Pw値が0.25を超えるとX80の溶接部強度を超え、M*の生成が顕著となり靭性が劣化する。このためPw値の範囲を0.15〜0.30に限定した。
つぎに高い変形能を得るための限定理由について以下に述べる。
【0068】
地震多発地域や永久凍土に敷設されるパイプラインにおいて歪が負荷される場合、母材部の変形能ばかりでなく、溶接金属部の変形能も重要な因子であることが判明した。X80〜X100級鋼管においては、溶接金属部の管軸方向の引張試験における一様伸びが3%以上であれば、延性亀裂の発生が防止できる。
【0069】
母材の一様伸びを大きくするためには20μm以下のフェライトを30〜70%含有することが必要である。
【0070】
フェライト粒径が20μmを超えると母材の靭性が著しく低下するので、フェライト粒径の上限の値は20μmである。フェライト分率が30%未満の場合、一様伸びの向上効果が得られず、70%を超えると十分な強度が得られないため、フェライト分率の含有量を30〜70%に限定した。
【0071】
鋼管に使用する鋼板の製造法として、鋳片を1000〜1200℃に加熱した後、950℃以下での圧下率を50%以上とし、650〜850℃の温度範囲で圧延を終了した後、650〜850℃の温度範囲から2℃/秒以上の冷却速度で450℃以下の任意の温度まで冷却する必要がある。
【0072】
まず、再加熱温度を1000〜1200℃の範囲に限定する。再加熱温度はNb析出物を固溶させ、圧延中の組織を微細化し、優れた低温靭性を得るために1000℃以上としなければならない。しかし、再加熱温度が1200℃を超えると、ν粒が著しく粗大化し、圧延によっても完全に微細化できないため、優れた低温靭性が得られない。このため再加熱温度の上限を1200℃とした。
【0073】
さらに950℃以下の累積圧下率を50%以上、圧延終了温度を700〜850℃としなければならない。これは、再結晶域圧延で微細化したν粒を低温圧延によって延伸化し、結晶粒の徹底的な微細化をはかって低温靭性を改善するためである。累積圧下率が50%未満ではν組織の延伸化が不十分で、微細な結晶粒が得られない。また、圧延終了温度が850℃以上では、例えば累積圧下率が50%以上でも微細な結晶粒は達成できない。また、圧延温度が低すぎると過度のν/α2相域圧延となり、低温靭性が劣化するので、圧延終了温度の下限を650℃とした。
【0074】
圧延後、鋼板を加速冷却することが必須である。加速冷却は、低温靭性を損なわずに強度の増加及びミクロ組織の制御に基づく一様伸びの向上を可能にする。加速冷却の条件としては、圧延後700〜850℃の温度範囲から冷却速度2℃/秒以上で450℃以下の任意の温度まで冷却し、その後空冷しなければならない。冷却を開始する温度が850℃を超えると、一様伸びが低下する。また、冷却を開始する温度が650℃以下の場合、十分な強度が得られない。したがって、冷却を開始する温度範囲を650〜850℃に限定した。また、冷却速度が小さすぎたり、冷却停止温度が高すぎると加速冷却の効果が十分に得られず、十分な強度を得ることができない。
【0075】
本発明は厚板ミルに適用することが最も好ましいが、ホットコイルにも適用できる(この場合、圧延冷却後の鋼板は巻き取られ、冷却される)。また、この方法で製造した鋼板は低温靭性に優れているので、寒冷地におけるパイプラインのほか圧力容器などにも適用できる。
【0076】
【実施例】
本発明の実施例について述べる。転炉−連続鋳造法で種々の鋼成分の鋼片から製造された鋼板を用いて、鋼管を製造し、諸性質を調査した。鋼管溶接部の特性は内外面の1層のSAW(サブマージドアーク溶接)を実施した後、鋼板1/2t部より採取したシャルピー試験片を用いて評価した。ノッチ位置は溶接金属中央及びHAZ(内面溶接と外面溶接の溶接金属が交わる点から1mm)とした。また、引張試験は直径12.7mm、ゲージレングス50.8mmの丸棒引張試験片を使用した。試験の条件、結果を第1表−1〜3に示す。第1表−1は、鋼管母材と溶接金属の化学成分を示し、第1表−2に酸化物の個数、鋼板製造条件及び組織を示し、そして、第1表−3に鋼管母材の機械的性質、鋼管溶接部の機械的性質を示した。表から明らかなように、本発明の鋼管は優れた強度(YS、TS)、一様伸び(uEl)、低温靭性、溶接部靭性を有する。これに対して比較鋼は化学成分や具備すべき条件が適切でなく、いずれかの特性が劣る。
【0077】
鋼9はC量が少ないため、母材の強度がX80を満足しない。鋼10はS量が少ないため、HAZ靭性が劣る。鋼11は母材のAl量が少ないため、HAZ靭性が劣る。鋼12は母材のAl量が多いため、HAZ靭性が劣る。鋼13は母材のMg量が少ないため、HAZ靭性が劣る。鋼14は母材のMg量が多いため、母材の靭性が劣る。鋼15は母材のPb値が低すぎるため、目標の強度を満足しない。鋼16は母材のPb値が高すぎるため、HAZ靭性が劣る。鋼17は溶接金属のC量が少ないため、溶接金属の高温割れが発生する。鋼18は溶接金属のC量が多すぎるため、溶接金属の低温靭性が劣る。鋼19は溶接金属のPw値が低すぎるため、溶接部の強度が低い。鋼20は溶接金属のPw値が高すぎるため、溶接金属の靭性が劣る。鋼21はMgとAlからなる酸化物を内包する0.01〜0.5μmのTiN、すなわちピン止め粒子の個数が少ないため、HAZ靭性が劣る。鋼22は酸化物と硫化物が複合した形態で0.3質量%以上のMnを含有する0.5〜10μmの粒子、すなわちIGF変態核の個数が少ないため、HAZ靭性が劣る。鋼23は20μm以下のフェライト分率が5%未満であるために十分な一様伸びが得られない。鋼24は20μm以下のフェライト分率が50%を超えるために十分な強度が得られない。鋼25は管軸方向の溶接金属の引張試験の一様伸びが小さく、変形能が劣る。鋼26はスラブ再加熱温度が1000℃以下であるために十分な低温靭性が得られない。鋼27はスラブ再加熱温度が1200℃を超えるために十分な低温靭性が得られない。鋼28は950℃以下の圧下量が50%未満であるために良好な低温靭性が得られない。鋼29は圧延終了温度が850℃を超えるために良好な低温靭性が得られない。鋼30は圧延終了温度が650℃未満であるために良好な低温靭性が得られない。鋼31は冷却開始温度が650℃未満であるために十分な強度が得られない。鋼33は冷却停止温度が450℃を超えるために十分な強度が得られない。鋼34は冷却速度が小さいために十分な強度が得られない。
【0078】
【表1】
【0079】
【表2】
【0080】
【表3】
【0081】
【表4】
【0082】
【表5】
【0083】
【表6】
【0084】
【表7】
【0085】
【表8】
【0086】
【発明の効果】
本発明によるHAZ靭性に優れ、高い変形能を有する高強度鋼管(API規格X60〜X80)をパイプラインに採用することにより、パイプラインの安全性が著しく向上すると共に、輸送効率が飛躍的に改善された。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel pipe and a steel plate having high strength of X60 to X80, excellent deformability and weld zone (weld metal and weld heat affected zone (HAZ)) toughness according to the American Petroleum Institute (API) standard.
[0002]
[Prior art]
Line pipes used for pipelines that transport crude oil and natural gas over long distances tend to increase in tension to (1) improve transport efficiency due to high pressure and (2) improve local welding efficiency due to thinner walls It is in. So far, line pipes up to X80 in the API standard have been put into practical use. The need for these linepipes has emerged. Currently, X100 high-strength linepipes are studied based on the production method of X80 class linepipes (for example, Non-Patent Documents 1 and 2), but have problems in terms of low-temperature toughness, especially HAZ toughness, An innovative high-strength steel pipe that overcomes these problems is desired.
[0003]
On the other hand, the pipeline installation environment has also diversified, and has been laid in extremely cold regions such as the Arctic Ocean and Alaska, permafrost, or regions where earthquakes frequently occur. Since such a pipeline itself is distorted, a steel pipe having high deformability and excellent safety is desired.
[0004]
The HAZ toughness of low alloy steels is (1) grain size, (2) high carbon island martensite (M * ), The dispersion state of a hardened phase such as upper bainite (Bu), (3) presence or absence of grain boundary embrittlement, and (4) micrometal segregation of elements. Among them, the size of the HAZ crystal grains is known to have a large effect on the low temperature toughness, and many techniques for refining the HAZ structure have been developed and put into practical use.
[0005]
For example, there is means for finely dispersing TiN to improve the HAZ toughness during high heat input welding of 490 MPa class high-tensile steel (for example, Non-Patent Document 3). However, since these precipitates are exposed to a high temperature of 1400 ° C. or higher in the vicinity of the melting line, most of them are coarsened or dissolved, and the HAZ structure is coarsened to deteriorate the HAZ toughness.
[0006]
In response to this problem, the HAZ structure near the melting line is refined by finely dispersing Ti oxide in steel and generating intragranular acicular ferrite (hereinafter referred to as IGF) in the HAZ during welding. There are techniques for improving HAZ toughness (for example, Patent Documents 1 and 2).
[0007]
However, the formation of IGF from Ti oxide alone cannot sufficiently refine the structure, and the HAZ toughness deteriorates. Therefore, it is strongly desired to improve the HAZ toughness of high-strength steel used in extremely cold regions. .
[0008]
Regarding the deformability, a steel pipe excellent in anti-buckling characteristics containing 10 to 50% of lower bainite in an area fraction is known (for example, Patent Document 6). A steel pipe excellent in buckling resistance is also known, which contains 2 to 15% of island-like martensite having an average aspect ratio of 2 to 15 in terms of area fraction (for example, Patent Document 3). However, all steel pipes are only intended to improve the local buckling resistance of the steel pipe base metal, and are assumed to be laid in extremely cold areas where strict low temperature toughness (base metal and welded parts) is required. It was n’t.
[0009]
[Non-Patent Document 1]
NKK Technical Report No. 138 (1992), pp. 24-31
[Non-Patent Document 2]
The 7th offshore Mechanics Arctic Engineering (1988), volume V, pp. 179-185
[Non-Patent Document 3]
"Iron and Steel" (issued June 1979, Vol. 65, No. 8, 1232)
[Patent Document 1]
Japanese Patent Laid-Open No. 63-210235
[Patent Document 2]
Japanese Patent Laid-Open No. 1-15321
[Patent Document 3]
JP 11-279700 A
[Patent Document 4]
JP-A-11-343542
[0010]
[Problems to be solved by the invention]
The present invention provides an X60 to X80 grade high-strength steel pipe having excellent deformability and weld toughness, and a method for producing the steel sheet.
[0011]
[Means for Solving the Problems]
The gist of the present invention is as follows.
[0012]
(1) In mass%,
C: 0.03-0.12%,
Si: 0.2% or less,
Mn: 0.8 to 2.2%
P: 0.015% or less,
S: 0.001 to 0.005%,
Nb: 0.005 to 0.03%,
Ti: 0.005 to 0.03%,
Al: 0.001 to 0.005%,
Mg: 0.0001 to 0.005%,
N: 0.001 to 0.006%,
O: 0.001 to 0.006%
And the balance consists of iron and inevitable impurities,
Pb = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + Mo + V
The Pb value defined in the above is in the range of 1.5 to less than 2.5, and 0.01 to 0.5 μm of TiN containing an oxide composed of Mg and Al is 10,000 / mm. 2 10 / mm of 0.5-10 μm particles containing 0.3% by mass or more of Mn in the form of a composite of oxide and sulfide. 2 With the base material containing
C: 0.035 to 0.12%,
Si: 0.2% or less,
Mn: 1.0-2.2%
P: 0.015% or less,
S: 0.005% or less,
Nb: 0.005 to 0.03%,
Ti: 0.005 to 0.03%,
B: 0.0003 to 0.002%,
Al: 0.05% or less,
N: 0.001 to 0.01%,
O: 0.015-0.03%
And the balance consists of iron and inevitable impurities, and
Pw = C + 0.11Si + 0.03Mn + 0.02Ni + 0.04Cr + 0.07Mo + 1.46Nb
It has a weld metal part in which the Pw value defined by is in the range of 0.13 to 0.25, and the uniform elongation in the tensile test in the tube axis direction of the weld metal part is 7% or more. High-strength steel pipe with excellent deformability and weld toughness.
[0013]
(2) By mass%
C: 0.03-0.12%,
Si: 0.2% or less,
Mn: 0.8 to 2.2%
P: 0.015% or less,
S: 0.001 to 0.005%,
Nb: 0.005 to 0.03%,
Ti: 0.005 to 0.03%,
Al: 0.001 to 0.005% or less,
Mg: 0.0001 to 0.005%,
N: 0.001 to 0.006%,
O: 0.001 to 0.006%
Contains
Ni: 0.1 to 1.0%,
Cu: 0.1 to 1.0%
Cr: 0.1 to 1.0%,
Mo: 0.1 to 1.0%,
V: 0.01 to 0.1%
Ca: 0.0005 to 0.005%
One or more of the following, the balance consisting of iron and inevitable impurities,
Pb = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + Mo + V
The Pb value defined in the above is in the range of 1.5 to less than 2.5, and 0.01 to 0.5 μm of TiN containing an oxide composed of Mg and Al is 10,000 / mm. 2 10 / mm of 0.5-10 μm particles containing 0.3% by mass or more of Mn in the form of a composite of oxide and sulfide. 2 With the base material containing
C: 0.035 to 0.12%,
Si: 0.2% or less,
Mn: 1.0-2.2%
P: 0.015% or less,
S: 0.005% or less,
Nb: 0.005 to 0.03%,
Ti: 0.005 to 0.03%,
B: 0.0003 to 0.002%,
Al: 0.05% or less,
N: 0.001 to 0.01%,
O: 0.015-0.03%
And the balance consists of iron and inevitable impurities, and
Pw = C + 0.11Si + 0.03Mn + 0.02Ni + 0.04Cr + 0.07Mo + 1.46Nb
Having a weld metal part with a Pw value defined by 0.15 to 0.30, and having a uniform elongation of 3% or more in a tensile test in the tube axis direction of the weld metal part. High strength steel pipe with excellent weld toughness and deformability.
[0014]
(3) The weld metal is further
Ni: 0.1 to 1.0%,
Cu: 0.1 to 1.0%
Cr: 0.1 to 1.0%,
Mo: 0.1 to 1.0%,
V: 0.01 to 0.1%
Ca: 0.001 to 0.005%
The high-strength steel pipe excellent in weld toughness and deformability according to any one of the above (1) and (2), characterized by containing one or more of them.
[0015]
(4) In the steel pipe according to any one of the above items (1) to (3), the metal structure of the base metal part further contains 30 to 70% ferrite having a particle size of 20 μm or less, and High strength steel pipe with excellent weld toughness.
[0016]
(5) By mass%
C: 0.03-0.12%,
Si: 0.2% or less,
Mn: 0.8 to 2.2%
P: 0.015% or less,
S: 0.001 to 0.005%,
Nb: 0.005 to 0.03%,
Ti: 0.005 to 0.03%,
Al: 0.001 to 0.005% or less,
Mg: 0.0001 to 0.005%,
N: 0.001 to 0.006%,
O: 0.001 to 0.006%
And the balance consists of iron and inevitable impurities,
Pb = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + Mo + V
The Pb value defined in the above is in the range of 1.5 to less than 2.5, and 0.01 to 0.5 μm of TiN containing an oxide composed of Mg and Al is 10,000 / mm. 2 10 / mm of 0.5-10 μm particles containing 0.3% by mass or more of Mn in the form of a composite of oxide and sulfide. 2 After heating the slab containing the above to 1000 to 1200 ° C., the reduction rate of 950 ° C. or less is set to 50% or more, and rolling is completed in the temperature range of 650 to 850 ° C., and then from the temperature range of 650 to 850 ° C. A method for producing a high-strength steel sheet excellent in weld toughness and deformability, characterized by cooling to an arbitrary temperature of 450 ° C. or lower at a cooling rate of at least ° C./second and then air cooling.
[0017]
(6) More slabs
Ni: 0.1 to 1.0%,
Cu: 0.1 to 1.0%
Cr: 0.1 to 1.0%,
Mo: 0.1 to 1.0%,
V: 0.01 to 0.1%
Ca: 0.0005 to 0.005%
The manufacturing method of the high strength steel plate excellent in the weld part toughness and deformability as described in the said (5) term | claim characterized by including 1 type, or 2 or more types of these.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Below, the high-strength steel pipe of this invention is demonstrated in detail.
The feature of the present invention is that a fine carbonitride that strictly limits the amount of Mg, N and O based on a low C-low Si-trace Nb-Ti system and contains an oxide composed of Mg and Al, and In a steel pipe composed of a base metal part containing a composite composed of an oxide and sulfide and a weld metal part of a low C-Mn-Ti-B system, the ferrite particle size of the base metal part, the ferrite fraction, By appropriately controlling the island martensite (MA) fraction and the retained austenite (γ) fraction, the high strength steel pipe has good HAZ toughness and high uniform elongation.
[0019]
The low temperature toughness of low alloy steel is governed by various metallurgical factors such as (1) crystal grain size, (2) dispersion state of hardened phase such as MA and upper bainite (Bu). Among these, it is known that the size of the HAZ crystal grains and the MA greatly affect the low temperature toughness.
[0020]
In HAZ of a high-strength steel pipe, MAZ harmful to toughness is generated in a large amount, so that HAZ toughness tends to deteriorate. In order to eliminate the adverse effect of MA harmful to toughness, the HAZ crystal grains must be thoroughly refined. Thus, the present inventors have found that HAZ crystal grains can be refined and HAZ toughness can be remarkably improved by a combined effect of a technique for suppressing the coarsening of austenite (γ) grains in HAZ and a technique for generating IGF from the γ grains.
[0021]
That is, the addition of Mg suppresses the coarsening of γ grains in the HAZ by generating fine carbonitrides such as TiN containing an oxide composed of Mg and Al in the steel, and Mg, Mn, S By generating IGF from oxides / precipitates containing, crystal grains can be refined and HAZ toughness can be improved. Fine carbonitrides such as TiN containing oxides composed of Mg and Al, and oxides / precipitates containing Mg, Mn, and S are chemically stable and do not dissolve even at high temperatures. And the production effect of IGF is maintained.
[0022]
Therefore, in HAZ heated to 1400 ° C. or more near the melting line, chemically stable fine oxides are used as pinning particles, and oxides / sulfides of 0.5 μm or more are used as IGF production nuclei. Thus, a method for thoroughly refining the HAZ structure was examined.
[0023]
As a result, it was first found that a small amount of Mg (Al) oxide of 0.01 to 0.05 μm was produced in a large amount by containing a small amount of Mg and Al. It has been clarified that since 0.01 to 0.5 μm of TiN is complex-precipitated with this fine (Mg, Al) oxide as a nucleus, an excellent pinning effect of γ grains can be maintained even at a high temperature of 1400 ° C. or higher. At this time, 0.01 to 0.5 μm TiN contained in the steel is 10,000 pieces / mm. 2 If it is less than 1, the effect of suppressing the coarsening of γ grains becomes insufficient, and good HAZ toughness cannot be obtained. Therefore, 10000 pieces / mm of 0.01 to 0.5 μm TiN containing an oxide composed of Mg and Al. 2 It is necessary to contain above. Furthermore, in order to produce this TiN, it is necessary to add 0.0001% or more of Mg. If the amount of Mg added is too large, Mg-based oxides increase and low temperature toughness deteriorates, so the upper limit was limited to 0.0050%. Furthermore, in order to produce a fine (Mg, Al) oxide serving as a nucleus of TiN, it is necessary to contain a trace amount of Al. However, the addition of Al produces coarse alumina clusters, which adversely affects low temperature toughness. For this reason, the content of Al is limited to 0.001 to 0.005%. If the amount of Al is 0.001% or more, a fine (Mg, Al) oxide can be generated.
[0024]
Next, as a necessary requirement for oxides and sulfides that form the core of IGF generation, IGF is also generated in the HAZ near the melting line by controlling the number, size, and composition of the oxide / sulfide complex. The present inventors have found that the HAZ structure is refined and the HAZ toughness is improved.
[0025]
First, the number of oxide / sulfide complexes that form IGF nuclei is at least 10 / mm. 2 This is necessary. 10 IGF transformation nuclei / mm 2 If it is less than the range, the HAZ structure is not sufficiently refined and good HAZ toughness cannot be obtained.
[0026]
Moreover, in order to function as a transformation nucleus of IGF, a size of 0.5 μm or more is necessary. If it is less than 0.5 μm, it does not function sufficiently as an IGF transformation nucleus, and the HAZ microstructure refinement effect cannot be obtained. On the other hand, in the case of a composite of oxide and sulfide exceeding 10 μm, it becomes a point of occurrence of brittle fracture, so that good HAZ toughness cannot be obtained.
[0027]
Furthermore, in order to function as a transformation nucleus of IGF, it is necessary to contain 0.3% by mass or more of Mn. In the present invention, in order to generate fine particles effective for pinning γ grains at a high temperature of 1400 ° C. or higher, Mg, Al, and Ti, which have stronger deoxidizing power than Mn, are contained. It is difficult to contain. Therefore, it is necessary to complex precipitate sulfide containing Mn on the oxide. When the amount of Mn in the oxide / sulfide composite is less than 0.3% by mass, a sufficient IGF generation function cannot be obtained, and the HAZ structure is not refined.
[0028]
The pipelines laid in earthquake-prone areas and permafrost are strained. In this case, conventionally, a high uniform elongation is required only for the base material portion of the steel pipe. However, from the viewpoint of the overall deformation of the pipeline, the weld metal portion having the smallest deformability affects the deformability of the entire pipeline. Therefore, it has been found that, in the X60 to X80 class steel pipe, if the uniform elongation in the tensile test in the pipe axis direction of the weld metal portion is 7% or more, sufficient deformability can be obtained as a whole pipeline.
[0029]
On the other hand, in order to increase the uniform elongation of the base material portion, it is necessary to contain 30 to 70% of ferrite of 20 μm or less. As a method of manufacturing a steel sheet, rolling is finished in a temperature range of 650 to 850 ° C., and the steel plate is cooled from the temperature range of 650 to 850 ° C. to an arbitrary temperature of 450 ° C. or less at a cooling rate of 2 ° C./second or more and then air-cooled Thus, a steel sheet having both high strength and high uniform elongation can be obtained.
[0030]
When 30 to 70% of ferrite is contained in order to increase the uniform elongation of the base material, the strength tends to decrease. Therefore, it is necessary to ensure a sufficient strength of X60 to X80. In order to increase the strength of steel, it is necessary to increase the amount of alloying element added, but the HAZ toughness deteriorates. Therefore, as a result of studying an appropriate addition amount of the alloy element in order to obtain the target strength without greatly impairing the HAZ toughness, by limiting the value defined by the Pb value to a predetermined range, 30% of ferrite can be obtained. It was found that sufficient strength can be ensured even when contained in 70%. In addition, with respect to the alloy element addition amount in the weld metal, by adding the alloy element that can satisfy the target strength without greatly impairing the toughness of the weld metal by limiting the value defined by the Pw value to a predetermined range. The amount was found and led to the present invention.
[0031]
That is, the feature of the present invention is that, when a low C-low Si-trace Nb-Ti-Mg-based component is applied as a steel pipe base material, the alloy element addition amount is expressed as a Pb value in order to ensure a target strength. To limit to the appropriate range defined, and to satisfy the target strength without impairing toughness deterioration as a weld metal, limit the alloy element addition amount to an appropriate range defined by Pw Further, in order to ensure further excellent deformability, the uniform elongation of the tensile test in the tube axis direction of the weld metal part is set to 7% or more, and in order to increase the uniform elongation of the base material part, the particle diameter is 20 μm or less. It is in containing 30 to 70% of ferrite.
[0032]
The reason for limiting the components of the steel pipe base material will be described below.
[0033]
In order to ensure the strength of the base material and high uniform elongation, C needs to be added in an amount of 0.03% or more. However, if it exceeds 0.12%, the toughness of the base metal and the HAZ is lowered and the weldability is deteriorated, so 0.12% was made the upper limit value.
[0034]
In order to satisfy the target strengths of X60 to X80, it is necessary to optimize the addition amount of the alloy element. That is, the Pb value defined by the formula Pb = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + Mo + V must be in the range of less than 1.5 to 2.5. If the Pb value is less than 1.5, the targeted strengths of X60 to X80 cannot be secured. When the Pb value is 2.5 or more, M * Generation becomes remarkable, and the HAZ toughness deteriorates. For this reason, the range of Pb value was limited to less than 1.5-2.5.
[0035]
Si is an element added for deoxidation and strength improvement, but if added in large amounts, the field weldability and the HAZ toughness deteriorate, so the upper limit was made 0.2%. Ti is sufficient for deoxidation of steel, and Si does not necessarily have to be added.
[0036]
Mn is an indispensable element for securing strength and low temperature toughness, and its lower limit is 0.8%. However, if Mn is too much, not only the hardenability of the steel is increased and the on-site weldability and HAZ toughness are deteriorated, but also the center segregation of continuously cast steel pieces is promoted and the low temperature toughness is also deteriorated. 2%.
[0037]
In the present invention, the amount of P which is an inevitable impurity is set to 0.015% or less. The main reason is to further improve the low temperature toughness of the base material and the HAZ. The reduction of the P content reduces the center segregation of the continuously cast slab, prevents the grain boundary fracture and improves the low temperature toughness.
[0038]
S is an important element in the present invention. In order to precipitate a sulfide on an oxide as an IGF transformation nucleus, it must be contained in an amount of 0.001% or more. However, if S exceeds 0.005%, the toughness of the base material and the HAZ deteriorates, so 0.005% is made the upper limit value.
[0039]
Nb not only suppresses recrystallization of ν during controlled rolling and refines the crystal grains, but also contributes to precipitation hardening and hardenability, and has the effect of strengthening the steel and is essential in the present invention. Elements. To obtain this effect, a minimum of 0.005% Nb is required. However, if the amount of Nb is too large, the HAZ toughness deteriorates, so the upper limit value was limited to 0.03%.
[0040]
Ti forms fine TiN, suppresses coarsening of ν grains in slab reheating and HAZ, refines the microstructure, improves the low temperature toughness of the base material and HAZ, and is an essential element in the present invention. It is. In order to exhibit this effect, addition of 0.005% or more is necessary. On the other hand, if it is too much, coarsening of TiN and precipitation hardening due to TiC occur and the low temperature toughness is deteriorated, so the upper limit value is limited to 0.03%.
[0041]
N forms TiN and suppresses coarsening of ν grains of HAZ during reheating of the slab and improves the low temperature toughness of the base material and HAZ. The minimum amount required for this is 0.001%. However, if the amount of N is too large, HAZ toughness is deteriorated due to slab surface defects or solute N, so the upper limit value needs to be limited to 0.006%.
[0042]
O forms an ultrafine (Mg, Al) oxide and exhibits the effect of suppressing the coarsening of γ grains of HAZ. At the same time, it forms an Mg-containing oxide of 0.5 μm to 10 μm to form an IGF transformation in HAZ. Functions as a nucleus. In order to exhibit these functions, 0.001% or more of O is necessary. When O is less than 0.001%, 10,000 pieces / mm 2 Above ultrafine oxide and 10 / mm 2 It is difficult to secure the above 0.5 to 10 μm oxide. However, if O exceeds 0.006%, a coarse oxide exceeding 10 μm is generated, which becomes a point of occurrence of brittle fracture in the base material or HAZ, so 0.006% was made the upper limit value.
[0043]
Next, the reason for adding Ni, Cu, Cr, Mo, V, and Ca will be described. The main purpose of adding these elements as basic components is to improve properties such as strength and low-temperature toughness without impairing the characteristics of the steel of the present invention. Therefore, the amount added is of a nature that should be restricted by itself.
[0044]
Ni improves the strength and low temperature toughness of the base metal without adversely affecting the weldability and HAZ toughness, but the effect is low at less than 0.1%, and addition exceeding 1.0% is not preferable for weldability. The upper limit value was set to 1.0%.
[0045]
Cu has substantially the same effect as Ni, and is also effective in corrosion resistance, resistance to hydrogen-induced cracking, and the like, and it is necessary to add 0.1% or more. However, when added excessively, Cu-cracks are generated during precipitation hardening due to precipitation hardening and HAZ toughness, and the upper limit value was set to 1.0%.
[0046]
Cr has an effect of increasing the strength of the base material and the welded portion, and it is necessary to add 0.1% or more. However, if too much, field weldability and HAZ toughness are significantly deteriorated. For this reason, the upper limit of the Cr amount is set to 1.0%.
[0047]
Mo is an element that increases the strength of the base metal and the welded portion. However, if it exceeds 1.0%, the base metal, the HAZ toughness and the weldability are deteriorated similarly to Cr. Moreover, the effect is thin when added less than 0.1%.
[0048]
V has substantially the same effect as Nb, but the effect is much weaker than Nb. In order to exhibit the effect, addition of 0.01% or more is necessary. Further, the upper limit is allowable up to 0.1% from the viewpoint of on-site weldability and HAZ toughness.
[0049]
Ca controls the carrying of sulfide (MnS) and improves low temperature toughness (increased absorbed energy in the Charpy test, etc.), and also exhibits a remarkable effect in improving sour resistance. If less than 0.0005%, the effect is small, and if added over 0.005%, a large amount of CaO-CaS is formed to form clusters and large inclusions, not only detracting from the cleanliness of the steel, but also on-site weldability. It also has an adverse effect. Therefore, the Ca addition amount is limited to 0.0005 to 0.005%.
[0050]
Next, the reasons for limiting the components of the weld metal will be described.
[0051]
In order to prevent hot cracking of the weld metal, the C content needs to be 0.035% or more. If it is less than 0.035%, δ solidification occurs in the process of solidification after welding, and hot cracking occurs. However, if the C content exceeds 0.12%, the low temperature toughness of the weld metal deteriorates, so the upper limit value was made 0.12%.
[0052]
Si is an element added for deoxidation and strength improvement, but if added in large amounts, low temperature toughness and on-site weldability deteriorate, so the upper limit was made 0.2%.
[0053]
Mn is an element indispensable for securing strength and low temperature toughness, and its lower limit is 1.0%. However, if there is too much Mn, the hardenability of the steel increases and the low temperature toughness and on-site weldability deteriorate, so the upper limit was made 2.2%.
[0054]
Nb has the effect | action which strengthens steel and needs 0.005% or more. However, if 0.03% or more of Nb is added, the on-site weldability and low temperature toughness are adversely affected, so the upper limit was made 0.03%.
[0055]
Ti addition forms fine TiN and improves low temperature toughness. In order to exhibit such an effect of TiN, it is necessary to add at least 0.005% Ti. However, if the amount of Ti is too large, TiN coarsening and precipitation hardening due to TiC occur and the low temperature toughness deteriorates, so the upper limit must be limited to 0.03%.
[0056]
B is an element that greatly increases the hardenability of steel in a very small amount. In order to obtain such an effect, B must be at least 0.0003%. On the other hand, if added excessively, not only the low temperature toughness is deteriorated, but also the effect of improving the hardenability of B may be lost, so the upper limit was made 0.002%.
[0057]
Al usually has an effect as a deoxidizing element. However, if the Al content exceeds 0.05%, Al-based non-metallic inclusions increase to impair the cleanliness of the steel, so the upper limit was made 0.05%.
[0058]
N forms TiN and improves low temperature toughness. The minimum amount required for this is 0.001%. However, if the amount is too large, the low temperature toughness is deteriorated, so the upper limit must be suppressed to 0.01%.
[0059]
O forms an oxide in the weld metal, acts as a nucleus of intragranular transformed ferrite, and is effective in refining the structure. However, if the amount is too large, the low temperature toughness of the weld metal deteriorates and welding defects such as slag entrainment occur. For this reason, the lower limit of the amount of O is set to 0.015%, and the upper limit is set to 0.03%.
Further, in the present invention, the amounts of impurity elements P and S are set to 0.015% or less and 0.005% or less, respectively. The main reason is to further improve the low temperature toughness. Reduction of the P content prevents grain boundary fracture and improves low temperature toughness. Further, the reduction of the amount of S has the effect of reducing MnS and improving ductility.
Next, the reason for adding Ni, Cu, Cr, Mo, V, and Ca will be described.
[0060]
In addition to the basic components, the main purpose of adding these elements as necessary is to improve properties such as strength and low temperature toughness of the weld metal without impairing the excellent characteristics of the steel of the present invention. Therefore, the amount of addition is a property that should be limited by itself.
[0061]
The purpose of adding Ni is to increase the strength without deteriorating the low temperature toughness and on-site weldability. However, if the addition amount is too large, not only the economical efficiency but also the low temperature toughness is deteriorated. Therefore, the upper limit is set to 1.0% and the lower limit is set to 0.1%.
[0062]
Cu, like Ni, increases strength without deteriorating low-temperature toughness and on-site weldability. However, if added in excess, the low temperature toughness deteriorates, so the upper limit was made 1.0%. The lower limit of 0.1% of Cu is the minimum value at which the effect on the material due to addition becomes remarkable.
[0063]
Cr increases the strength, but if it is too much, the low temperature toughness and on-site weldability are significantly deteriorated. For this reason, the upper limit of the Cr amount is set to 1.0% and the lower limit is set to 0.1%.
[0064]
The reason for adding Mo is to improve the hardenability of the steel. In order to obtain this effect, Mo needs to be at least 0.1%, preferably 0.5%. However, excessive addition of Mo deteriorates low temperature toughness and on-site weldability, so the upper limit was made 1.0%.
[0065]
V has almost the same effect as Nb, but the effect is weaker than that of Nb. V causes strain-induced precipitation and increases the strength. The lower limit is 0.01%, and the upper limit is acceptable up to 0.1% from the viewpoint of on-site weldability and low temperature toughness.
[0066]
Ca controls the form of sulfide (MnS) and improves low-temperature toughness (such as an increase in absorbed energy in the Charpy test). However, when the Ca content is 0.001% or less, there is no practical effect. When the Ca content exceeds 0.005%, a large amount of CaO—CaS is generated and a weld defect is generated. For this reason, Ca addition amount was limited to 0.001 to 0.005%.
[0067]
Furthermore, in order to satisfy the strength of X60 to X80 in the weld metal part, it is necessary to optimize the amount of alloying element added. That is, the Pw value defined by Pw = C + 0.11Si + 0.03Mn + 0.02Ni + 0.04Cr + 0.07Mo + 1.46Nb must be limited to the range of 0.13-0.25. If the Pw value is less than 0.13, the weld strength of X60 or more cannot be ensured. When the Pw value exceeds 0.25, the weld strength of X80 is exceeded, and M * Generation becomes remarkable and toughness deteriorates. For this reason, the range of Pw value was limited to 0.15-0.30.
Next, the reason for limitation for obtaining high deformability will be described below.
[0068]
It was found that not only the deformability of the base metal part but also the deformability of the weld metal part is an important factor when strain is applied in the earthquake-prone areas and pipelines laid in permafrost. In the X80 to X100 grade steel pipe, if the uniform elongation in the tensile test in the pipe axis direction of the weld metal part is 3% or more, the occurrence of ductile cracks can be prevented.
[0069]
In order to increase the uniform elongation of the base material, it is necessary to contain 30 to 70% of ferrite of 20 μm or less.
[0070]
If the ferrite particle size exceeds 20 μm, the toughness of the base material is significantly reduced, so the upper limit of the ferrite particle size is 20 μm. When the ferrite fraction is less than 30%, the effect of improving uniform elongation cannot be obtained, and when it exceeds 70%, sufficient strength cannot be obtained. Therefore, the ferrite fraction content is limited to 30 to 70%.
[0071]
As a manufacturing method of a steel plate used for a steel pipe, after heating a cast slab to 1000 to 1200 ° C., a rolling reduction at 950 ° C. or less is set to 50% or more, and rolling is finished in a temperature range of 650 to 850 ° C. It is necessary to cool from a temperature range of ˜850 ° C. to an arbitrary temperature of 450 ° C. or less at a cooling rate of 2 ° C./second or more.
[0072]
First, the reheating temperature is limited to a range of 1000 to 1200 ° C. The reheating temperature must be 1000 ° C. or higher in order to dissolve Nb precipitates, refine the structure during rolling, and obtain excellent low temperature toughness. However, when the reheating temperature exceeds 1200 ° C., the ν grains become extremely coarse and cannot be completely miniaturized even by rolling, so that excellent low temperature toughness cannot be obtained. For this reason, the upper limit of the reheating temperature was set to 1200 ° C.
[0073]
Furthermore, the cumulative rolling reduction at 950 ° C. or less must be 50% or more, and the rolling end temperature must be 700 to 850 ° C. This is because the ν grains refined by recrystallization zone rolling are stretched by low-temperature rolling, and the crystal grains are thoroughly refined to improve low-temperature toughness. If the cumulative rolling reduction is less than 50%, the extension of the ν structure is insufficient and fine crystal grains cannot be obtained. Further, if the rolling end temperature is 850 ° C. or higher, fine crystal grains cannot be achieved even if the cumulative rolling reduction is 50% or higher, for example. Further, if the rolling temperature is too low, excessive ν / α2 phase rolling occurs and the low temperature toughness deteriorates, so the lower limit of the rolling end temperature was set to 650 ° C.
[0074]
After rolling, it is essential to cool the steel plate at an accelerated rate. Accelerated cooling allows for increased strength and improved uniform elongation based on microstructure control without compromising low temperature toughness. As a condition for accelerated cooling, it must be cooled from a temperature range of 700 to 850 ° C. after rolling to an arbitrary temperature of 450 ° C. or lower at a cooling rate of 2 ° C./second or higher, and then air-cooled. When the temperature at which cooling starts exceeds 850 ° C., the uniform elongation decreases. Further, when the temperature at which cooling is started is 650 ° C. or less, sufficient strength cannot be obtained. Therefore, the temperature range for starting cooling was limited to 650 to 850 ° C. Further, if the cooling rate is too low or the cooling stop temperature is too high, the effect of accelerated cooling cannot be obtained sufficiently, and sufficient strength cannot be obtained.
[0075]
The present invention is most preferably applied to a thick plate mill, but can also be applied to a hot coil (in this case, the steel sheet after rolling and cooling is wound and cooled). Moreover, since the steel plate manufactured by this method is excellent in low temperature toughness, it can be applied to a pressure vessel as well as a pipeline in a cold region.
[0076]
【Example】
Examples of the present invention will be described. Steel tubes manufactured from steel pieces of various steel components by a converter-continuous casting method were used to manufacture steel pipes, and various properties were investigated. The characteristics of the steel pipe welded part were evaluated using a Charpy test piece taken from a 1/2 t part of the steel sheet after performing SAW (submerged arc welding) of one layer on the inner and outer surfaces. The notch positions were the center of the weld metal and HAZ (1 mm from the point where the weld metal of the inner surface welding and the outer surface welding intersected). The tensile test used a round bar tensile test piece having a diameter of 12.7 mm and a gauge length of 50.8 mm. Tables 1 to 3 show the test conditions and results. Table 1 shows the chemical composition of the steel pipe base material and the weld metal, Table 1 shows the number of oxides, steel plate manufacturing conditions and structure, and Table 1 shows the steel pipe base material. The mechanical properties and mechanical properties of steel pipe welds are shown. As is apparent from the table, the steel pipe of the present invention has excellent strength (YS, TS), uniform elongation (uEl), low temperature toughness, and weld zone toughness. On the other hand, the comparative steel has inadequate chemical components and conditions to be provided, and any of the characteristics is inferior.
[0077]
Since steel 9 has a small amount of C, the strength of the base material does not satisfy X80. Since the steel 10 has a small amount of S, the HAZ toughness is inferior. Since the steel 11 has a small amount of Al as a base material, the HAZ toughness is inferior. Since the steel 12 has a large amount of Al in the base material, the HAZ toughness is inferior. Steel 13 is inferior in HAZ toughness because the amount of Mg in the base material is small. Since steel 14 has a large amount of Mg in the base material, the toughness of the base material is inferior. Steel 15 does not satisfy the target strength because the Pb value of the base material is too low. Steel 16 is inferior in HAZ toughness because the Pb value of the base material is too high. Since the steel 17 has a small amount of C in the weld metal, hot cracking of the weld metal occurs. Since the steel 18 has too much C amount of the weld metal, the low temperature toughness of the weld metal is inferior. Since the Pw value of the weld metal is too low, the strength of the welded portion is low. Steel 20 is inferior in toughness of the weld metal because the Pw value of the weld metal is too high. Steel 21 is inferior in HAZ toughness because it has a small number of TiN of 0.01 to 0.5 μm containing an oxide composed of Mg and Al, that is, pinning particles. Steel 22 is in the form of a composite of oxide and sulfide, and has a particle size of 0.5 to 10 μm containing 0.3% by mass or more of Mn, that is, the number of IGF transformation nuclei, and therefore HAZ toughness is poor. Steel 23 has a ferrite fraction of 20 μm or less and less than 5%, so that sufficient uniform elongation cannot be obtained. In steel 24, the ferrite fraction of 20 μm or less exceeds 50%, so that sufficient strength cannot be obtained. The steel 25 has a small uniform elongation in the tensile test of the weld metal in the tube axis direction and is inferior in deformability. Since the slab reheating temperature of the steel 26 is 1000 ° C. or less, sufficient low temperature toughness cannot be obtained. Since the slab reheating temperature of the steel 27 exceeds 1200 ° C., sufficient low temperature toughness cannot be obtained. Steel 28 cannot obtain good low temperature toughness because the amount of reduction at 950 ° C. or less is less than 50%. Since the rolling end temperature of steel 29 exceeds 850 ° C., good low temperature toughness cannot be obtained. Since the rolling end temperature of the steel 30 is less than 650 ° C., good low temperature toughness cannot be obtained. Since the cooling start temperature of the steel 31 is less than 650 ° C., sufficient strength cannot be obtained. Steel 33 cannot obtain sufficient strength because the cooling stop temperature exceeds 450 ° C. Since the steel 34 has a low cooling rate, sufficient strength cannot be obtained.
[0078]
[Table 1]
[0079]
[Table 2]
[0080]
[Table 3]
[0081]
[Table 4]
[0082]
[Table 5]
[0083]
[Table 6]
[0084]
[Table 7]
[0085]
[Table 8]
[0086]
【The invention's effect】
By adopting high strength steel pipes (API standards X60 to X80) with excellent HAZ toughness and high deformability according to the present invention in pipelines, the safety of pipelines is significantly improved and the transportation efficiency is dramatically improved. It was.
Claims (6)
C:0.03〜0.12%、
Si:0.2%以下、
Mn:0.8〜2.2%、
P:0.015%以下、
S:0.001〜0.005%、
Nb:0.005〜0.03%、
Ti:0.005〜0.03%、
Al:0.001〜0.005%、
Mg:0.0001〜0.005%、
N:0.001〜0.006%、
O:0.001〜0.006%
を含有し、残部が鉄及び不可避的不純物からなり、
Pb=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+Mo+V
で定義されるPb値が1.5〜2.5未満の範囲にあり、MgとAlからなる酸化物を内包する0.01〜0.5μmのTiNが10000個/mm2以上含有し、かつ酸化物と硫化物が複合した形態で0.3質量%以上のMnを含有する0.5〜10μmの粒子が10個/mm2以上含有する母材と
C:0.035〜0.12%、
Si:0.2%以下、
Mn:1.0〜2.2%、
P:0.015%以下、
S:0.005%以下、
Nb:0.005〜0.03%、
Ti:0.005〜0.03%、
B:0.0003〜0.002%、
Al:0.05%以下、
N:0.001〜0.01%、
O:0.015〜0.03%
を含有し、残部が鉄及び不可避的不純物からなり、かつ
Pw=C+0.11Si+0.03Mn+0.02Ni+0.04Cr+0.07Mo+1.46Nb
で定義されるPw値が0.13〜0.25の範囲にある溶接金属部を有し、溶接金属部の管軸方向の引張試験における一様伸びが7%以上であることを特徴とする変形能及び溶接部靭性に優れた高強度鋼管。% By mass
C: 0.03-0.12%,
Si: 0.2% or less,
Mn: 0.8 to 2.2%
P: 0.015% or less,
S: 0.001 to 0.005%,
Nb: 0.005 to 0.03%,
Ti: 0.005 to 0.03%,
Al: 0.001 to 0.005%,
Mg: 0.0001 to 0.005%,
N: 0.001 to 0.006%,
O: 0.001 to 0.006%
And the balance consists of iron and inevitable impurities,
Pb = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + Mo + V
The Pb value defined by the above is in the range of 1.5 to less than 2.5, contains 0.01 to 0.5 μm of TiN containing an oxide composed of Mg and Al, and contains 10000 pieces / mm 2 or more, and Base material containing 10 particles / mm 2 or more of 0.5 to 10 μm particles containing 0.3% by mass or more of Mn in a composite form of oxide and sulfide and C: 0.035 to 0.12% ,
Si: 0.2% or less,
Mn: 1.0-2.2%
P: 0.015% or less,
S: 0.005% or less,
Nb: 0.005 to 0.03%,
Ti: 0.005 to 0.03%,
B: 0.0003 to 0.002%,
Al: 0.05% or less,
N: 0.001 to 0.01%,
O: 0.015-0.03%
And the balance consists of iron and inevitable impurities, and Pw = C + 0.11Si + 0.03Mn + 0.02Ni + 0.04Cr + 0.07Mo + 1.46Nb
It has a weld metal part in which the Pw value defined by is in the range of 0.13 to 0.25, and the uniform elongation in the tensile test in the tube axis direction of the weld metal part is 7% or more. High-strength steel pipe with excellent deformability and weld toughness.
C:0.03〜0.12%、
Si:0.2%以下、
Mn:0.8〜2.2%、
P:0.015%以下、
S:0.001〜0.005%、
Nb:0.005〜0.03%、
Ti:0.005〜0.03%、
Al:0.001〜0.005%以下、
Mg:0.0001〜0.005%、
N:0.001〜0.006%、
O:0.001〜0.006%
を含有し、さらに
Ni:0.1〜1.0%、
Cu:0.1〜1.0%、
Cr:0.1〜1.0%、
Mo:0.1〜1.0%、
V:0.01〜0.1%、
Ca:0.0005〜0.005%
の1種または2種以上を含有し、残部が鉄及び不可避的不純物からなり、
Pb=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+Mo+V
で定義されるPb値が1.5〜2.5の範囲にあり、MgとAlからなる酸化物を内包する0.01〜0.5μmのTiNが10000個/mm2以上含有し、かつ酸化物と硫化物が複合した形態で0.3質量%以上のMnを含有する0.5〜10μmの粒子が10個/mm2以上含有する母材と
C:0.035〜0.12%、
Si:0.2%以下、
Mn:1.0〜2.2%、
P:0.015%以下、
S:0.005%以下、
Nb:0.005〜0.03%、
Ti:0.005〜0.03%、
B:0.0003〜0.002%、
Al:0.05%以下、
N:0.001〜0.01%、
O:0.015〜0.03%
を含有し、残部が鉄及び不可避的不純物からなり、かつ
Pw=C+0.11Si+0.03Mn+0.02Ni+0.04Cr+0.07Mo+1.46Nb
で定義されるPw値が0.15〜0.30の範囲にある溶接金属部を有し、溶接金属部の管軸方向の引張試験における一様伸びが3%以上であることを特徴とする溶接部靭性及び変形能に優れた高強度鋼管。% By mass
C: 0.03-0.12%,
Si: 0.2% or less,
Mn: 0.8 to 2.2%
P: 0.015% or less,
S: 0.001 to 0.005%,
Nb: 0.005 to 0.03%,
Ti: 0.005 to 0.03%,
Al: 0.001 to 0.005% or less,
Mg: 0.0001 to 0.005%,
N: 0.001 to 0.006%,
O: 0.001 to 0.006%
In addition, Ni: 0.1-1.0%,
Cu: 0.1 to 1.0%
Cr: 0.1 to 1.0%,
Mo: 0.1 to 1.0%,
V: 0.01 to 0.1%
Ca: 0.0005 to 0.005%
One or more of the following, the balance consisting of iron and inevitable impurities,
Pb = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + Mo + V
The Pb value defined by the above is in the range of 1.5 to 2.5, contains 0.01 to 0.5 μm of TiN containing an oxide composed of Mg and Al, and contains more than 10,000 pieces / mm 2. And a base material containing 10 particles / mm 2 or more of 0.5 to 10 μm particles containing 0.3% by mass or more of Mn in a composite form of a product and sulfide, and C: 0.035 to 0.12%,
Si: 0.2% or less,
Mn: 1.0-2.2%
P: 0.015% or less,
S: 0.005% or less,
Nb: 0.005 to 0.03%,
Ti: 0.005 to 0.03%,
B: 0.0003 to 0.002%,
Al: 0.05% or less,
N: 0.001 to 0.01%,
O: 0.015-0.03%
And the balance consists of iron and inevitable impurities, and Pw = C + 0.11Si + 0.03Mn + 0.02Ni + 0.04Cr + 0.07Mo + 1.46Nb
Having a weld metal part with a Pw value defined by 0.15 to 0.30, and having a uniform elongation of 3% or more in a tensile test in the tube axis direction of the weld metal part. High strength steel pipe with excellent weld toughness and deformability.
Ni:0.1〜1.0%、
Cu:0.1〜1.0%、
Cr:0.1〜1.0%、
Mo:0.1〜1.0%、
V:0.01〜0.1%、
Ca:0.001〜0.005%
のうち1種または2種以上を含有していることを特徴とする請求項1または2のいずれかに記載の溶接部靭性及び変形能に優れた高強度鋼管。The weld metal is further Ni: 0.1 to 1.0%,
Cu: 0.1 to 1.0%
Cr: 0.1 to 1.0%,
Mo: 0.1 to 1.0%,
V: 0.01 to 0.1%
Ca: 0.001 to 0.005%
The high-strength steel pipe excellent in weld part toughness and deformability according to any one of claims 1 and 2, wherein one or more of them are contained.
C:0.03〜0.12%、
Si:0.2%以下、
Mn:0.8〜2.2%、
P:0.015%以下、
S:0.001〜0.005%、
Nb:0.005〜0.03%、
Ti:0.005〜0.03%、
Al:0.001〜0.005%以下、
Mg:0.0001〜0.005%、
N:0.001〜0.006%、
O:0.001〜0.006%
を含有し、残部が鉄及び不可避的不純物からなり、
Pb=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+Mo+V
で定義されるPb値が1.5〜2.5未満の範囲にあり、MgとAlからなる酸化物を内包する0.01〜0.5μmのTiNが10000個/mm2以上含有し、かつ酸化物と硫化物が複合した形態で0.3質量%以上のMnを含有する0.5〜10μmの粒子が10個/mm2以上含有する鋳片を1000〜1200℃に加熱した後、950℃以下の圧下率を50%以上とし、650〜850℃の温度範囲で圧延を終了した後、650〜850℃の温度範囲から2℃/秒以上の冷却速度で450℃以下の任意の温度まで冷却し、その後空冷することを特徴とする溶接部靭性及び変形能に優れた高強度鋼板の製造法。% By mass
C: 0.03-0.12%,
Si: 0.2% or less,
Mn: 0.8 to 2.2%
P: 0.015% or less,
S: 0.001 to 0.005%,
Nb: 0.005 to 0.03%,
Ti: 0.005 to 0.03%,
Al: 0.001 to 0.005% or less,
Mg: 0.0001 to 0.005%,
N: 0.001 to 0.006%,
O: 0.001 to 0.006%
And the balance consists of iron and inevitable impurities,
Pb = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + Mo + V
The Pb value defined by the above is in the range of 1.5 to less than 2.5, contains 0.01 to 0.5 μm of TiN containing an oxide composed of Mg and Al, and contains 10000 pieces / mm 2 or more, and After heating the cast slab containing 10 particles / mm 2 or more of 0.5 to 10 μm particles containing 0.3% by mass or more of Mn in a composite form of oxide and sulfide to 1000 to 1200 ° C., 950 After rolling in a temperature range of 650 to 850 ° C. with a reduction rate of 50 ° C. or lower, from a temperature range of 650 to 850 ° C. to an arbitrary temperature of 450 ° C. or lower at a cooling rate of 2 ° C./second A method for producing a high-strength steel sheet having excellent weld toughness and deformability, which is cooled and then air-cooled.
Ni:0.1〜1.0%、
Cu:0.1〜1.0%、
Cr:0.1〜1.0%、
Mo:0.1〜1.0%、
V:0.01〜0.1%、
Ca:0.0005〜0.005%
の1種または2種以上を含有することを特徴とする請求項5に記載の溶接部靭性及び変形能に優れた高強度鋼板の製造法。The slab is further Ni: 0.1 to 1.0%,
Cu: 0.1 to 1.0%
Cr: 0.1 to 1.0%,
Mo: 0.1 to 1.0%,
V: 0.01 to 0.1%
Ca: 0.0005 to 0.005%
1 or 2 types or more of these are contained, The manufacturing method of the high strength steel plate excellent in the weld part toughness and deformability of Claim 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002289971A JP3745722B2 (en) | 2002-10-02 | 2002-10-02 | Manufacturing method of high-strength steel pipe and high-strength steel plate with excellent deformability and weld toughness |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002289971A JP3745722B2 (en) | 2002-10-02 | 2002-10-02 | Manufacturing method of high-strength steel pipe and high-strength steel plate with excellent deformability and weld toughness |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004124168A true JP2004124168A (en) | 2004-04-22 |
JP3745722B2 JP3745722B2 (en) | 2006-02-15 |
Family
ID=32281988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002289971A Expired - Fee Related JP3745722B2 (en) | 2002-10-02 | 2002-10-02 | Manufacturing method of high-strength steel pipe and high-strength steel plate with excellent deformability and weld toughness |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3745722B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006098198A1 (en) | 2005-03-17 | 2006-09-21 | Sumitomo Metal Industries, Ltd. | High tension steel plate, welded steel pipe and method for production thereof |
JP2007246933A (en) * | 2006-03-13 | 2007-09-27 | Nippon Steel Corp | High strength steel pipe with excellent weld zone toughness, and its manufacturing method |
EP2594657A1 (en) * | 2010-11-22 | 2013-05-22 | Nippon Steel & Sumitomo Metal Corporation | Electron beam welded joint, steel material for use in electron beam welded joint, and manufacturing method thereof |
EP2644730A1 (en) * | 2010-11-22 | 2013-10-02 | Nippon Steel & Sumitomo Metal Corporation | Electron beam welded joint, steel material for electron beam welding, and manufacturing method thereof |
CN113227409A (en) * | 2018-12-28 | 2021-08-06 | 日铁不锈钢株式会社 | Welded structure and method for manufacturing same |
-
2002
- 2002-10-02 JP JP2002289971A patent/JP3745722B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006098198A1 (en) | 2005-03-17 | 2006-09-21 | Sumitomo Metal Industries, Ltd. | High tension steel plate, welded steel pipe and method for production thereof |
US8177925B2 (en) | 2005-03-17 | 2012-05-15 | Sumitomo Metal Industries, Ltd. | High-tensile steel plate, welded steel pipe or tube, and methods of manufacturing thereof |
JP2007246933A (en) * | 2006-03-13 | 2007-09-27 | Nippon Steel Corp | High strength steel pipe with excellent weld zone toughness, and its manufacturing method |
EP2594657A1 (en) * | 2010-11-22 | 2013-05-22 | Nippon Steel & Sumitomo Metal Corporation | Electron beam welded joint, steel material for use in electron beam welded joint, and manufacturing method thereof |
EP2644730A1 (en) * | 2010-11-22 | 2013-10-02 | Nippon Steel & Sumitomo Metal Corporation | Electron beam welded joint, steel material for electron beam welding, and manufacturing method thereof |
EP2594657A4 (en) * | 2010-11-22 | 2014-04-23 | Nippon Steel & Sumitomo Metal Corp | Electron beam welded joint, steel material for use in electron beam welded joint, and manufacturing method thereof |
EP2644730A4 (en) * | 2010-11-22 | 2014-05-07 | Nippon Steel & Sumitomo Metal Corp | Electron beam welded joint, steel material for electron beam welding, and manufacturing method thereof |
CN113227409A (en) * | 2018-12-28 | 2021-08-06 | 日铁不锈钢株式会社 | Welded structure and method for manufacturing same |
CN113227409B (en) * | 2018-12-28 | 2023-07-25 | 日铁不锈钢株式会社 | Welded structure and method for manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
JP3745722B2 (en) | 2006-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5251089B2 (en) | Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method | |
JP5251092B2 (en) | Welded steel pipe for high-strength line pipe excellent in low temperature toughness and method for producing the same | |
CN102308013B (en) | High-strength steel tube for low-temperature use with superior buckling resistance and toughness in weld heat-affected areas, and manufacturing method for same | |
JP5292784B2 (en) | Welded steel pipe for high-strength line pipe excellent in low temperature toughness and method for producing the same | |
JP3898814B2 (en) | Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness | |
JP5181639B2 (en) | Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method | |
JP4585483B2 (en) | High strength steel pipe with excellent weld toughness and deformability and method for producing high strength steel plate | |
WO2018185851A1 (en) | Vertical-seam-welded steel pipe | |
JP4700740B2 (en) | Manufacturing method of steel plate for sour line pipe | |
JP2010189722A (en) | Method of manufacturing sheet steel for thick-walled sour-resistant line pipe of excellent toughness | |
JP4772486B2 (en) | High strength steel pipe for low temperature | |
JP4116817B2 (en) | Manufacturing method of high strength steel pipes and steel sheets for steel pipes with excellent low temperature toughness and deformability | |
JP4116857B2 (en) | High strength steel pipe with excellent weld toughness and deformability | |
JP2004099930A (en) | High-strength welded steel pipe having excellent toughness of weld zone, and method for manufacturing the same | |
JP3785376B2 (en) | Manufacturing method of steel pipe and steel plate for steel pipe excellent in weld heat affected zone toughness and deformability | |
JP2003306749A (en) | Method for manufacturing high strength steel tube of excellent deformability and steel plate for steel tube | |
JP3745722B2 (en) | Manufacturing method of high-strength steel pipe and high-strength steel plate with excellent deformability and weld toughness | |
JP3466450B2 (en) | High strength and high toughness bend pipe and its manufacturing method | |
JP4964480B2 (en) | High strength steel pipe excellent in toughness of welded portion and method for producing the same | |
JP2016169403A (en) | Low yield ratio high strength thick steel plate for building structure excellent in toughness at super high heat-input heat affected zone and production method therefor | |
JPH09296253A (en) | Extremely thick high strength steel pipe excellent in low temperature toughness | |
JP5000447B2 (en) | High strength ERW line pipe | |
JP2001207242A (en) | Thick-walled sour-resisting steel tube excellent in toughness at low temperature in circumferential weld zone, and pipeline | |
JP3526723B2 (en) | Ultra high strength steel pipe with excellent low temperature crack resistance | |
JP4369555B2 (en) | High strength steel pipes and pipelines with excellent weld toughness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040902 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051027 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051108 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051117 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3745722 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081202 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091202 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101202 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101202 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111202 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111202 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121202 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121202 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131202 Year of fee payment: 8 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131202 Year of fee payment: 8 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131202 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |