JP2004115576A - Method for producing dry distillation gas and system for producing dry distillation gas - Google Patents

Method for producing dry distillation gas and system for producing dry distillation gas Download PDF

Info

Publication number
JP2004115576A
JP2004115576A JP2002277247A JP2002277247A JP2004115576A JP 2004115576 A JP2004115576 A JP 2004115576A JP 2002277247 A JP2002277247 A JP 2002277247A JP 2002277247 A JP2002277247 A JP 2002277247A JP 2004115576 A JP2004115576 A JP 2004115576A
Authority
JP
Japan
Prior art keywords
carbonization
gas
furnace
dry distillation
solid fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002277247A
Other languages
Japanese (ja)
Other versions
JP3890442B2 (en
Inventor
Kazuhiro Matsuoka
松岡 一博
Kunio Yoshikawa
吉川 邦夫
Yoshiro Hashimoto
橋本 芳郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENKA KOKI KK
Tokyo Institute of Technology NUC
Original Assignee
NIPPON DENKA KOKI KK
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENKA KOKI KK, Tokyo Institute of Technology NUC filed Critical NIPPON DENKA KOKI KK
Priority to JP2002277247A priority Critical patent/JP3890442B2/en
Publication of JP2004115576A publication Critical patent/JP2004115576A/en
Application granted granted Critical
Publication of JP3890442B2 publication Critical patent/JP3890442B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics

Abstract

<P>PROBLEM TO BE SOLVED: To provide miniaturization of a dry distillation gas producer, to facilitate the use for users who are not experts and to stably and continuously produce the dry distillation gas of the same quality. <P>SOLUTION: A solid fuel is continuously or intermittently charged into a dry distillation gas producer 1 and high-temperature air for dry distillation is continuously fed thereinto to carbonize the solid fuel by dry distillation. The weight of the solid fuel in the dry distillation gas producer is measured with a weight sensor 4 while producing the dry distillation gas by pyrolysis. Thereby, automatic control over the amount of the charged solid fuel into the dry distillation gas producer and the amount of the delivered combustion residues from a fire grate 12 in the dry distillation gas producer is performed on the basis of the measured weight. The temperature of each zone of a combustion zone 13, the dry distillation zone 14, a predrying zone 15 and a dry distillation gas zone 16 in the producer is measured with a temperature sensor. The automatic control over the amount of the charged solid fuel and the amount of the delivered combustion residues from the fire grate in the dry distillation gas producer is also performed on the basis of the measured temperature. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、生ゴミや汚泥、或いは更に廃プラスチックや紙類や木材等を含む廃棄物等の固体燃料を乾留して、有用な乾留ガスを発生させる乾留ガス発生方法及び乾留ガス発生システムに関する。
【0002】
【従来の技術】
特許文献1(特開2002−38165号公報)には、固体燃料として主に湿潤な廃棄物を対象とした湿潤燃料ガス化システム及びガス化方法が開示されている。この湿潤燃料ガス化システムは、湿潤な燃料(廃棄物)を加熱・乾燥する乾燥装置と、低温水蒸気を600℃以上の高温水蒸気に加熱する水蒸気加熱装置と、乾燥装置で乾燥された乾燥燃料を熱分解するガス化炉又は熱分解炉と、ここで生成した熱分解ガスを水蒸気加熱装置からの改質用高温水蒸気により高温粗ガスに改質する改質装置とからなり、乾燥装置は、改質装置で改質された高温粗ガスの熱を利用して湿潤な燃料を加熱・乾燥させ、水蒸気加熱装置は、乾燥装置から導出した臭気性水蒸気を加熱して改質用高温水蒸気を生成するようになっている。
【0003】
また、特許文献2(特開2000−158885号公報)には、廃棄物の炭化だけを目的とした炭化炉が開示されている。この炭化炉は、炭化室と加熱室との間にヒータを設置して炭化室内の廃棄物をバッチ式に炭化させるもので、炭化炉の重量を、炭化室内の廃棄物と共にロードセルにより乾留開始の前後両時点で測定し、その前後の測定値の変動量に基づいて炭化室内の廃棄物の炭化度を判定するようになっている。
【0004】
【特許文献1】
特開2002−38165号公報(第6頁、図1)
【特許文献2】
特開2000−158885号公報(第3頁、図1)
【0005】
【発明が解決しようとする課題】
しかし、特許文献1に記載の湿潤燃料ガス化システムでは、ガス化炉又は熱分解炉の他に、その前処理装置として、臭気性水蒸気を分離できる乾燥装置を別途必要としており、それだけ処理が複雑で、自動制御が難しいとともにシステム規模の大きい高価なものとなり、更に全体として熱損失の増加を免れない。
【0006】
特許文献2に記載の炭化炉は、廃棄物の炭化だけを目的とし、しかも炭化室で発生した水蒸気を排気管から排気しているだけである。また、炭化炉の重量をロードセルで測定しているものの、その目的は、炭化室内の廃棄物の炭化度を判定することにある。
【0007】
ところで、大量の廃棄物を処理する大規模処理施設や最終処理施設向けではなく、比較的少量の廃棄物を処理する小規模施設向けとし、しかもコージェネレーション等のために、乾留ガスを連続して発生させる連続発生式の乾留ガス発生システムとする場合、乾留ガス発生炉の小型化、熟練者でないユーザに対する使用の容易性、同品質の乾留ガスの安定した連続発生等が重要な課題となる。
本発明の目的は、このような課題を達成できる乾留ガス発生方法及び乾留ガス発生システムを提供することにある。
【0008】
【課題を解決するための手段】
本発明の乾留ガス発生方法は、乾留ガス発生炉内に、固体燃料を連続的又は間欠的に投入するとともに、乾留用高温ガスを連続的に送入して乾留により炭化させ、熱分解による乾留ガスを発生させながら、乾留ガス発生炉内の固体燃料の重量を重量センサにて測定し、乾留ガス発生炉内への固体燃料の投入量と、乾留ガス発生炉内の火格子からの燃焼残留物の排出量を測定重量に基づき自動制御する。
【0009】
すなわち、本発明では、乾留ガス発生炉の小型化及び乾留ガスの連続発生のために、固体燃料を連続的又は間欠的に投入するとともに、乾留用高温ガスを連続的に送入して、乾留用高温ガスで乾留させる。乾留(燃焼)の進行により炉内の条件が変わるので、その変化を、炉内の固体燃料の重量を重量センサにて測定することにより捉え、乾留ガス発生炉内への固体燃料の投入量と、乾留ガス発生炉内の火格子からの燃焼残留物(炭化物や灰等)の送出量を測定重量に基づき自動制御することで、炉内を一定の燃焼・乾留条件に維持し、同品質の乾留ガスの安定した連続発生を図る。
【0010】
乾留ガス発生炉内への乾留用高温ガスの送入量も測定重量に基づき自動制御すれば、炉内の燃焼・乾留条件の維持が一層確実になる。
【0011】
炉内の固体燃料の重量測定は、乾留ガス発生炉の全部又は一部と共に、炉外の重量センサにて測定することで可能である。
【0012】
炉内では、下から燃焼ゾーン、乾留ゾーン、予備乾燥ゾーン、乾留ガスゾーンが生じているので、その各ゾーンの温度を温度センサで測定し、固体燃料の投入量と火格子からの燃焼残留物の送出量を測定温度によっても自動制御すれば、炉内の燃焼・乾留条件の制御を精密に行える。
【0013】
乾留ガス発生炉内への乾留用高温ガスの送入量も測定温度に基づき自動制御できる。
【0014】
乾留ガス発生炉内に熱風を送入して乾留を開始することにより、乾留ガス発生炉の運転開始を短時間に効率良く行える。
【0015】
本発明の乾留ガス発生システムは、固体燃料を乾留により炭化させて熱分解による乾留ガスを発生させる乾留ガス発生炉と、この乾留ガス発生炉内へ乾留用高温ガスを送入する乾留用高温ガス供給手段と、乾留ガス発生炉内に固体燃料を連続的又は間欠的に投入する固体燃料供給手段と、乾留ガス発生炉内の火格子から燃焼残留物を送出する燃焼残留物送出手段と、乾留ガス発生炉内の固体燃料の重量を測定する重量センサと、その測定重量に基づき固体燃料供給手段及び燃焼残留物送出手段を自動制御する制御装置とを備えてなる。
【0016】
好ましくは次のような形態とする。
制御装置は、測定重量に基づき乾留用高温ガス供給手段も自動制御する。
【0017】
重量センサは、固体燃料の重量を乾留ガス発生炉の全部又は一部と共に炉外で測定する。
【0018】
乾留ガス発生炉は、断熱材による外筒内に、固体燃料の重量を受ける燃料受け用内筒を有し、重量センサは、固体燃料の重量をこの燃料受け用内筒と共に測定する。この場合、火格子は燃料受け用内筒内に配置する。
【0019】
乾留ガス発生炉内における燃焼ゾーン、乾留ゾーン、予備乾燥ゾーン、乾留ガスゾーンの各ゾーンの温度を測定する温度センサを備え、制御装置は、固体燃料供給手段及び燃焼残留物送出手段を測定温度によっても自動制御する。
【0020】
制御装置は、乾留用高温ガス供給手段を測定温度によっても自動制御する。
【0021】
乾留ガス発生炉内に熱風を送入して乾留を開始する始動用熱風発生手段を備える。
【0022】
燃焼残留物送出手段にて火格子から送出される燃焼残留物を炉外へ排出する燃焼残留物排出手段を備える。
【0023】
【発明の実施の形態】
次に、本発明の実施の形態を図面に基づいて詳細に説明する。
図1に、本発明の一実施例の乾留ガス発生システムAと、これからの乾留ガスを改質及び精製するガス改質・精製システムBの一例とを併せて示す。
【0024】
乾留ガス発生システムAは、縦型乾留ガス発生炉1と、廃棄物等の固体燃料を破砕する破砕機2と、破砕された固体燃料を乾留ガス発生炉1内へ連続的又は間欠的に投入する固体燃料供給手段である搬入用コンベア2aと、乾留ガス発生炉1内へ熱風を吹き込んで運転を開始する始動用熱風発生手段である熱風発生器3と、乾留ガス発生炉1の重量を支えてその中の固体燃料の重量を乾留ガス発生炉1と共に測定する重量センサであるロードセル4と、その測定重量に基づいて各種の制御を行う制御装置(図示せず)とからなる。
【0025】
ガス改質・精製システムBは、乾留ガス発生炉1内での熱分解にて生じた水蒸気を含む熱分解ガス(乾留ガス)を導入し、タール分やすす等を高温下(例えば800〜1000℃)で水蒸気と反応させて改質するガス改質手段である改質炉5と、この改質炉5からの高温(例えば約800℃)の改質ガスを濾過するフィルタ6と、ブロアー7からの低温空気(清浄空気)を、濾過後の改質ガスと熱交換して例えば約600℃の高温空気とする熱交換器8と、熱交換後の改質ガスを冷却・洗浄して精製ガスとする冷却・精製装置9と、その精製ガスの一部と、熱交換器8から分岐供給されて例えば約450℃となった一部の高温空気とを混合部10aで混合し、触媒燃焼部10bで燃焼触媒にて燃焼させて例えば約1300℃の改質用高温空気として改質炉5内に吹き込む改質用高温空気生成装置10とからなる。
【0026】
熱交換器8からの約600℃の高温空気の大部分は、乾留ガス発生炉1内へ乾留用高温空気として下側から送り込まれて固体燃料の乾留に供されるが、一部は、上記のように分岐して改質用高温空気生成装置10へ送られ、改質炉5内に改質のための熱と酸素を与える改質用高温空気として供される。
【0027】
冷却・精製装置9で精製された精製ガスは、一部が上記のように改質用高温空気生成装置11での燃料に供されるが、大部分は、例えば発電装置11のための燃料ガス等として有効利用される。
【0028】
乾留ガス発生炉1は、投入された固定燃料を、比較的低い温度(300〜600℃程度)でしかも完全燃焼するには不充分な空気量で乾留して炭化させ、熱分解による乾留ガスを発生する。その運転開始は、熱風発生器3から乾留ガス発生炉1内へ熱風を吹き込んで行い、開始後、熱風発生器3はオフにされ、以後は熱交換器8からの高温空気が、乾留用高温空気として同じ供給口から乾留ガス発生炉1内へ連続送入される。
【0029】
乾留ガス発生炉1内の下部には、多孔状又は網目状の火格子12が水平に設置され、この火格子12より上に、下から燃焼ゾーン13、乾留ゾーン14、予備乾燥ゾーン15、乾留ガスゾーン16が形成される。乾留ガス発生炉1の周壁には、各ゾーンの温度をそれぞれ測定する温度センサ17が設置されている。
【0030】
火格子12より下、つまり火格子12と乾留ガス発生炉1の底部1aとの間は給気室18となっており、熱風発生器3からの熱風及び熱交換器8からの高温空気は、この給気室18から火格子12を通って上昇する。この給気室18の温度も温度センサ17にて測定される。
【0031】
火格子12上には、図示しないモータにより回転される撹拌ロータ19が設けられている。この撹拌ロータ19は、固体燃料の撹拌を行う撹拌手段と、燃焼残留物(炭化物や灰)を火格子12の下方へ送出(落下)する燃焼残留物送出手段とを兼ねている。なお、撹拌ロータ19に代えて振動機を用いてもよい。
【0032】
乾留ガス発生炉1の底部1a上には、撹拌ロータ19と同じモータにて回転される排出ロータ20が設けられており、火格子12から落下した燃焼残留物はこの排出ロータ20の回転により炉外へ排出される。
【0033】
乾留ガス発生炉1内の固体燃料の重量は、乾留ガス発生炉1と共に、重量センサである炉外のロードセル4にて測定され、その測定重量信号は、温度センサ17による各ゾーンの測定温度信号と共に制御装置へ入力される。制御装置は、乾留ガス発生炉1内を一定の燃焼・乾留条件とするため、測定重量及び測定温度に基づいて搬入用コンベア2aによる固体燃料の投入量と、撹拌ロータ19による火格子12からの燃焼残留物の送出量を制御する。具体的には、搬入用コンベア2aのモータと撹拌ロータ19のモータをプログラムに従い自動制御する。更に、制御装置は、熱交換器8からの高温空気量も制御する。その制御は、例えば熱交換器8からの配管中に設置した高温ガス供給制御用バルブ21を制御することにより可能である。
【0034】
乾留ガス発生炉1内での熱分解による生じた乾留ガスは、乾留ガス発生炉1の上部から配管を通じて改質炉5へ送られる。この乾留ガスは、固体燃料が湿潤な廃棄物である場合、水蒸気を含んだ熱分解ガスとなる。しかし、水蒸気を含んでいるものの、改質炉5内でタール分やすす等を改質するには熱と酸素が不充分であるため、熱交換器8で予熱した高温空気に、冷却・精製装置9からの一部の精製ガスを燃料として改質用高温空気生成装置10の混合部(ミキサ)10aで混合し、触媒燃焼部10bで燃焼触媒にて燃焼させて約1300℃の改質用高温空気として改質炉5内に吹き込む。燃焼させても、改質に充分な酸素量が改質炉5内に与えられるように、空気量と精製ガス量を調整する。
【0035】
改質用高温空気生成装置10の触媒燃焼部10bは、図2の模式図に示すように、白金やパラジウム等の貴金属又はこれらの酸化物よりなる粒子を断面ハニカム構造とした燃焼触媒を用い、その燃焼触媒を担持したチャンネルと担持しないチャンネルとを交互に配置して、担持したチャンネルで発生した燃焼反応熱を担持しないチャンネルを通るガスに熱交換して温度を平均化させるパイプ構造となっている。改質用高温空気生成装置10は、混合部10aを含めて全体として小型のパイプ状であるため、改質炉5内に設けることができるが、その外側に設けてもよい。
【0036】
改質炉5内の途中には、球形セラミックス等の耐熱素材を積層して通気可能とした耐熱素材積層5aが形成されており、改質炉5内に流入した熱分解ガスとそれよりも温度が高い改質用高温空気とは、耐熱素材積層5aの無数の微細流路に分散して通過し、改質用高温空気が有する熱と酸素を水蒸気に与えながら効果的に混合する。このため、熱分解ガス中の炭化水素と水蒸気との水蒸気改質反応は、微細流路を通過する際に効果的に進行し、短時間での反応が効率よく行われる。同時に、耐熱素材積層5aは、蓄熱機能を有するに加え、熱分解ガス中のタール分やすす等を捕捉して、改質を助長するとともに、ガスを浄化する浄化機能も有する。
【0037】
改質炉5でこのように改質された改質ガスは、フィルタ6で濾過(煤塵等を除去)された後、冷却・精製装置9で冷却及び洗浄されることにより、硫黄や塩素や煤塵や重金属等の有害物質が除去された精製ガスとなる。
【0038】
改質用高温空気生成装置10では、この精製ガスの一部と、熱交換器8で予熱した清浄空気とを混合して燃焼触媒にて燃焼させるため、ここで得られる改質用高温空気は清浄であり、改質用高温空気生成装置10内で有害物質等の蓄積をきたさない。なお、熱交換器8で予熱せずに燃焼してもよいことは勿論である。また、乾留ガス発生炉1へ供給する乾留用の高温空気についても、熱交換器8で予熱した高温空気以外に、他の系統から高温空気を導入してもよい。
【0039】
図3はガス改質・精製システムBの変形例を示す。この例では、改質用高温空気生成装置10の触媒燃焼部10bにて精製ガスのみを燃焼させ、その燃焼反応熱と熱交換器8からの加熱用空気とを熱交換させることにより、つまり予熱した清浄空気を精製ガスの燃焼反応熱を利用して更に加熱することで改質用高温空気とする。
【0040】
図1に示すガス改質・精製システム及び図3に示すガス改質・精製システムのいずれの場合も、乾留ガス発生炉1で湿潤な廃棄物を乾留する場合、その際に生じた熱分解ガス自体に、次工程の改質工程に供するに充分な量の水蒸気が含まれており、それからわざわざ水蒸気を分離する必要はなく、水蒸気と反応させるための熱と酸素は、精製ガスの燃焼反応熱で加熱した清浄な高温空気から補給すればよいとの観点から、改質用高温水蒸気を生成するための改質用高温水蒸気生成装置と、臭気性水蒸気を分離する乾燥装置を不要とした簡略なシステムとなっている。
【0041】
図4及び図5は、図1に示したシステムの具体例を示す。その各部については具体的に説明しないが、これらの図から、本発明による乾留ガス発生システムAを含めて全体として小規模なシステムとなることが理解できよう。
【0042】
図6及び図7に乾留ガス発生炉1の具体例を示す。この乾留ガス発生炉1は、縦長円筒形の炉本体1bが金属材と断熱材等により構成され、その内面には例えば耐熱温度1500℃程度の超高温耐熱塗料が塗布されている。炉本体1bは台枠22上に設置され、この台枠22はまた、支持脚23にて基台24上に支持され、乾留ガス発生炉1全体の重量が、支持脚23を介してロードセル4にかかるようになっている。
【0043】
火格子12は、炉本体1b内に水平に設置されている。この火格子12上の撹拌ロータ19と炉底部1a上の排出ロータ20とは、同じロータ軸25に例えば板状の羽根を固定したもので、台枠22に固定されたモータ26にて同時に回転される。図8、図9、図10に、火格子12と撹拌ロータ19と排出ロータ20のそれぞれの一例の平面を示す。ロータ軸25は、断熱材を介在させた炉外のカップリング27により、モータ26の回転を伝達する伝達軸28と断熱して連結されている。ロータ軸25は、耐熱性パッキンを用いた軸受にて軸受けされている。
【0044】
図11に乾留ガス発生炉1の他の具体例を示す。この乾留ガス発生炉1では、外筒となる炉本体1b内に、これと分離した有底の燃料受け用内筒29を配置し、この内筒29内に火格子12を設置して固体燃料の重量を内筒29で受けるようになっている。撹拌ロータ19は、内筒29内において火格子12上に設けられ、排出ロータ20は、内筒29内においてその底部29a上に設けられている。
【0045】
内筒29の重量は、その底部29aを支える支持脚30を介して炉外のロードセル4により測定される。支持脚30は、炉本体1bの底部1aを上下摺動自在に貫通している。内筒29は、外筒である炉本体1bより短く、内筒29の上端には、固体燃料を導入するための漏斗部29bが設けられている。
【0046】
図11の乾留ガス発生炉1の場合、重量の重い炉本体1bはロードセル4による測定重量に含まれず、軽量である内筒29の重量がその中の固体燃料と共に測定されるので、測定精度が高くなる。ロードセル4自体も耐圧仕様の低いもので足りる。
【0047】
同図において、内筒29内の燃焼残留物(炭化物や灰)は、排出ロータ20により、内筒29の底部29aの開口部を通じて炉本体1bの底部1aの排出口31から炉外へ排出され、更に搬出用コンベア32により回収器33内へ送られて回収される。なお、同図において34は固体燃料投入口、35は乾留用高温空気と開始用熱風の供給口、36は乾留ガス排出口で、それぞれに配管が接続される。固体燃料投入口34から乾留ガス発生炉1内へ固体燃料を投入する搬入装置は、乾留ガス発生炉1内の条件が投入により変動しないように、気密性の高い構造にすることが好ましい。例えば、スクリューコンベアを用いて搬入する場合、スクリューコンベアを先細状として固体燃料を圧縮しながら連動投入することで、気密性を確保できる。
【0048】
図12に乾留ガス発生炉1の別の具体例を示す。この乾留ガス発生炉1は、図11の場合とは若干異なり、内筒29が図11の場合よりも短く、内筒29の底部が火格子12となっている。
【0049】
【発明の効果】
以上説明したように本発明は、固体燃料を乾留ガス発生炉内へ連続的又は間欠的に投入するとともに、乾留用高温ガスを連続的に送入して乾留用高温ガスで乾留させるので、乾留ガス発生炉を小型化できる。乾留(燃焼)の進行による炉内の燃焼・乾留条件の変化を、固体燃料の重量を重量センサにて測定することにより捉え、乾留ガス発生炉内への固体燃料の投入量と、乾留ガス発生炉内の火格子からの燃焼残留物(炭化物や灰等)の送出量を測定重量に基づき自動制御するので、同品質の乾留ガスを安定して連続発生させることができ、廃棄物の炭化処理と同時にその際に生ずるガスを有効利用する小規模なコージェネレーション設備に好適である。
【0050】
乾留ガス発生炉内への乾留用高温ガスの送入量も測定重量に基づき自動制御すれば、炉内の燃焼・乾留条件の維持が一層確実になる。
【0051】
乾留ガス発生炉内における燃焼ゾーン、乾留ゾーン、予備乾燥ゾーン、乾留ガスゾーンの各ゾーンの温度を温度センサで測定し、固体燃料の投入量と火格子からの燃焼残留物の送出量を測定温度によっても自動制御すれば、炉内の燃焼・乾留条件の制御を精密に行える。
【0052】
乾留ガス発生炉を熱風にて運転開始すれば、運転開始を小さな熱源で短時間に効率よく行える。
【図面の簡単な説明】
【図1】本発明の一実施例の乾留ガス発生システムと、これからの乾留ガスを改質及び精製するガス改質・精製システムの一例とを併せて示すシステム構成図である。
【図2】図1中の改質用高温空気生成装置での燃焼触媒による燃焼の模式図である。
【図3】本発明の一実施例の乾留ガス発生システムと、ガス改質・精製システムの変形例を併せて示すシステム構成図である。
【図4】図1のシステムの具体例を示す側面図である。
【図5】同じく平面図である。
【図6】乾留ガス発生炉の一具体例を示す側面図である。
【図7】同じく背面図である。
【図8】乾留ガス発生炉の火格子の一例を示す平面図である。
【図9】撹拌ロータの一例を示す平面図である。
【図10】排出ロータの一例を示す平面図である。
【図11】乾留ガス発生炉の他の具体例を示す断面図である。
【図12】乾留ガス発生炉の別の具体例を示す断面図である。
【符号の説明】
A 乾留ガス発生システム
B ガス改質・精製システム
1 乾留ガス発生炉
1a 底部
1b 炉本体
2 破砕機
2a 搬入用コンベア
3 熱風発生器
4 ロードセル4
5 改質炉
5a 耐熱素材積層
6 フィルタ
7 ブロアー
8 熱交換器
9 冷却・精製装置
10 改質用高温空気生成装置
10a 混合部
10b 触媒燃焼部
11 発電装置
12 火格子
13 燃焼ゾーン
14 乾留ゾーン
15 予備乾燥ゾーン
16 乾留ガスゾーン
17 温度センサ
18 給気室
19 撹拌ロータ
20 排出ロータ
21 高温ガス供給制御用バルブ
22 台枠
23 支持脚
24 基台
25 ロータ軸
26 モータ
27 カップリング
28 伝達軸
29 内筒
29a 底部
29b 漏斗部
30 支持脚
31 排出口
32 搬出用コンベア
33 回収器
34 固体燃料投入口
35 乾留用高温空気と開始用熱風の供給口
36 乾留ガス排出口
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a carbonized gas generation method and a carbonized gas generation system for carbonizing solid fuels such as garbage and sludge, and also wastes including waste plastics, papers, wood, and the like to generate useful carbonized gas.
[0002]
[Prior art]
Patent Document 1 (Japanese Patent Application Laid-Open No. 2002-38165) discloses a wet fuel gasification system and a gasification method mainly for wet waste as a solid fuel. This wet fuel gasification system includes a drying device for heating and drying wet fuel (waste), a steam heating device for heating low-temperature steam to high-temperature steam of 600 ° C. or higher, and a dry fuel dried by the drying device. It consists of a gasification furnace or pyrolysis furnace that thermally decomposes, and a reformer that reforms the pyrolysis gas generated here into high-temperature crude gas with high-temperature steam for reforming from a steam heater. The wet fuel is heated and dried using the heat of the high-temperature crude gas reformed by the reformer, and the steam heater heats the odorous steam derived from the dryer to generate high-temperature steam for reforming It has become.
[0003]
Patent Document 2 (Japanese Patent Application Laid-Open No. 2000-158885) discloses a carbonization furnace intended only for carbonizing waste. In this carbonization furnace, a heater is installed between the carbonization chamber and the heating chamber to carbonize the waste in the carbonization chamber in a batch manner. The carbonization degree of the waste in the carbonization chamber is determined based on the measured values before and after the time, and based on the fluctuation amount of the measured values before and after the time.
[0004]
[Patent Document 1]
JP-A-2002-38165 (page 6, FIG. 1)
[Patent Document 2]
JP-A-2000-158885 (page 3, FIG. 1)
[0005]
[Problems to be solved by the invention]
However, the wet fuel gasification system described in Patent Literature 1 requires a separate drying device capable of separating odorous steam as a pretreatment device in addition to the gasification furnace or the pyrolysis furnace, which complicates the processing. Therefore, the automatic control is difficult, the system scale is large and the system is expensive, and the heat loss is unavoidable as a whole.
[0006]
The carbonization furnace described in Patent Literature 2 is intended only for carbonization of waste, and only exhausts steam generated in the carbonization chamber from an exhaust pipe. Although the weight of the carbonization furnace is measured by the load cell, the purpose is to determine the degree of carbonization of the waste in the carbonization chamber.
[0007]
By the way, it is not intended for large-scale treatment facilities and final treatment facilities that treat large amounts of waste, but for small-scale facilities that treat relatively small amounts of waste. In the case of a continuous generation type carbonization gas generating system for generating, there are important issues such as miniaturization of the carbonization gas generation furnace, ease of use for non-expert users, and stable continuous generation of carbonization gas of the same quality.
An object of the present invention is to provide a carbonized gas generation method and a carbonized gas generation system that can achieve such a problem.
[0008]
[Means for Solving the Problems]
The carbonization gas generating method of the present invention is characterized in that a solid fuel is continuously or intermittently charged into a carbonization gas generating furnace, and a high-temperature gas for carbonization is continuously fed to carbonize by carbonization and carbonization by pyrolysis. While generating gas, the weight of the solid fuel in the carbonization gas generating furnace was measured with a weight sensor, and the amount of solid fuel injected into the carbonization gas generating furnace and the residual combustion from the grate in the carbonization gas generating furnace were measured. Automatically controls the amount of material discharged based on the measured weight.
[0009]
That is, in the present invention, in order to reduce the size of the carbonization gas generating furnace and to continuously generate carbonization gas, the solid fuel is continuously or intermittently charged, and the high-temperature gas for carbonization is continuously supplied to perform the carbonization. Dry distillation with hot gas for use. Since the conditions inside the furnace change as the carbonization (combustion) progresses, the change is detected by measuring the weight of the solid fuel in the furnace with a weight sensor, and the amount of the solid fuel injected into the carbonization gas generating furnace is determined. By automatically controlling the amount of combustion residue (carbide, ash, etc.) from the grate in the carbonization gas generating furnace based on the measured weight, the furnace can be maintained under constant combustion and carbonization conditions, Achieve stable and continuous generation of carbonized gas.
[0010]
If the amount of the high-temperature gas for carbonization to be introduced into the carbonization gas generating furnace is also automatically controlled based on the measured weight, the combustion and carbonization conditions in the furnace can be more reliably maintained.
[0011]
The weight of the solid fuel in the furnace can be measured by a weight sensor outside the furnace together with all or a part of the carbonization gas generating furnace.
[0012]
In the furnace, a combustion zone, a carbonization zone, a preliminary drying zone, and a carbonization gas zone are generated from below, so the temperature of each zone is measured with a temperature sensor, and the amount of solid fuel charged and the combustion residue from the grate are measured. The automatic control of the amount of water discharged from the furnace according to the measured temperature enables precise control of the combustion and carbonization conditions in the furnace.
[0013]
The amount of the high-temperature gas for carbonization into the carbonization gas generating furnace can also be automatically controlled based on the measured temperature.
[0014]
By starting hot distillation by feeding hot air into the dry distillation gas generating furnace, the operation of the dry distillation gas generating furnace can be efficiently started in a short time.
[0015]
A dry distillation gas generating system according to the present invention includes a dry distillation gas generating furnace that carbonizes a solid fuel by dry distillation to generate a dry distillation gas by pyrolysis, and a high temperature gas for dry distillation that feeds a high temperature gas for dry distillation into the dry distillation gas generating furnace. Supply means; solid fuel supply means for continuously or intermittently charging solid fuel into the carbonization gas generating furnace; combustion residue sending means for transmitting combustion residues from a grate in the carbonization gas generating furnace; It comprises a weight sensor for measuring the weight of the solid fuel in the gas generating furnace, and a control device for automatically controlling the solid fuel supply means and the combustion residue delivery means based on the measured weight.
[0016]
Preferably, the following form is used.
The control device also automatically controls the hot gas supply means for carbonization based on the measured weight.
[0017]
The weight sensor measures the weight of the solid fuel together with all or a part of the carbonization gas generating furnace outside the furnace.
[0018]
The carbonization gas generating furnace has an inner cylinder for receiving the weight of the solid fuel in an outer cylinder made of a heat insulating material, and the weight sensor measures the weight of the solid fuel together with the inner cylinder for the fuel. In this case, the grate is arranged in the inner cylinder for fuel reception.
[0019]
A temperature sensor for measuring the temperature of each of the combustion zone, the carbonization zone, the preliminary drying zone, and the carbonization gas zone in the carbonization gas generating furnace is provided, and the control device controls the solid fuel supply means and the combustion residue delivery means according to the measured temperature. Also automatically control.
[0020]
The control device automatically controls the high-temperature gas supply means for carbonization also according to the measured temperature.
[0021]
The apparatus is provided with a starting hot air generating means for feeding hot air into the carbonization gas generating furnace to start carbonization.
[0022]
A combustion residue discharging means for discharging the combustion residue discharged from the grate by the combustion residue discharging means to the outside of the furnace is provided.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a dry distillation gas generation system A according to an embodiment of the present invention and an example of a gas reforming / refining system B for reforming and purifying the dry distillation gas from now on.
[0024]
The carbonization gas generation system A includes a vertical carbonization gas generation furnace 1, a crusher 2 for crushing solid fuel such as waste, and the crushed solid fuel is continuously or intermittently introduced into the carbonization gas generation furnace 1. The conveyor 2a, which is a solid fuel supply means, the hot air generator 3, which is a starting hot air generator for blowing hot air into the carbonized gas generating furnace 1 to start operation, and the weight of the carbonized gas generating furnace 1. The load cell 4 is a weight sensor for measuring the weight of the solid fuel therein together with the dry distillation gas generating furnace 1, and a control device (not shown) for performing various controls based on the measured weight.
[0025]
The gas reforming / refining system B introduces a pyrolysis gas (dry distillation gas) containing water vapor generated by pyrolysis in the dry distillation gas generating furnace 1 and removes tar and soot under high temperature (for example, 800 to 1000). C.), a reforming furnace 5 which is a gas reforming means for reforming by reacting with steam, a filter 6 for filtering a high-temperature (for example, about 800 ° C.) reformed gas from the reforming furnace 5, and a blower 7 From the low-temperature air (clean air) from the heat exchanger 8 to obtain a high-temperature air of, for example, about 600 ° C. by exchanging heat with the reformed gas after filtration, and cooling and washing the purified gas after heat exchange for purification. A cooling / refining device 9 as a gas, a part of the purified gas, and a portion of high-temperature air branched and supplied from the heat exchanger 8 to, for example, about 450 ° C., are mixed in the mixing unit 10a, and catalytic combustion is performed. High-temperature reforming air of about 1300 ° C. Consisting reforming hot air generating device 10 for blowing the reforming furnace 5 by.
[0026]
Most of the high-temperature air at about 600 ° C. from the heat exchanger 8 is sent from the lower side as high-temperature air for dry distillation into the dry distillation gas generating furnace 1 and is subjected to dry distillation of solid fuel. Is fed to the reforming high-temperature air generator 10 and supplied to the reforming furnace 5 as reforming high-temperature air that supplies heat and oxygen for reforming.
[0027]
A part of the purified gas purified by the cooling / refining device 9 is provided to the fuel in the reforming high-temperature air generator 11 as described above, but most of the purified gas is, for example, a fuel gas for the power generator 11. It is effectively used as such.
[0028]
The carbonization gas generating furnace 1 carbonizes the introduced fixed fuel at a relatively low temperature (about 300 to 600 ° C.) and in an amount of air that is insufficient for complete combustion, and carbonizes the pyrolysis gas. appear. The operation is started by blowing hot air from the hot air generator 3 into the carbonization gas generating furnace 1. After the start, the hot air generator 3 is turned off. The air is continuously fed into the dry distillation gas generating furnace 1 from the same supply port.
[0029]
At the lower part of the carbonization gas generating furnace 1, a porous or mesh-like grate 12 is horizontally installed. Above this grate 12, a combustion zone 13, a carbonization zone 14, a preliminary drying zone 15, a carbonization A gas zone 16 is formed. A temperature sensor 17 for measuring the temperature of each zone is installed on the peripheral wall of the carbonization gas generating furnace 1.
[0030]
An air supply chamber 18 is provided below the grate 12, that is, between the grate 12 and the bottom 1a of the carbonization gas generating furnace 1, and the hot air from the hot air generator 3 and the high-temperature air from the heat exchanger 8 are: It rises from the air supply chamber 18 through the grate 12. The temperature of the air supply chamber 18 is also measured by the temperature sensor 17.
[0031]
On the grate 12, a stirring rotor 19 rotated by a motor (not shown) is provided. The stirring rotor 19 also serves as a stirring means for stirring the solid fuel and a combustion residue sending means for sending (falling) combustion residues (carbides and ash) below the grate 12. Note that a vibrator may be used instead of the stirring rotor 19.
[0032]
A discharge rotor 20 rotated by the same motor as the stirring rotor 19 is provided on the bottom 1 a of the carbonization gas generating furnace 1, and the combustion residue dropped from the grate 12 is converted into a furnace by the rotation of the discharge rotor 20. It is discharged outside.
[0033]
The weight of the solid fuel in the carbonization gas generating furnace 1 is measured together with the carbonization gas generating furnace 1 by a load cell 4 outside the furnace, which is a weight sensor, and the measured weight signal is a measured temperature signal of each zone by the temperature sensor 17. Is input to the control device. The control device controls the amount of the solid fuel charged by the carry-in conveyor 2a based on the measured weight and the measured temperature and the amount of the solid fuel from the grate 12 by the stirring rotor 19 based on the measured weight and the measured temperature in order to set the inside of the carbonized gas generating furnace 1 to a constant combustion and carbonization condition. Controls the delivery of combustion residues. Specifically, the motor of the carry-in conveyor 2a and the motor of the stirring rotor 19 are automatically controlled according to a program. Furthermore, the control device also controls the amount of hot air from the heat exchanger 8. The control can be performed, for example, by controlling a high-temperature gas supply control valve 21 installed in a pipe from the heat exchanger 8.
[0034]
The carbonization gas generated by the thermal decomposition in the carbonization gas generating furnace 1 is sent from the upper part of the carbonization gas generating furnace 1 to the reforming furnace 5 through a pipe. When the solid fuel is wet waste, the dry distillation gas becomes a pyrolysis gas containing water vapor. However, although it contains water vapor, heat and oxygen are insufficient to reform tar and soot in the reforming furnace 5, so that the high-temperature air preheated by the heat exchanger 8 is cooled and refined. A part of the purified gas from the apparatus 9 is mixed as a fuel in a mixing section (mixer) 10a of a high-temperature air generating apparatus 10 for reforming, and is burned by a combustion catalyst in a catalytic combustion section 10b for reforming at about 1300 ° C. It is blown into the reforming furnace 5 as high-temperature air. The amount of air and the amount of purified gas are adjusted so that a sufficient amount of oxygen for reforming is provided in the reforming furnace 5 even when the fuel is burned.
[0035]
As shown in the schematic diagram of FIG. 2, the catalytic combustion unit 10b of the reforming high-temperature air generation device 10 uses a combustion catalyst having a noble metal such as platinum or palladium or a particle formed of an oxide thereof, having a honeycomb structure in cross section. Channels carrying the combustion catalyst and channels not carrying the catalyst are arranged alternately, and a pipe structure is formed in which the temperature is averaged by exchanging heat with the gas passing through the channel not carrying the combustion reaction heat generated in the carrying channel. I have. Since the reforming high-temperature air generator 10 has a small pipe shape as a whole including the mixing section 10a, it can be provided inside the reforming furnace 5, but may be provided outside thereof.
[0036]
In the middle of the reforming furnace 5, a heat-resistant material laminate 5 a is formed by laminating a heat-resistant material such as spherical ceramics so as to allow ventilation, and a pyrolysis gas flowing into the reforming furnace 5 and a temperature higher than that. The high-temperature air for reforming is dispersed and passed through the myriad of fine channels of the heat-resistant material laminate 5a, and effectively mixes the heat and oxygen of the high-temperature reforming air with water vapor. For this reason, the steam reforming reaction between the hydrocarbon in the pyrolysis gas and the steam proceeds effectively when passing through the fine flow path, and the reaction in a short time is efficiently performed. At the same time, in addition to having a heat storage function, the heat-resistant material laminate 5a has a purifying function of trapping tar and soot in the pyrolysis gas to promote reforming and purifying the gas.
[0037]
The reformed gas thus reformed in the reforming furnace 5 is filtered (to remove dust and the like) by the filter 6, and then cooled and washed by the cooling / refining device 9, so that sulfur, chlorine and dust are removed. And purified gas from which harmful substances such as heavy metals and the like have been removed.
[0038]
In the reforming high-temperature air generator 10, a part of the purified gas and the clean air preheated in the heat exchanger 8 are mixed and burned by the combustion catalyst. It is clean and does not cause accumulation of harmful substances and the like in the reforming high-temperature air generator 10. It goes without saying that combustion may be performed without preheating in the heat exchanger 8. As for the high-temperature air for dry distillation supplied to the dry distillation gas generating furnace 1, high-temperature air may be introduced from another system in addition to the high-temperature air preheated by the heat exchanger 8.
[0039]
FIG. 3 shows a modification of the gas reforming / refining system B. In this example, only the purified gas is burned in the catalytic combustion section 10b of the reforming high-temperature air generator 10 and heat exchange between the combustion reaction heat and the heating air from the heat exchanger 8 is performed. The purified air thus obtained is further heated by using the heat of combustion reaction of the purified gas to obtain high-temperature reforming air.
[0040]
In both cases of the gas reforming / refining system shown in FIG. 1 and the gas reforming / refining system shown in FIG. 3, when the wet waste is carbonized in the carbonization gas generating furnace 1, the pyrolysis gas generated at that time. The steam itself contains a sufficient amount of steam to be used in the next reforming step, and there is no need to separate the steam from the steam, and the heat and oxygen required to react with the steam are generated by the combustion reaction heat of the purified gas. From the viewpoint that it is only necessary to replenish from clean high-temperature air heated in the above, a simplified high-temperature steam generator for generating high-temperature steam for reforming and a drying device for separating odorous steam are unnecessary. System.
[0041]
4 and 5 show specific examples of the system shown in FIG. Although each part is not specifically described, it can be understood from these figures that the whole system is a small-scale system including the carbonization gas generation system A according to the present invention.
[0042]
6 and 7 show specific examples of the dry distillation gas generating furnace 1. FIG. In this dry distillation gas generating furnace 1, a vertically long cylindrical furnace body 1b is made of a metal material and a heat insulating material, and the inner surface thereof is coated with an ultra-high temperature heat-resistant paint having a heat-resistant temperature of about 1500 ° C., for example. The furnace body 1b is installed on a frame 22, and the frame 22 is also supported on a base 24 by supporting legs 23. The weight of the entire carbonization gas generating furnace 1 is reduced by the load cells 4 via the supporting legs 23. It is supposed to take.
[0043]
The grate 12 is installed horizontally in the furnace main body 1b. The stirring rotor 19 on the grate 12 and the discharge rotor 20 on the furnace bottom 1 a are, for example, plate-like blades fixed to the same rotor shaft 25, and are simultaneously rotated by a motor 26 fixed to the frame 22. Is done. FIGS. 8, 9 and 10 show planes of an example of the grate 12, the stirring rotor 19 and the discharge rotor 20, respectively. The rotor shaft 25 is insulated and connected to a transmission shaft 28 that transmits the rotation of the motor 26 by a coupling 27 outside the furnace with a heat insulating material interposed therebetween. The rotor shaft 25 is supported by a bearing using heat-resistant packing.
[0044]
FIG. 11 shows another specific example of the carbonization gas generating furnace 1. In this dry distillation gas generating furnace 1, a bottomed fuel receiving inner cylinder 29 is disposed separately from a furnace body 1b serving as an outer cylinder, and a grate 12 is installed in the inner cylinder 29 to form a solid fuel. Is received by the inner cylinder 29. The stirring rotor 19 is provided on the grate 12 in the inner cylinder 29, and the discharge rotor 20 is provided on the bottom 29 a in the inner cylinder 29.
[0045]
The weight of the inner cylinder 29 is measured by the load cell 4 outside the furnace via the support legs 30 that support the bottom 29a. The support leg 30 penetrates the bottom 1a of the furnace main body 1b so as to be vertically slidable. The inner cylinder 29 is shorter than the furnace body 1b, which is an outer cylinder, and a funnel portion 29b for introducing solid fuel is provided at an upper end of the inner cylinder 29.
[0046]
In the case of the dry distillation gas generating furnace 1 shown in FIG. 11, the heavier furnace body 1b is not included in the weight measured by the load cell 4, and the weight of the lighter inner cylinder 29 is measured together with the solid fuel in the furnace. Get higher. It is sufficient that the load cell 4 itself has a low withstand pressure specification.
[0047]
In the figure, the combustion residue (carbide or ash) in the inner cylinder 29 is discharged by the discharge rotor 20 from the discharge port 31 of the bottom 1a of the furnace body 1b to the outside of the furnace through the opening of the bottom 29a of the inner cylinder 29. Then, it is sent into the collecting device 33 by the unloading conveyor 32 and collected. In the figure, 34 is a solid fuel inlet, 35 is a supply port of high-temperature air for drying and hot air for starting, and 36 is a carbonization gas discharge port, and piping is connected to each. It is preferable that the carry-in device for introducing the solid fuel into the dry distillation gas generating furnace 1 from the solid fuel inlet 34 has a highly airtight structure so that the conditions in the dry distillation gas generating furnace 1 do not fluctuate due to the injection. For example, when carrying in using a screw conveyor, airtightness can be ensured by making the screw conveyor tapered and interlockingly feeding the solid fuel while compressing it.
[0048]
FIG. 12 shows another specific example of the carbonization gas generating furnace 1. This carbonization gas generating furnace 1 is slightly different from the case of FIG. 11, and the inner cylinder 29 is shorter than that of FIG. 11, and the bottom of the inner cylinder 29 is the grate 12.
[0049]
【The invention's effect】
As described above, according to the present invention, the solid fuel is continuously or intermittently charged into the carbonization gas generating furnace, and the high-temperature gas for carbonization is continuously supplied to the high-temperature gas for carbonization, so that the high-temperature gas for carbonization is used. The gas generating furnace can be downsized. Changes in combustion and carbonization conditions in the furnace due to the progress of carbonization (combustion) are detected by measuring the weight of solid fuel with a weight sensor, and the amount of solid fuel injected into the carbonization gas generation furnace and carbonization gas generation Automatically controls the amount of combustion residue (carbide, ash, etc.) from the grate in the furnace based on the measured weight, so that the same quality of carbonized gas can be generated continuously and stably, and the carbonization of waste At the same time, it is suitable for a small-scale cogeneration facility that effectively uses the gas generated at that time.
[0050]
If the amount of the high-temperature gas for carbonization to be introduced into the carbonization gas generating furnace is also automatically controlled based on the measured weight, the combustion and carbonization conditions in the furnace are more reliably maintained.
[0051]
The temperature of each of the combustion zone, carbonization zone, preliminary drying zone, and carbonization gas zone in the carbonization gas generating furnace is measured with a temperature sensor, and the input amount of solid fuel and the amount of combustion residue from the grate are measured. In this case, the automatic control can precisely control the combustion and carbonization conditions in the furnace.
[0052]
If the carbonization gas generating furnace is started to operate with hot air, the operation can be started efficiently with a small heat source in a short time.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram showing a dry distillation gas generation system according to one embodiment of the present invention and an example of a gas reforming / refining system for reforming and purifying a dry distillation gas from now on.
FIG. 2 is a schematic diagram of combustion by a combustion catalyst in a reforming high-temperature air generator in FIG. 1;
FIG. 3 is a system configuration diagram showing a dry distillation gas generation system according to an embodiment of the present invention and a modification of the gas reforming / refining system.
FIG. 4 is a side view showing a specific example of the system of FIG. 1;
FIG. 5 is a plan view of the same.
FIG. 6 is a side view showing a specific example of a carbonization gas generating furnace.
FIG. 7 is a rear view of the same.
FIG. 8 is a plan view showing an example of a grate of a carbonization gas generating furnace.
FIG. 9 is a plan view showing an example of a stirring rotor.
FIG. 10 is a plan view showing an example of a discharge rotor.
FIG. 11 is a sectional view showing another specific example of the dry distillation gas generating furnace.
FIG. 12 is a sectional view showing another specific example of the dry distillation gas generating furnace.
[Explanation of symbols]
A dry distillation gas generation system B gas reforming / refining system 1 dry distillation gas generation furnace 1a bottom 1b furnace body 2 crusher 2a carry-in conveyor 3 hot air generator 4 load cell 4
Reference Signs List 5 Reforming furnace 5a Laminated heat-resistant material 6 Filter 7 Blower 8 Heat exchanger 9 Cooling / purifying device 10 High-temperature air generator for reforming 10a Mixing unit 10b Catalytic combustion unit 11 Power generation device 12 Grate 13 Combustion zone 14 Dry distillation zone 15 Reserve Drying zone 16 Dry distillation gas zone 17 Temperature sensor 18 Air supply chamber 19 Stirring rotor 20 Discharge rotor 21 High-temperature gas supply control valve 22 Underframe 23 Support leg 24 Base 25 Rotor shaft 26 Motor 27 Coupling 28 Transmission shaft 29 Inner cylinder 29a Bottom part 29b Funnel part 30 Support leg 31 Discharge port 32 Conveying conveyor 33 Recovery unit 34 Solid fuel input port 35 Supply port for high-temperature air for drying and hot air for starting 36 Drying gas discharge port

Claims (16)

乾留ガス発生炉内に、固体燃料を連続的又は間欠的に投入するとともに、乾留用高温ガスを連続的に送入して乾留により炭化させ、熱分解による乾留ガスを発生させながら、乾留ガス発生炉内の固体燃料の重量を重量センサにて測定し、乾留ガス発生炉内への固体燃料の投入量と、乾留ガス発生炉内の火格子からの燃焼残留物の送出量を測定重量に基づき自動制御することを特徴とする乾留ガス発生方法。While the solid fuel is continuously or intermittently charged into the carbonization gas generation furnace, the high-temperature gas for carbonization is continuously fed in and carbonized by carbonization, and carbonization gas is generated by pyrolysis while generating carbonization gas. The weight of the solid fuel in the furnace is measured with a weight sensor, and the amount of solid fuel injected into the carbonization gas generation furnace and the amount of combustion residue from the grate in the carbonization gas generation furnace are measured based on the measured weight. A carbonization gas generation method characterized by automatic control. 乾留ガス発生炉内への乾留用高温ガスの送入量を測定重量に基づき自動制御することを特徴とする請求項1記載の乾留ガス発生方法。2. The method according to claim 1, wherein the amount of the high-temperature gas for carbonization introduced into the carbonization gas generating furnace is automatically controlled based on the measured weight. 固体燃料の重量を乾留ガス発生炉の全部又は一部と共に、乾留ガス発生炉外の重量センサにて測定することを特徴とする請求項1又は2記載の乾留ガス発生方法。3. The method for generating a carbonized gas according to claim 1, wherein the weight of the solid fuel is measured together with all or a part of the carbonized gas generating furnace by a weight sensor outside the carbonized gas generating furnace. 乾留ガス発生炉内における燃焼ゾーン、乾留ゾーン、予備乾燥ゾーン、乾留ガスゾーンの各ゾーンの温度を温度センサで測定し、固体燃料の投入量と乾留ガス発生炉内の火格子からの燃焼残留物の送出量を測定温度によっても自動制御することを特徴とする請求項1、2又は3記載の乾留ガス発生方法。The temperature of each of the combustion zone, carbonization zone, preliminary drying zone and carbonization gas zone in the carbonization gas generating furnace is measured with a temperature sensor, and the amount of solid fuel charged and the combustion residue from the grate in the carbonization gas generating furnace are measured. 4. A method for generating a carbonized gas according to claim 1, wherein the amount of the gas is automatically controlled also according to the measured temperature. 乾留ガス発生炉内への乾留用高温ガスの送入量を測定温度に基づき自動制御することを特徴とする請求項4記載の乾留ガス発生方法。5. The method according to claim 4, wherein the amount of the high-temperature gas for carbonization into the carbonization gas generating furnace is automatically controlled based on the measured temperature. 乾留ガス発生炉内に熱風を送入して乾留を開始することを特徴とする請求項1、2、3又は4に記載の乾留ガス発生方法。The method for generating a carbonized gas according to claim 1, 2, 3, or 4, wherein hot air is fed into the carbonized gas generating furnace to start the carbonization. 固体燃料が廃棄物であることを特徴とする請求項1、2、3、4、5又は6に記載の乾留ガス発生方法。The method according to claim 1, 2, 3, 4, 5, or 6, wherein the solid fuel is waste. 固体燃料を乾留により炭化させて熱分解による乾留ガスを発生させる乾留ガス発生炉と、この乾留ガス発生炉内へ乾留用高温ガスを送入する乾留用高温ガス供給手段と、乾留ガス発生炉内に固体燃料を連続的又は間欠的に投入する固体燃料供給手段と、乾留ガス発生炉内の火格子から燃焼残留物を送出する燃焼残留物送出手段と、乾留ガス発生炉内の固体燃料の重量を測定する重量センサと、その測定重量に基づき前記固体燃料供給手段及び燃焼残留物送出手段を自動制御する制御装置とを備えてなることを特徴とする乾留ガス発生システム。A dry distillation gas generating furnace for carbonizing a solid fuel by dry distillation to generate a dry distillation gas by pyrolysis, a dry distillation high temperature gas supply means for feeding a dry distillation high temperature gas into the dry distillation gas generating furnace, and a dry distillation gas generating furnace Solid fuel supply means for continuously or intermittently feeding solid fuel into the furnace, combustion residue delivery means for delivering combustion residues from a grate in the carbonization gas generating furnace, and weight of the solid fuel in the carbonization gas generating furnace And a controller for automatically controlling the solid fuel supply means and the combustion residue delivery means based on the measured weight. 制御装置は、測定重量に基づき乾留用高温ガス供給手段を自動制御することを特徴とする請求項8記載の乾留ガス発生システム。9. The carbonization gas generation system according to claim 8, wherein the control device automatically controls the high-temperature gas supply means for carbonization based on the measured weight. 重量センサは、固体燃料の重量を乾留ガス発生炉の全部又は一部と共に乾留ガス発生炉外で測定することを特徴とする請求項8又は9記載の乾留ガス発生システム。10. The carbonization gas generation system according to claim 8, wherein the weight sensor measures the weight of the solid fuel together with all or a part of the carbonization gas generation furnace outside the carbonization gas generation furnace. 乾留ガス発生炉は、断熱材による外筒内に、固体燃料の重量を受ける燃料受け用内筒を有し、重量センサは、固体燃料の重量をこの燃料受け用内筒と共に測定することを特徴とする請求項8又は9記載の乾留ガス発生システム。The carbonization gas generating furnace has a fuel receiving inner cylinder that receives the weight of the solid fuel in an outer cylinder made of heat insulating material, and the weight sensor measures the weight of the solid fuel together with the fuel receiving inner cylinder. The carbonization gas generation system according to claim 8 or 9, wherein 火格子が燃料受け用内筒内に配置されていることを特徴とする請求項11記載の乾留ガス発生システム。The carbonization gas generation system according to claim 11, wherein the grate is disposed in the fuel receiving inner cylinder. 乾留ガス発生炉内における燃焼ゾーン、乾留ゾーン、予備乾燥ゾーン、乾留ガスゾーンの各ゾーンの温度を測定する温度センサを備え、制御装置は、前記固体燃料供給手段及び燃焼残留物送出手段を測定温度によっても自動制御することを特徴とする請求項8、9、10、11又は12記載の乾留ガス発生システム。A temperature sensor for measuring the temperature of each of the combustion zone, the carbonization zone, the preliminary drying zone, and the carbonization gas zone in the carbonization gas generating furnace is provided, and the control device controls the solid fuel supply unit and the combustion residue delivery unit to measure the temperature. The carbonization gas generation system according to claim 8, 9 or 10, wherein the system is also automatically controlled. 制御装置は、乾留用高温ガス供給手段を測定温度に基づき自動制御することを特徴とする請求項13記載の乾留ガス発生システム。14. The carbonization gas generation system according to claim 13, wherein the control device automatically controls the carbonization high-temperature gas supply means based on the measured temperature. 乾留ガス発生炉内に熱風を送入して乾留を開始する始動用熱風発生手段を備えたことを特徴とする請求項8、9、10、11、12、13又は14記載の乾留ガス発生システム。15. The dry distillation gas generating system according to claim 8, further comprising a starting hot air generating means for feeding hot air into the dry distillation gas generating furnace to start dry distillation. . 燃焼残留物送出手段にて火格子から送出される燃焼残留物を炉外へ排出する燃焼残留物排出手段を備えたことを特徴とする請求項8、9、10、11、12、13、14又は15記載の乾留ガス発生システム。15. A combustion residue discharging means for discharging the combustion residue discharged from the grate by the combustion residue discharging means to the outside of the furnace, comprising a combustion residue discharging means. Or the carbonization gas generation system according to 15.
JP2002277247A 2002-09-24 2002-09-24 Dry distillation gas generation method and dry distillation gas generation system Expired - Fee Related JP3890442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002277247A JP3890442B2 (en) 2002-09-24 2002-09-24 Dry distillation gas generation method and dry distillation gas generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002277247A JP3890442B2 (en) 2002-09-24 2002-09-24 Dry distillation gas generation method and dry distillation gas generation system

Publications (2)

Publication Number Publication Date
JP2004115576A true JP2004115576A (en) 2004-04-15
JP3890442B2 JP3890442B2 (en) 2007-03-07

Family

ID=32272901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002277247A Expired - Fee Related JP3890442B2 (en) 2002-09-24 2002-09-24 Dry distillation gas generation method and dry distillation gas generation system

Country Status (1)

Country Link
JP (1) JP3890442B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006035115A (en) * 2004-07-28 2006-02-09 Toshiba Corp Waste thermal decomposition system
JP2006231301A (en) * 2005-02-28 2006-09-07 Mitsui Eng & Shipbuild Co Ltd Gasification apparatus of waste
JP2007298225A (en) * 2006-04-28 2007-11-15 Nitsushiyoo Kiko:Kk Gasification combustion apparatus
JP2010520318A (en) * 2007-03-01 2010-06-10 テルミヤ Method for producing high carbon content vegetable carbon and apparatus for carrying out the method
JP2011052097A (en) * 2009-09-01 2011-03-17 Nippon Steel Engineering Co Ltd Highly efficient dry distillation furnace and dry distillation method
KR101243987B1 (en) 2011-06-03 2013-03-25 주식회사 세바이컬러지 Recycling and burning method of food-residue
KR20140043751A (en) * 2011-05-16 2014-04-10 프랙스에어 테크놀로지, 인코포레이티드 Partial oxidation of methane and higher hydrocarbons in syngas streams
KR101832362B1 (en) * 2016-12-06 2018-02-26 곽호준 Apparatus for disposing waste vinyl and plastic
JP6285588B1 (en) * 2017-03-07 2018-02-28 五友エコワークス株式会社 Self-burning carbonization heat treatment apparatus and self-burning carbonization heat treatment method using the same
CN108929013A (en) * 2018-09-29 2018-12-04 姜伟 Device for pyrolysis processing sludge
CN115287084A (en) * 2022-07-10 2022-11-04 安徽科技学院 Novel continuous environmental protection production facility of biological charcoal
WO2024039123A1 (en) * 2022-08-18 2024-02-22 주식회사 한화 Device and system for pyrolysis of waste
KR102656341B1 (en) * 2022-08-18 2024-04-09 주식회사 한화 Pyrolysis apparatus for waste

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103343973B (en) * 2013-06-18 2016-03-02 浙江睿洋科技有限公司 The control method of garbage pyrolysis furnace

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006035115A (en) * 2004-07-28 2006-02-09 Toshiba Corp Waste thermal decomposition system
JP4550512B2 (en) * 2004-07-28 2010-09-22 株式会社東芝 Waste pyrolysis treatment system
JP2006231301A (en) * 2005-02-28 2006-09-07 Mitsui Eng & Shipbuild Co Ltd Gasification apparatus of waste
JP2007298225A (en) * 2006-04-28 2007-11-15 Nitsushiyoo Kiko:Kk Gasification combustion apparatus
JP2010520318A (en) * 2007-03-01 2010-06-10 テルミヤ Method for producing high carbon content vegetable carbon and apparatus for carrying out the method
JP2011052097A (en) * 2009-09-01 2011-03-17 Nippon Steel Engineering Co Ltd Highly efficient dry distillation furnace and dry distillation method
JP2014518924A (en) * 2011-05-16 2014-08-07 プラクスエア・テクノロジー・インコーポレイテッド Partial oxidation of methane and higher hydrocarbons in syngas streams.
KR20140043751A (en) * 2011-05-16 2014-04-10 프랙스에어 테크놀로지, 인코포레이티드 Partial oxidation of methane and higher hydrocarbons in syngas streams
KR101243987B1 (en) 2011-06-03 2013-03-25 주식회사 세바이컬러지 Recycling and burning method of food-residue
KR101832362B1 (en) * 2016-12-06 2018-02-26 곽호준 Apparatus for disposing waste vinyl and plastic
WO2018105900A1 (en) * 2016-12-06 2018-06-14 곽호준 Processing apparatus for waste vinyl or waste plastics
JP6285588B1 (en) * 2017-03-07 2018-02-28 五友エコワークス株式会社 Self-burning carbonization heat treatment apparatus and self-burning carbonization heat treatment method using the same
JP2018145314A (en) * 2017-03-07 2018-09-20 五友エコワークス株式会社 Heat treatment device for self-combustion carbonization, and heat treatment method for self-combustion carbonization using the same
CN108929013A (en) * 2018-09-29 2018-12-04 姜伟 Device for pyrolysis processing sludge
CN108929013B (en) * 2018-09-29 2021-04-13 南京华昭环保设备有限公司 Device for pyrolysis treatment of sludge
CN115287084A (en) * 2022-07-10 2022-11-04 安徽科技学院 Novel continuous environmental protection production facility of biological charcoal
WO2024039123A1 (en) * 2022-08-18 2024-02-22 주식회사 한화 Device and system for pyrolysis of waste
KR102656341B1 (en) * 2022-08-18 2024-04-09 주식회사 한화 Pyrolysis apparatus for waste

Also Published As

Publication number Publication date
JP3890442B2 (en) 2007-03-07

Similar Documents

Publication Publication Date Title
JP4154029B2 (en) Waste treatment method and waste treatment apparatus
JP5877237B2 (en) Method and apparatus for producing low tar synthesis gas from biomass
JP4790412B2 (en) Biomass gasifier
JP4679212B2 (en) High temperature reformer
JP3890442B2 (en) Dry distillation gas generation method and dry distillation gas generation system
CN101068909B (en) Method and device for gasification treatment
MX2008011654A (en) Thermal reduction gasification process for generating hydrogen and electricity.
CN104560072B (en) Thermal decomposition of organic wastes system and method for pyrolysis
JPWO2005063923A1 (en) Carbonization equipment for activated carbon production
WO2012093982A1 (en) Pyrolysis plant for processing carbonaceous feedstock
JP4966239B2 (en) Organic waste treatment method, gasification furnace, reforming furnace, organic waste treatment equipment
WO2018018615A1 (en) Method and system for preparing fuel gas by utilizing organic waste with high water content
WO2007099989A1 (en) Carbon support, method of producing carbon support, apparatus for producing carbon support, gas formation method, power generation method and power generator
WO2017138157A1 (en) Reformer furnace and gasification system using same
CN110527534A (en) A method of class coal coke is prepared using domestic garbage pyrolysis
CN101712458A (en) Method for producing hydrogen by utilizing rubbish high-temperature cracking
CN105925282A (en) Biomass thermal conversion device and method based on carbon cycle
KR20200056058A (en) Mixing pyrolysis apparatus for biomass and polymer waste and producing method for pyrolysis oil using thereof
JP2009102594A (en) Gasification furnace system
RU2721695C1 (en) Method of processing organic material to produce synthetic fuel gas in a high-temperature ablation pyrolisis of gravitational type
JP5527743B2 (en) Gasification apparatus, fuel generation system, gasification method, and fuel generation method
JP2003213269A (en) High temperature carbonization installation and high temperature carbonization method
JP2006017437A (en) Pyrolytic gas combustion method and device
JP7401148B1 (en) Gasifier, gasification method, hydrogen production system, fuel generation system and power generation system
JP7291677B2 (en) Water gas generation system, biomass power generation system and biomass hydrogen supply system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20021009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20021009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20021224

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040521

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040521

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040629

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040906

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees