WO2007099989A1 - Carbon support, method of producing carbon support, apparatus for producing carbon support, gas formation method, power generation method and power generator - Google Patents

Carbon support, method of producing carbon support, apparatus for producing carbon support, gas formation method, power generation method and power generator Download PDF

Info

Publication number
WO2007099989A1
WO2007099989A1 PCT/JP2007/053734 JP2007053734W WO2007099989A1 WO 2007099989 A1 WO2007099989 A1 WO 2007099989A1 JP 2007053734 W JP2007053734 W JP 2007053734W WO 2007099989 A1 WO2007099989 A1 WO 2007099989A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
carbon
generated
carbon support
mesoporous particles
Prior art date
Application number
PCT/JP2007/053734
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Uesugi
Junichiro Hayashi
Original Assignee
Bio Coke Lab., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bio Coke Lab., Ltd. filed Critical Bio Coke Lab., Ltd.
Publication of WO2007099989A1 publication Critical patent/WO2007099989A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/023Reducing the tar content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/26Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension
    • F02C3/28Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension using a separate gas producer for gasifying the fuel before combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04216Reactant storage and supply, e.g. means for feeding, pipes characterised by the choice for a specific material, e.g. carbon, hydride, absorbent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0643Gasification of solid fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin

Definitions

  • the present invention relates to a technology that uses energy derived from biomass, and more specifically, a carbon carrier that is a biological energy source, a method for producing a carbon carrier, a carbon carrier production apparatus, and a carbon carrier.
  • the present invention relates to a gas generation method for generating a gas as an energy source using a body, a power generation method using the generated gas, and a power generation apparatus.
  • Biomass refers to organic substances derived from living organisms or biological wastes, excluding fossil resources. Specifically, wood, paper, agricultural residues, human waste, food waste Etc. are included. Nomas is a renewable resource because it is an organic matter produced by living organisms using water and carbon dioxide as its main raw materials. Biomass also has a so-called carbon-free characteristic that when it is consumed as an energy source, the amount of carbon dioxide released from the two stages of production and consumption is almost zero. In this way, biomass is expected to be an energy source with a low environmental impact, and research on how to use it is underway.
  • biomass When biomass is directly burned as fuel, the thermal efficiency is low. Therefore, in order to efficiently use biomass as an energy source, it is desirable to convert the biomass into a material with higher thermal efficiency.
  • a method of converting biomass a method of gasifying biomass by dry distillation of biomass is known. Combustion gases such as carbon monoxide, methane, and ethane are generated by gasification of biomass, and the generated gas can be used as fuel. The generated gas can be combusted with higher thermal efficiency than when biomass is directly used as fuel, and can be used as a fuel and heat source for power generation.
  • the solid residue after gasification (Char) is a high-molecular-weight organic substance that has not been decomposed into gas even by dry distillation.
  • biomass is wood, charcoal is equivalent to chia.
  • the chia produced by the gasification of biomass is also fuel or various It can be used as an industrial raw material.
  • tar (Tar) having a higher molecular weight than gas and lower molecular weight than gas is also generated in addition to gas and chia.
  • Tar is a force S that is a gas at the temperature at which biomass is distilled, and becomes a liquid or solid at room temperature, and is generated as an impurity in the gas.
  • Gas containing tar deteriorates in quality as a fuel, and when gas containing tar is used as fuel, there is a problem that the tar pollutes the gas burning device and the environment. Therefore, it is necessary to reduce the tar concentration in the generated gas when biomass is gasified.
  • Non-Patent Document 1 discloses a technique for reducing the concentration of tar in gas by attaching tar to porous particles such as zeolite or activated alumina.
  • Non-Patent Document 1 T. Namioka and 3 others, “High Tar Reduction with Porous Particles for Low emperature Biomass Lrasyer ion”: Effects Porous Particles on Tar and Gas Fields on Tar and Gas Yields during Sawdust Pyrolysis, Journal of Chemical Engineering of Japan, 2003, 36th Sakai, No. 12, p. 1440-1448
  • the present invention has been made in view of such circumstances, and an object of the present invention is to use carbon derived from tar on particles to thereby improve the utilization efficiency of carbon contained in biomass. Another object of the present invention is to provide a carbon carrier, which is an energy source, a method for producing the carbon carrier, and a carbon carrier production apparatus.
  • Another object of the present invention is to provide a gas generation method for generating a gas for use in a fuel cell using a carbon carrier, a power generation method using the generated gas, and a power generation device. Is to provide.
  • the carbon support according to the first invention is characterized in that a carbonaceous solid containing carbon as a main component adheres to the surface of mesoporous particles.
  • the carbon support according to the second invention is characterized in that the carbonaceous solid contains 20 mmol or more of carbon per gram of the mesoporous particles.
  • the specific surface area of the mesoporous particles is 1 gram.
  • the carbon support according to the fourth invention is characterized in that the mesoporous particles have aluminum oxide as a main component.
  • a carbon support according to a fifth aspect of the present invention is characterized in that the mesoporous particles are composed of soot -alumina having acid sites on the surface.
  • a method for producing a carbon carrier according to a sixth invention is a method for producing a carbon carrier according to any one of the first to fifth inventions, wherein a biological organic material is removed at 400 ° C or higher.
  • the carbonaceous solid is deposited on the surface of the mesoporous particles by pyrolyzing at a temperature of ⁇ ° C and bringing the gas phase components generated by the pyrolysis into contact with the mesoporous particles at a temperature of 400 ° C to 1000 ° C. It is characterized by making it.
  • a method for producing a carbon support according to a seventh aspect of the present invention relates to any one of the first to fifth aspects of the present invention.
  • a carbon carrier is produced by pyrolyzing a biological organic material at a temperature of 400 ° C or higher and 1000 ° C or lower, and a plurality of vapor phase components generated by the thermal decomposition at 400 ° C or higher and 1000 ° C or lower.
  • a mesoporous particle in which mesoporous particles are accumulated is infiltrated into an aggregate, and mesoporous particles in which the gas phase component is infiltrated are taken out from the aggregate.
  • a method for producing a carbon support according to an eighth aspect of the invention is characterized in that the vapor phase component after permeating the aggregate is recovered.
  • the method for producing a carbon carrier according to the ninth invention is characterized in that the residue after the vapor phase component is separated from the biological organic material by thermal decomposition is recovered.
  • the method for producing a carbon carrier according to the tenth aspect of the present invention provides a temperature at which a biological organic material is thermally decomposed and / or a temperature at which a gas phase component generated by the thermal decomposition penetrates into the aggregate. It is characterized by adjusting the yield by which the carbon supporter obtains carbon contained in the biological organic material by controlling.
  • An apparatus for producing a carbon carrier according to an eleventh aspect of the invention is an apparatus for producing a carbon carrier according to any one of the first to fifth aspects of the invention, wherein biological organic matter is not less than 400 ° C and not less than 1000 °.
  • a pyrolysis means that pyrolyzes below C, and a permeation means that permeates the gas phase component generated by the pyrolysis means into an accumulation of a plurality of mesoporous particles accumulated at 400 ° C to 1000 ° C.
  • a carbon carrier manufacturing apparatus is a device for recovering at least a part of a gas phase component after the permeation means permeates the accumulation, and the gas recovered by the means.
  • a gas generation method is a method in which a carbon carrier according to any one of the first to fifth aspects of the invention is brought into contact with a gas containing water vapor having a temperature of 700 ° C or higher to generate hydrogen. The gas and / or carbon monoxide gas is recovered.
  • a power generation method is such that a gas containing water vapor having a temperature of 700 ° C or higher is caused to flow through an accumulation of carbon supports according to any one of the first to fifth aspects. Occur The hydrogen gas and / or carbon monoxide gas is recovered, the recovered hydrogen gas and / or carbon monoxide gas is supplied to the fuel electrode of the fuel cell, and the hydrogen gas and / or carbon monoxide gas is supplied to the fuel electrode. Electricity is generated by the fuel cell supplied to the battery.
  • the power generation device is directed to a fuel cell having a fuel electrode and a carbon support according to any one of the first to fifth inventions, wherein the temperature is 700 ° C or higher.
  • a power generation method is directed to passing a gas containing water vapor and oxygen having a temperature of 700 ° C or higher through an accumulation of carbon supports according to any one of the first to fifth aspects of the invention.
  • the generated hydrogen gas and / or carbon monoxide gas is supplied to an internal combustion engine, and power is generated by the power of the internal combustion engine supplied with the hydrogen gas and / or carbon monoxide gas.
  • a power generation device is directed to passing a gas containing water vapor and oxygen at a temperature of 700 ° C or higher through an accumulation of carbon supports according to any one of the first to fifth aspects of the invention.
  • An internal combustion engine for generating power by burning hydrogen gas and / or carbon monoxide gas generated from the means; and a means for generating electric power using the power generated by the internal combustion engine. To do.
  • a carbon carrier that can be used as an energy source is realized by adhering to the surface of carbonaceous solid cathode porous particles.
  • the vaporized carbides such as tar are decomposed and adhered to the surface of the mesoporous particles to support carbon.
  • the body can be generated.
  • the mesoporous particles are made of ⁇ -alumina having acid sites, whereby vaporized carbides such as tar are efficiently decomposed and adhered to produce a carbon support.
  • the vapor phase component generated by pyrolyzing biomass (biologically derived organic matter) at 400 ° C or higher and 1000 ° C or lower is brought into contact with the mesoporous particles.
  • the tar contained in the gas phase component is decomposed by the mesoporous particles to become a carbonaceous solid and adheres to the mesoporous particles, and a carbon support is generated.
  • the gas phase component after coming into contact with the mesoporous particles, the gas having a significantly reduced tar concentration is recovered.
  • the chia is recovered by collecting the residue obtained by pyrolyzing the biomass.
  • the yield that can be obtained from carbon-supported biomass is changed by controlling the temperature at which the biomass is thermally decomposed and / or the temperature at which the gas phase component is brought into contact with the mesoporous particles. To do.
  • the generated gas phase component contains a combustible gas
  • heat necessary for producing the carbon carrier can be obtained by burning the gas phase component.
  • power can be generated by a fuel cell using hydrogen gas and / or carbon monoxide generated using a carbon support.
  • the carbon support having the carbonaceous solid adhered to the surface of the mesoporous particles is used as a fuel and hydrogen gas generation source. It can be used, is easy to transport because it is solid, and has high safety because it is not volatile. Therefore, it can be distributed easily and without danger as an energy source.
  • the tar contained in the gas phase component generated by pyrolyzing the biomass is decomposed by the mesoporous particles to become a carbonaceous solid.
  • the carbon carrier is produced by adhering to the mesoporous particles.
  • the carbon contained in tar which was only removed from the gas in the conventional technology, can be used as an energy source, and the utilization efficiency of carbon contained in nanomass can be improved.
  • tar is almost removed from the gas generated by pyrolyzing the biomass, and the generated gas can be used as a high-quality fuel.
  • the rate ratio can be varied. Therefore, it becomes possible to obtain an energy source in a form that is easier to use in a higher yield depending on the energy utilization method.
  • the energy derived from biomass is obtained by generating power with a fuel cell using hydrogen gas and / or carbon monoxide generated using a carbon carrier. It can be used with high efficiency.
  • FIG. 1 is a conceptual diagram showing a method for producing a carbon carrier of the present invention.
  • FIG. 2 is a schematic diagram schematically showing a process for producing a carbon carrier.
  • FIG. 3 is a schematic view showing a part of an experimental apparatus used in an experiment for generating a carbon carrier.
  • FIG. 4 is a characteristic diagram showing the results of measuring the carbon content of the carbon support and tar produced in the experiment.
  • FIG. 5 is a chart showing the yield of carbon obtained from biomass by the formation of a carbon support.
  • FIG. 6 is a schematic cross-sectional view showing a configuration example of a carbon carrier manufacturing apparatus.
  • FIG. 7 A schematic cross-sectional view showing a configuration example of a carbon carrier manufacturing apparatus using an electric furnace.
  • FIG. 8 is a block diagram showing a configuration example of a power generation device of the present invention that generates power using hydrogen generated from a carbon carrier of the present invention.
  • FIG. 9 is a block diagram showing another configuration example of the power generator of the present invention.
  • FIG. 10 It is a block diagram showing a configuration example of a power generator of the present invention that realizes cogeneration.
  • FIG. 11 is a schematic cross-sectional view showing a part of a configuration example of a power generation device using a chia. Explanation of symbols
  • FIG. 1 is a conceptual diagram showing a method for producing a carbon carrier according to the present invention.
  • Biomass biologically derived organic matter
  • Biomass biologically derived organic matter
  • wood consists of cellulose and lignin.
  • the generated gas consists of methane, carbon monoxide, carbon dioxide, hydrogen, etc., and is a component that becomes a gas at room temperature.
  • tar is a gaseous tar vapor in the temperature range of 400 ° C. to 1000 ° C., which is a component that becomes liquid or solid at room temperature. Gas and tar become gas phase components generated by pyrolysis of biomass, and chia becomes a residue by pyrolysis.
  • gas phase components of gas and tar generated by pyrolysis of biomass are brought into contact with mesoporous particles containing ⁇ -alumina having acid sites at 400 ° C to 1000 ° C.
  • the mesoporous particle is a porous particle having a large number of mesopores, and the mesopore is a pore having a pore diameter of 2 to 10 nm.
  • the gas and gas phase components of the tar are in contact with the mesoporous particles, the tar decomposes on the surface of the mesoporous particles, and on the surface of the carbonaceous solid cathode porous particles mainly composed of carbon. Adhere to.
  • FIG. 2 is a schematic diagram schematically showing a process of producing a carbon carrier.
  • Figure 2 (a) shows the surface of mesoporous particles made of ⁇ _alumina with acid sites and mesopores. If the surface of the meso multi porous particles contacting the tar vapors, decomposing tar adsorbed on acid sites existing on the surface of ⁇ one alumina. A part of the decomposed tar becomes gas, and most of the decomposed tar as shown in Fig. 2 (a) is deposited on the surface of the mesoporous particles as a carbonaceous solid. On the surface of the precipitated carbonaceous solid, there are active sites having tar decomposition activity.
  • the carbonaceous solid adhering to the carbon carrier of the present invention contains carbon as a main component, and the carbon content is 70% or more by weight. Since carbonaceous solids contain carbon as the main component, the carbon carrier can be used as a fuel. Therefore, according to the present invention, it becomes possible to use carbon contained in tar as an energy source, which was only removed from the gas in the prior art.
  • the carbon carrier does not volatilize tar even when heated to 500 ° C or higher. In other words, the carbon carrier of the present invention is easy to transport because it is solid, and has high safety because it is not volatile. Therefore, it can be distributed easily and without danger as an energy source for biomass sources. It is possible. After the carbon carrier of the present invention is used as a fuel, mesoporous particles made of y-alumina remain, and the mesoporous particles can be recycled.
  • Mesoporous particles that produce a carbon support by attaching a carbonaceous solid are:
  • activated alumina or silica alumina may be used.
  • These other mesoporous particles mainly composed of an anodized aluminum oxide can also generate a carbon support by decomposing tar on the surface and attaching a carbonaceous solid with the tar decomposed to the surface.
  • the specific surface area of the mesoporous particles is desirably 200 square meters or more per gram. When the specific surface area of the mesoporous particles is 200 (m 2 / g) or more, the yield of carbonaceous solid is increased.
  • ⁇ -alumina phase transitions to ⁇ -alumina at a temperature of 1000 ° C or higher and loses the activity related to tar decomposition.
  • the required temperature is 1000 ° C or less. Also, at temperatures below 400 ° C, the rate at which tar that contacts the surface of mesoporous particles decomposes decreases, so the temperature at which gas phase components generated by pyrolysis of biomass are brought into contact with mesoporous particles is 400. Must be above ° C. In order to increase the yield of carbonaceous solid, it is desirable that the temperature at which the gas phase component is brought into contact with the mesoporous particles is 500 ° C to 800 ° C.
  • tar is produced from biomass by producing a carbon support according to the present invention. Gases and chews that do not contain can be produced. The produced gas and chia do not contain tar and can be used as a high-quality fuel. That is, in the present invention, carbon originally contained in biomass can be used in the form of a gas, a carbon carrier, and a cheat, so that the carbon utilization efficiency of the biomass is improved.
  • FIG. 3 is a schematic diagram showing a part of an experimental apparatus used in an experiment for generating a carbon carrier.
  • a reaction tube 11 having a shape in which a reaction tube with an inner diameter of 30 mm and a reaction tube with an inner diameter of 20 mm are joined is configured such that biomass particles and nitrogen gas flow in from one side and gas flows out from the other.
  • a wire mesh 12 is provided in the reaction tube 11 so that the biomass particles that have flowed in are accumulated on the wire mesh 12.
  • a dispersion plate 13 is provided below the wire mesh 12 in the reaction tube 11, and a large number of mesoporous particles made of ⁇ _alumina are packed on the dispersion plate 13.
  • the reaction tube 11 is installed in an electric furnace 21, and is provided with thermocouples 23, 23,...
  • thermocouples 23, 23,... are connected to the temperature controller 22, and the temperature controller 22 measures the temperature of each part of the reaction tube 11 using the thermocouples 23, 23,.
  • the operation of the electric furnace 21 is controlled so that the temperature of each part becomes a predetermined temperature.
  • reaction tube 11 nitrogen gas flows through the biomass accumulated on the wire mesh 12, the wire mesh 12, the mesoporous particles filled on the dispersion plate 13, and the dispersion plate 13.
  • the gas and tar decomposed by the biomass penetrate into a large number of mesoporous particles with the flow of nitrogen gas, and then flow out of the reaction tube 11.
  • the biomass was pyrolyzed and the carbon support was generated, and the generated gas, the carbon support and the analysis were performed.
  • FIG. 4 is a characteristic diagram showing the results of measuring the carbon content of the carbon support and tar produced in the experiment.
  • the horizontal axis in the figure indicates the amount of carbon contained in the carbon support produced per gram of mesoporous particles in millimolar units, and the vertical axis indicates the amount of nitrogen gas flowing out of the reaction tube 11 per cubic methanol.
  • the amount of carbon contained in the tar is shown in millimolar units.
  • the carbon support can normally support about 30 mmol of carbon per gram of mesoporous particles, and can support up to 60 mmol of carbon.
  • the measurement results shown in Fig. 4 show that when carbon support containing each amount of carbon is produced in an experiment using pine sawdust as a biomass sample. The result of measuring the carbon content of tar contained in the gas is shown.
  • the carbon content of tar per cubic meter of nitrogen gas is 1 mmol or less, and the amount of tar is sufficiently reduced.
  • the carbon content of the carbon support is in the range of 20 to 40 mmol, tar does not increase, and in the state where these carbon supports are generated, almost no new tar is generated. It can be seen that in the range where the carbon content of the carbon support exceeds 40 mmol, the tar increases, and the resolution of the carbon support to decompose the tar decreases. Therefore, by keeping the carbon support having 20 to 40 mmol of carbon in contact with the gas, tar contained in the gas can be minimized.
  • FIG. 5 is a chart showing the yield of carbon obtained from biomass by the production of a carbon support.
  • the yield shown in FIG. 5 is the amount of carbon obtained in each form of gas, carbon carrier, and chia within the amount of carbon contained in the original biomass that was used as a raw material when producing the carbon carrier. Yield.
  • cedar is used as a biomass sample, the temperature of pyrolysis of biomass and the temperature at which the gas phase component is brought into contact with the mesoporous particles are changed in the range of 500 ° C to 650 ° C.
  • Figure 5 (a) shows the results of determining the yield of carbon in the form of the gas produced at each temperature, the carbon support, and the chi- ter.
  • the yield of carbon in each of the gas, the carbon support, and the chain is 26.3% with respect to the carbon of the original biomass, 49. 7% and 24.0%.
  • the amount of carbon produced as a substance having a boiling point higher than that of naphthalenes, that is, tar is less than 0.01% with respect to the carbon of the original biomass.
  • most of the carbon of biomass can be obtained in this way, and the utilization efficiency of carbon of biomass is improved.
  • the yield of carbon due to the gas increases, and the yield of carbon due to the carbon support and the chia decreases.
  • the yield of carbon by the gas is lowered, and the yield of carbon by the carbon support and the cheat is increased.
  • Fig. 5 shows the results of the yield of carbon in the form of the generated gas, carbon carrier, and chain. The best The amount produced is determined by the pyrolysis temperature at which gas phase components and chia are produced from biomass, and the pyrolysis temperature is constant at 500 ° C, so the carbon yield in chia is 28. It is constant at 2%.
  • the amount of carbonaceous solid deposited on the surface of the mesoporous particles varies depending on the temperature at which the gas phase component cathode porous particles generated by pyrolysis of the biomass come into contact.
  • the temperature of the mesoporous particles in contact with the gas phase component increases from 500 ° C to 800 ° C, the carbon yield from the carbon support decreases from 49.8% to 17.8%.
  • the carbon yield from gas increases from 22.0% to 54.0%.
  • the yield of carbon that can be obtained from biomass in the form of a carrier and a chew can be varied. For example, by increasing the temperature, the yield of carbon by gas increases and the yield of carbon by the carbon carrier and the carrier decreases. By decreasing the temperature, the yield of carbon by gas decreases. As a result, the yield of carbon by the carbon carrier and the carrier increases.
  • the yield of carbon by gas is 20 to 80%
  • the yield of carbon by the support can be adjusted in the range of 10 to 50%
  • the yield of carbon by the carrier can be adjusted in the range of 10 to 30%. Therefore, according to the present invention, it is possible to adjust the energy source so that it can be used more easily in a higher yield depending on the energy utilization method.
  • FIG. 6 is a schematic cross-sectional view showing a configuration example of a carbon carrier manufacturing apparatus.
  • the carbon carrier manufacturing apparatus includes a pyrolysis furnace (pyrolysis means) 31 that performs thermal decomposition of biomass, and a reaction furnace (permeation means) 41 that performs a reaction for generating the carbon support.
  • the pyrolysis furnace 31 and the reaction furnace 41 are connected to each other by piping.
  • the pyrolysis furnace 31 includes a biomass input section 33 for supplying biomass from above, a stirrer 32 for stirring the biomass that has been input and accumulated therein, and a residue after the gas phase components have been separated from the biomass by pyrolysis There is a chie collecting part 34 for collecting the chia from the lower part.
  • a particle charging unit 43 for charging a large number of mesoporous particles from the top, and a collection of charged mesoporous particles.
  • a discharge part 45 for discharging the gas phase component and the carbon carrier after permeating the accumulated mesoporous particles from the lower part.
  • the discharge unit 45 includes a carbon support recovery unit 46 that recovers the carbon support discharged from the reaction furnace 41, a first gas recovery unit 47 and a second gas recovery unit 48 that recover the gas discharged from the reaction furnace 41, and Is provided.
  • the carbon carrier manufacturing apparatus further includes a combustion furnace 35 that combusts the gas recovered by the second gas recovery unit 48.
  • a combustion furnace 35 Connected to the combustion furnace 35 is a heat pipe 36 for supplying the heat generated by the combustion furnace 35 to the pyrolysis furnace 31 and the reaction furnace 41.
  • the heat pipe 36 is disposed in contact with the pyrolysis furnace 31 and the reaction furnace 41, and high-temperature gas generated in the combustion furnace 35 travels around the outer surfaces of the pyrolysis furnace 31 and the reaction furnace 41. It is configured to heat the inside of 41.
  • a temperature controller 37 is connected to the combustion furnace 35. The temperature controller 37 controls the operation of the combustion furnace 35 so that the temperature in the pyrolysis furnace 31 and the reaction furnace 41 becomes a predetermined temperature.
  • the biomass input unit 33 inputs dry biomass from the outside and temporarily accumulates it, and inputs the biomass into the pyrolysis furnace 31 at a predetermined rate.
  • the stirrer 42 stirs the biomass in the pyrolysis furnace 31, and the gas phase component generated by pyrolysis of the biomass flows into the reaction furnace 41.
  • the chia recovery unit 34 recovers the chia which is a residue after the gas phase component is separated from the biomass from the lower part of the pyrolysis furnace 31.
  • the particle introduction unit 43 introduces mesoporous particles into the reaction furnace 41 at a predetermined rate. The charged mesoporous particles are accumulated in the reactor 41.
  • the stirrer 42 agitates the accumulation of mesoporous particles in the reaction furnace 41 and permeates the accumulation of gas phase component cathode porous particles flowing from the thermal decomposition furnace 31.
  • the gas phase component permeates into the accumulated mesoporous particles, the tar contained in the gas phase component is decomposed and the carbonaceous solid adheres to the surface of the mesoporous particles, thereby generating a carbon support.
  • the discharge part 45 is composed of mesoporous particles at the bottom of the accumulation into which the gas phase components from the pyrolysis furnace 31 have sufficiently permeated, and gas phase components after the accumulation of mesoporous particles from the top to the bottom. Are discharged from the lower part of the reactor 41.
  • the mesoporous particles discharged from the discharge unit 45 are carbon supports by attaching carbonaceous solids with differentiated tar to the surface, and the carbon support recovery unit 46 is a solid component discharged from the discharge unit 45. A carbon support is recovered.
  • the gas phase component exhausted by the exhaust unit 45 is a gas such as methane, and the second gas recovery unit 48 is exhausted by the exhaust unit 45. Part of the gas is recovered in the combustion furnace 35, and the first gas recovery unit 47 recovers the remaining gas.
  • the combustion furnace 35 burns the gas collected by the second gas recovery unit 48, and the temperature controller 37 controls the operation of the combustion furnace 35 to control the temperature in the pyrolysis furnace 31 and the reaction furnace 41 to 400 °. Adjust C to 1000 ° C.
  • the carbon carrier production apparatus of the present invention as described above, a gas not containing tar, a carbon carrier, and a chew can be produced. Since the carbon carrier and the carrier are solid, safe and easy to carry, they can be easily used as an energy source even when the carbon carrier manufacturing equipment is installed in a place with low energy demand. It is possible to supply to other areas. Therefore, it is possible to improve the utilization efficiency of the energy originating from the biomass.
  • the temperature controller 37 adjusts the temperatures in the pyrolysis furnace 31 and the reaction furnace 41, so that the ratio of the production amounts of gas, carbon support, and cheer can be adjusted according to the application.
  • the gas can be used locally by increasing the gas ratio and using gas power generation. If the energy demand is low in the area where the carbon carrier manufacturing equipment is installed, the supply rate to other areas can be increased by increasing the proportion of carbon carrier and chain.
  • an apparatus for producing a carbon carrier includes a chia collected by the chia recovery unit 34, a carbon carrier recovered by the carbon carrier recovery unit 46, a gas recovered by the first gas recovery unit 47, and a heat pipe 36.
  • a heat recovery unit that recovers the heat retained by the exhaust gas exhausted from the plant can be provided, the biomass is dried using the heat recovered by the heat recovery unit, and the dried biomass can be input to the biomass input unit 33. ,.
  • the carbon carrier manufacturing apparatus is configured to heat the pyrolysis furnace 31 and the reaction furnace 41 from the inside by introducing high-temperature gas burned in the combustion furnace 35 into the pyrolysis furnace 31 and the reaction furnace 41. May be.
  • the carbon carrier manufacturing apparatus may be configured to heat the pyrolysis furnace 31 and the reaction furnace 41 by supplying energy from the outside using an electric furnace or the like.
  • the carbon carrier manufacturing apparatus creates a moving bed or fluidized bed in which mesoporous particles are accumulated rather than filling the reactor 41 with mesoporous particles.
  • a configuration in which a gas phase component obtained by pyrolyzing biomass is permeated into a bed or a fluidized bed may be used.
  • FIG. 7 is a schematic cross-sectional view showing a configuration example of a carbon carrier manufacturing apparatus using an electric furnace.
  • the carbon carrier manufacturing apparatus includes a decomposition reaction tube (pyrolysis unit) 71 that performs thermal decomposition of biomass, and a generation tank (permeation means) 72 that generates a carbon carrier.
  • the decomposition reaction tube 71 is formed in a hollow cylindrical shape.
  • a hopper 741 for supplying biomass into the decomposition reaction tube 71 is coupled to one end, and a conveying screw 73 is provided to the other end of the tube. It is.
  • the conveying screw 73 has a configuration in which a spiral blade is provided around a rotation axis coaxial with the decomposition reaction tube 71.
  • the conveyance screw 73 conveys the biomass supplied to one end in the decomposition reaction tube 71 to the other end by rotating around the rotation axis.
  • the decomposition reaction tube 71 is installed so as to penetrate the electric furnace 781 in a substantially horizontal posture.
  • the electric furnace 781 heats the decomposition reaction tube 71 to 500 to 600 ° C.
  • Biomass conveyed in the decomposition reaction tube 71 by the conveying screw 73 is heated by the electric furnace 781 and thermally decomposed.
  • a pipe 761 for introducing the gas phase component separated from the biomass by pyrolysis to the production tank 72, and a chia that is a residue from which the gas phase component is separated from the biomass are collected.
  • a collector 751 is provided.
  • a hopper 742 for supplying mesoporous particles is provided on the upper side via a rotary valve 771.
  • the mesoporous particles are supplied from the hopper 742 by the rotation of the rotary valve 771, and the mesoporous particles are accumulated in the generation tank 72.
  • the generation tank 72 is disposed in an electric furnace 782.
  • the electric furnace 782 heats the inside of the generation tank 72 to 500 to 600 ° C.
  • the mesoporous particles in the generation tank 72 are appropriately heated by the electric furnace 782.
  • a pipe 761 is connected to the lower part of the generation tank 72.
  • the pipe 761 is configured to retain the gas phase component flowing in the pipe, such as covered with a heat insulating material or provided with a heating means.
  • the gas phase component generated by the thermal decomposition of the biomass flows into the generation tank 72 from the decomposition reaction pipe 71 through the pipe 761.
  • the generation tank 72 is provided with an annular pipe having a large number of gas ejection holes in the lower part of the tank, and the pipe 761 is connected to the annular pipe. It is configured to penetrate almost uniformly into the accumulation of soporous particles. When the gas phase component penetrates into the accumulation of mesoporous particles, the carbon support becomes Generated.
  • a gas recovery pipe 762 for recovering gas is connected to the generation tank 72 on the upper side, and a rotary valve 772 is provided on the lower side. Below the rotary valve 772, a collector 752 for collecting the carbon carrier is provided.
  • the biomass is continuously supplied into the decomposition reaction tube 71, the biomass is heated in the electric furnace 781 while being conveyed through the decomposition reaction tube 71, and the biomass is separated from the gas phase component and the chimera.
  • the reaction that thermally decomposes at once is carried out continuously.
  • the generated vapor phase component is supplied into the generation tank 72 through a pipe 761.
  • the chia is conveyed to the other end in the decomposition reaction tube 71 by the conveying screw 73 and then collected in the collecting device 751.
  • the gas in which tar contained in the gas phase component is decomposed is recovered by the gas recovery pipe 762.
  • the feed rate of the mesoporous particles can be adjusted by adjusting the rotational speed of the single tally valve 771.
  • the recovery rate of the carbon carrier can be adjusted by adjusting the rotational speed of the rotary valve 772. In this way, by using the carbon carrier production apparatus shown in FIG. 7, it becomes possible to continuously produce tar-free gas, carbon carrier, and chia, and their production rates. Can be adjusted easily.
  • the carbon carrier of the present invention as described above can be used as a fuel.
  • the method of using the carbon support of the present invention is not limited to this, and can be used as a hydrogen generation source by a water gasification reaction.
  • Figure 8 shows the carbon support of the present invention.
  • FIG. 3 is a block diagram showing a configuration example of a power generation device of the present invention that generates power using hydrogen generated from the power generation.
  • the power generator of the present invention includes a high-temperature operating fuel cell 61 such as a solid oxide fuel cell, and a gasification reactor 51 that generates hydrogen gas to be used in the fuel cell 61.
  • the gasification reactor 51 includes a gasification reactor 51, a supply unit 53 for supplying the carbon support from a storage 52 for storing the carbon support, and gasification of the mesoporous particles after the gasification reaction.
  • a recovery unit 54 for recovering from the reactor 51 is provided.
  • the gasification reactor 51 is connected to a desulfurizer 55 filled with particles having a desulfurization capacity such as dolomite through a gas pipe, and the gas generated by the gasification reactor 51 flows into the desulfurizer 55.
  • the desulfurizer 55 is connected with a reformer 56 filled with a catalyst for hydrocarbon reforming such as a nickel catalyst through a gas pipe, and the gas from the desulfurizer 55 flows into the reformer 56. It has a configuration.
  • the reformer 56 is connected to the fuel electrode of the fuel cell 61 through a gas pipe, and the gas from the reformer 56 is introduced to the fuel electrode of the fuel cell 61.
  • the fuel cell 61 is provided with an air supply unit 63 for supplying the cathode air, and further connected to a power output unit 64 for outputting the power generated by the fuel cell 61 to the outside.
  • the fuel cell 61 is connected to the gasification reactor 51 by a gas pipe. At least a part of the exhaust gas containing water vapor of 700 ° C. or higher discharged from the fuel cell 61 is supplied to the gasification reactor 51.
  • the supply unit 53 supplies the carbon support from the storage 52 at a predetermined rate to the gasification reactor 51, and the supplied carbon support becomes an accumulation in the gasification reactor 51.
  • Gasification reactor 51 from fuel cell 61 The water vapor of 700 ° C or higher contained in the exhaust gas supplied flows to the accumulation of carbon support.
  • a water gasification reaction occurs between water vapor and carbon.
  • the recovery unit 54 recovers mesoporous particles that have been sufficiently returned to their original state by water vapor. The mesoporous particles collected by the collector 54 are recycled.
  • the gas generated by the gasification reactor 51 includes, in addition to hydrogen gas and carbon monoxide, water vapor, Contains carbon oxides and traces of hydrocarbons.
  • the gas generated by the gasification reactor 51 is desulfurized by the desulfurizer 55, and the reformer 56 reforms the hydrocarbons to hydrogen and carbon monoxide.
  • Hydrogen gas and carbon monoxide are supplied from the reformer 56 to the fuel electrode of the fuel cell 61, and air is supplied from the air supply unit 63 to the air electrode of the fuel cell 61, so that the fuel cell 61 generates power.
  • the power generated by the fuel cell 61 is output from the power output unit 64 to the outside.
  • the carbon support of the present invention is used as a hydrogen gas generation source by a water gasification reaction, and the fuel cell 61 using the generated hydrogen as fuel generates power. Do. Since high-temperature fuel cells have high power generation efficiency, the present invention makes it possible to use biomass-derived energy with high efficiency.
  • FIG. 8 is an example of the present invention, and the power generation device of the present invention may have other configurations.
  • FIG. 9 is a block diagram showing another configuration example of the power generator of the present invention.
  • the power generation apparatus includes a heat recovery unit 62 that recovers heat from the high-temperature exhaust gas discharged from the fuel cell 61.
  • the heat recovery unit 62 generates steam at 700 ° C. or higher with the heat recovered from the fuel cell 61, and supplies the generated steam to the gasification reactor 51.
  • the power generation device includes a heat recovery unit 65 that recovers heat retained by the mesoporous particles recovered from the gasification reactor 51 by the recovery unit 54.
  • the heat recovery unit 65 uses a heat medium such as water vapor to heat the carbon carrier stored in the storage 52 in advance with the recovered heat.
  • a heat medium such as water vapor to heat the carbon carrier stored in the storage 52 in advance with the recovered heat.
  • the supply machine 53 supplies the carbon carrier previously heated to a certain temperature from the storage 52 to the gasification reactor 51, and the heat recovery machine 62 supplies steam at 700 ° C or more to the gasification reactor 51.
  • the gasification reactor 51 hydrogen gas and carbon monoxide are generated when high-temperature steam comes into contact with the carbon support.
  • the generated hydrogen gas and carbon monoxide are supplied to the fuel electrode of the fuel cell 61 through the desulfurizer 55 and the reformer 56, whereby the fuel cell 61 generates electricity.
  • a gas having a high water vapor content is supplied to the gasification reactor 51 to efficiently produce hydrogen gas and hydrogen gas.
  • Carbon monoxide can be generated.
  • the mesoporous particles recovered from the gasification reactor 51 by the recovery unit 54 retain heat, and the heat recovery unit 65 By recovering the heat of the porous particles and preheating the carbon support, the thermal efficiency of the power generator can be improved.
  • the power generation device of the present invention may be configured to generate water vapor at 700 ° C or higher by external energy supply.
  • 8 and 9 show an example of an external reforming type power generation device, the power generation device of the present invention supplies a carbon carrier and water vapor to the fuel electrode of the fuel cell, and hydrogen gas and hydrogen are generated on the fuel electrode. It may be an internal reforming power generation device that generates power by generating carbon monoxide.
  • the hydrogen gas generated using the carbon support of the present invention is not limited to use in a fuel cell, but the hydrogen gas generated by the water gasification reaction can be recovered and used for other purposes. Is possible.
  • FIG. 10 is a block diagram showing a configuration example of the power generation device of the present invention that realizes cogeneration.
  • the power generation device includes an internal combustion engine 81 such as a gas engine or a gas turbine that operates using a gas containing hydrogen gas and carbon monoxide generated by the gasification reactor 51 as a fuel, and a generator that generates power using the power of the internal combustion engine 81. 82.
  • the gasification reactor 51 is provided with a supply unit 53 for supplying a carbon carrier from a storage unit 52, and a recovery unit 54 for recovering mesoporous particles after the gasification reaction.
  • a heat exchanger 83 to which water is supplied is connected to the gasification reactor 51 via a gas pipe, and the gas generated by the gasification reactor 51 is heated by the heat exchanger 83 to produce water vapor. It is the structure to generate.
  • the steam generated in the heat exchanger 83 is supplied to the gasification reactor 51.
  • a heat exchanger 84 to which air containing oxygen is supplied is connected to the heat exchanger 83 by a gas pipe, and the gas that has passed through the heat exchanger 83 flows into the next heat exchanger 84.
  • the inflowing gas heats the air and is cooled by the air, and moisture is discharged from the gas by the cooling to generate a dry gas containing hydrogen gas and carbon monoxide.
  • the heat exchanger 84 is connected to the internal combustion engine 81 with a gas pipe, and is configured to supply dry gas containing hydrogen gas and carbon monoxide to the internal combustion engine 81.
  • the internal combustion engine 81 is supplied with air together with dry gas, and burns dry gas containing hydrogen gas and carbon monoxide as fuel. Power is generated, and the generator 82 is operated with the generated power.
  • the generator 82 generates power using the power of the internal combustion engine 81 and outputs electric power.
  • a gas pipe that discharges exhaust gas from the internal combustion engine 81 after the internal combustion engine 81 burns the dry gas of the fuel is connected to the heat exchanger 85.
  • the heat exchanger 85 is configured to be supplied with air exhausted from the heat exchanger 84 and to exchange heat between the exhaust gas from the internal combustion engine 81 and the air from the heat exchanger 84. Since the exhaust gas discharged from the internal combustion engine 81 is hot, the air is sufficiently heated by the heat exchanger 85 to become preheated air.
  • the heat exchanger 85 is connected to the gasification reactor 51 with a gas pipe, and preheated air discharged from the heat exchanger 85 is supplied to the gasification reactor 51. Further, the exhaust gas discharged from the heat exchanger 85 is kept at a high temperature, and becomes a heat output that can be used for generating hot water, generating water vapor, or a heat source for air conditioning.
  • the supply unit 53 supplies the carbon carrier from the storage 52 to the gasification reactor 51, and the carbon carrier in the gasification reactor 51 is integrated with the steam from the heat exchanger 83 and the heat exchanger.
  • Preheated air from 85 flows.
  • water contained in the carbon support is oxidized by oxygen contained in the preheated air, along with an aqueous gasification reaction in which hydrogen gas and carbon monoxide are generated when water vapor contacts the carbon support. Oxidation reaction occurs. Since the oxidation reaction is an exothermic reaction, the gasification reactor 51 is heated from the inside, and the temperature in the gasification reactor 51 is adjusted to 750 ° C to 900 ° C, which is appropriate for maintaining the water gasification reaction. Kept.
  • the gas generated by the gasification reactor 51 contains water vapor and carbon dioxide in addition to hydrogen gas and carbon monoxide, and is cooled and dried by the heat exchanger 83 and the heat exchanger 84 to become a dry gas.
  • the dry gas supplied to the internal combustion engine 81 has a lower hydrogen gas concentration than the gas supplied to the fuel electrode of the fuel cell 61 in the power generator shown in FIGS. 8 and 9, but the internal combustion engine 81 is a fuel. Since the hydrogen gas at a concentration as high as that of the battery 61 is not required, the internal combustion engine 81 and the generator 82 can output power efficiently.
  • the hot exhaust gas discharged from the internal combustion engine 81 becomes a heat output as described above after the air is preheated by the heat exchanger 85.
  • the power generation device of the present invention shown in FIG. Output cogeneration can be realized. By realizing cogeneration
  • the utilization efficiency of energy obtained from the carbon carrier can be improved.
  • the power generation apparatus of the present invention that realizes cogeneration can be used in various facilities such as office buildings, hospitals, and apartment houses. Since the power generation apparatus of the present invention using the internal combustion engine 81 is lower in cost than the power generation apparatus using the fuel cell 61 shown in FIGS. 8 and 9, it can be put into practical use more easily.
  • the power generation device of the present invention whose configuration example is shown in FIG. 10 can make the gasification reactor 51 an internal heating type by supplying air containing oxygen into the gasification reactor 51. Therefore, it is not necessary to supply heat to the gasification reactor 51 from the outside.
  • oxygen gas or oxygen-enriched air which is not normal air, may be supplied to the gasification reactor 51. Even in these cases, the gasification reactor 51 can be of the internal heat type, and the energy of the carbon support can be used efficiently.
  • the chia produced as a by-product by the method for producing a carbon carrier of the present invention contains a carbonaceous solid as a main component and does not contain tar. Therefore, by using chia as fuel, problems such as poor thermal efficiency and generation of tar and soot when biomass is directly used as fuel can be solved.
  • the chia can be used as a high-quality fuel in a heat supply system, power generation system or cogeneration system using an external combustion engine such as a Stirling engine.
  • the surface of the cheat produced according to the present invention is a carbonaceous solid like the carbon support, it can be used as a hydrogen generation source by the water gasification reaction as with the carbon support. Yes, it is possible. That is, in the power generation apparatus shown in FIG. 8, FIG. 9, or FIG. 10, it is possible to configure a power generation apparatus using a chi-cha instead of the carbon support.
  • FIG. 11 is a schematic cross-sectional view showing a part of a configuration example of a power generation device using a chia.
  • a cheat is supplied to form a stack of chews.
  • high-temperature steam is supplied, and the high-temperature steam comes into contact with the chief, which is mainly composed of carbonaceous solids, so that water gas is generated between the steam and the carbon.
  • a hydrogenation reaction occurs, and hydrogen gas and carbon monoxide are generated.
  • the generated hydrogen gas and gas containing carbon monoxide are discharged out of the gasification reactor 91.
  • the configuration for using the generated hydrogen gas and gas containing carbon monoxide and the configuration for supplying water vapor to the gasification reactor 91 are shown in FIG. 8, FIG. 9, or FIG. The explanation is omitted. Note that air containing oxygen such as air, oxygen gas, or oxygen-enriched air may be supplied to the gasification reactor 91 together with water vapor.
  • the generated hydrogen gas and gas containing carbon monoxide can be used in a fuel cell or an internal combustion engine as described above to generate power or cogeneration.
  • a rotary valve 92 is provided below the gasification reactor 91, and a collector 93 is provided below the rotary valve 92.
  • the chew after the water gasification reaction is discharged from the gasification reactor 91 at a predetermined rate and collected in the recovery unit 93.
  • the collector 93 collects ash.
  • the chia which is a by-product of the present invention can be used as a high-quality fuel and can also be used as a hydrogen gas generation source by a water gasification reaction. It is possible to use biomass-derived energy with high efficiency.

Abstract

A carbon support which is an energy source of biological origin; a method of producing the carbon support; an apparatus for producing the carbon support; a method of forming a gas serving as an energy source by using the carbon support; and a power generation method and a power generator using the thus formed gas. A biomass (organic matters of biological origin) is thermally decomposed into a gas, gaseous tar and char by carbonating at 400°C to 1000°C. The gaseous components containing the tar are brought into contact with mesoporous particles made of Ϝ-alumina. Thus, the tar is decomposed to form a carbonaceous solid which sticks to the mesoporous particles, thereby forming a carbon support. Thus a gas from which tar has been almost completely removed, and char and a carbon support wherein tar is usable as an energy source can be obtained. The carbon support is usable as a fuel. Moreover, it can generate a hydrogen gas via a water gas reaction, which enables power generation by a fuel battery with the use of the hydrogen gas.

Description

明 細 書  Specification
炭素担持体、炭素担持体の製造方法、炭素担持体の製造装置、ガス生 成方法、発電方法、及び発電装置  Carbon carrier, carbon carrier production method, carbon carrier production device, gas generation method, power generation method, and power generation device
技術分野  Technical field
[0001] 本発明は、ノ ィォマス起源のエネルギーを利用する技術に関し、より詳しくは、生物 由来のエネルギー源である炭素担持体、炭素担持体の製造方法、炭素担持体の製 造装置、炭素担持体を用いてエネルギー源であるガスを生成するガス生成方法、生 成したガスを用いた発電方法、及び発電装置に関する。  TECHNICAL FIELD [0001] The present invention relates to a technology that uses energy derived from biomass, and more specifically, a carbon carrier that is a biological energy source, a method for producing a carbon carrier, a carbon carrier production apparatus, and a carbon carrier. The present invention relates to a gas generation method for generating a gas as an energy source using a body, a power generation method using the generated gas, and a power generation apparatus.
背景技術  Background art
[0002] バイオマス(Biomass)とは、生物体又は生物廃棄物等の生物に由来する有機物 で化石資源を除いたものを指し、具体的には、木材、紙、農業残渣、屎尿、食品廃棄 物等が含まれる。ノ ォマスは、水と二酸化炭素とを主な原料として生物が生産した 有機物であるので、再生可能な資源である。またバイオマスは、エネルギー源として 消費した場合に、生産及び消費の 2段階を合わせた二酸化炭素の放出量がほぼゼ 口であるという所謂カーボンフリーの特徴を有する。このように、バイオマスは、環境負 荷の小さいエネルギー源として期待されており、その利用方法の研究が進められて いる。  [0002] Biomass refers to organic substances derived from living organisms or biological wastes, excluding fossil resources. Specifically, wood, paper, agricultural residues, human waste, food waste Etc. are included. Nomas is a renewable resource because it is an organic matter produced by living organisms using water and carbon dioxide as its main raw materials. Biomass also has a so-called carbon-free characteristic that when it is consumed as an energy source, the amount of carbon dioxide released from the two stages of production and consumption is almost zero. In this way, biomass is expected to be an energy source with a low environmental impact, and research on how to use it is underway.
[0003] バイオマスを直接に燃料として燃焼させた場合は熱効率が低いので、効率良くバイ ォマスをエネルギー源として利用するためには、バイオマスを熱効率がより高い物質 へ変換することが望ましい。バイオマスを変換する方法としては、バイオマスの乾溜に よってバイオマスのガス化を行う方法が知られている。バイオマスのガス化により、一 酸化炭素、メタン、ェタン等の可燃性ガスが発生し、発生したガスを燃料として利用 すること力 Sできる。発生したガスは、バイオマスを直接に燃料とする場合に比べて高 い熱効率で燃焼させることが可能であり、発電用の燃料及び熱源として利用すること ができる。またガス化後の固体残渣物であるチヤ一(Char)は、乾溜によってもガスに 分解されなかった高分子量の有機物であり、バイオマスが木材である場合は木炭が チヤ一に相当する。バイオマスのガス化によって生成されるチヤ一も、燃料又は各種 の工業原料として利用することが可能である。 [0003] When biomass is directly burned as fuel, the thermal efficiency is low. Therefore, in order to efficiently use biomass as an energy source, it is desirable to convert the biomass into a material with higher thermal efficiency. As a method of converting biomass, a method of gasifying biomass by dry distillation of biomass is known. Combustion gases such as carbon monoxide, methane, and ethane are generated by gasification of biomass, and the generated gas can be used as fuel. The generated gas can be combusted with higher thermal efficiency than when biomass is directly used as fuel, and can be used as a fuel and heat source for power generation. In addition, the solid residue after gasification (Char) is a high-molecular-weight organic substance that has not been decomposed into gas even by dry distillation. When biomass is wood, charcoal is equivalent to chia. The chia produced by the gasification of biomass is also fuel or various It can be used as an industrial raw material.
[0004] しかしながら、バイオマスのガス化にぉレ、ては、ガス及びチヤ一以外に、ガスよりも 高分子量でチヤ一よりも低分子量のタール (Tar)もまた生成する。タールはバイオマ スの乾溜が行われる温度では気体である力 S、常温では液体又は固体となり、ガスの 不純物として生成する。タールを含んだガスは燃料としての品質が低下し、またター ルを含んだガスを燃料として利用した場合は、ガスを燃焼させる装置及び環境をター ルが汚染するという問題がある。従って、バイオマスのガス化の際には、発生したガス 中のタール濃度を低減させることが必要となる。従来、ガスの温度制御、ガスの化学 的処理、フィルタを用いたタールの除去、及び触媒を用いたタールの分解等、バイオ マスのガス化の際にガス中のタール濃度を低減させる種々の技術が開発されている 。非特許文献 1には、ゼォライト又は活性アルミナ等の多孔質粒子にタールを付着さ せることによってガス中のタール濃度を低減させる技術が開示されている。  [0004] However, when biomass is gasified, tar (Tar) having a higher molecular weight than gas and lower molecular weight than gas is also generated in addition to gas and chia. Tar is a force S that is a gas at the temperature at which biomass is distilled, and becomes a liquid or solid at room temperature, and is generated as an impurity in the gas. Gas containing tar deteriorates in quality as a fuel, and when gas containing tar is used as fuel, there is a problem that the tar pollutes the gas burning device and the environment. Therefore, it is necessary to reduce the tar concentration in the generated gas when biomass is gasified. Various technologies for reducing the concentration of tar in gas when gasifying biomass, such as gas temperature control, gas chemical treatment, tar removal using filters, and tar decomposition using catalysts Has been developed. Non-Patent Document 1 discloses a technique for reducing the concentration of tar in gas by attaching tar to porous particles such as zeolite or activated alumina.
非特許文献 1 :ナミオカ (T.Namioka)、他 3名, 「ハイ タール リダクション ウイズ ポ 一ラス パーティクルズ フォア ロー テンペラチユア バイオマス ガスフィケイショ ン (High Tar Reduction with Porous Particles for Low emperature Biomass Lrasincat ion) :エフェクツ ォブ ポーラス パーティクルズ オン タール アンド ガス ィール ズ デュリング ソーダスト パイロリシス(Effects of Porous Particles on Tar and Gas Yields during Sawdust Pyrolysis)」、ジャーナノレ ォブ ケミカノレ エンジニアリング ォ ブ ジャパン (Journal of Chemical Engineering of Japan), 2003年、第 36卷、第 12号 、 p. 1440- 1448  Non-Patent Document 1: T. Namioka and 3 others, “High Tar Reduction with Porous Particles for Low emperature Biomass Lrasincat ion”: Effects Porous Particles on Tar and Gas Fields on Tar and Gas Yields during Sawdust Pyrolysis, Journal of Chemical Engineering of Japan, 2003, 36th Sakai, No. 12, p. 1440-1448
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 従来の技術でバイオマスとして想定されているものは主に木材であるので、バイオ マスのガス化を行うプラントは森林地帯に設置されることとなる。そのような森林地帯 では都市部に比べてエネルギー需要が低いので、バイオマスのガス化によって利用 可能なエネルギーは供給過剰となり、余剰のエネルギーを他地域へ供給する必要が ある。し力しながら、熱及び電気を他地域へ供給することはエネルギーの利用効率が 悪ぐまた発生した可燃性のガスを他地域へ供給することは危険を伴うという問題が ある。また従来のバイオマスのガス化技術では、発生したガスからある程度のタール を除去することによってタール濃度を低減させる種々の技術は開発されているものの 、ガスから除去したタールの利用が困難であり、バイオマスが含む炭素の利用効率が 低いという問題がある。 [0005] Since what is assumed as biomass in the prior art is mainly wood, a biomass gasification plant will be installed in a forest area. In such forested areas, energy demand is lower than in urban areas, so the energy available from biomass gasification becomes oversupplied, and surplus energy needs to be supplied to other regions. However, there is a problem that supplying heat and electricity to other areas is not efficient in using energy and supplying generated flammable gas to other areas is dangerous. is there. In addition, although various technologies for reducing the tar concentration by removing a certain amount of tar from the generated gas have been developed in the conventional biomass gasification technology, it is difficult to use the tar removed from the gas. There is a problem that the utilization efficiency of carbon contained in is low.
[0006] 本発明は、斯かる事情に鑑みてなされたものであって、その目的とするところは、タ ールに起因する炭素を粒子に担持させることにより、バイオマスが含む炭素の利用効 率を向上させ、また運搬時に危険を伴うことがなレ、エネルギー源である炭素担持体、 炭素担持体の製造方法、及び炭素担持体の製造装置を提供することにある。  [0006] The present invention has been made in view of such circumstances, and an object of the present invention is to use carbon derived from tar on particles to thereby improve the utilization efficiency of carbon contained in biomass. Another object of the present invention is to provide a carbon carrier, which is an energy source, a method for producing the carbon carrier, and a carbon carrier production apparatus.
[0007] また本発明の他の目的とするところは、燃料電池で利用するためのガスを炭素担持 体を利用して生成するガス生成方法、生成したガスを用いた発電方法、及び発電装 置を提供することにある。  Another object of the present invention is to provide a gas generation method for generating a gas for use in a fuel cell using a carbon carrier, a power generation method using the generated gas, and a power generation device. Is to provide.
課題を解決するための手段  Means for solving the problem
[0008] 第 1発明に係る炭素担持体は、メソ多孔質 (Mesoporous)粒子の表面に、炭素を 主成分とする炭素質固体が付着してなることを特徴とする。 [0008] The carbon support according to the first invention is characterized in that a carbonaceous solid containing carbon as a main component adheres to the surface of mesoporous particles.
[0009] 第 2発明に係る炭素担持体は、前記炭素質固体は、前記メソ多孔質粒子の 1グラム 当たり 20ミリモル以上の炭素を含むことを特徴とする。 [0009] The carbon support according to the second invention is characterized in that the carbonaceous solid contains 20 mmol or more of carbon per gram of the mesoporous particles.
[0010] 第 3発明に係る炭素担持体は、前記メソ多孔質粒子の比表面積は、 1グラム当たり[0010] In the carbon support according to the third invention, the specific surface area of the mesoporous particles is 1 gram.
200平方メートノレ以上であることを特徴とする。 It is more than 200 square meters.
[0011] 第 4発明に係る炭素担持体は、前記メソ多孔質粒子は、酸化アルミニウムを主成分 とすることを特徴とする。 [0011] The carbon support according to the fourth invention is characterized in that the mesoporous particles have aluminum oxide as a main component.
[0012] 第 5発明に係る炭素担持体は、前記メソ多孔質粒子は、表面に酸点を有する Ί - アルミナで構成されてレ、ることを特徴とする。 [0012] A carbon support according to a fifth aspect of the present invention is characterized in that the mesoporous particles are composed of soot -alumina having acid sites on the surface.
[0013] 第 6発明に係る炭素担持体の製造方法は、第 1乃至第 5発明のいずれか一つに係 る炭素担持体を製造する方法であって、生物由来有機物を 400°C以上 1000°C以下 で熱分解し、熱分解によって発生した気相成分を 400°C以上 1000°C以下でメソ多 孔質粒子に接触させることによって、メソ多孔質粒子の表面に炭素質固体を析出さ せることを特徴とする。 [0013] A method for producing a carbon carrier according to a sixth invention is a method for producing a carbon carrier according to any one of the first to fifth inventions, wherein a biological organic material is removed at 400 ° C or higher. The carbonaceous solid is deposited on the surface of the mesoporous particles by pyrolyzing at a temperature of ≤ ° C and bringing the gas phase components generated by the pyrolysis into contact with the mesoporous particles at a temperature of 400 ° C to 1000 ° C. It is characterized by making it.
[0014] 第 7発明に係る炭素担持体の製造方法は、第 1乃至第 5発明のいずれか一つに係 る炭素担持体を製造する方法であって、生物由来有機物を 400°C以上 1000°C以下 で熱分解し、熱分解によって発生した気相成分を、 400°C以上 1000°C以下で複数 のメソ多孔質粒子が集積した集積物に浸透させ、前記集積物から、前記気相成分を 浸透させたメソ多孔質粒子を取り出すことを特徴とする。 [0014] A method for producing a carbon support according to a seventh aspect of the present invention relates to any one of the first to fifth aspects of the present invention. A carbon carrier is produced by pyrolyzing a biological organic material at a temperature of 400 ° C or higher and 1000 ° C or lower, and a plurality of vapor phase components generated by the thermal decomposition at 400 ° C or higher and 1000 ° C or lower. A mesoporous particle in which mesoporous particles are accumulated is infiltrated into an aggregate, and mesoporous particles in which the gas phase component is infiltrated are taken out from the aggregate.
[0015] 第 8発明に係る炭素担持体の製造方法は、前記集積物に浸透させた後の気相成 分を回収することを特徴とする。  [0015] A method for producing a carbon support according to an eighth aspect of the invention is characterized in that the vapor phase component after permeating the aggregate is recovered.
[0016] 第 9発明に係る炭素担持体の製造方法は、熱分解により生物由来有機物から気相 成分が分離した後の残渣を回収することを特徴とする。  [0016] The method for producing a carbon carrier according to the ninth invention is characterized in that the residue after the vapor phase component is separated from the biological organic material by thermal decomposition is recovered.
[0017] 第 10発明に係る炭素担持体の製造方法は、生物由来有機物を熱分解する際の温 度及び/又は熱分解によって発生した気相成分を前記集積物に浸透させる際の温 度を制御することにより、生物由来有機物に含まれる炭素を炭素担持体が収得する 収率を調整することを特徴とする。  [0017] The method for producing a carbon carrier according to the tenth aspect of the present invention provides a temperature at which a biological organic material is thermally decomposed and / or a temperature at which a gas phase component generated by the thermal decomposition penetrates into the aggregate. It is characterized by adjusting the yield by which the carbon supporter obtains carbon contained in the biological organic material by controlling.
[0018] 第 11発明に係る炭素担持体の製造装置は、第 1乃至第 5発明のいずれか一つに 係る炭素担持体を製造する装置であって、生物由来有機物を 400°C以上 1000°C以 下で熱分解する熱分解手段と、該熱分解手段によって発生した気相成分を、 400°C 以上 1000°C以下で複数のメソ多孔質粒子が集積した集積物に浸透させる浸透手段 と、前記集積物から、前記気相成分を浸透させたメソ多孔質粒子を取り出す手段とを 備えることを特徴とする。  [0018] An apparatus for producing a carbon carrier according to an eleventh aspect of the invention is an apparatus for producing a carbon carrier according to any one of the first to fifth aspects of the invention, wherein biological organic matter is not less than 400 ° C and not less than 1000 °. A pyrolysis means that pyrolyzes below C, and a permeation means that permeates the gas phase component generated by the pyrolysis means into an accumulation of a plurality of mesoporous particles accumulated at 400 ° C to 1000 ° C. And means for taking out mesoporous particles infiltrated with the gas phase component from the aggregate.
[0019] 第 12発明に係る炭素担持体の製造装置は、前記浸透手段が前記集積物に浸透さ せた後の少なくとも一部の気相成分を回収する手段と、該手段が回収した前記気相 成分を燃焼させる手段と、該手段が燃焼により発生させた熱を利用して前記熱分解 手段及び前記浸透手段の温度条件を制御する手段とを更に備えることを特徴とする  [0019] A carbon carrier manufacturing apparatus according to a twelfth aspect of the present invention is a device for recovering at least a part of a gas phase component after the permeation means permeates the accumulation, and the gas recovered by the means. Means for combusting the phase component, and means for controlling the temperature conditions of the thermal decomposition means and the permeation means using heat generated by the combustion of the means.
[0020] 第 13発明に係るガス生成方法は、第 1乃至第 5発明のいずれか一つに係る炭素担 持体に、温度が 700°C以上の水蒸気を含むガスを接触させ、発生する水素ガス及び /又は一酸化炭素ガスを回収することを特徴とする。 [0020] A gas generation method according to a thirteenth aspect of the present invention is a method in which a carbon carrier according to any one of the first to fifth aspects of the invention is brought into contact with a gas containing water vapor having a temperature of 700 ° C or higher to generate hydrogen. The gas and / or carbon monoxide gas is recovered.
[0021] 第 14発明に係る発電方法は、第 1乃至第 5発明のいずれか一つに係る炭素担持 体を集積した集積物に、温度が 700°C以上の水蒸気を含むガスを通流させ、発生す る水素ガス及び/又は一酸化炭素ガスを回収し、回収した水素ガス及び/又は一酸 化炭素ガスを燃料電池の燃料極へ供給し、前記水素ガス及び/又は一酸化炭素ガ スを燃料極へ供給した燃料電池により発電を行うことを特徴とする。 [0021] A power generation method according to a fourteenth aspect of the present invention is such that a gas containing water vapor having a temperature of 700 ° C or higher is caused to flow through an accumulation of carbon supports according to any one of the first to fifth aspects. Occur The hydrogen gas and / or carbon monoxide gas is recovered, the recovered hydrogen gas and / or carbon monoxide gas is supplied to the fuel electrode of the fuel cell, and the hydrogen gas and / or carbon monoxide gas is supplied to the fuel electrode. Electricity is generated by the fuel cell supplied to the battery.
[0022] 第 15発明に係る発電装置は、燃料極を有する燃料電池と、第 1乃至第 5発明のい ずれか一つに係る炭素担持体を集積した集積物に、温度が 700°C以上の水蒸気を 含むガスを通流させる手段と、該手段から発生する水素ガス及び/又は一酸化炭素 ガスを回収する手段と、該手段が回収した水素ガス及び Z又は一酸化炭素ガスを前 記燃料電池の燃料極へ供給する手段と、該手段により前記水素ガス及び/又は一 酸化炭素ガスを燃料極へ供給された前記燃料電池が発電する電力を出力する手段 とを備えることを特徴とする。  [0022] The power generation device according to the fifteenth aspect of the present invention is directed to a fuel cell having a fuel electrode and a carbon support according to any one of the first to fifth inventions, wherein the temperature is 700 ° C or higher. Means for passing a gas containing water vapor, means for recovering hydrogen gas and / or carbon monoxide gas generated from the means, and the hydrogen gas and Z or carbon monoxide gas recovered by the means as the fuel Means for supplying to the fuel electrode of the battery, and means for outputting electric power generated by the fuel cell supplied with the hydrogen gas and / or carbon monoxide gas to the fuel electrode by the means.
[0023] 第 16発明に係る発電方法は、第 1乃至第 5発明のいずれか一つに係る炭素担持 体を集積した集積物に、温度が 700°C以上の水蒸気及び酸素を含むガスを通流さ せ、発生する水素ガス及び/又は一酸化炭素ガスを内燃機関へ供給し、前記水素 ガス及び/又は一酸化炭素ガスを供給された前記内燃機関の動力により発電を行う ことを特徴とする。  [0023] A power generation method according to a sixteenth aspect of the invention is directed to passing a gas containing water vapor and oxygen having a temperature of 700 ° C or higher through an accumulation of carbon supports according to any one of the first to fifth aspects of the invention. The generated hydrogen gas and / or carbon monoxide gas is supplied to an internal combustion engine, and power is generated by the power of the internal combustion engine supplied with the hydrogen gas and / or carbon monoxide gas.
[0024] 第 17発明に係る発電装置は、第 1乃至第 5発明のいずれか一つに係る炭素担持 体を集積した集積物に、温度が 700°C以上の水蒸気及び酸素を含むガスを通流さ せる手段と、該手段から発生する水素ガス及び/又は一酸化炭素ガスを燃焼させて 動力を発生する内燃機関と、該内燃機関が発生する動力により発電を行う手段とを 備えることを特徴とする。  [0024] A power generation device according to a seventeenth aspect of the invention is directed to passing a gas containing water vapor and oxygen at a temperature of 700 ° C or higher through an accumulation of carbon supports according to any one of the first to fifth aspects of the invention. An internal combustion engine for generating power by burning hydrogen gas and / or carbon monoxide gas generated from the means; and a means for generating electric power using the power generated by the internal combustion engine. To do.
[0025] 第 1及び第 2発明においては、炭素質固体カ ソ多孔質粒子の表面に付着すること によって、エネルギー源として利用可能な炭素担持体を実現する。  [0025] In the first and second inventions, a carbon carrier that can be used as an energy source is realized by adhering to the surface of carbonaceous solid cathode porous particles.
[0026] 第 3発明においては、メソ多孔質粒子の比表面積を 1グラム当たり 200平方メートル 以上とすることにより、気化したタール等の炭化物が効率的に分解 ·付着して炭素担 持体が生成する。  [0026] In the third invention, by setting the specific surface area of the mesoporous particles to 200 square meters or more per gram, vaporized carbides such as tar are efficiently decomposed and adhered to produce a carbon carrier. .
[0027] 第 4発明においては、活性アルミナ等の酸化アルミニウムを主成分とするメソ多孔質 粒子を用いることにより、気化したタール等の炭化物がメソ多孔質粒子の表面で分解 •付着して炭素担持体が生成可能となる。 [0028] 第 5発明においては、メソ多孔質粒子を酸点を有する γ —アルミナとすることにより 、気化したタール等の炭化物が効率的に分解 ·付着して炭素担持体が生成する。 [0027] In the fourth invention, by using mesoporous particles mainly composed of aluminum oxide such as activated alumina, the vaporized carbides such as tar are decomposed and adhered to the surface of the mesoporous particles to support carbon. The body can be generated. [0028] In the fifth aspect of the invention, the mesoporous particles are made of γ-alumina having acid sites, whereby vaporized carbides such as tar are efficiently decomposed and adhered to produce a carbon support.
[0029] 第 6、第 7及び第 11発明においては、バイオマス(生物由来有機物)を 400°C以上 1000°C以下で熱分解して発生した気相成分をメソ多孔質粒子に接触させることによ り、気相成分に含まれるタールがメソ多孔質粒子によって分解されて炭素質固体とな つてメソ多孔質粒子に付着し、炭素担持体が生成される。  [0029] In the sixth, seventh and eleventh inventions, the vapor phase component generated by pyrolyzing biomass (biologically derived organic matter) at 400 ° C or higher and 1000 ° C or lower is brought into contact with the mesoporous particles. Thus, the tar contained in the gas phase component is decomposed by the mesoporous particles to become a carbonaceous solid and adheres to the mesoporous particles, and a carbon support is generated.
[0030] 第 8発明においては、メソ多孔質粒子に接触した後の気相成分を回収することで、 タールの濃度が大幅に低減したガスが回収される。  [0030] In the eighth aspect of the invention, by recovering the gas phase component after coming into contact with the mesoporous particles, the gas having a significantly reduced tar concentration is recovered.
[0031] 第 9発明においては、バイオマスを熱分解した残渣を回収することで、チヤ一が回 収される。  [0031] In the ninth invention, the chia is recovered by collecting the residue obtained by pyrolyzing the biomass.
[0032] 第 10発明においては、バイオマスの熱分解の温度及び/又は気相成分をメソ多孔 質粒子に接触させる際の温度を制御することにより、炭素担持体力バイオマスから収 得できる収率が変化する。  [0032] In the tenth aspect of the invention, the yield that can be obtained from carbon-supported biomass is changed by controlling the temperature at which the biomass is thermally decomposed and / or the temperature at which the gas phase component is brought into contact with the mesoporous particles. To do.
[0033] 第 12発明においては、発生した気相成分は可燃性ガスを含んでいるので、気相成 分を燃焼させることで、炭素担持体の製造に必要な熱を得ることができる。 [0033] In the twelfth invention, since the generated gas phase component contains a combustible gas, heat necessary for producing the carbon carrier can be obtained by burning the gas phase component.
[0034] 第 13発明においては、炭素担持体に 700°C以上の水蒸気を含むガスを接触させ ることにより、炭素担持体の炭素質固体によって水蒸気が還元されて水素ガスが発 生し、炭素質固体が酸化されて一酸化炭素が発生する。 [0034] In the thirteenth invention, by bringing a gas containing 700 ° C or more of water vapor into contact with the carbon support, water vapor is reduced by the carbonaceous solid of the carbon support to generate hydrogen gas, and carbon The solid material is oxidized to generate carbon monoxide.
[0035] 第 14及び第 15発明においては、炭素担持体を用いて発生させた水素ガス及び/ 又は一酸化炭素を利用して、燃料電池により発電を行うことができる。 In the fourteenth and fifteenth inventions, power can be generated by a fuel cell using hydrogen gas and / or carbon monoxide generated using a carbon support.
[0036] 第 16及び第 17発明においては、炭素担持体を用いて発生させた水素ガス及び/ 又は一酸化炭素を利用して内燃機関により発電を行レ、、更に熱を出力することがで きる。 [0036] In the sixteenth and seventeenth inventions, it is possible to generate power by an internal combustion engine using hydrogen gas and / or carbon monoxide generated using a carbon carrier, and to output heat. wear.
発明の効果  The invention's effect
[0037] 第 1、第 2、第 3、第 4及び第 5発明にあっては、炭素質固体がメソ多孔質粒子の表 面に付着した炭素担持体は、燃料及び水素ガス発生源としての利用が可能であり、 固体であるために運搬が容易であって、揮発性を有しないために安全性が高いので 、容易かつ危険を伴わずにエネルギー源として流通させることが可能である。 [0038] 第 6、第 7及び第 11発明にあっては、ノくィォマスを熱分解することによって発生した 気相成分に含まれるタールが、メソ多孔質粒子によって分解され、炭素質固体となつ てメソ多孔質粒子に付着して、炭素担持体が生成される。従来の技術ではガス中か ら除去するのみであったタールに含まれる炭素をエネルギー源として利用することが 可能となり、ノィォマスが含む炭素の利用効率を向上させることができる。 [0037] In the first, second, third, fourth and fifth inventions, the carbon support having the carbonaceous solid adhered to the surface of the mesoporous particles is used as a fuel and hydrogen gas generation source. It can be used, is easy to transport because it is solid, and has high safety because it is not volatile. Therefore, it can be distributed easily and without danger as an energy source. [0038] In the sixth, seventh and eleventh inventions, the tar contained in the gas phase component generated by pyrolyzing the biomass is decomposed by the mesoporous particles to become a carbonaceous solid. As a result, the carbon carrier is produced by adhering to the mesoporous particles. The carbon contained in tar, which was only removed from the gas in the conventional technology, can be used as an energy source, and the utilization efficiency of carbon contained in nanomass can be improved.
[0039] 第 8発明にあっては、バイオマスを熱分解することによって発生するガスからタール が殆ど除去され、発生したガスを良質な燃料として利用することが可能となる。  [0039] In the eighth invention, tar is almost removed from the gas generated by pyrolyzing the biomass, and the generated gas can be used as a high-quality fuel.
[0040] 第 9発明にあっては、良質な固体燃料であるチヤ一を製造することが可能となる。  [0040] According to the ninth aspect of the invention, it is possible to manufacture a chia that is a high-quality solid fuel.
[0041] 第 10発明にあっては、バイオマスの熱分解及び炭素担持体の生成での温度を変 化させることによって、ガス、炭素担持体、及びチヤ一の形態でバイオマスから収得 できる炭素の収率の割合を変化させることができる。従って、エネルギーの利用方法 に応じて、より利用しやすい形態のエネルギー源をより高い収率で得ることが可能と なる。  [0041] In the tenth invention, the yield of carbon that can be obtained from biomass in the form of a gas, a carbon support, and a chew by changing the temperature during the pyrolysis of the biomass and the generation of the carbon support. The rate ratio can be varied. Therefore, it becomes possible to obtain an energy source in a form that is easier to use in a higher yield depending on the energy utilization method.
[0042] 第 12発明にあっては、発生したガスを熱源とすることにより、外部のエネルギーを殆 ど消費せずに炭素担持体を製造することができる。  [0042] In the twelfth invention, by using the generated gas as a heat source, it is possible to produce a carbon carrier with little consumption of external energy.
[0043] 第 13発明にあっては、炭素担持体を用いることで、種々の利用が可能な水素ガス 及び/又は一酸化炭素を効率よく発生させることができる。 [0043] In the thirteenth invention, by using the carbon support, hydrogen gas and / or carbon monoxide that can be used in various ways can be efficiently generated.
[0044] 第 14及び第 15発明にあっては、炭素担持体を用いて発生させた水素ガス及び/ 又は一酸化炭素を利用して、燃料電池により発電を行うことにより、バイオマス起源の エネルギーを高効率で利用することが可能となる。 [0044] In the fourteenth and fifteenth inventions, the energy derived from biomass is obtained by generating power with a fuel cell using hydrogen gas and / or carbon monoxide generated using a carbon carrier. It can be used with high efficiency.
[0045] 第 16及び第 17発明にあっては、炭素担持体を用いて発生させた水素ガス及び/ 又は一酸化炭素を利用して内燃機関により発電を行い、更に熱を出力することによ つて、コジェネレーションを実現することができる。これによつて、バイオマス起源のェ ネルギ一の利用効率を向上させることができる等、本発明は優れた効果を奏する。 図面の簡単な説明  [0045] In the sixteenth and seventeenth inventions, power is generated by an internal combustion engine using hydrogen gas and / or carbon monoxide generated using a carbon carrier, and further heat is output. Therefore, cogeneration can be realized. As a result, the present invention has excellent effects such as the utilization efficiency of the energy derived from biomass being improved. Brief Description of Drawings
[0046] [図 1]本発明の炭素担持体の製造方法を示す概念図である。  FIG. 1 is a conceptual diagram showing a method for producing a carbon carrier of the present invention.
[図 2]炭素担持体の生成過程を模式的に示す模式図である。  FIG. 2 is a schematic diagram schematically showing a process for producing a carbon carrier.
[図 3]炭素担持体を生成する実験に用いた実験装置の一部を示す概略図である。 [図 4]実験で生成した炭素担持体及びタールの炭素量を測定した結果を示す特性図 である。 FIG. 3 is a schematic view showing a part of an experimental apparatus used in an experiment for generating a carbon carrier. FIG. 4 is a characteristic diagram showing the results of measuring the carbon content of the carbon support and tar produced in the experiment.
[図 5]炭素担持体の生成によってバイオマスから収得した炭素の収率を示す図表で ある。  FIG. 5 is a chart showing the yield of carbon obtained from biomass by the formation of a carbon support.
[図 6]炭素担持体の製造装置の構成例を示す模式的断面図である。  FIG. 6 is a schematic cross-sectional view showing a configuration example of a carbon carrier manufacturing apparatus.
園 7]電気炉を用いた炭素担持体の製造装置の構成例を示す模式的断面図である。 FIG. 7] A schematic cross-sectional view showing a configuration example of a carbon carrier manufacturing apparatus using an electric furnace.
[図 8]本発明の炭素担持体から発生した水素を用いて発電を行う本発明の発電装置 の構成例を示すブロック図である。 FIG. 8 is a block diagram showing a configuration example of a power generation device of the present invention that generates power using hydrogen generated from a carbon carrier of the present invention.
園 9]本発明の発電装置の他の構成例を示すブロック図である。 FIG. 9] is a block diagram showing another configuration example of the power generator of the present invention.
園 10]コジェネレーションを実現する本発明の発電装置の構成例を示すブロック図で ある。 [10] It is a block diagram showing a configuration example of a power generator of the present invention that realizes cogeneration.
園 11]チヤ一を利用した発電装置の構成例の一部分を示す模式的断面図である。 符号の説明 FIG. 11] is a schematic cross-sectional view showing a part of a configuration example of a power generation device using a chia. Explanation of symbols
11 反応管  11 reaction tubes
31 熱分解炉 (熱分解手段)  31 Pyrolysis furnace (Pyrolysis means)
34 チヤ一回収部  34 Chain recovery department
35 燃焼炉  35 Combustion furnace
37 温度調節器  37 Temperature controller
41 反応炉 (浸透手段)  41 Reactor (penetration means)
46 炭素担持体回収部  46 Carbon carrier recovery unit
47 第 1ガス回収部  47 1st gas recovery unit
48 第 2ガス回収部  48 Second gas recovery unit
51 ガス化反応器  51 Gasification reactor
61 燃料電池  61 Fuel cell
62 熱回収機  62 Heat recovery machine
64 電力出力部  64 Power output section
71 分解反応管 (熱分解手段)  71 Decomposition reaction tube (pyrolysis means)
72 生成槽 (浸透手段) 81 内燃機関 72 Generation tank (permeation means) 81 Internal combustion engine
82 発電機  82 Generator
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0048] 以下本発明をその実施の形態を示す図面に基づき具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to the drawings illustrating embodiments thereof.
図 1は、本発明の炭素担持体の製造方法を示す概念図である。バイオマス(生物由 来有機物)は、高分子量の有機物であり、木材の場合はセルロース及びリグニン等か らなる。バイオマスを 400°C〜1000°Cで乾溜することにより、バイオマスは、低分子 量のガス、高分子量のチヤ一、及びそれらの中間の分子量を有するタールに熱分解 する。発生するガスは、メタン、一酸化炭素、二酸化炭素、及び水素等からなり、常温 で気体となる成分である。またタールは常温で液体又は固体となる成分である力 40 0°C〜1000°Cの温度範囲では気体のタール蒸気となっている。ガス及びタールがバ ィォマスの熱分解によって発生する気相成分となり、チヤ一が熱分解による残渣とな る。  FIG. 1 is a conceptual diagram showing a method for producing a carbon carrier according to the present invention. Biomass (biologically derived organic matter) is a high molecular weight organic matter, and in the case of wood, it consists of cellulose and lignin. By dry distilling biomass at 400 ° C to 1000 ° C, the biomass is pyrolyzed into low molecular weight gases, high molecular weight chains, and tars with intermediate molecular weights. The generated gas consists of methane, carbon monoxide, carbon dioxide, hydrogen, etc., and is a component that becomes a gas at room temperature. In addition, tar is a gaseous tar vapor in the temperature range of 400 ° C. to 1000 ° C., which is a component that becomes liquid or solid at room temperature. Gas and tar become gas phase components generated by pyrolysis of biomass, and chia becomes a residue by pyrolysis.
[0049] 次に、バイオマスの熱分解により発生したガス及びタールの気相成分を、酸点を有 する γ —アルミナを成分とするメソ多孔質粒子に 400°C〜1000°Cで接触させる。メソ 多孔質粒子とは、多数のメソ細孔を有する多孔質粒子であり、メソ細孔とは孔径が 2 〜10nmの細孔である。ガス及びタールの気相成分がメソ多孔質粒子に接触してい る間に、メソ多孔質粒子の表面でタールが分解し、炭素を主成分とする炭素質固体 カ^ソ多孔質粒子の表面に付着する。タールが分解されることにより、気相成分中の タール濃度が低減し、タールを殆ど含まないガスが生成される。またメソ多孔質粒子 の表面に炭素質固体が付着してなる炭素担持体が生成される。  [0049] Next, gas phase components of gas and tar generated by pyrolysis of biomass are brought into contact with mesoporous particles containing γ-alumina having acid sites at 400 ° C to 1000 ° C. The mesoporous particle is a porous particle having a large number of mesopores, and the mesopore is a pore having a pore diameter of 2 to 10 nm. While the gas and gas phase components of the tar are in contact with the mesoporous particles, the tar decomposes on the surface of the mesoporous particles, and on the surface of the carbonaceous solid cathode porous particles mainly composed of carbon. Adhere to. When tar is decomposed, the tar concentration in the gas phase component is reduced, and a gas containing almost no tar is generated. In addition, a carbon support is produced in which a carbonaceous solid adheres to the surface of the mesoporous particles.
[0050] 図 2は、炭素担持体の生成過程を模式的に示す模式図である。図 2 (a)には、酸点 を有する γ _アルミナでなり、メソ細孔を有するメソ多孔質粒子の表面を示す。メソ多 孔質粒子の表面にタール蒸気を接触させた場合、 Ί 一アルミナの表面に存在する 酸点にタールが吸着して分解する。分解したタールの一部はガスとなり、図 2 (a)に示 す如ぐ分解したタールの大部分は炭素質固体としてメソ多孔質粒子の表面に析出 する。析出した炭素質固体の表面には、タール分解活性を有する活性点が存在する 。析出した炭素質固体にタールの蒸気が接触することにより、図 2 (b)に示す如ぐ炭 素質固体上に更に炭素質固体が析出する。このようにして、メソ多孔質粒子の表面 においてタールの分解及び炭素質固体の析出が繰り返され、図 2 (c)に示す如ぐ炭 素質固体によってメソ多孔質粒子の表面が覆われた炭素担持体が生成される。 [0050] FIG. 2 is a schematic diagram schematically showing a process of producing a carbon carrier. Figure 2 (a) shows the surface of mesoporous particles made of γ_alumina with acid sites and mesopores. If the surface of the meso multi porous particles contacting the tar vapors, decomposing tar adsorbed on acid sites existing on the surface of Ί one alumina. A part of the decomposed tar becomes gas, and most of the decomposed tar as shown in Fig. 2 (a) is deposited on the surface of the mesoporous particles as a carbonaceous solid. On the surface of the precipitated carbonaceous solid, there are active sites having tar decomposition activity. When the vapor of tar comes into contact with the precipitated carbonaceous solid, the charcoal as shown in Fig. 2 (b) A carbonaceous solid is further deposited on the elementary solid. In this way, the decomposition of tar and the precipitation of carbonaceous solids are repeated on the surface of the mesoporous particles, and the surface of the mesoporous particles is covered with the carbonaceous solids as shown in Fig. 2 (c). A body is generated.
[0051] 本発明の炭素担持体に付着している炭素質固体は、炭素を主成分とし、炭素の含 有率は重量百分率で 70%以上である。炭素質固体は炭素を主成分としてレ、るので、 炭素担持体は燃料としての利用が可能である。従って、本発明により、従来の技術で はガス中から除去するのみであったタールに含まれる炭素をエネルギー源として利 用すること力 S可能となる。また炭素担持体は、 500°C以上に加熱した場合でもタール を揮発しなレ、。即ち、本発明の炭素担持体は、固体であるために運搬が容易であり、 揮発性を有しないために安全性が高いので、容易かつ危険を伴わずにバイオマス起 源のエネルギー源として流通させることが可能である。なお、本発明の炭素担持体を 燃料として利用した後は、 y—アルミナでなるメソ多孔質粒子が残留し、このメソ多孔 質粒子はリサイクルすることができる。 [0051] The carbonaceous solid adhering to the carbon carrier of the present invention contains carbon as a main component, and the carbon content is 70% or more by weight. Since carbonaceous solids contain carbon as the main component, the carbon carrier can be used as a fuel. Therefore, according to the present invention, it becomes possible to use carbon contained in tar as an energy source, which was only removed from the gas in the prior art. The carbon carrier does not volatilize tar even when heated to 500 ° C or higher. In other words, the carbon carrier of the present invention is easy to transport because it is solid, and has high safety because it is not volatile. Therefore, it can be distributed easily and without danger as an energy source for biomass sources. It is possible. After the carbon carrier of the present invention is used as a fuel, mesoporous particles made of y-alumina remain, and the mesoporous particles can be recycled.
[0052] 炭素質固体を付着させることによって炭素担持体を生成するメソ多孔質粒子は、 γ [0052] Mesoporous particles that produce a carbon support by attaching a carbonaceous solid are:
アルミナ以外に、活性アルミナ、又はシリカアルミナであってもよい。これら酸化ァ ノレミニゥムを主成分とする他のメソ多孔質粒子も、表面でタールを分解し、タールが 分解した炭素質固体を表面に付着させることによって炭素担持体を生成することが できる。またメソ多孔質粒子の比表面積は、 1グラム当たり 200平方メートル以上であ ることが望ましい。メソ多孔質粒子の比表面積が 200 (m2 /g)以上である場合は、炭 素質固体の収率が高くなる。また γ—アルミナは、 1000°C以上の温度で α—アルミ ナヘ相転移してタールの分解に係る活性を失うので、バイオマスの熱分解により発生 した気相成分をメソ多孔質粒子に接触させる際の温度は、 1000°C以下である必要 力 Sある。また 400°C未満の温度ではメソ多孔質粒子の表面に接触したタールが分解 する率が低下するので、バイオマスの熱分解により発生した気相成分をメソ多孔質粒 子に接触させる際の温度は 400°C以上である必要がある。なお、炭素質固体の収率 を高めるためには、気相成分をメソ多孔質粒子に接触させる際の温度は 500°C〜80 0°Cであることが望ましい。 Besides alumina, activated alumina or silica alumina may be used. These other mesoporous particles mainly composed of an anodized aluminum oxide can also generate a carbon support by decomposing tar on the surface and attaching a carbonaceous solid with the tar decomposed to the surface. The specific surface area of the mesoporous particles is desirably 200 square meters or more per gram. When the specific surface area of the mesoporous particles is 200 (m 2 / g) or more, the yield of carbonaceous solid is increased. In addition, γ-alumina phase transitions to α-alumina at a temperature of 1000 ° C or higher and loses the activity related to tar decomposition. Therefore, when contacting the mesoporous particles with gas phase components generated by thermal decomposition of biomass. The required temperature is 1000 ° C or less. Also, at temperatures below 400 ° C, the rate at which tar that contacts the surface of mesoporous particles decomposes decreases, so the temperature at which gas phase components generated by pyrolysis of biomass are brought into contact with mesoporous particles is 400. Must be above ° C. In order to increase the yield of carbonaceous solid, it is desirable that the temperature at which the gas phase component is brought into contact with the mesoporous particles is 500 ° C to 800 ° C.
[0053] 更に、本発明によって炭素担持体を製造することによって、バイオマスからタールを 含まないガス及びチヤ一を製造することができる。製造したガス及びチヤ一は、ター ルを含まないので、良質の燃料として利用することが可能である。即ち、本発明では 、ガス、炭素担持体及びチヤ一の形態で、バイオマスが元々含んでいた炭素を利用 することができるので、ノ ィォマスの炭素利用効率が向上する。 [0053] Further, tar is produced from biomass by producing a carbon support according to the present invention. Gases and chews that do not contain can be produced. The produced gas and chia do not contain tar and can be used as a high-quality fuel. That is, in the present invention, carbon originally contained in biomass can be used in the form of a gas, a carbon carrier, and a cheat, so that the carbon utilization efficiency of the biomass is improved.
[0054] 図 3は、炭素担持体を生成する実験に用いた実験装置の一部を示す概略図である 。内径 30mmの反応管と内径 20mmの反応管とを接合した形状の反応管 11を、一 方からバイオマスの粒子及び窒素ガスが流入し、他方からガスが流出する構成として ある。また反応管 11内にワイヤメッシュ 12を設け、流入したバイオマスの粒子がワイ ャメッシュ 12上に集積するように構成してある。更に反応管 11内のワイヤメッシュ 12 の下方に分散板 13を設け、分散板 13上に γ _アルミナでなるメソ多孔質粒子を多 数充填してある。反応管 11は、電気炉 21内に設置されており、反応管 11の複数の 部分の温度を測定するための熱電対 23, 23,…が備えられている。熱電対 23, 23, …は温度調節器 22に接続されており、温度調節器 22は、熱電対 23, 23,…を用い て反応管 11の各部分の温度を測定し、反応管 11の各部分の温度が所定の温度に なるように電気炉 21の動作を制御する構成となってレ、る。  FIG. 3 is a schematic diagram showing a part of an experimental apparatus used in an experiment for generating a carbon carrier. A reaction tube 11 having a shape in which a reaction tube with an inner diameter of 30 mm and a reaction tube with an inner diameter of 20 mm are joined is configured such that biomass particles and nitrogen gas flow in from one side and gas flows out from the other. In addition, a wire mesh 12 is provided in the reaction tube 11 so that the biomass particles that have flowed in are accumulated on the wire mesh 12. Further, a dispersion plate 13 is provided below the wire mesh 12 in the reaction tube 11, and a large number of mesoporous particles made of γ_alumina are packed on the dispersion plate 13. The reaction tube 11 is installed in an electric furnace 21, and is provided with thermocouples 23, 23,... For measuring temperatures of a plurality of portions of the reaction tube 11. The thermocouples 23, 23,... Are connected to the temperature controller 22, and the temperature controller 22 measures the temperature of each part of the reaction tube 11 using the thermocouples 23, 23,. The operation of the electric furnace 21 is controlled so that the temperature of each part becomes a predetermined temperature.
[0055] 反応管 11内では、窒素ガスが、ワイヤメッシュ 12上に集積したバイオマス、ワイヤメ ッシュ 12、分散板 13上に充填したメソ多孔質粒子、及び分散板 13を通過して流れる 。バイオマスが分解したガス及びタールは、窒素ガスの流れに伴って多数のメソ多孔 質粒子に浸透した後、反応管 11外へ流出する。実験では、反応管内の温度を適切 な温度に調節することによって、バイオマスの熱分解及び炭素担持体の生成を行い 、生成したガス、炭素担持体及びチヤ一の分析を行った。  In the reaction tube 11, nitrogen gas flows through the biomass accumulated on the wire mesh 12, the wire mesh 12, the mesoporous particles filled on the dispersion plate 13, and the dispersion plate 13. The gas and tar decomposed by the biomass penetrate into a large number of mesoporous particles with the flow of nitrogen gas, and then flow out of the reaction tube 11. In the experiment, by adjusting the temperature in the reaction tube to an appropriate temperature, the biomass was pyrolyzed and the carbon support was generated, and the generated gas, the carbon support and the analysis were performed.
[0056] 図 4は、実験で生成した炭素担持体及びタールの炭素量を測定した結果を示す特 性図である。図中の横軸は、メソ多孔質粒子 1グラム当たりに生成した炭素担持体が 含む炭素の量をミリモルの単位で示し、縦軸は、反応管 11から流出した窒素ガス 1立 方メートノレ当たりに含まれるタールの炭素量をミリモルの単位で示す。炭素担持体は 、メソ多孔質粒子 1グラム当たりに通常 30ミリモル程度の炭素を担持可能であり、最 大で 60ミリモルの炭素を担持可能である。図 4に示した測定結果は、バイオマスの試 料としてマツおが粉を用いた実験により、各炭素量を含む炭素担持体が生成されると きにガスに含まれるタールの炭素量を測定した結果を示す。 FIG. 4 is a characteristic diagram showing the results of measuring the carbon content of the carbon support and tar produced in the experiment. The horizontal axis in the figure indicates the amount of carbon contained in the carbon support produced per gram of mesoporous particles in millimolar units, and the vertical axis indicates the amount of nitrogen gas flowing out of the reaction tube 11 per cubic methanol. The amount of carbon contained in the tar is shown in millimolar units. The carbon support can normally support about 30 mmol of carbon per gram of mesoporous particles, and can support up to 60 mmol of carbon. The measurement results shown in Fig. 4 show that when carbon support containing each amount of carbon is produced in an experiment using pine sawdust as a biomass sample. The result of measuring the carbon content of tar contained in the gas is shown.
[0057] 炭素担持体が含む炭素量カ ソ多孔質粒子 1グラム当たり 40ミリモル以下では、窒 素ガス 1立方メートル当たりのタールの炭素量は、 1ミリモル以下であり、タールの量 が十分に低減していることがわかる。特に、炭素担持体の炭素量が 20〜40ミリモル の範囲では、タールが増加しておらず、これらの炭素担持体が生成される状態では 新たなタールが殆ど発生しなレ、。炭素担持体の炭素量が 40ミリモルを越えた範囲で は、タールが増加しており、炭素担持体がタールを分解する分解能が低下しているこ とがわかる。従って、炭素量が 20〜40ミリモルである炭素担持体がガスに接触する 状態を保つことによって、ガスに含まれるタールを最小限にすることができる。  [0057] When the amount of carbon contained in the carbon support is 40 mmol or less per gram, the carbon content of tar per cubic meter of nitrogen gas is 1 mmol or less, and the amount of tar is sufficiently reduced. You can see that In particular, when the carbon content of the carbon support is in the range of 20 to 40 mmol, tar does not increase, and in the state where these carbon supports are generated, almost no new tar is generated. It can be seen that in the range where the carbon content of the carbon support exceeds 40 mmol, the tar increases, and the resolution of the carbon support to decompose the tar decreases. Therefore, by keeping the carbon support having 20 to 40 mmol of carbon in contact with the gas, tar contained in the gas can be minimized.
[0058] 図 5は、炭素担持体の生成によってバイオマスから収得した炭素の収率を示す図 表である。図 5に示す収率は、炭素担持体を生成する際に原料となった元のバイオ マスが含む炭素量の内でガス、炭素担持体、及びチヤ一の夫々の形態で収得できた 炭素の収率である。図 3に示す実験装置で、バイオマスの試料として杉を用い、バイ ォマスの熱分解の温度及び気相成分をメソ多孔質粒子に接触させる温度を 500°C 〜650°Cの範囲で変化させ、各温度で生成されたガス、炭素担持体、及びチヤ一の 形態での炭素の収率を求めた結果を図 5 (a)に示す。例えば、温度を 500°Cにして 炭素担持体を生成した場合は、ガス、炭素担持体、及びチヤ一夫々での炭素の収率 は、元のバイオマスの炭素に対して、 26. 3%、 49. 7%、 24. 0%である。また、ナフ タレンよりも高沸点の物質、即ちタールとして生成する炭素の量は、元のバイオマス の炭素に対して 0. 01 %未満である。本発明では、このようにしてバイオマスの炭素 の殆どを収得することができ、バイオマスの炭素の利用効率が向上する。また温度を 上昇させることによって、ガスによる炭素の収率が上昇し、炭素担持体及びチヤ一に よる炭素の収率が低下する。また温度を低下させることによって、ガスによる炭素の収 率が低下し、炭素担持体及びチヤ一による炭素の収率が上昇する。  FIG. 5 is a chart showing the yield of carbon obtained from biomass by the production of a carbon support. The yield shown in FIG. 5 is the amount of carbon obtained in each form of gas, carbon carrier, and chia within the amount of carbon contained in the original biomass that was used as a raw material when producing the carbon carrier. Yield. In the experimental apparatus shown in Fig. 3, cedar is used as a biomass sample, the temperature of pyrolysis of biomass and the temperature at which the gas phase component is brought into contact with the mesoporous particles are changed in the range of 500 ° C to 650 ° C. Figure 5 (a) shows the results of determining the yield of carbon in the form of the gas produced at each temperature, the carbon support, and the chi- ter. For example, when a carbon support is produced at a temperature of 500 ° C., the yield of carbon in each of the gas, the carbon support, and the chain is 26.3% with respect to the carbon of the original biomass, 49. 7% and 24.0%. In addition, the amount of carbon produced as a substance having a boiling point higher than that of naphthalenes, that is, tar, is less than 0.01% with respect to the carbon of the original biomass. In the present invention, most of the carbon of biomass can be obtained in this way, and the utilization efficiency of carbon of biomass is improved. Also, by increasing the temperature, the yield of carbon due to the gas increases, and the yield of carbon due to the carbon support and the chia decreases. Further, by lowering the temperature, the yield of carbon by the gas is lowered, and the yield of carbon by the carbon support and the cheat is increased.
[0059] また図 3に示す実験装置で、バイオマスの試料としてマツおが粉を用レ、、バイオマ スの熱分解の温度を 500°Cに固定し、熱分解で発生した気相成分を接触させるメソ 多孔質粒子の温度を 500°C〜800°Cの範囲で変化させた。生成されたガス、炭素担 持体、及びチヤ一の形態での炭素の収率を求めた結果を図 5 (b)に示す。チヤ一の 生成量は、バイオマスから気相成分とチヤ一とが生成する熱分解の温度によって定ま り、熱分解の温度は 500°Cで一定であるので、チヤ一での炭素の収率は 28. 2%で 一定である。これに対し、バイオマスの熱分解で発生した気相成分カ ソ多孔質粒子 に接触する温度によって、メソ多孔質粒子の表面に炭素質固体が析出する量は変化 する。気相成分が接触するメソ多孔質粒子の温度が 500°Cから 800°Cまで上昇する ことに応じて、炭素担持体による炭素の収率は 49. 8%から 17. 8%まで低下し、ガス による炭素の収率は 22. 0%から 54. 0%まで上昇する。 [0059] In addition, in the experimental apparatus shown in Fig. 3, pine sawdust is used as a biomass sample, the pyrolysis temperature of the biomass is fixed at 500 ° C, and the gas phase components generated by pyrolysis are contacted. The temperature of the mesoporous particles to be changed was changed in the range of 500 ° C to 800 ° C. Fig. 5 (b) shows the results of the yield of carbon in the form of the generated gas, carbon carrier, and chain. The best The amount produced is determined by the pyrolysis temperature at which gas phase components and chia are produced from biomass, and the pyrolysis temperature is constant at 500 ° C, so the carbon yield in chia is 28. It is constant at 2%. In contrast, the amount of carbonaceous solid deposited on the surface of the mesoporous particles varies depending on the temperature at which the gas phase component cathode porous particles generated by pyrolysis of the biomass come into contact. As the temperature of the mesoporous particles in contact with the gas phase component increases from 500 ° C to 800 ° C, the carbon yield from the carbon support decreases from 49.8% to 17.8%. The carbon yield from gas increases from 22.0% to 54.0%.
[0060] 図 5に示すように、本発明では、バイオマスを熱分解する温度、及び Z又は熱分解 で発生した気相成分をメソ多孔質粒子に接触させる温度を変化させることによって、 ガス、炭素担持体、及びチヤ一の形態でバイオマスから収得できる炭素の収率の割 合を変化させることができる。例えば、温度を上昇させることによって、ガスによる炭素 の収率が上昇して炭素担持体及びチヤ一による炭素の収率が低下し、温度を低下さ せることによって、ガスによる炭素の収率が低下して炭素担持体及びチヤ一による炭 素の収率が上昇する。このように、バイオマスを熱分解する温度、及び/又は熱分解 で発生した気相成分をメソ多孔質粒子に接触させる温度を変化させることによって、 ガスによる炭素の収率を 20〜80%、炭素担持体による炭素の収率を 10〜50%、チ ヤーによる炭素の収率を 10〜30%の範囲で夫々に調整することができる。従って、 本発明では、エネルギーの利用方法に応じて、より利用しやすい形態のエネルギー 源をより高い収率で得ることができるように調整することができる。  [0060] As shown in FIG. 5, in the present invention, by changing the temperature at which biomass is pyrolyzed and the temperature at which Z or gas phase components generated by pyrolysis are brought into contact with mesoporous particles, gas, carbon The yield of carbon that can be obtained from biomass in the form of a carrier and a chew can be varied. For example, by increasing the temperature, the yield of carbon by gas increases and the yield of carbon by the carbon carrier and the carrier decreases. By decreasing the temperature, the yield of carbon by gas decreases. As a result, the yield of carbon by the carbon carrier and the carrier increases. Thus, by changing the temperature at which the biomass is pyrolyzed and / or the temperature at which the gas phase component generated by pyrolysis is brought into contact with the mesoporous particles, the yield of carbon by gas is 20 to 80%, carbon The yield of carbon by the support can be adjusted in the range of 10 to 50%, and the yield of carbon by the carrier can be adjusted in the range of 10 to 30%. Therefore, according to the present invention, it is possible to adjust the energy source so that it can be used more easily in a higher yield depending on the energy utilization method.
[0061] (炭素担持体の製造装置)  [0061] (Carbon carrier production apparatus)
図 6は、炭素担持体の製造装置の構成例を示す模式的断面図である。炭素担持体 の製造装置は、バイオマスの熱分解を行う熱分解炉 (熱分解手段) 31、及び炭素担 持体の生成の反応を行う反応炉 (浸透手段) 41を備える。熱分解炉 31及び反応炉 4 1は互いに配管で接続されている。熱分解炉 31には、上部からバイオマスを投入す るバイオマス投入部 33と、投入されて内部に集積したバイオマスを攪拌する攪拌機 3 2と、熱分解によってバイオマスから気相成分が分離した後の残渣であるチヤ一を下 部から回収するチヤ一回収部 34とが設けられている。反応炉 41には、上部から多数 のメソ多孔質粒子を投入する粒子投入部 43と、投入されたメソ多孔質粒子の集積物 を攪拌する攪拌機 42と、メソ多孔質粒子の集積物に浸透した後の気相成分及び炭 素担持体を下部から排出する排出部 45が設けられている。排出部 45には、反応炉 41から排出した炭素担持体を回収する炭素担持体回収部 46と、反応炉 41から排出 したガスを回収する第 1ガス回収部 47及び第 2ガス回収部 48とが設けられている。 FIG. 6 is a schematic cross-sectional view showing a configuration example of a carbon carrier manufacturing apparatus. The carbon carrier manufacturing apparatus includes a pyrolysis furnace (pyrolysis means) 31 that performs thermal decomposition of biomass, and a reaction furnace (permeation means) 41 that performs a reaction for generating the carbon support. The pyrolysis furnace 31 and the reaction furnace 41 are connected to each other by piping. The pyrolysis furnace 31 includes a biomass input section 33 for supplying biomass from above, a stirrer 32 for stirring the biomass that has been input and accumulated therein, and a residue after the gas phase components have been separated from the biomass by pyrolysis There is a chie collecting part 34 for collecting the chia from the lower part. In the reaction furnace 41, a particle charging unit 43 for charging a large number of mesoporous particles from the top, and a collection of charged mesoporous particles. And a discharge part 45 for discharging the gas phase component and the carbon carrier after permeating the accumulated mesoporous particles from the lower part. The discharge unit 45 includes a carbon support recovery unit 46 that recovers the carbon support discharged from the reaction furnace 41, a first gas recovery unit 47 and a second gas recovery unit 48 that recover the gas discharged from the reaction furnace 41, and Is provided.
[0062] 炭素担持体の製造装置は、更に、第 2ガス回収部 48が回収したガスを燃焼させる 燃焼炉 35を備える。燃焼炉 35には、燃焼炉 35が発生した熱を熱分解炉 31及び反 応炉 41へ供給するための熱配管 36が接続されている。熱配管 36は、熱分解炉 31 及び反応炉 41に接触して配設され、燃焼炉 35で発生した高温ガスが熱分解炉 31 及び反応炉 41の外面を巡って熱分解炉 31及び反応炉 41の内部を加熱するように 構成されている。更に、燃焼炉 35には温度調節器 37が接続されている。温度調節 器 37は、熱分解炉 31及び反応炉 41内の温度が所定の温度になるように燃焼炉 35 の動作を制御する。 The carbon carrier manufacturing apparatus further includes a combustion furnace 35 that combusts the gas recovered by the second gas recovery unit 48. Connected to the combustion furnace 35 is a heat pipe 36 for supplying the heat generated by the combustion furnace 35 to the pyrolysis furnace 31 and the reaction furnace 41. The heat pipe 36 is disposed in contact with the pyrolysis furnace 31 and the reaction furnace 41, and high-temperature gas generated in the combustion furnace 35 travels around the outer surfaces of the pyrolysis furnace 31 and the reaction furnace 41. It is configured to heat the inside of 41. Further, a temperature controller 37 is connected to the combustion furnace 35. The temperature controller 37 controls the operation of the combustion furnace 35 so that the temperature in the pyrolysis furnace 31 and the reaction furnace 41 becomes a predetermined temperature.
[0063] バイオマス投入部 33は、乾燥したバイオマスを外部から投入されて一時的に蓄積 し、所定のレートでバイオマスを熱分解炉 31へ投入する。攪拌機 42は熱分解炉 31 内のバイオマスを攪拌し、ノくィォマスの熱分解により発生した気相成分は反応炉 41 内へ流入する。チヤ一回収部 34は、バイオマスから気相成分が分離した後の残渣で あるチヤ一を熱分解炉 31の下部から回収する。粒子投入部 43は所定のレートでメソ 多孔質粒子を反応炉 41内へ投入する。投入されたメソ多孔質粒子は反応炉 41内で 集積物となる。攪拌機 42は反応炉 41内のメソ多孔質粒子の集積物を攪拌し、熱分 解炉 31から流入した気相成分カ^ソ多孔質粒子の集積物に浸透する。メソ多孔質粒 子の集積物に気相成分が浸透することによって、気相成分に含まれるタールが分解 して炭素質固体がメソ多孔質粒子の表面に付着し、炭素担持体が生成される。排出 部 45は、熱分解炉 31からの気相成分が十分に浸透した集積物の底部分のメソ多孔 質粒子と、メソ多孔質粒子の集積物を上から下へ浸透した後の気相成分とを反応炉 41の下部から排出する。排出部 45が排出したメソ多孔質粒子は、タールが分化した 炭素質固体が表面に付着して炭素担持体となっており、炭素担持体回収部 46は、 排出部 45が排出した固体成分である炭素担持体を回収する。また排出部 45が排出 した気相成分は、メタン等のガスであり、第 2ガス回収部 48は、排出部 45が排出した ガスの一部を燃焼炉 35に回収し、第 1ガス回収部 47は残りのガスを回収する。燃焼 炉 35は、第 2ガス回収部 48が回収したガスを燃焼させ、温度調節器 37は、燃焼炉 3 5の動作を制御して、熱分解炉 31及び反応炉 41内の温度を 400°C〜1000°Cに調 節する。 [0063] The biomass input unit 33 inputs dry biomass from the outside and temporarily accumulates it, and inputs the biomass into the pyrolysis furnace 31 at a predetermined rate. The stirrer 42 stirs the biomass in the pyrolysis furnace 31, and the gas phase component generated by pyrolysis of the biomass flows into the reaction furnace 41. The chia recovery unit 34 recovers the chia which is a residue after the gas phase component is separated from the biomass from the lower part of the pyrolysis furnace 31. The particle introduction unit 43 introduces mesoporous particles into the reaction furnace 41 at a predetermined rate. The charged mesoporous particles are accumulated in the reactor 41. The stirrer 42 agitates the accumulation of mesoporous particles in the reaction furnace 41 and permeates the accumulation of gas phase component cathode porous particles flowing from the thermal decomposition furnace 31. When the gas phase component permeates into the accumulated mesoporous particles, the tar contained in the gas phase component is decomposed and the carbonaceous solid adheres to the surface of the mesoporous particles, thereby generating a carbon support. The discharge part 45 is composed of mesoporous particles at the bottom of the accumulation into which the gas phase components from the pyrolysis furnace 31 have sufficiently permeated, and gas phase components after the accumulation of mesoporous particles from the top to the bottom. Are discharged from the lower part of the reactor 41. The mesoporous particles discharged from the discharge unit 45 are carbon supports by attaching carbonaceous solids with differentiated tar to the surface, and the carbon support recovery unit 46 is a solid component discharged from the discharge unit 45. A carbon support is recovered. The gas phase component exhausted by the exhaust unit 45 is a gas such as methane, and the second gas recovery unit 48 is exhausted by the exhaust unit 45. Part of the gas is recovered in the combustion furnace 35, and the first gas recovery unit 47 recovers the remaining gas. The combustion furnace 35 burns the gas collected by the second gas recovery unit 48, and the temperature controller 37 controls the operation of the combustion furnace 35 to control the temperature in the pyrolysis furnace 31 and the reaction furnace 41 to 400 °. Adjust C to 1000 ° C.
[0064] 以上の如き本発明の炭素担持体の製造装置により、タールを含まないガス、炭素 担持体、及びチヤ一を製造することができる。炭素担持体及びチヤ一は、固体でかつ 安全性が高ぐ運搬が容易であるので、炭素担持体の製造装置がエネルギー需要 の低い場所に設置されている場合であっても、エネルギー源として容易に他地域へ 供給することが可能である。従って、ノ ォマス起源のエネルギーの利用効率を向上 させること力できる。また温度調節器 37が熱分解炉 31及び反応炉 41内の温度を調 節することにより、用途に合わせて、ガス、炭素担持体、及びチヤ一の製造量の割合 を調整することができる。例えば、炭素担持体の製造装置が設置されている地域で のエネルギー需要が高レ、場合は、ガスの割合を増やしてガス発電等でガスを地域で 利用できる。また炭素担持体の製造装置が設置されている地域でのエネルギー需要 が低レ、場合は、炭素担持体及びチヤ一の割合を増やして他地域への供給量を増や すことができる。  [0064] With the carbon carrier production apparatus of the present invention as described above, a gas not containing tar, a carbon carrier, and a chew can be produced. Since the carbon carrier and the carrier are solid, safe and easy to carry, they can be easily used as an energy source even when the carbon carrier manufacturing equipment is installed in a place with low energy demand. It is possible to supply to other areas. Therefore, it is possible to improve the utilization efficiency of the energy originating from the biomass. In addition, the temperature controller 37 adjusts the temperatures in the pyrolysis furnace 31 and the reaction furnace 41, so that the ratio of the production amounts of gas, carbon support, and cheer can be adjusted according to the application. For example, if the energy demand is high in the area where the carbon carrier manufacturing equipment is installed, the gas can be used locally by increasing the gas ratio and using gas power generation. If the energy demand is low in the area where the carbon carrier manufacturing equipment is installed, the supply rate to other areas can be increased by increasing the proportion of carbon carrier and chain.
[0065] なお、図 6に示した炭素担持体の製造装置は、本発明の一例であり、本発明の炭 素担持体の製造装置はその他の構成とすることも可能である。例えば、炭素担持体 の製造装置は、チヤ一回収部 34が回収したチヤ一、炭素担持体回収部 46が回収し た炭素担持体、第 1ガス回収部 47が回収したガス、及び熱配管 36から排出した排気 ガスが保持する熱を回収する熱回収機を備え、熱回収機が回収した熱でバイオマス を乾燥させ、乾燥させたバイオマスをバイオマス投入部 33へ投入する構成であって もよレ、。また炭素担持体の製造装置は、燃焼炉 35で燃焼させた高温のガスを熱分解 炉 31及び反応炉 41へ導入することによって、内部から熱分解炉 31及び反応炉 41を 加熱する構成であってもよい。また炭素担持体の製造装置は、電気炉等を用いて外 部からのエネルギー供給により熱分解炉 31及び反応炉 41を加熱する構成であって もよレ、。また炭素担持体の製造装置は、反応炉 41内にメソ多孔質粒子を充填させる のではなぐメソ多孔質粒子が集積した移動層又は流動層を作成し、作成した移動 層又は流動層にバイオマスが熱分解した気相成分を浸透させる構成であってもよい Note that the carbon carrier manufacturing apparatus shown in FIG. 6 is an example of the present invention, and the carbon carrier manufacturing apparatus of the present invention may have other configurations. For example, an apparatus for producing a carbon carrier includes a chia collected by the chia recovery unit 34, a carbon carrier recovered by the carbon carrier recovery unit 46, a gas recovered by the first gas recovery unit 47, and a heat pipe 36. A heat recovery unit that recovers the heat retained by the exhaust gas exhausted from the plant can be provided, the biomass is dried using the heat recovered by the heat recovery unit, and the dried biomass can be input to the biomass input unit 33. ,. The carbon carrier manufacturing apparatus is configured to heat the pyrolysis furnace 31 and the reaction furnace 41 from the inside by introducing high-temperature gas burned in the combustion furnace 35 into the pyrolysis furnace 31 and the reaction furnace 41. May be. The carbon carrier manufacturing apparatus may be configured to heat the pyrolysis furnace 31 and the reaction furnace 41 by supplying energy from the outside using an electric furnace or the like. In addition, the carbon carrier manufacturing apparatus creates a moving bed or fluidized bed in which mesoporous particles are accumulated rather than filling the reactor 41 with mesoporous particles. A configuration in which a gas phase component obtained by pyrolyzing biomass is permeated into a bed or a fluidized bed may be used.
[0066] 図 7は、電気炉を用いた炭素担持体の製造装置の構成例を示す模式的断面図で ある。炭素担持体の製造装置は、バイオマスの熱分解を行う分解反応管 (熱分解手 段) 71、及び炭素担持体を生成する生成槽 (浸透手段) 72を備える。分解反応管 71 は、中空円筒状に構成されており、一端には分解反応管 71内にバイオマスを供給す るホッパ 741が結合されており、管内の一端力も他端まで搬送スクリュー 73が設けら れている。搬送スクリュー 73は、分解反応管 71と同軸の回転軸周りに螺旋状の羽根 を設けた構成となっている。搬送スクリュー 73は、回転軸を中心にして回転すること により、分解反応管 71内の一端に供給されたバイオマスを他端へ搬送する。分解反 応管 71は略水平の姿勢で電気炉 781内を貫通して設置されている。電気炉 781は 分解反応管 71内を 500〜600°Cに加熱する。分解反応管 71内を搬送スクリュー 73 によって搬送されるバイオマスは、電気炉 781によって加熱され、熱分解する。分解 反応管 71の他端には、熱分解によってバイオマスから分離した気相成分を生成槽 7 2へ導く配管 761と、ノくィォマスから気相成分が分離した残渣であるチヤ一を回収す る回収器 751とが設けられている。 FIG. 7 is a schematic cross-sectional view showing a configuration example of a carbon carrier manufacturing apparatus using an electric furnace. The carbon carrier manufacturing apparatus includes a decomposition reaction tube (pyrolysis unit) 71 that performs thermal decomposition of biomass, and a generation tank (permeation means) 72 that generates a carbon carrier. The decomposition reaction tube 71 is formed in a hollow cylindrical shape. A hopper 741 for supplying biomass into the decomposition reaction tube 71 is coupled to one end, and a conveying screw 73 is provided to the other end of the tube. It is. The conveying screw 73 has a configuration in which a spiral blade is provided around a rotation axis coaxial with the decomposition reaction tube 71. The conveyance screw 73 conveys the biomass supplied to one end in the decomposition reaction tube 71 to the other end by rotating around the rotation axis. The decomposition reaction tube 71 is installed so as to penetrate the electric furnace 781 in a substantially horizontal posture. The electric furnace 781 heats the decomposition reaction tube 71 to 500 to 600 ° C. Biomass conveyed in the decomposition reaction tube 71 by the conveying screw 73 is heated by the electric furnace 781 and thermally decomposed. At the other end of the decomposition reaction tube 71, a pipe 761 for introducing the gas phase component separated from the biomass by pyrolysis to the production tank 72, and a chia that is a residue from which the gas phase component is separated from the biomass are collected. A collector 751 is provided.
[0067] 生成槽 72には、上側に、メソ多孔質粒子を供給するホッパ 742がロータリーバルブ 771を介して設けられている。ロータリーバルブ 771の回転により、ホッパ 742からメソ 多孔質粒子が供給され、生成槽 72内にメソ多孔質粒子が集積する。生成槽 72は、 電気炉 782内に配置されている。電気炉 782は生成槽 72内を 500〜600°Cにカロ熱 する。生成槽 72内のメソ多孔質粒子は電気炉 782によって適宜加熱される。また生 成槽 72の下部には、配管 761が接続されている。配管 761は、断熱材で覆われるか 、又は加熱手段を備える等、管内を流れる気相成分を保温する構成となっている。バ ィォマスの熱分解によって発生した気相成分は、分解反応管 71から配管 761を通つ て生成槽 72内に流入する。生成槽 72は、槽内の下部に、多数のガス噴出孔を有す る環状管を設け、この環状管に配管 761が接続された構成とする等、配管 761から 流入した気相成分カ^ソ多孔質粒子の集積物にほぼ満遍なく浸透する構成となって いる。メソ多孔質粒子の集積物に気相成分が浸透することによって、炭素担持体が 生成される。更に生成槽 72には、上側に、ガスを回収するガス回収管 762が接続さ れており、下側にロータリーバルブ 772が設けられている。ロータリーバルブ 772の下 方には炭素担持体を回収する回収器 752が設けられている。 In the generation tank 72, a hopper 742 for supplying mesoporous particles is provided on the upper side via a rotary valve 771. The mesoporous particles are supplied from the hopper 742 by the rotation of the rotary valve 771, and the mesoporous particles are accumulated in the generation tank 72. The generation tank 72 is disposed in an electric furnace 782. The electric furnace 782 heats the inside of the generation tank 72 to 500 to 600 ° C. The mesoporous particles in the generation tank 72 are appropriately heated by the electric furnace 782. A pipe 761 is connected to the lower part of the generation tank 72. The pipe 761 is configured to retain the gas phase component flowing in the pipe, such as covered with a heat insulating material or provided with a heating means. The gas phase component generated by the thermal decomposition of the biomass flows into the generation tank 72 from the decomposition reaction pipe 71 through the pipe 761. The generation tank 72 is provided with an annular pipe having a large number of gas ejection holes in the lower part of the tank, and the pipe 761 is connected to the annular pipe. It is configured to penetrate almost uniformly into the accumulation of soporous particles. When the gas phase component penetrates into the accumulation of mesoporous particles, the carbon support becomes Generated. Further, a gas recovery pipe 762 for recovering gas is connected to the generation tank 72 on the upper side, and a rotary valve 772 is provided on the lower side. Below the rotary valve 772, a collector 752 for collecting the carbon carrier is provided.
[0068] 搬送スクリュー 73の回転によって、ノ ィォマスが連続的に分解反応管 71内に供給 され、バイオマスは分解反応管 71を搬送されながら電気炉 781で加熱され、バイオ マスが気相成分とチヤ一とに熱分解する反応が連続的に行われる。発生した気相成 分は配管 761で生成槽 72内へ供給される。チヤ一は搬送スクリュー 73によって分解 反応管 71内の他端まで搬送された上で回収器 751に回収される。搬送スクリュー 73 の回転速度を調整することにより、バイオマスの供給レート、並びに気相成分及びチ ヤーの生成レートを調整することができる。  [0068] By the rotation of the conveying screw 73, the biomass is continuously supplied into the decomposition reaction tube 71, the biomass is heated in the electric furnace 781 while being conveyed through the decomposition reaction tube 71, and the biomass is separated from the gas phase component and the chimera. The reaction that thermally decomposes at once is carried out continuously. The generated vapor phase component is supplied into the generation tank 72 through a pipe 761. The chia is conveyed to the other end in the decomposition reaction tube 71 by the conveying screw 73 and then collected in the collecting device 751. By adjusting the rotation speed of the conveying screw 73, it is possible to adjust the biomass supply rate and the gas phase component and cheer generation rate.
[0069] ロータリーバルブ 771の回転によってメソ多孔質粒子が連続的に生成槽 72内に供 給され、ロータリーバルブ 772の回転によって炭素担持体が連続的に生成槽 72内か ら排出される。従って、生成槽 72にはメソ多孔質粒子の移動層が形成される。配管 7 61を通って分解反応管 71から供給される気相成分カ^ソ多孔質粒子の移動層に浸 透することによって、気相成分に含まれるタールが分解して炭素質固体カ ソ多孔質 粒子の表面に付着し、炭素担持体が生成される。生成した炭素担持体は、ロータリ 一バルブ 772によって生成槽 72から排出されて回収器 752に回収される。また気相 成分に含まれるタールが分解されたガスは、ガス回収管 762によって回収される。口 一タリーバルブ 771の回転速度を調整することによってメソ多孔質粒子の供給レート を調整することができる。またロータリーバルブ 772の回転速度を調整することによつ て、炭素担持体の回収レートを調整することができる。このようにして、図 7に示す炭 素担持体の製造装置を用いることにより、タールを含まないガス、炭素担持体、及び チヤ一を連続的に製造することが可能となり、またそれらの製造レートも容易に調整 すること力 Sできる。  [0069] Mesoporous particles are continuously supplied into the production tank 72 by the rotation of the rotary valve 771, and the carbon support is continuously discharged from the production tank 72 by the rotation of the rotary valve 772. Therefore, a moving layer of mesoporous particles is formed in the generation tank 72. By infiltrating into the moving bed of gas phase component cathode porous particles supplied from the decomposition reaction tube 71 through the pipe 7 61, the tar contained in the gas phase component is decomposed and carbonaceous solid cathode It adheres to the surface of the particle and produces a carbon support. The produced carbon carrier is discharged from the production tank 72 by the rotary valve 772 and collected in the collector 752. The gas in which tar contained in the gas phase component is decomposed is recovered by the gas recovery pipe 762. The feed rate of the mesoporous particles can be adjusted by adjusting the rotational speed of the single tally valve 771. Further, the recovery rate of the carbon carrier can be adjusted by adjusting the rotational speed of the rotary valve 772. In this way, by using the carbon carrier production apparatus shown in FIG. 7, it becomes possible to continuously produce tar-free gas, carbon carrier, and chia, and their production rates. Can be adjusted easily.
[0070] (炭素担持体の利用形態)  [0070] (Use form of carbon support)
以上に説明した如ぐ本発明の炭素担持体は、燃料としての利用が可能である。し 力、しながら、本発明の炭素担持体の利用方法はこれに限るものではなぐ水性ガス化 反応による水素発生源としての利用が可能である。図 8は、本発明の炭素担持体か ら発生した水素を用いて発電を行う本発明の発電装置の構成例を示すブロック図で ある。本発明の発電装置は、固体酸化物型燃料電池等の高温作動型の燃料電池 6 1と、燃料電池 61で利用するための水素ガスを発生させるガス化反応器 51とを備え ている。 The carbon carrier of the present invention as described above can be used as a fuel. However, the method of using the carbon support of the present invention is not limited to this, and can be used as a hydrogen generation source by a water gasification reaction. Figure 8 shows the carbon support of the present invention. FIG. 3 is a block diagram showing a configuration example of a power generation device of the present invention that generates power using hydrogen generated from the power generation. The power generator of the present invention includes a high-temperature operating fuel cell 61 such as a solid oxide fuel cell, and a gasification reactor 51 that generates hydrogen gas to be used in the fuel cell 61.
[0071] ガス化反応器 51には、炭素担持体を貯蔵する貯蔵器 52からガス化反応器 51 炭 素担持体を供給する供給機 53と、ガス化反応後のメソ多孔質粒子をガス化反応器 5 1から回収する回収器 54とが設けられている。ガス化反応器 51には、ドロマイト等の 脱硫能を有する粒子が充填された脱硫器 55がガス管で接続されており、ガス化反応 器 51が生成したガスは脱硫器 55 流入する構成となっている。脱硫器 55には、ニッ ケ 触媒等の炭化水素改質のための触媒が充填された改質器 56がガス管で接続さ れており、脱硫器 55からのガスが改質器 56 流入する構成となっている。また改質 器 56はガス管で燃料電池 61の燃料極に接続されており、改質器 56からのガスが燃 料電池 61の燃料極へ導入される構成となっている。また燃料電池 61には、空気極 空気を供給する空気供給機 63が設けられており、更に燃料電池 61が発電した電 力を外部へ出力する電力出力部 64が接続されている。更に、燃料電池 61はガス管 でガス化反応器 51に接続されている。燃料電池 61が排出する 700°C以上の水蒸気 を含んだ排気ガスの少なくとも一部は、ガス化反応器 51 供給される。  [0071] The gasification reactor 51 includes a gasification reactor 51, a supply unit 53 for supplying the carbon support from a storage 52 for storing the carbon support, and gasification of the mesoporous particles after the gasification reaction. A recovery unit 54 for recovering from the reactor 51 is provided. The gasification reactor 51 is connected to a desulfurizer 55 filled with particles having a desulfurization capacity such as dolomite through a gas pipe, and the gas generated by the gasification reactor 51 flows into the desulfurizer 55. ing. The desulfurizer 55 is connected with a reformer 56 filled with a catalyst for hydrocarbon reforming such as a nickel catalyst through a gas pipe, and the gas from the desulfurizer 55 flows into the reformer 56. It has a configuration. The reformer 56 is connected to the fuel electrode of the fuel cell 61 through a gas pipe, and the gas from the reformer 56 is introduced to the fuel electrode of the fuel cell 61. Further, the fuel cell 61 is provided with an air supply unit 63 for supplying the cathode air, and further connected to a power output unit 64 for outputting the power generated by the fuel cell 61 to the outside. Further, the fuel cell 61 is connected to the gasification reactor 51 by a gas pipe. At least a part of the exhaust gas containing water vapor of 700 ° C. or higher discharged from the fuel cell 61 is supplied to the gasification reactor 51.
[0072] 供給機 53は、貯蔵器 52から所定のレートで炭素担持体をガス化反応器 51 供給 し、供給された炭素担持体はガス化反応器 51内で集積物となる。燃料電池 61からガ ス化反応器 51 供給される排気ガスに含まれる 700°C以上の水蒸気は、炭素担持 体の集積物へ通流する。炭素を主成分とする炭素質固体に覆われた炭素担持体に 高温の水蒸気が接触することにより、水蒸気と炭素との間で水性ガス化反応が起こり The supply unit 53 supplies the carbon support from the storage 52 at a predetermined rate to the gasification reactor 51, and the supplied carbon support becomes an accumulation in the gasification reactor 51. Gasification reactor 51 from fuel cell 61 The water vapor of 700 ° C or higher contained in the exhaust gas supplied flows to the accumulation of carbon support. When high-temperature water vapor comes into contact with a carbon support covered with a carbonaceous solid containing carbon as a main component, a water gasification reaction occurs between water vapor and carbon.
、水素ガス及び一酸化炭素が発生する。水蒸気が炭素担持体に接触する際の温度 力 700°C未満である場合は、水性ガス化反応の効率が低下するので、ガス化反応器 51 供給される水蒸気の温度は 700°C以上である必要がある。回収器 54は、水蒸 気が十分に通流して元に戻ったメソ多孔質粒子を回収する。回収器 54が回収したメ ソ多孔質粒子はリサイクルされる。 Hydrogen gas and carbon monoxide are generated. When the temperature force when the water vapor contacts the carbon support is less than 700 ° C, the efficiency of the water gasification reaction decreases, so the temperature of the water vapor supplied to the gasification reactor 51 is 700 ° C or higher. There is a need. The recovery unit 54 recovers mesoporous particles that have been sufficiently returned to their original state by water vapor. The mesoporous particles collected by the collector 54 are recycled.
[0073] ガス化反応器 51が発生するガスは、水素ガス及び一酸化炭素以外に、水蒸気、二 酸化炭素、及び微量の炭化水素を含む。ガス化反応器 51が発生したガスは、脱硫 器 55で脱硫され、改質器 56で炭化水素が水素及び一酸化炭素に改質される。改質 器 56から燃料電池 61の燃料極へ水素ガス及び一酸化炭素が供給され、空気供給 機 63から燃料電池 61の空気極へ空気が供給されて、燃料電池 61は発電を行う。燃 料電池 61が発電した電力は、電力出力部 64から外部へ出力される。 [0073] The gas generated by the gasification reactor 51 includes, in addition to hydrogen gas and carbon monoxide, water vapor, Contains carbon oxides and traces of hydrocarbons. The gas generated by the gasification reactor 51 is desulfurized by the desulfurizer 55, and the reformer 56 reforms the hydrocarbons to hydrogen and carbon monoxide. Hydrogen gas and carbon monoxide are supplied from the reformer 56 to the fuel electrode of the fuel cell 61, and air is supplied from the air supply unit 63 to the air electrode of the fuel cell 61, so that the fuel cell 61 generates power. The power generated by the fuel cell 61 is output from the power output unit 64 to the outside.
[0074] 以上に説明した如ぐ本発明の発電装置により、本発明の炭素担持体は水性ガス 化反応による水素ガス発生源として利用され、発生した水素を燃料とした燃料電池 6 1が発電を行う。高温型の燃料電池は発電の効率が高いので、本発明により、バイオ マス起源のエネルギーを高効率で利用することが可能となる。  [0074] With the power generation device of the present invention as described above, the carbon support of the present invention is used as a hydrogen gas generation source by a water gasification reaction, and the fuel cell 61 using the generated hydrogen as fuel generates power. Do. Since high-temperature fuel cells have high power generation efficiency, the present invention makes it possible to use biomass-derived energy with high efficiency.
[0075] なお、図 8に示した発電装置は、本発明の一例であり、本発明の発電装置はその 他の構成とすることも可能である。図 9は、本発明の発電装置の他の構成例を示すブ ロック図である。発電装置は、燃料電池 61が排出する高温の排気ガスから熱を回収 する熱回収機 62を備える。熱回収機 62は、燃料電池 61から回収した熱で 700°C以 上の水蒸気を発生させ、発生させた水蒸気をガス化反応器 51へ供給する。更に発 電装置は、回収器 54がガス化反応器 51から回収したメソ多孔質粒子が保持する熱 を回収する熱回収機 65を備える。熱回収機 65は、水蒸気等の熱媒体を利用して、 回収した熱により、貯蔵器 52が貯蔵する炭素担持体を予め加熱しておく構成となつ ている。発電装置のその他の構成は、図 8に示した発電装置の構成と同様であり、対 応する部分に同符号を付してその説明を省略する。  Note that the power generation device shown in FIG. 8 is an example of the present invention, and the power generation device of the present invention may have other configurations. FIG. 9 is a block diagram showing another configuration example of the power generator of the present invention. The power generation apparatus includes a heat recovery unit 62 that recovers heat from the high-temperature exhaust gas discharged from the fuel cell 61. The heat recovery unit 62 generates steam at 700 ° C. or higher with the heat recovered from the fuel cell 61, and supplies the generated steam to the gasification reactor 51. Furthermore, the power generation device includes a heat recovery unit 65 that recovers heat retained by the mesoporous particles recovered from the gasification reactor 51 by the recovery unit 54. The heat recovery unit 65 uses a heat medium such as water vapor to heat the carbon carrier stored in the storage 52 in advance with the recovered heat. The other configuration of the power generation device is the same as the configuration of the power generation device shown in FIG. 8, and the corresponding parts are denoted by the same reference numerals and description thereof is omitted.
[0076] 供給機 53は予めある程度の温度まで加熱された炭素担持体を貯蔵器 52からガス 化反応器 51へ供給し、熱回収機 62は 700°C以上の水蒸気をガス化反応器 51へ供 給し、ガス化反応器 51内で高温の水蒸気が炭素担持体に接触することにより、水素 ガス及び一酸化炭素が発生する。発生した水素ガス及び一酸化炭素が脱硫器 55及 び改質器 56を経て燃料電池 61の燃料極に供給されることにより、燃料電池 61は発 電を行う。熱回収機 62で燃料電池 61からの排気ガスの熱を回収して高温の水蒸気 を発生させることにより、水蒸気の含有率が高いガスをガス化反応器 51へ供給して、 効率良く水素ガス及び一酸化炭素を発生させることができる。また回収器 54がガス 化反応器 51から回収したメソ多孔質粒子は、熱を保持しており、熱回収機 65でメソ 多孔質粒子の熱を回収して炭素担持体の予熱を行うことにより、発電装置の熱効率 を向上させることができる。 [0076] The supply machine 53 supplies the carbon carrier previously heated to a certain temperature from the storage 52 to the gasification reactor 51, and the heat recovery machine 62 supplies steam at 700 ° C or more to the gasification reactor 51. In the gasification reactor 51, hydrogen gas and carbon monoxide are generated when high-temperature steam comes into contact with the carbon support. The generated hydrogen gas and carbon monoxide are supplied to the fuel electrode of the fuel cell 61 through the desulfurizer 55 and the reformer 56, whereby the fuel cell 61 generates electricity. By recovering the heat of the exhaust gas from the fuel cell 61 by the heat recovery unit 62 and generating high-temperature water vapor, a gas having a high water vapor content is supplied to the gasification reactor 51 to efficiently produce hydrogen gas and hydrogen gas. Carbon monoxide can be generated. In addition, the mesoporous particles recovered from the gasification reactor 51 by the recovery unit 54 retain heat, and the heat recovery unit 65 By recovering the heat of the porous particles and preheating the carbon support, the thermal efficiency of the power generator can be improved.
[0077] また、本発明の発電装置は、外部からのエネルギー供給により 700°C以上の水蒸 気を発生させる構成であってもよい。また図 8及び図 9には外部改質型の発電装置の 例を示したが、本発明の発電装置は、燃料電池の燃料極へ炭素担持体及び水蒸気 を供給し、燃料極上で水素ガス及び一酸化炭素を発生させて発電を行う内部改質 型の発電装置であってもよい。また本発明の炭素担持体を利用して発生させた水素 ガスは、燃料電池で利用することに限るものではなぐ水性ガス化反応によって発生 した水素ガスを回収してその他の用途に利用することも可能である。  [0077] Further, the power generation device of the present invention may be configured to generate water vapor at 700 ° C or higher by external energy supply. 8 and 9 show an example of an external reforming type power generation device, the power generation device of the present invention supplies a carbon carrier and water vapor to the fuel electrode of the fuel cell, and hydrogen gas and hydrogen are generated on the fuel electrode. It may be an internal reforming power generation device that generates power by generating carbon monoxide. Further, the hydrogen gas generated using the carbon support of the present invention is not limited to use in a fuel cell, but the hydrogen gas generated by the water gasification reaction can be recovered and used for other purposes. Is possible.
[0078] また本発明においては、燃料電池ではなくガスエンジン又はガスタービン等の内燃 機関を用いて発電を行い、更に内燃機関からの排熱を利用してコジェネレーションを 実現すること力 Sできる。図 10は、コジェネレーションを実現する本発明の発電装置の 構成例を示すブロック図である。発電装置は、ガス化反応器 51が発生させる水素ガ ス及び一酸化炭素を含むガスを燃料として動作するガスエンジン又はガスタービン 等の内燃機関 81と、内燃機関 81の動力によって発電を行う発電機 82とを備えてい る。  [0078] In the present invention, it is possible to generate power using an internal combustion engine such as a gas engine or a gas turbine instead of a fuel cell, and to realize cogeneration using exhaust heat from the internal combustion engine. FIG. 10 is a block diagram showing a configuration example of the power generation device of the present invention that realizes cogeneration. The power generation device includes an internal combustion engine 81 such as a gas engine or a gas turbine that operates using a gas containing hydrogen gas and carbon monoxide generated by the gasification reactor 51 as a fuel, and a generator that generates power using the power of the internal combustion engine 81. 82.
[0079] ガス化反応器 51には、貯蔵器 52から炭素担持体を供給する供給機 53と、ガス化 反応後のメソ多孔質粒子を回収する回収器 54が設けられている。ガス化反応器 51 には、水が供給される熱交換器 83がガス管で接続されており、ガス化反応器 51が生 成したガスは熱交換器 83にて水を加熱して水蒸気を発生させる構成となっている。 熱交換器 83で発生した水蒸気は、ガス化反応器 51へ供給される構成となっている。 熱交換器 83には、酸素を含む空気が供給される熱交換器 84がガス管で接続されて おり、熱交換器 83を通過したガスは次の熱交換器 84へ流入する。熱交換器 84では 、流入したガスは空気を加熱すると共に空気によって冷却され、冷却によってガス中 から水分が排出され、水素ガス及び一酸化炭素を含む乾燥ガスが生成する。熱交換 器 84は、内燃機関 81にガス管で接続されており、水素ガス及び一酸化炭素を含む 乾燥ガスを内燃機関 81へ供給する構成となっている。内燃機関 81は、乾燥ガスと共 に空気が供給され、水素ガス及び一酸化炭素を含む乾燥ガスを燃料として燃焼させ ることによって動力を発生し、発生した動力で発電機 82を動作させる。発電機 82は、 内燃機関 81の動力によって発電を行い、電力を出力する。 [0079] The gasification reactor 51 is provided with a supply unit 53 for supplying a carbon carrier from a storage unit 52, and a recovery unit 54 for recovering mesoporous particles after the gasification reaction. A heat exchanger 83 to which water is supplied is connected to the gasification reactor 51 via a gas pipe, and the gas generated by the gasification reactor 51 is heated by the heat exchanger 83 to produce water vapor. It is the structure to generate. The steam generated in the heat exchanger 83 is supplied to the gasification reactor 51. A heat exchanger 84 to which air containing oxygen is supplied is connected to the heat exchanger 83 by a gas pipe, and the gas that has passed through the heat exchanger 83 flows into the next heat exchanger 84. In the heat exchanger 84, the inflowing gas heats the air and is cooled by the air, and moisture is discharged from the gas by the cooling to generate a dry gas containing hydrogen gas and carbon monoxide. The heat exchanger 84 is connected to the internal combustion engine 81 with a gas pipe, and is configured to supply dry gas containing hydrogen gas and carbon monoxide to the internal combustion engine 81. The internal combustion engine 81 is supplied with air together with dry gas, and burns dry gas containing hydrogen gas and carbon monoxide as fuel. Power is generated, and the generator 82 is operated with the generated power. The generator 82 generates power using the power of the internal combustion engine 81 and outputs electric power.
[0080] 内燃機関 81が燃料の乾燥ガスを燃焼させた後の排気ガスを内燃機関 81から排出 するガス管は、熱交換器 85に接続されている。熱交換器 85は、熱交換器 84から排 出した空気が供給され、内燃機関 81からの排気ガスと熱交換器 84からの空気とが熱 交換を行う構成となっている。内燃機関 81から排出する排気ガスは高温であるので、 空気は熱交換器 85で十分に加熱されて予熱空気となる。熱交換器 85はガス管でガ ス化反応器 51に接続されており、熱交換器 85から排出する予熱空気はガス化反応 器 51へ供給される構成となっている。また熱交換器 85から排出する排気ガスは、高 熱を保ったままであり、温水の生成、水蒸気の発生、又は冷暖房の熱源等に利用で きる熱出力となる。 A gas pipe that discharges exhaust gas from the internal combustion engine 81 after the internal combustion engine 81 burns the dry gas of the fuel is connected to the heat exchanger 85. The heat exchanger 85 is configured to be supplied with air exhausted from the heat exchanger 84 and to exchange heat between the exhaust gas from the internal combustion engine 81 and the air from the heat exchanger 84. Since the exhaust gas discharged from the internal combustion engine 81 is hot, the air is sufficiently heated by the heat exchanger 85 to become preheated air. The heat exchanger 85 is connected to the gasification reactor 51 with a gas pipe, and preheated air discharged from the heat exchanger 85 is supplied to the gasification reactor 51. Further, the exhaust gas discharged from the heat exchanger 85 is kept at a high temperature, and becomes a heat output that can be used for generating hot water, generating water vapor, or a heat source for air conditioning.
[0081] 供給機 53は貯蔵器 52から炭素担持体をガス化反応器 51へ供給し、ガス化反応器 51内の炭素担持体の集積物に、熱交換器 83からの水蒸気と熱交換器 85からの予 熱空気が通流する。ガス化反応器 51内では、水蒸気が炭素担持体に接触すること により水素ガス及び一酸化炭素が発生する水性ガス化反応と共に、炭素担持体に含 まれる炭素が予熱空気に含まれる酸素によって酸化する酸化反応が発生する。酸化 反応は発熱反応であるので、ガス化反応器 51は内部から加熱され、ガス化反応器 5 1内の温度は、水性ガス化反応を持続させるために適切な 750°C〜900°Cに保たれ る。  [0081] The supply unit 53 supplies the carbon carrier from the storage 52 to the gasification reactor 51, and the carbon carrier in the gasification reactor 51 is integrated with the steam from the heat exchanger 83 and the heat exchanger. Preheated air from 85 flows. In the gasification reactor 51, water contained in the carbon support is oxidized by oxygen contained in the preheated air, along with an aqueous gasification reaction in which hydrogen gas and carbon monoxide are generated when water vapor contacts the carbon support. Oxidation reaction occurs. Since the oxidation reaction is an exothermic reaction, the gasification reactor 51 is heated from the inside, and the temperature in the gasification reactor 51 is adjusted to 750 ° C to 900 ° C, which is appropriate for maintaining the water gasification reaction. Kept.
[0082] ガス化反応器 51が発生するガスは、水素ガス及び一酸化炭素以外に、水蒸気及 び二酸化炭素を含み、熱交換器 83及び熱交換器 84で冷却 ·乾燥されて乾燥ガスと なり、内燃機関 81に供給される。内燃機関 81に供給される乾燥ガスは、図 8及び図 9 に示す発電装置での燃料電池 61の燃料極に供給されるガスに比べて水素ガスの濃 度が低いものの、内燃機関 81は燃料電池 61ほどの高濃度の水素ガスを必要とはし ないので、内燃機関 81及び発電機 82は効率良く電力を出力することができる。内燃 機関 81から排出する高温の排気ガスは、熱交換器 85で空気を予熱した後、前述の ように熱出力となる。  [0082] The gas generated by the gasification reactor 51 contains water vapor and carbon dioxide in addition to hydrogen gas and carbon monoxide, and is cooled and dried by the heat exchanger 83 and the heat exchanger 84 to become a dry gas. Is supplied to the internal combustion engine 81. The dry gas supplied to the internal combustion engine 81 has a lower hydrogen gas concentration than the gas supplied to the fuel electrode of the fuel cell 61 in the power generator shown in FIGS. 8 and 9, but the internal combustion engine 81 is a fuel. Since the hydrogen gas at a concentration as high as that of the battery 61 is not required, the internal combustion engine 81 and the generator 82 can output power efficiently. The hot exhaust gas discharged from the internal combustion engine 81 becomes a heat output as described above after the air is preheated by the heat exchanger 85.
[0083] 以上に説明した如ぐ図 10に構成例を示した本発明の発電装置は、電力及び熱を 出力するコジェネレーションを実現することができる。コジェネレーションの実現によりAs described above, the power generation device of the present invention shown in FIG. Output cogeneration can be realized. By realizing cogeneration
、炭素担持体から得られるエネルギーの利用効率を向上させることができる。コジェ ネレーシヨンを実現した本発明の発電装置は、オフィスビル、病院、又は集合住宅等 の各種の施設で利用することが可能である。内燃機関 81を用いる本発明の発電装 置は、図 8及び図 9に示す燃料電池 61を用レ、た発電装置に比べて低コストであるの で、実用化がより容易となる。 The utilization efficiency of energy obtained from the carbon carrier can be improved. The power generation apparatus of the present invention that realizes cogeneration can be used in various facilities such as office buildings, hospitals, and apartment houses. Since the power generation apparatus of the present invention using the internal combustion engine 81 is lower in cost than the power generation apparatus using the fuel cell 61 shown in FIGS. 8 and 9, it can be put into practical use more easily.
[0084] また図 10に構成例を示した本発明の発電装置は、酸素を含む空気をガス化反応 器 51内へ供給することにより、ガス化反応器 51を内熱式とすることが可能となり、ガス 化反応器 51に対する外部からの熱の供給が不必要となる。なお、通常の空気ではな ぐ酸素ガス又は酸素富化空気をガス化反応器 51へ供給する構成としてもよい。これ らの場合でも、ガス化反応器 51を内熱式とし、効率良く炭素担持体のエネルギーを 利用することができる。また本発明では、内燃機関 81からの排気ガスの熱で水蒸気 を発生させ、発生した水蒸気で蒸気タービンを駆動させることによって更なる発電を 行う複合発電を実現することも可能である。以上の如ぐコジェネレーションを実現し た本発明の発電装置により、ノくィォマス起源のエネルギーを高効率で利用すること が可能となる。  In addition, the power generation device of the present invention whose configuration example is shown in FIG. 10 can make the gasification reactor 51 an internal heating type by supplying air containing oxygen into the gasification reactor 51. Therefore, it is not necessary to supply heat to the gasification reactor 51 from the outside. Note that oxygen gas or oxygen-enriched air, which is not normal air, may be supplied to the gasification reactor 51. Even in these cases, the gasification reactor 51 can be of the internal heat type, and the energy of the carbon support can be used efficiently. In the present invention, it is also possible to realize a combined power generation in which steam is generated by the heat of the exhaust gas from the internal combustion engine 81 and the steam turbine is driven by the generated steam to further generate power. With the power generation device of the present invention that realizes the cogeneration as described above, it is possible to use the energy derived from the biomass with high efficiency.
[0085] (チヤ一の利用形態)  [0085] (Cheer use form)
本発明の炭素担持体の製造方法により副産物として製造されるチヤ一は、炭素質 固体を主成分とし、タールを含まない。従って、チヤ一を燃料として利用することによ り、バイオマスを直接に燃料として利用した場合の熱効率の悪さ並びにタール及び 煤塵の発生等の問題を解決することができる。例えば、スターリングエンジン等の外 燃機関を用いた熱供給システム、発電システム又はコジェネレーションシステムにお ける良質な燃料としてチヤ一を利用することができる。  The chia produced as a by-product by the method for producing a carbon carrier of the present invention contains a carbonaceous solid as a main component and does not contain tar. Therefore, by using chia as fuel, problems such as poor thermal efficiency and generation of tar and soot when biomass is directly used as fuel can be solved. For example, the chia can be used as a high-quality fuel in a heat supply system, power generation system or cogeneration system using an external combustion engine such as a Stirling engine.
[0086] また、本発明で製造されるチヤ一は、炭素担持体と同様に表面が炭素質固体であ るので、炭素担持体と同様に、水性ガス化反応による水素発生源としての利用が可 能である。即ち、図 8、図 9又は図 10に構成例を示した発電装置において、炭素担持 体に換えてチヤ一を利用した発電装置を構成することも可能である。  [0086] Further, since the surface of the cheat produced according to the present invention is a carbonaceous solid like the carbon support, it can be used as a hydrogen generation source by the water gasification reaction as with the carbon support. Yes, it is possible. That is, in the power generation apparatus shown in FIG. 8, FIG. 9, or FIG. 10, it is possible to configure a power generation apparatus using a chi-cha instead of the carbon support.
[0087] 図 11は、チヤ一を利用した発電装置の構成例の一部分を示す模式的断面図であ る。ガス化反応器 91内には、チヤ一が供給されてチヤ一の集積物が形成されている 。チヤ一が集積したガス化反応器 91内には、高温の水蒸気が供給され、炭素質固体 を主成分とするチヤ一に高温の水蒸気が接触することにより、水蒸気と炭素との間で 水性ガス化反応が起こり、水素ガス及び一酸化炭素が発生する。発生した水素ガス 及び一酸化炭素を含むガスは、ガス化反応器 91外へ排出される。発生した水素ガス 及び一酸化炭素を含むガスを利用するための構成、及びガス化反応器 91へ水蒸気 を供給するための構成は、図 8、図 9又は図 10に構成例を示した発電装置と同様で あり、その説明を省略する。なお、水蒸気と共に、空気、酸素ガス又は酸素富化空気 等の酸素を含む空気をガス化反応器 91へ供給する構成としてもよい。発生した水素 ガス及び一酸化炭素を含むガスは、前述の如ぐ燃料電池又は内燃機関で利用する ことにより発電又はコジェネレーションを実行することができる。 FIG. 11 is a schematic cross-sectional view showing a part of a configuration example of a power generation device using a chia. The In the gasification reactor 91, a cheat is supplied to form a stack of chews. In the gasification reactor 91 in which the cheers are accumulated, high-temperature steam is supplied, and the high-temperature steam comes into contact with the chief, which is mainly composed of carbonaceous solids, so that water gas is generated between the steam and the carbon. A hydrogenation reaction occurs, and hydrogen gas and carbon monoxide are generated. The generated hydrogen gas and gas containing carbon monoxide are discharged out of the gasification reactor 91. The configuration for using the generated hydrogen gas and gas containing carbon monoxide and the configuration for supplying water vapor to the gasification reactor 91 are shown in FIG. 8, FIG. 9, or FIG. The explanation is omitted. Note that air containing oxygen such as air, oxygen gas, or oxygen-enriched air may be supplied to the gasification reactor 91 together with water vapor. The generated hydrogen gas and gas containing carbon monoxide can be used in a fuel cell or an internal combustion engine as described above to generate power or cogeneration.
[0088] ガス化反応器 91の下側には、ロータリーバルブ 92が設けられており、ロータリーバ ルブ 92の下方には回収器 93が設けられている。ロータリーバルブ 92が所定の回転 速度で回転することにより、水性ガス化反応後のチヤ一が所定のレートでガス化反応 器 91から排出され、回収器 93に回収される。ガス化反応器 91で完全に水性ガス化 が行われた場合は、チヤ一に含まれる炭素は完全にガス化され、チヤ一は灰となる。 この場合は、回収器 93は灰を回収する。  A rotary valve 92 is provided below the gasification reactor 91, and a collector 93 is provided below the rotary valve 92. By rotating the rotary valve 92 at a predetermined rotational speed, the chew after the water gasification reaction is discharged from the gasification reactor 91 at a predetermined rate and collected in the recovery unit 93. When water gasification is completely performed in the gasification reactor 91, the carbon contained in the chia is completely gasified and the chia becomes ash. In this case, the collector 93 collects ash.
[0089] 以上に説明したように、本発明の副産物であるチヤ一は、良質な燃料として利用す ることができると共に、水性ガス化反応による水素ガス発生源として利用することも可 能であり、バイオマス起源のエネルギーを高効率で利用することが可能となる。  [0089] As described above, the chia which is a by-product of the present invention can be used as a high-quality fuel and can also be used as a hydrogen gas generation source by a water gasification reaction. It is possible to use biomass-derived energy with high efficiency.

Claims

請求の範囲 The scope of the claims
[1] メソ多孔質粒子の表面に、炭素を主成分とする炭素質固体が付着してなることを特 徴とする炭素担持体。  [1] A carbon support characterized in that a carbonaceous solid mainly composed of carbon adheres to the surface of mesoporous particles.
[2] 前記炭素質固体は、前記メソ多孔質粒子の 1グラム当たり 20ミリモル以上の炭素を 含むことを特徴とする請求項 1に記載の炭素担持体。  [2] The carbon carrier according to claim 1, wherein the carbonaceous solid contains 20 mmol or more of carbon per gram of the mesoporous particles.
[3] 前記メソ多孔質粒子の比表面積は、 1グラム当たり 200平方メートル以上であること を特徴とする請求項 1又は 2に記載の炭素担持体。 [3] The carbon support according to claim 1 or 2, wherein the mesoporous particles have a specific surface area of 200 square meters or more per gram.
[4] 前記メソ多孔質粒子は、酸化アルミニウムを主成分とすることを特徴とする請求項 1 乃至 3のいずれか一つに記載の炭素担持体。 [4] The mesoporous particles, carbon support according to any one of claims 1 to 3, characterized in that aluminum oxide as a main ingredient.
[5] 前記メソ多孔質粒子は、表面に酸点を有する γ —アルミナで構成されていることを 特徴とする請求項 4に記載の炭素担持体。  5. The carbon support according to claim 4, wherein the mesoporous particles are composed of γ-alumina having acid sites on the surface.
[6] 請求項 1乃至 5のいずれか一つに記載の炭素担持体を製造する方法であって、 生物由来有機物を 400°C以上 1000°C以下で熱分解し、 [6] A method for producing the carbon carrier according to any one of claims 1 to 5, wherein the organic material of biological origin is pyrolyzed at 400 ° C or higher and 1000 ° C or lower,
熱分解によって発生した気相成分を 400°C以上 1000°C以下でメソ多孔質粒子に 接触させることによって、メソ多孔質粒子の表面に炭素質固体を析出させること を特徴とする炭素担持体の製造方法。  A carbon support characterized by depositing a carbonaceous solid on the surface of mesoporous particles by bringing the gas phase component generated by pyrolysis into contact with mesoporous particles at 400 ° C or higher and 1000 ° C or lower. Production method.
[7] 請求項 1乃至 5のいずれか一つに記載の炭素担持体を製造する方法であって、 生物由来有機物を 400°C以上 1000°C以下で熱分解し、 [7] A method for producing a carbon carrier according to any one of claims 1 to 5, wherein a biological organic material is pyrolyzed at 400 ° C or higher and 1000 ° C or lower,
熱分解によって発生した気相成分を、 400°C以上 1000°C以下で複数のメソ多孔 質粒子が集積した集積物に浸透させ、  Vapor phase components generated by pyrolysis are permeated into an accumulation of a plurality of mesoporous particles at 400 ° C or higher and 1000 ° C or lower,
前記集積物から、前記気相成分を浸透させたメソ多孔質粒子を取り出すこと を特徴とする炭素担持体の製造方法。  A method for producing a carbon carrier, wherein mesoporous particles infiltrated with the gas phase component are taken out from the aggregate.
[8] 前記集積物に浸透させた後の気相成分を回収することを特徴とする請求項 7に記 載の炭素担持体の製造方法。 [8] The method for producing a carbon carrier according to [7], wherein the vapor phase component after permeating into the aggregate is recovered.
[9] 熱分解により生物由来有機物から気相成分が分離した後の残渣を回収することを 特徴とする請求項 7又は 8に記載の炭素担持体の製造方法。 [9] The method for producing a carbon carrier according to [7] or [8], wherein the residue after the vapor phase component is separated from the biological organic material by thermal decomposition is recovered.
[10] 生物由来有機物を熱分解する際の温度及び/又は熱分解によって発生した気相 成分を前記集積物に浸透させる際の温度を制御することにより、生物由来有機物に 含まれる炭素を炭素担持体が収得する収率を調整することを特徴とする請求項 7乃 至 9のいずれか一つに記載の炭素担持体の製造方法。 [10] By controlling the temperature at which the biological organic material is thermally decomposed and / or the temperature at which the gas phase component generated by the thermal decomposition penetrates into the aggregate, the biological organic material is The method for producing a carbon carrier according to any one of claims 7 to 9, wherein a yield of the carbon carrier to obtain contained carbon is adjusted.
[11] 請求項 1乃至 5のいずれか一つに記載の炭素担持体を製造する装置であって、 生物由来有機物を 400°C以上 1000°C以下で熱分解する熱分解手段と、 該熱分解手段によって発生した気相成分を、 400°C以上 1000°C以下で複数のメ ソ多孔質粒子が集積した集積物に浸透させる浸透手段と、 [11] An apparatus for producing the carbon carrier according to any one of claims 1 to 5, wherein a pyrolysis means for pyrolyzing a biological organic substance at 400 ° C or higher and 1000 ° C or lower; A permeation means for allowing a gas phase component generated by the decomposition means to permeate into an accumulation of a plurality of mesoporous particles at 400 ° C or higher and 1000 ° C or lower;
前記集積物から、前記気相成分を浸透させたメソ多孔質粒子を取り出す手段と を備えることを特徴とする炭素担持体の製造装置。  And a means for taking out mesoporous particles infiltrated with the gas phase component from the accumulated product.
[12] 前記浸透手段が前記集積物に浸透させた後の少なくとも一部の気相成分を回収 する手段と、 [12] means for recovering at least a part of the gas phase component after the infiltration means permeates the accumulation;
該手段が回収した前記気相成分を燃焼させる手段と、  Means for burning the gas phase component recovered by the means;
該手段が燃焼により発生させた熱を利用して前記熱分解手段及び前記浸透手段 の温度条件を制御する手段と  Means for controlling the temperature conditions of the thermal decomposition means and the permeation means using heat generated by combustion by the means;
を更に備えることを特徴とする請求項 11に記載の炭素担持体の製造装置。  The carbon carrier manufacturing apparatus according to claim 11, further comprising:
[13] 請求項 1乃至 5のいずれか一つに記載の炭素担持体に、温度が 700°C以上の水 蒸気を含むガスを接触させ、 [13] A gas containing water vapor having a temperature of 700 ° C or higher is brought into contact with the carbon support according to any one of claims 1 to 5,
発生する水素ガス及び/又は一酸化炭素ガスを回収すること  Recovering the generated hydrogen gas and / or carbon monoxide gas
を特徴とするガス生成方法。  A gas generation method characterized by the above.
[14] 請求項 1乃至 5のいずれか一つに記載の炭素担持体を集積した集積物に、温度が 700°C以上の水蒸気を含むガスを通流させ、 [14] A gas containing water vapor having a temperature of 700 ° C or higher is allowed to flow through the accumulation in which the carbon support according to any one of claims 1 to 5 is accumulated,
発生する水素ガス及び/又は一酸化炭素ガスを回収し、  Collect the generated hydrogen gas and / or carbon monoxide gas,
回収した水素ガス及び Z又は一酸化炭素ガスを燃料電池の燃料極へ供給し、 前記水素ガス及び Z又は一酸化炭素ガスを燃料極へ供給した燃料電池により発 電を行うこと  Supply the recovered hydrogen gas and Z or carbon monoxide gas to the fuel electrode of the fuel cell, and generate electricity using the fuel cell supplied with the hydrogen gas and Z or carbon monoxide gas to the fuel electrode.
を特徴とする発電方法。  A power generation method characterized by the above.
[15] 燃料極を有する燃料電池と、 [15] a fuel cell having a fuel electrode;
請求項 1乃至 5のいずれか一つに記載の炭素担持体を集積した集積物に、温度が 700°C以上の水蒸気を含むガスを通流させる手段と、 該手段から発生する水素ガス及び/又は一酸化炭素ガスを回収する手段と、 該手段が回収した水素ガス及び/又は一酸化炭素ガスを前記燃料電池の燃料極 へ供給する手段と、 Means for causing a gas containing water vapor having a temperature of 700 ° C or higher to flow through the accumulation of the carbon support according to any one of claims 1 to 5; Means for recovering hydrogen gas and / or carbon monoxide gas generated from the means; means for supplying the hydrogen gas and / or carbon monoxide gas recovered by the means to the fuel electrode of the fuel cell;
該手段により前記水素ガス及び/又は一酸化炭素ガスを燃料極へ供給された前 記燃料電池が発電する電力を出力する手段と  Means for outputting electric power generated by the fuel cell supplied with the hydrogen gas and / or carbon monoxide gas to the fuel electrode by the means;
を備えることを特徴とする発電装置。  A power generation device comprising:
[16] 請求項 1乃至 5のいずれか一つに記載の炭素担持体を集積した集積物に、温度が 700°C以上の水蒸気及び酸素を含むガスを通流させ、 [16] A gas containing water vapor and oxygen having a temperature of 700 ° C or higher is allowed to flow through the aggregate on which the carbon carrier according to any one of claims 1 to 5 is accumulated,
発生する水素ガス及び/又は一酸化炭素ガスを内燃機関へ供給し、  Supplying the generated hydrogen gas and / or carbon monoxide gas to the internal combustion engine,
前記水素ガス及び Z又は一酸化炭素ガスを供給された前記内燃機関の動力により 発電を行うこと  Power generation is performed by the power of the internal combustion engine supplied with the hydrogen gas and Z or carbon monoxide gas.
を特徴とする発電方法。  A power generation method characterized by the above.
[17] 請求項 1乃至 5のいずれか一つに記載の炭素担持体を集積した集積物に、温度が 700°C以上の水蒸気及び酸素を含むガスを通流させる手段と、 [17] means for causing a gas containing water vapor and oxygen having a temperature of 700 ° C or higher to flow through the accumulation of the carbon support according to any one of claims 1 to 5;
該手段から発生する水素ガス及び/又は一酸化炭素ガスを燃焼させて動力を発 生する内燃機関と、  An internal combustion engine for generating power by burning hydrogen gas and / or carbon monoxide gas generated from the means;
該内燃機関が発生する動力により発電を行う手段と  Means for generating electricity by power generated by the internal combustion engine;
を備えることを特徴とする発電装置。  A power generation device comprising:
PCT/JP2007/053734 2006-03-02 2007-02-28 Carbon support, method of producing carbon support, apparatus for producing carbon support, gas formation method, power generation method and power generator WO2007099989A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006056746A JP2009132746A (en) 2006-03-02 2006-03-02 Carbon support, method for producing carbon support, device for producing carbon support, method for producing gas, method of power generation and power generator
JP2006-056746 2006-03-02

Publications (1)

Publication Number Publication Date
WO2007099989A1 true WO2007099989A1 (en) 2007-09-07

Family

ID=38459090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053734 WO2007099989A1 (en) 2006-03-02 2007-02-28 Carbon support, method of producing carbon support, apparatus for producing carbon support, gas formation method, power generation method and power generator

Country Status (2)

Country Link
JP (1) JP2009132746A (en)
WO (1) WO2007099989A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009096895A (en) * 2007-10-17 2009-05-07 Nippon Steel Engineering Co Ltd Gasification method and gasification apparatus
JP2010013333A (en) * 2008-07-07 2010-01-21 Tokyo Gas Co Ltd Separation, recovery and treatment apparatus of carbon dioxide in atmosphere
JP2010202689A (en) * 2009-02-27 2010-09-16 Bio Coke Lab Co Ltd Gasification method, power generation method, gasification device, power generation device, and organic material
JP2011089136A (en) * 2011-01-26 2011-05-06 Bio Coke Lab Co Ltd Gasification method, power generation method, gasification apparatus, generator, and substance containing organic material and water-soluble organic material as principal components
JP2011093719A (en) * 2009-10-27 2011-05-12 Tokyo Gas Co Ltd Method for producing and utilizing hydrogen
US8790548B2 (en) 2006-03-15 2014-07-29 University Of York Carbonaceous materials
US9457338B2 (en) 2007-09-19 2016-10-04 The University Of York Polysaccharide derived materials

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5679160B2 (en) * 2010-07-12 2015-03-04 バイオコーク技研株式会社 Carbon carrier, carbon carrier production method, carbon carrier production device, gas generation method, gas generation device, power generation method, and power generation device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005199192A (en) * 2004-01-16 2005-07-28 Mitsubishi Materials Corp Waste high-temperature treatment-generated gas power facilities

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005199192A (en) * 2004-01-16 2005-07-28 Mitsubishi Materials Corp Waste high-temperature treatment-generated gas power facilities

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAYASHI J. ET AL.: "G-04 Gan'yu Kalium Shokubai Riyonetsu Kagaku Saisei Biomass Kaishitsu Process ni Kansuru Kenkyu", HEISEI 17 NENDO KOKUSAI KYODO KENKYU JOSEI JIGYO (NEDO GRANT) SEIKA HOKOKUKAI (HEISEI 17 NEN 12 GATSU 16 NICHI), 16 December 2005 (2005-12-16), XP003017043, Retrieved from the Internet <URL:http://www.nedo.go.jp/informations/other/171216_1/g-04_2002gp004j_y.pdf> *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8790548B2 (en) 2006-03-15 2014-07-29 University Of York Carbonaceous materials
US9457338B2 (en) 2007-09-19 2016-10-04 The University Of York Polysaccharide derived materials
JP2009096895A (en) * 2007-10-17 2009-05-07 Nippon Steel Engineering Co Ltd Gasification method and gasification apparatus
JP2010013333A (en) * 2008-07-07 2010-01-21 Tokyo Gas Co Ltd Separation, recovery and treatment apparatus of carbon dioxide in atmosphere
JP2010202689A (en) * 2009-02-27 2010-09-16 Bio Coke Lab Co Ltd Gasification method, power generation method, gasification device, power generation device, and organic material
JP2011093719A (en) * 2009-10-27 2011-05-12 Tokyo Gas Co Ltd Method for producing and utilizing hydrogen
JP2011089136A (en) * 2011-01-26 2011-05-06 Bio Coke Lab Co Ltd Gasification method, power generation method, gasification apparatus, generator, and substance containing organic material and water-soluble organic material as principal components

Also Published As

Publication number Publication date
JP2009132746A (en) 2009-06-18

Similar Documents

Publication Publication Date Title
Xu et al. Mini-review on char catalysts for tar reforming during biomass gasification: the importance of char structure
US10854903B2 (en) Multi-reaction process for forming a product gas from solid carbonaceous material
Shen et al. Advances in in situ and ex situ tar reforming with biochar catalysts for clean energy production
WO2007099989A1 (en) Carbon support, method of producing carbon support, apparatus for producing carbon support, gas formation method, power generation method and power generator
Asadullah et al. Demonstration of real biomass gasification drastically promoted by effective catalyst
CN102424359B (en) Method for preparing synthetic gas by three-phase type biomass pyrolysis-gasification-catalytic reforming
JP4267968B2 (en) Biomass processing method
JP2007229548A (en) Reforming catalyst acted in biomass pyrolysis gasification process, its manufacturing method and modification process using the reforming catalyst, biomass pyrolytic gasifying device, and method for regenerating catalyst
CN103011072B (en) Method and device for preparing high-purity hydrogen from biomass
JP4547244B2 (en) Organic gasifier
JP5030320B2 (en) Biomass methanol synthesis system
WO2008013790A2 (en) Conversion of carbonaceous materials to synthetic natural gas by reforming and methanation
KR101995128B1 (en) Microwave reforming apparatus for gas reforming
JP5460970B2 (en) Woody biomass gas reforming system
JP5384087B2 (en) Woody biomass gas reforming system
CN109831927B (en) Method and power plant for generating electricity and producing H2 gas comprising a Solid Oxide Fuel Cell (SOFC)
JP7140341B2 (en) Hydrogen production method using biomass as raw material
JP4588268B2 (en) Processing method and processing system for crude coke oven gas
CN103484163B (en) Biomass double-mode reforming gasifying preparation method for pure synthesis gas
Kim et al. Low-temperature catalytic conversion of lignite: 3. Tar reforming using the supported potassium carbonate
US10442689B2 (en) Microwave reforming apparatus for gas reforming
Liu et al. Less defective graphene aerogel and its application in microwave-assisted biomass pyrolysis to prepare H 2-rich gas
JP4295793B2 (en) Biomass gasifier
CN105925282A (en) Biomass thermal conversion device and method based on carbon cycle
WO2020166659A1 (en) Method for producing biomass gas, method for producing hydrogen, system for producing biomass gas, and system for producing hydrogen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07737490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP