JP2004111882A - Light emitting apparatus - Google Patents

Light emitting apparatus Download PDF

Info

Publication number
JP2004111882A
JP2004111882A JP2002276184A JP2002276184A JP2004111882A JP 2004111882 A JP2004111882 A JP 2004111882A JP 2002276184 A JP2002276184 A JP 2002276184A JP 2002276184 A JP2002276184 A JP 2002276184A JP 2004111882 A JP2004111882 A JP 2004111882A
Authority
JP
Japan
Prior art keywords
light
light emitting
phosphor
resin layer
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002276184A
Other languages
Japanese (ja)
Inventor
▼高▲橋 祐次
Yuji Takahashi
Shigeru Fukumoto
福本 滋
Katsunori Arakane
荒金 克学
Kenichi Koya
小屋 賢一
Yoshinobu Yamanouchi
山之内 好信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Panasonic Holdings Corp
Original Assignee
Toyoda Gosei Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2002276184A priority Critical patent/JP2004111882A/en
Priority to US10/424,137 priority patent/US6791116B2/en
Priority to KR1020030026923A priority patent/KR100617432B1/en
Priority to TW092110097A priority patent/TW595018B/en
Priority to CN03123081A priority patent/CN1455462A/en
Publication of JP2004111882A publication Critical patent/JP2004111882A/en
Priority to KR1020050086077A priority patent/KR100616053B1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting apparatus even with a tilted side wall capable of obtaining uniform color luminescence on a light emission observing face. <P>SOLUTION: A low concentration resin layer 24 filled with a translucent resin up to an upper face position of a blue LED 17 and a high concentration resin layer 25 filled with a translucent resin on the low concentration resin layer 24 are formed in a cup 12a acting as a reflecting mirror, and a phosphor 27 is mixed in the layers 24, 25 so that the phosphor concentration of the high concentration resin layer 25 is higher than that of the low concentration resin layer 24. Further, the concentration of the phosphor 27 mixed in the layers 24, 25 is distributed in a way that a value multiplying the concentration of the phosphor 27 with an optical path length of the light emitted from the blue LED 17 to reach the upper face of the high concentration resin layer 25 is almost constant. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、発光素子と蛍光体を有して発光する発光装置に関し、例えばLEDディスプレイ、バックライト装置、信号機、照光式スイッチ、各種センサ、各種インジケータ等に適用される発光装置に関する。
【0002】
【従来の技術】
従来の発光素子と蛍光体を有して発光する発光装置として、例えば先端部分に凹部が形成されたリードフレームを用い、その凹部底面に、発光素子であるLEDを実装し、さらに、そのLEDから発光された光を吸収して他の波長の光に波長変換を行う蛍光体を透明エポキシ樹脂等の樹脂に混入し、この蛍光体混入樹脂を、LEDを覆って凹部内一杯に充填したものがある。
【0003】
このような構成の発光装置において、例えばLEDに青色LEDを用い、蛍光体に青色LEDからの青色の光を黄色に波長変換する蛍光体を用いれば、双方の色の混色によって、発光観測面で白色を均一に発光させることが可能となる。
【0004】
しかし、この発光装置においては、青色LEDの直上方向へ出射される光と、青色LEDの上面や側面から斜めに出射、或いは出射後に凹部内壁で反射される光とでは、樹脂内を通過する光路長が異なる。光路長が異なると樹脂内での蛍光体の通過量が異なって外部放射に至るため、発光観測面から見た場合、青色LEDの直上部分が白く、その周囲が黄色に見えると言った色むらが生じる。
【0005】
特に最近では、発光装置として砲弾型やSMD(Surface Mounted Device)型などの小型化や薄型化のニーズが高く、このような発光装置を実現する場合、LEDを覆って凹部に充填される樹脂中の蛍光体濃度を高くせざるを得ない。蛍光体を高濃度化した場合、上記の光路長差による蛍光体の通過量の差がより大きくなるので、より色むらが生じることになる。
【0006】
このような色むらを無くすことが可能な発光装置として特許第3065263号公報の発光装置がある。この公報の発光装置は、底面にLEDが実装された凹部に、LEDを覆い且つ発光観測面からみた形状が窪んだ凹球面状の第1の樹脂を充填し、さらに第1の樹脂上に蛍光体が混入された第2の樹脂を充填することによって、上記蛍光体の通過量の差を実質的に低減させ、色むらを低減させるものである。
【0007】
【発明が解決しようとする課題】
ところで、上述した公報の発光装置においては、蛍光体を含有する第2の樹脂の厚さが、LED直上が最も厚く側壁に向かうに従って薄くなっている。側壁が傾斜している場合、LEDから出射された後、その傾斜壁で反射され直上へ向かう光は、第2の樹脂の薄い部分を通過するため、蛍光体の通過量が他の部分よりも少なくなる。つまり、蛍光体の通過量に差が生じるので、色むらが生じることになる。言い換えれば、発光観測面において均一な色の発光を得ることができないという問題がある。
【0008】
本発明は、かかる点に鑑みてなされたものであり、傾斜した側壁を有する発光装置であっても、発光観測面において均一な色の発光を得ることができる発光装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記課題を解決するために、本発明の発光装置は、凹状の反射鏡内に固定された窒化物半導体から成る発光素子と、この発光素子で発光された光を吸収し、この吸収した光と異なる波長の光を発光する蛍光体とを有する発光装置において、前記反射鏡内に前記発光素子を覆って透光性樹脂を充填し、この透光性樹脂の全体に前記蛍光体を混入し、この混入された蛍光体の濃度を、前記発光素子で発光された光が前記透光性樹脂の上面に至る光路長に前記濃度を掛けた値がほぼ一定となるように分布させたことを特徴としている。
【0010】
また、本発明の発光装置は、凹状の反射鏡内に固定された窒化物半導体から成る発光素子と、この発光素子で発光された光を吸収し、この吸収した光と異なる波長の光を発光する蛍光体とを有する発光装置において、前記反射鏡内に、前記発光素子の上面位置まで透光性樹脂を充填した第1の樹脂層と、この第1の樹脂層の上に透光性樹脂を充填した第2の樹脂層とを形成し、前記第1および第2の樹脂層に、前記第1の樹脂層よりも前記第2の樹脂層の蛍光体濃度が高くなるように前記蛍光体を混入したことを特徴としている。
【0011】
また、前記第1および第2の樹脂層に混入された前記蛍光体の濃度を、前記発光素子で発光された光が前記第2の樹脂層の上面に至る光路長に前記濃度を掛けた値がほぼ一定となるように分布させたことを特徴としている。
【0012】
また、前記第1および第2の樹脂層の厚さを、前記発光素子で発光された光が前記第2の樹脂層の上面に至る光路長に前記濃度を掛けた値がほぼ一定となるように形成したことを特徴としている。
【0013】
また、前記第1の樹脂層の上面が、前記発光素子の上面の縁から前記反射鏡の内壁間にあって弧状に窪んだ環状を成していることを特徴としている。
【0014】
また、前記第1の樹脂層に、光を乱反射する反射剤を混入したことを特徴としている。
【0015】
また、前記発光素子は、フリップチップ型発光ダイオードであることを特徴としている。
【0016】
また、前記発光素子は、フェイスアップ型発光ダイオードであり、前記接着剤での固定面に光の反射膜が形成されていることを特徴としている。
【0017】
前記発光素子は、前記蛍光体が混入された接着剤によって固定されていることを特徴としている。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
【0019】
(第1の実施の形態)
図1(a)は、本発明の第1の実施の形態に係るLEDランプの構成を示す断面図、(b)はLEDランプに用いられた発光素子(LED)からの光の光路長を説明する図である。
【0020】
この図1(a)に示すLEDランプ10は、砲弾型のものであり、電気的に絶縁された2つのリードフレーム12,13の内、一方のリードフレーム12の先端部分にカップ12aを有するメタルステム14が設けられている。カップ12aは、その表面が光を反射する反射鏡となっている。カップ12aの底面には、過電圧保護素子16に青色LED17をフリップチップ実装したフリップチップ型LEDが搭載されている。即ち、カップ12aの底面に導電性ペーストによるマウント18で過電圧保護素子16が固着され、この過電圧保護素子16の上に、波長450〜550nmの青色LED17がフリップチップ実装されている。
【0021】
青色LED17の層構成は、図2に示すように、透明基板として例えばサファイア基板17aを有し、このサファイア基板17a上に、MOCVD法等により窒化物半導体層として例えば、バッファ層17b、n型コンタクト層17c、n型クラッド層17d、発光する層を有する層17e、p型クラッド層17f、およびp型コンタクト層17gを順次形成し、スパッタリング法,真空蒸着法等により、p型コンタクト層17g上の全面に非透光性光反射電極17h、非透光性光反射電極17h上の一部にp電極17i、およびn型コンタクト層17c上の一部にn電極17jを形成したものである。
【0022】
この青色LED17のフリップチップ実装は、図1に示すように、サファイア基板17aの下面を最上面とし、p電極17iを金バンプ19を介して過電圧保護素子16のn層上の電極16aに接続し、n電極17jを金バンプ20を介して過電圧保護素子16のp層上の電極16bに接続することによって成されている。また、過電圧保護素子16の電極16bが、ボンディングワイヤ22によってリードフレーム13に接続されている。
【0023】
また、カップ12aには、青色LED17の最上面の位置まで、後述する低濃度樹脂層24が形成され、この低濃度樹脂層24上に高濃度樹脂層25がカップ12aに盛り上がるように形成されている。詳細には、青色LED17の最上面の周囲に環状に形成された低濃度樹脂層24の上面は、その断面が弧状に窪んだ形状を成している。高濃度樹脂層25の上面は、青色LED17の直上位置が最も盛り上がった凸状を成している。
【0024】
また、低濃度樹脂層24は、青色LED17で発光された青色光を吸収して黄色の光を発光する蛍光体27を低濃度でエポキシ樹脂やシリコーン樹脂等の透光性樹脂に混入したものであり、高濃度樹脂層25は、蛍光体27を高濃度で透光性樹脂に混入したものである。蛍光体27は、Ce:YAG(イットリウム・アルミニウム・ガーネット系蛍光体)から成る。
【0025】
このような各層24,25における蛍光体27の濃度又は形状は、青色LED17で発光された光が、高濃度樹脂層25と外部樹脂29との界面に至る光路長と、蛍光体27の濃度を掛けた値がほぼ一定となるように調整されている。
例えば、図1(b)に示す3通りの光路A,B,Cの場合に、光路長×濃度がほぼ一定となっている。但し、(b)において、l〜lは光路長、dは高濃度、dは低濃度、Cは弧状部分、Cは凸状部分を示す。この場合に、青色LED17の直上方向に出射された光の光路Aでは、A=l×dとなる。また、青色LED17の側面から出射され、さらにカップ12a側壁で反射された光の光路Bでは、B=(l+l)d+l×dとなる。さらに、青色LED17の側面から出射された光が、低濃度樹脂層24を通過した後、高濃度樹脂層25の弧状部分を通過し、さらに低濃度樹脂層24を通過してカップ12aの側壁で反射され、この反射光が低濃度樹脂層24を介して高濃度樹脂層25を通る光の光路Cでは、C=(l+l+l)d+(l+l)dとなる。この場合に、A≒B≒Cの関係となっている。
【0026】
蛍光体27が混ざった樹脂を作製する場合、例えば透光性樹脂である主剤・硬化剤を所定の比率にて調合したのち撹拌・脱泡し、この樹脂にアエロジル+シランカップリング剤を調合して充分に混練することにより作製する。この樹脂で各層24,25を形成する場合、例えばカップ12aの深さが0.35mmで、フリップチップ型LEDの高さが0.25mmであるとすると、低濃度樹脂層24の蛍光体27の濃度を20%、高濃度樹脂層25の濃度を60%とし、各々の硬化時間を120℃/1時間として各層24,25を形成する。
【0027】
また、カップ12aを有するメタルステム14の形成されたリードフレーム12と他方のリードフレーム13とが、モールド部材である外部樹脂29で封止されている。外部樹脂29は、透光性樹脂を砲弾型に固化したものである。
【0028】
このように構成されたLEDランプ10において、リードフレーム12,13に電圧を印加すると、青色LED17が青色の光を発光する。この青色の光は、青色LED17の直上方向へ出射される光と、青色LED17の上面や側面から斜めに出射、或いは出射後にカップ12a内壁で反射される光とでは、各層24,25を通過する光路長が異なる。
【0029】
しかし、各層24,25においては、その光路長×蛍光体27の濃度がほぼ一定となるように、蛍光体27の濃度又は各層24,25の形状が調整されているので、青色LED17から上記のように各方向に出射される光が、各層24,25の通過途中で蛍光体27をほぼ同じ量通過する。
【0030】
例えば、上記光路A,B,Cを、青色LED17で発光された光が通ることによって、何れの光路A〜Cにおいても蛍光体27の通過量がほぼ同じとなり、各光路における蛍光体27で波長変換された黄色光が、蛍光体27を通過しなかった青色光と混色されるので、LEDランプ10の発光観測面において均一な白色の発光を得ることができる。
なお、青色LED17のp型コンタクト層17g上の全面に非透光性光反射電極17hを形成したが、この非透光性光反射電極17hを透光性電極に置き換えることもできる。
【0031】
(第2の実施の形態)
図3は、本発明の第2の実施の形態に係るLEDランプの構成を示す断面図である。但し、この図3において図1の各部に対応する部分には同一符号を付し、その説明を省略する。
【0032】
この図3に示すLEDランプ30は、第1の実施の形態で説明したフリップチップ型LEDに代え、図2に示した青色LED17のサファイア基板17aの下面に光の反射膜42aを形成した青色LED42を、マウント18でカップ12aの底面にフェイスアップ方式で固着したものである。また、青色LED42のp電極17iとリードフレーム12が、ボンディングワイヤ21により接続され、n電極17jとリードフレーム13が、ボンディングワイヤ22により接続されている。この青色LED42では、直下方向へ発光された光は、反射膜42aで反射され、直上方向へ放射されるようになっている。
【0033】
また、カップ12aには、青色LED42の最上面の位置まで、低濃度樹脂層24が形成され、この低濃度樹脂層24上に高濃度樹脂層25がカップ12aに盛り上がるように形成されている。
【0034】
詳細には、青色LED42の最上面の周囲に環状に形成された低濃度樹脂層24の上面は、その断面が弧状に窪んだ形状を成している。高濃度樹脂層25の上面は、青色LED17の直上位置が最も盛り上がった凸状を成している。このような各層24,25における蛍光体27の濃度と形状は、青色LED42で発光された光が、高濃度樹脂層25と外部樹脂29との界面に至るまでの光路長と、蛍光体27の濃度を掛けた値がほぼ一定となるように調整されている。
【0035】
このように構成されたLEDランプ40においても、第1の実施の形態のLEDランプ10と同様な効果を奏する。
【0036】
即ち、リードフレーム12,13に電圧を印加すると、青色LED42が青色の光を発光する。この青色の光は、青色LED42の直上方向へ出射される光と、青色LED42の上面や側面から斜めに出射、或いは出射後にカップ12a内壁で反射される光とでは、各層24,25を通過する光路長が異なる。
【0037】
しかし、各層24,25においては、その光路長×蛍光体27の濃度がほぼ一定となるように、蛍光体27の濃度および各層24,25の形状が調整されているので、青色LED42から上記のように各方向に出射される光が、各層24,25の通過途中で蛍光体27をほぼ同じ量通過する。このような通過により黄色に波長変換された光が、蛍光体27を通過しなかった青色光と混色されるので、LEDランプ30の発光観測面において均一な白色の発光を得ることができる。
【0038】
(第3の実施の形態)
図4は、本発明の第3の実施の形態に係るLEDランプの構成を示す断面図である。但し、この図4において図3の各部に対応する部分には同一符号を付し、その説明を省略する。
【0039】
この図4に示すLEDランプ50は、第2の実施の形態で説明した青色LED42に代え、図2に示した青色LED17をマウント18でカップ12aの底面に固着し、マウント18にAgフィラーを含有すると共に、蛍光体27を混入したものである。つまり、青色LED17で直下方向へ発光された青色光は、マウント18中の蛍光体27で黄色の光に波長変換され、カップ12aの底面で直上又は斜め方向へ反射されるようになっている。
【0040】
従って、第2の実施の形態で説明したと同様な効果を得ることができる他、次のような効果を得ることが可能となる。即ち、直下方向へ発光された青色光が、一旦マウント18中の蛍光体27で黄色の光に波長変換され、この変換光が底面で直上又は斜め方向へ反射されるので、その分、蛍光体27での波長変換を行う必要が無くなり、高濃度樹脂層25の厚みを薄くすることができる。このように高濃度樹脂層25の厚みを薄くできれば、特にSMD型などのLEDランプでは、より薄型化を図ることが可能となる。
【0041】
以上説明した第1〜第3の実施の形態においては、低濃度樹脂層24に球状のガラスビーズなどの反射剤を混入させれば、光が乱反射するので、光の均一性を保持することができる。
【0042】
また、各実施の形態においては、低濃度樹脂層24と高濃度樹脂層25との2層に分けたが、層分けを行わず、カップ12aを満たした単一の透光性樹脂に、上記の光路長×蛍光体27の濃度がほぼ一定となるように、蛍光体27の混入濃度を徐々に変化させた形態としても良い。
【0043】
【発明の効果】
以上説明したように、本発明によれば、凹状の反射鏡内に透光性の接着剤で固定された発光素子を覆って、その反射鏡に透光性樹脂を充填し、この透光性樹脂の全体に蛍光体を混入し、この混入された蛍光体の濃度を、発光素子で発光された光が透光性樹脂の上面に至る光路長に濃度を掛けた値がほぼ一定となるように分布させたので、発光素子から各方向へ出射される光が透光性樹脂を通過する際にほぼ同じ量の蛍光体を通過する。このような通過により蛍光体で波長変換された光が、蛍光体を通過しなかった青色光と混色されるので、傾斜した側壁を有する発光装置であっても、発光装置の発光観測面において均一な発光を得ることができる。
【図面の簡単な説明】
【図1】(a)は、本発明の第1の実施の形態に係るLEDランプの構成を示す断面図、(b)はLEDランプに用いられた発光素子(LED)からの光の光路長を説明する図である。
【図2】上記LEDランプに用いられる青色LEDの層構成を示す図である。
【図3】本発明の第2の実施の形態に係るLEDランプの構成を示す断面図である。
【図4】本発明の第3の実施の形態に係るLEDランプの構成を示す断面図である。
【符号の説明】
10,40,50 LEDランプ
12,13 リードフレーム
12a カップ
14 メタルステム
16 過電圧保護素子
16a,16b 電極
17,42 青色LED
17a サファイア基板
17b バッファ層
17c n型コンタクト層
17d n型クラッド層
17e MQW活性層
17f p型クラッド層
17g p型コンタクト層
17h p電極
17i n電極
17j 透光性電極
18 マウント
19,20 金バンプ
21,22 ボンディングワイヤ
24 低濃度樹脂層
25 高濃度樹脂層
27 蛍光体
29 外部樹脂
42a 反射膜
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light emitting device having a light emitting element and a phosphor to emit light, and for example, to a light emitting device applied to an LED display, a backlight device, a traffic light, an illuminated switch, various sensors, various indicators, and the like.
[0002]
[Prior art]
As a conventional light emitting device that emits light having a light emitting element and a phosphor, for example, using a lead frame having a concave portion formed at the tip portion, mounting an LED that is a light emitting element on the bottom surface of the concave portion, further from the LED A phosphor that absorbs emitted light and converts the wavelength to light of another wavelength is mixed in a resin such as a transparent epoxy resin, and the phosphor-mixed resin is completely filled in the concave portion covering the LED. is there.
[0003]
In a light emitting device having such a configuration, for example, if a blue LED is used as an LED and a phosphor that converts the wavelength of blue light from the blue LED to yellow is used as the phosphor, a mixed color of both colors causes a light emission observation surface. It is possible to emit white light uniformly.
[0004]
However, in this light emitting device, the light emitted in the direction directly above the blue LED and the light emitted obliquely from the upper surface or side surface of the blue LED or reflected by the inner wall of the concave portion after the emission have an optical path passing through the resin. Lengths are different. If the optical path length is different, the amount of phosphor passing through the resin will be different, leading to external radiation, so when viewed from the light emission observation surface, the color directly above the blue LED is white and the surrounding area looks yellow. Occurs.
[0005]
In particular, recently, there is a strong need for miniaturization and thinning of a light emitting device such as a shell type or an SMD (Surface Mounted Device) type. In order to realize such a light emitting device, a resin filled in a concave portion covering an LED is required. The phosphor concentration must be increased. When the concentration of the fluorescent material is increased, the difference in the amount of light passing through the fluorescent material due to the difference in the optical path length becomes larger, so that more color unevenness occurs.
[0006]
As a light emitting device capable of eliminating such color unevenness, there is a light emitting device disclosed in Japanese Patent No. 3065263. In the light emitting device of this publication, a concave portion in which an LED is mounted on the bottom surface is filled with a first resin having a concave spherical shape that covers the LED and has a concave shape as viewed from a light emission observation surface, and further has a fluorescent material on the first resin. By filling the second resin into which the body is mixed, the difference in the amount of light passing through the phosphor is substantially reduced, and the color unevenness is reduced.
[0007]
[Problems to be solved by the invention]
By the way, in the light emitting device of the above-mentioned publication, the thickness of the second resin containing the phosphor is thickest immediately above the LED and becomes thinner toward the side wall. When the side wall is inclined, after the light is emitted from the LED, the light reflected by the inclined wall and traveling directly upward passes through the thin portion of the second resin, so that the amount of the phosphor passing therethrough is smaller than that of the other portions. Less. In other words, a difference occurs in the amount of light passing through the phosphor, so that color unevenness occurs. In other words, there is a problem that light emission of a uniform color cannot be obtained on the light emission observation surface.
[0008]
The present invention has been made in view of such a point, and an object of the present invention is to provide a light emitting device that can obtain uniform color light emission on a light emission observation surface even in a light emitting device having inclined side walls. I do.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, a light emitting device according to the present invention includes a light emitting element made of a nitride semiconductor fixed in a concave reflecting mirror, and light absorbed by the light emitting element. In a light-emitting device having a phosphor that emits light of different wavelengths, a light-transmitting resin is filled in the reflector to cover the light-emitting element, and the phosphor is mixed into the entire light-transmitting resin, The concentration of the mixed phosphor is distributed such that a value obtained by multiplying an optical path length of light emitted from the light emitting element to an upper surface of the translucent resin by the concentration is substantially constant. And
[0010]
In addition, the light emitting device of the present invention includes a light emitting element made of a nitride semiconductor fixed in a concave reflecting mirror, absorbing light emitted by the light emitting element, and emitting light having a different wavelength from the absorbed light. A first resin layer in which the reflecting mirror is filled with a translucent resin up to the upper surface of the light emitting element, and a translucent resin on the first resin layer. And a second resin layer filled with the first and second resin layers. The first and second resin layers are formed such that the phosphor concentration of the second resin layer is higher than that of the first resin layer. Is mixed.
[0011]
In addition, the concentration of the phosphor mixed in the first and second resin layers is a value obtained by multiplying the optical path length of light emitted from the light emitting element to the upper surface of the second resin layer by the concentration. Are distributed so as to be substantially constant.
[0012]
Further, the thickness of the first and second resin layers is adjusted so that a value obtained by multiplying the optical path length of light emitted by the light emitting element to the upper surface of the second resin layer by the concentration is substantially constant. It is characterized by being formed in.
[0013]
Also, the upper surface of the first resin layer is formed in an annular shape depressed in an arc from the edge of the upper surface of the light emitting element to the space between the inner walls of the reflecting mirror.
[0014]
Further, a reflection agent for irregularly reflecting light is mixed into the first resin layer.
[0015]
Further, the light-emitting element is a flip-chip type light-emitting diode.
[0016]
Further, the light-emitting element is a face-up type light-emitting diode, and a light reflection film is formed on a surface fixed with the adhesive.
[0017]
The light emitting element is characterized by being fixed by an adhesive mixed with the phosphor.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0019]
(First Embodiment)
FIG. 1A is a cross-sectional view illustrating a configuration of an LED lamp according to a first embodiment of the present invention, and FIG. 1B illustrates an optical path length of light from a light emitting element (LED) used in the LED lamp. FIG.
[0020]
The LED lamp 10 shown in FIG. 1A is of a shell type, and is a metal having a cup 12a at the tip of one of the two electrically insulated lead frames 12, 13. A stem 14 is provided. The surface of the cup 12a is a reflecting mirror that reflects light. A flip-chip type LED in which a blue LED 17 is flip-chip mounted on the overvoltage protection element 16 is mounted on the bottom surface of the cup 12a. That is, the overvoltage protection element 16 is fixed to the bottom surface of the cup 12a by a mount 18 made of a conductive paste, and the blue LED 17 having a wavelength of 450 to 550 nm is flip-chip mounted on the overvoltage protection element 16.
[0021]
As shown in FIG. 2, the layer configuration of the blue LED 17 includes, for example, a sapphire substrate 17a as a transparent substrate, and on the sapphire substrate 17a, as a nitride semiconductor layer by MOCVD or the like, for example, a buffer layer 17b, an n-type contact. A layer 17c, an n-type cladding layer 17d, a layer 17e having a light emitting layer, a p-type cladding layer 17f, and a p-type contact layer 17g are sequentially formed, and are formed on the p-type contact layer 17g by a sputtering method, a vacuum deposition method, or the like. A non-light-transmitting light reflecting electrode 17h is formed on the entire surface, a p-electrode 17i is formed on a part of the non-light-transmitting light reflecting electrode 17h, and an n-electrode 17j is formed on a part of the n-type contact layer 17c.
[0022]
In the flip-chip mounting of the blue LED 17, as shown in FIG. 1, the lower surface of the sapphire substrate 17a is the uppermost surface, and the p-electrode 17i is connected to the electrode 16a on the n-layer of the overvoltage protection element 16 via the gold bump 19. , And the n-electrode 17j is connected to the electrode 16b on the p-layer of the overvoltage protection element 16 via the gold bump 20. The electrode 16b of the overvoltage protection element 16 is connected to the lead frame 13 by a bonding wire 22.
[0023]
Further, a low-concentration resin layer 24 described later is formed on the cup 12a up to the position of the uppermost surface of the blue LED 17, and a high-concentration resin layer 25 is formed on the low-concentration resin layer 24 so as to swell on the cup 12a. I have. More specifically, the upper surface of the low-concentration resin layer 24 formed in an annular shape around the uppermost surface of the blue LED 17 has a cross-sectionally concave shape. The upper surface of the high-concentration resin layer 25 has a convex shape in which the position immediately above the blue LED 17 is the highest.
[0024]
The low-concentration resin layer 24 is formed by mixing a phosphor 27 that absorbs blue light emitted by the blue LED 17 and emits yellow light at a low concentration into a translucent resin such as an epoxy resin or a silicone resin. The high-concentration resin layer 25 is obtained by mixing the phosphor 27 with a high concentration in a translucent resin. The phosphor 27 is made of Ce: YAG (a yttrium aluminum garnet phosphor).
[0025]
The concentration or shape of the phosphor 27 in each of the layers 24 and 25 is determined by the light path length of light emitted from the blue LED 17 reaching the interface between the high-concentration resin layer 25 and the external resin 29 and the concentration of the phosphor 27. The multiplied value is adjusted to be substantially constant.
For example, in the case of three optical paths A, B, and C shown in FIG. 1B, the optical path length × density is substantially constant. However, in (b), l 1 to l 9 indicate an optical path length, d 1 indicates a high density, d 2 indicates a low density, C 1 indicates an arc portion, and C 2 indicates a convex portion. In this case, the optical path A of the light emitted directly upward blue LED 17, the A = l 1 × d 1. In the optical path B of the light emitted from the side surface of the blue LED 17 and further reflected on the side wall of the cup 12a, B = (l 2 + l 3 ) d 2 + l 4 × d 1 . Further, the light emitted from the side surface of the blue LED 17 passes through the low-concentration resin layer 24, then passes through the arc-shaped portion of the high-concentration resin layer 25, passes through the low-concentration resin layer 24, and passes through the side wall of the cup 12a. is reflected, the optical path C of the light the reflected light passing through the high density resin layer 25 via the low density resin layer 24, C = (l 5 + l 7 + l 8) d 2 + (l 6 + l 9) d 1 and Become. In this case, the relationship is A ≒ B ≒ C.
[0026]
In the case of preparing a resin mixed with the phosphor 27, for example, a base material and a curing agent, which are light-transmissive resins, are mixed at a predetermined ratio, then stirred and defoamed, and Aerosil + silane coupling agent is mixed with the resin. It is prepared by sufficiently kneading. When the layers 24 and 25 are formed of this resin, for example, assuming that the depth of the cup 12a is 0.35 mm and the height of the flip-chip type LED is 0.25 mm, the phosphor 27 of the low concentration resin layer 24 is formed. The layers 24 and 25 are formed by setting the concentration to 20% and the concentration of the high-concentration resin layer 25 to 60%, and setting each curing time to 120 ° C./1 hour.
[0027]
Further, the lead frame 12 on which the metal stem 14 having the cup 12a is formed and the other lead frame 13 are sealed with an external resin 29 which is a mold member. The external resin 29 is obtained by solidifying a translucent resin into a shell shape.
[0028]
In the LED lamp 10 configured as described above, when a voltage is applied to the lead frames 12 and 13, the blue LED 17 emits blue light. The blue light passes through the layers 24 and 25 between the light emitted directly above the blue LED 17 and the light emitted obliquely from the upper surface or side surface of the blue LED 17 or reflected by the inner wall of the cup 12a after the emission. The optical path length is different.
[0029]
However, in each of the layers 24 and 25, the concentration of the phosphor 27 or the shape of each of the layers 24 and 25 is adjusted so that the optical path length × the concentration of the phosphor 27 becomes substantially constant. As described above, the light emitted in each direction passes through the phosphor 27 almost in the same amount in the course of passing through the layers 24 and 25.
[0030]
For example, when light emitted from the blue LED 17 passes through the optical paths A, B, and C, the amount of light passing through the phosphor 27 becomes substantially the same in any of the optical paths A to C. Since the converted yellow light is mixed with blue light that has not passed through the phosphor 27, uniform white light emission can be obtained on the light emission observation surface of the LED lamp 10.
Although the non-light-transmitting light reflecting electrode 17h is formed on the entire surface of the blue LED 17 on the p-type contact layer 17g, the non-light-transmitting light reflecting electrode 17h can be replaced with a light-transmitting electrode.
[0031]
(Second embodiment)
FIG. 3 is a sectional view showing the configuration of the LED lamp according to the second embodiment of the present invention. However, in FIG. 3, portions corresponding to the respective portions in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
[0032]
The LED lamp 30 shown in FIG. 3 is different from the flip-chip type LED described in the first embodiment in that a blue LED 42 having a light reflection film 42a formed on the lower surface of a sapphire substrate 17a of the blue LED 17 shown in FIG. Is fixed to the bottom surface of the cup 12a by a mount 18 in a face-up manner. The p-electrode 17i of the blue LED 42 and the lead frame 12 are connected by a bonding wire 21, and the n-electrode 17j and the lead frame 13 are connected by a bonding wire 22. In the blue LED 42, the light emitted in the downward direction is reflected by the reflection film 42a and emitted in the upward direction.
[0033]
Further, a low-concentration resin layer 24 is formed on the cup 12a up to the uppermost position of the blue LED 42, and a high-concentration resin layer 25 is formed on the low-concentration resin layer 24 so as to swell on the cup 12a.
[0034]
More specifically, the upper surface of the low-concentration resin layer 24 formed in an annular shape around the uppermost surface of the blue LED 42 has an arcuate cross section. The upper surface of the high-concentration resin layer 25 has a convex shape in which the position immediately above the blue LED 17 is the highest. The concentration and shape of the phosphor 27 in each of the layers 24 and 25 are determined by the light path length from the light emitted by the blue LED 42 to the interface between the high-concentration resin layer 25 and the external resin 29, and the shape of the phosphor 27. It is adjusted so that the value obtained by multiplying the density is substantially constant.
[0035]
The LED lamp 40 configured as described above has the same effect as the LED lamp 10 of the first embodiment.
[0036]
That is, when a voltage is applied to the lead frames 12 and 13, the blue LED 42 emits blue light. This blue light passes through the layers 24 and 25 between the light emitted directly above the blue LED 42 and the light emitted obliquely from the upper surface or side surface of the blue LED 42 or reflected by the inner wall of the cup 12a after the emission. The optical path length is different.
[0037]
However, in each of the layers 24 and 25, the concentration of the phosphor 27 and the shape of each of the layers 24 and 25 are adjusted so that the optical path length × the concentration of the phosphor 27 is substantially constant. As described above, the light emitted in each direction passes through the phosphor 27 almost in the same amount in the course of passing through the layers 24 and 25. The light whose wavelength has been converted into yellow by such passage is mixed with blue light that has not passed through the phosphor 27, so that uniform white light emission can be obtained on the emission observation surface of the LED lamp 30.
[0038]
(Third embodiment)
FIG. 4 is a sectional view showing the configuration of the LED lamp according to the third embodiment of the present invention. However, in FIG. 4, portions corresponding to the respective portions in FIG. 3 are denoted by the same reference numerals, and description thereof will be omitted.
[0039]
In the LED lamp 50 shown in FIG. 4, the blue LED 17 shown in FIG. 2 is fixed to the bottom surface of the cup 12a by the mount 18 instead of the blue LED 42 described in the second embodiment, and the mount 18 contains an Ag filler. In addition, the phosphor 27 is mixed. That is, the blue light emitted by the blue LED 17 in the downward direction is converted into a yellow light by the phosphor 27 in the mount 18 and is reflected on the bottom surface of the cup 12a in the upward or oblique direction.
[0040]
Therefore, in addition to the same effects as described in the second embodiment, the following effects can be obtained. That is, the blue light emitted in the downward direction is once converted to yellow light by the phosphor 27 in the mount 18 and the converted light is reflected right above or obliquely on the bottom surface. There is no need to perform the wavelength conversion at 27, and the thickness of the high-concentration resin layer 25 can be reduced. If the thickness of the high-concentration resin layer 25 can be reduced in this way, it is possible to further reduce the thickness of the LED lamp, particularly of the SMD type.
[0041]
In the first to third embodiments described above, if a reflective agent such as spherical glass beads is mixed into the low-concentration resin layer 24, light is irregularly reflected, so that uniformity of light can be maintained. it can.
[0042]
In each embodiment, the light-transmitting resin layer 24 is divided into the low-concentration resin layer 24 and the high-concentration resin layer 25, but the single light-transmitting resin filling the cup 12a is not divided. A configuration in which the mixed concentration of the phosphor 27 is gradually changed so that the optical path length × the concentration of the phosphor 27 is substantially constant may be adopted.
[0043]
【The invention's effect】
As described above, according to the present invention, the light-emitting element fixed in the concave reflecting mirror with the light-transmitting adhesive is covered, and the reflecting mirror is filled with the light-transmitting resin. A phosphor is mixed into the entire resin, and the value obtained by multiplying the concentration of the mixed phosphor by the optical path length of the light emitted by the light emitting element to the upper surface of the translucent resin is substantially constant. , Light emitted in each direction from the light emitting element passes through the same amount of phosphor when passing through the translucent resin. Light that has been wavelength-converted by the phosphor due to such passage is mixed with blue light that has not passed through the phosphor, so that even in a light-emitting device having inclined side walls, the light is uniformly observed on the light emission observation surface of the light-emitting device. Light emission can be obtained.
[Brief description of the drawings]
FIG. 1A is a cross-sectional view illustrating a configuration of an LED lamp according to a first embodiment of the present invention, and FIG. 1B is an optical path length of light from a light emitting element (LED) used in the LED lamp. FIG.
FIG. 2 is a diagram showing a layer structure of a blue LED used for the LED lamp.
FIG. 3 is a cross-sectional view illustrating a configuration of an LED lamp according to a second embodiment of the present invention.
FIG. 4 is a sectional view showing a configuration of an LED lamp according to a third embodiment of the present invention.
[Explanation of symbols]
10, 40, 50 LED lamp 12, 13 Lead frame 12a Cup 14 Metal stem 16 Overvoltage protection element 16a, 16b Electrode 17, 42 Blue LED
17a sapphire substrate 17b buffer layer 17c n-type contact layer 17d n-type cladding layer 17e MQW active layer 17f p-type cladding layer 17g p-type contact layer 17h p-electrode 17in n-electrode 17j translucent electrode 18 mount 19, 20 gold bump 21, 22 Bonding wire 24 Low concentration resin layer 25 High concentration resin layer 27 Phosphor 29 External resin 42a Reflective film

Claims (9)

凹状の反射鏡内に固定された窒化物半導体から成る発光素子と、この発光素子で発光された光を吸収し、この吸収した光と異なる波長の光を発光する蛍光体とを有する発光装置において、
前記反射鏡内に前記発光素子を覆って透光性樹脂を充填し、この透光性樹脂の全体に前記蛍光体を混入し、この混入された蛍光体の濃度を、前記発光素子で発光された光が前記透光性樹脂の上面に至る光路長に前記濃度を掛けた値がほぼ一定となるように分布させた
ことを特徴とする発光装置。
In a light emitting device having a light emitting element made of a nitride semiconductor fixed in a concave reflecting mirror and a phosphor that absorbs light emitted by the light emitting element and emits light of a different wavelength from the absorbed light ,
The reflector is filled with a light-transmitting resin covering the light-emitting element, the phosphor is mixed into the entire light-transmitting resin, and the concentration of the mixed phosphor is emitted by the light-emitting element. A light emitting device characterized in that the light is distributed such that a value obtained by multiplying an optical path length of the light that reaches the upper surface of the translucent resin by the concentration becomes substantially constant.
凹状の反射鏡内に固定された窒化物半導体から成る発光素子と、この発光素子で発光された光を吸収し、この吸収した光と異なる波長の光を発光する蛍光体とを有する発光装置において、
前記反射鏡内に、前記発光素子の上面位置まで透光性樹脂を充填した第1の樹脂層と、この第1の樹脂層の上に透光性樹脂を充填した第2の樹脂層とを形成し、前記第1および第2の樹脂層に、前記第1の樹脂層よりも前記第2の樹脂層の蛍光体濃度が高くなるように前記蛍光体を混入した
ことを特徴とする発光装置。
In a light emitting device having a light emitting element made of a nitride semiconductor fixed in a concave reflecting mirror and a phosphor that absorbs light emitted by the light emitting element and emits light of a different wavelength from the absorbed light ,
A first resin layer filled with a translucent resin up to the upper surface position of the light emitting element and a second resin layer filled with a translucent resin on the first resin layer are provided in the reflector. A light emitting device, wherein the phosphor is mixed into the first and second resin layers such that the phosphor concentration of the second resin layer is higher than that of the first resin layer. .
前記第1および第2の樹脂層に混入された前記蛍光体の濃度を、前記発光素子で発光された光が前記第2の樹脂層の上面に至る光路長に前記濃度を掛けた値がほぼ一定となるように分布させた
ことを特徴とする請求項2に記載の発光装置。
The concentration of the phosphor mixed in the first and second resin layers is substantially equal to the value obtained by multiplying the optical path length of light emitted by the light emitting element to the upper surface of the second resin layer by the concentration. The light emitting device according to claim 2, wherein the light emitting device is distributed so as to be constant.
前記第1および第2の樹脂層の厚さを、前記発光素子で発光された光が前記第2の樹脂層の上面に至る光路長に前記濃度を掛けた値がほぼ一定となるように形成した
ことを特徴とする請求項2に記載の発光装置。
The thicknesses of the first and second resin layers are formed such that a value obtained by multiplying an optical path length of light emitted by the light emitting element to an upper surface of the second resin layer by the concentration is substantially constant. The light emitting device according to claim 2, wherein:
前記第1の樹脂層の上面が、前記発光素子の上面の縁から前記反射鏡の内壁間にあって弧状に窪んだ環状を成している
ことを特徴とする請求項2に記載の発光装置。
The light emitting device according to claim 2, wherein an upper surface of the first resin layer has an annular shape depressed in an arc shape between the inner wall of the reflector and an edge of the upper surface of the light emitting element.
前記第1の樹脂層に、光を乱反射する反射剤を混入した
ことを特徴とする請求項2に記載の発光装置。
The light emitting device according to claim 2, wherein a reflective agent that irregularly reflects light is mixed into the first resin layer.
前記発光素子は、フリップチップ型発光ダイオードである
ことを特徴とする請求項1から請求項5のいずれかに記載の発光装置。
The light emitting device according to claim 1, wherein the light emitting element is a flip-chip type light emitting diode.
前記発光素子は、フェイスアップ型発光ダイオードであり、前記接着剤での固定面に光の反射膜が形成されている
ことを特徴とする請求項1から請求項5のいずれかに記載の発光装置。
The light emitting device according to claim 1, wherein the light emitting element is a face-up type light emitting diode, and a light reflection film is formed on a surface fixed with the adhesive. .
前記発光素子は、前記蛍光体が混入された接着剤によって固定されていることを特徴とする請求項1または2に記載の発光装置。The light emitting device according to claim 1, wherein the light emitting element is fixed by an adhesive in which the phosphor is mixed.
JP2002276184A 2002-04-30 2002-09-20 Light emitting apparatus Pending JP2004111882A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002276184A JP2004111882A (en) 2002-09-20 2002-09-20 Light emitting apparatus
US10/424,137 US6791116B2 (en) 2002-04-30 2003-04-28 Light emitting diode
KR1020030026923A KR100617432B1 (en) 2002-04-30 2003-04-29 Light emitting diode
TW092110097A TW595018B (en) 2002-04-30 2003-04-29 Light emitting diode
CN03123081A CN1455462A (en) 2002-04-30 2003-04-30 Luminous diode
KR1020050086077A KR100616053B1 (en) 2002-04-30 2005-09-15 Light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002276184A JP2004111882A (en) 2002-09-20 2002-09-20 Light emitting apparatus

Publications (1)

Publication Number Publication Date
JP2004111882A true JP2004111882A (en) 2004-04-08

Family

ID=32272157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002276184A Pending JP2004111882A (en) 2002-04-30 2002-09-20 Light emitting apparatus

Country Status (1)

Country Link
JP (1) JP2004111882A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340472A (en) * 2004-05-26 2005-12-08 Kyocera Corp Light-emitting device and illuminator
JP2006100543A (en) * 2004-09-29 2006-04-13 Stanley Electric Co Ltd Method for manufacturing semiconductor light-emitting device
JP2006135300A (en) * 2004-10-04 2006-05-25 Stanley Electric Co Ltd Manufacturing method of semiconductor light emitting device
JP2006351773A (en) * 2005-06-15 2006-12-28 Rohm Co Ltd Semiconductor light-emitting apparatus
US7371593B2 (en) 2004-10-04 2008-05-13 Stanley Electric Co., Ltd. Method for manufacturing semiconductor light emitting device
JP2008541411A (en) * 2005-05-12 2008-11-20 松下電器産業株式会社 LIGHT EMITTING DEVICE, DISPLAY DEVICE AND LIGHTING DEVICE USING THE SAME, AND METHOD FOR MANUFACTURING LIGHT EMITTING DEVICE
JP2009231785A (en) * 2007-04-16 2009-10-08 Toyoda Gosei Co Ltd Light-emitting device and light emitter
EP1768195A3 (en) * 2005-09-27 2009-11-18 Sanyo Electric Co., Ltd. Light emitting diode and method for manufacturing the same
JP2010103147A (en) * 2008-10-21 2010-05-06 Panasonic Electric Works Co Ltd Light-emitting device
JP2010147183A (en) * 2008-12-17 2010-07-01 Toshiba Corp Semiconductor light-emitting device
JP2010251659A (en) * 2009-04-20 2010-11-04 Toshiba Lighting & Technology Corp Light-emitting device and luminaire
JP2011119402A (en) * 2009-12-02 2011-06-16 Fuji Electric Fa Components & Systems Co Ltd Light source unit
JP2012080146A (en) * 2012-01-27 2012-04-19 Toshiba Corp Optical semiconductor device
JP2012156180A (en) * 2011-01-24 2012-08-16 Stanley Electric Co Ltd Light-emitting device and manufacturing method thereof
JP2012186337A (en) * 2011-03-07 2012-09-27 Stanley Electric Co Ltd Light-emitting device and manufacturing method thereof
US8294165B2 (en) 2006-03-30 2012-10-23 Kabushiki Kaisha Toshiba Semiconductor light-emitting device
EP2565947A2 (en) 2011-05-25 2013-03-06 Panasonic Corporation Light-emitting device and illumination device using same
JP2013077684A (en) * 2011-09-30 2013-04-25 Mitsubishi Electric Corp Light emitting device and lighting device
CN103219453A (en) * 2013-04-03 2013-07-24 杭州杭科光电股份有限公司 Low-attenuation light emitting diode (LED)
US8546823B2 (en) 2011-06-16 2013-10-01 Panasonic Corporation Light emitting device and illumination apparatus including same
JP2014057061A (en) * 2012-09-13 2014-03-27 Lg Innotek Co Ltd Light emitting element and lighting system having the same
JP2016201545A (en) * 2016-06-06 2016-12-01 エムテックスマート株式会社 LED manufacturing method and LED
JP2018049875A (en) * 2016-09-20 2018-03-29 スタンレー電気株式会社 Semiconductor light-emitting device and lamp for vehicle

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340472A (en) * 2004-05-26 2005-12-08 Kyocera Corp Light-emitting device and illuminator
JP2006100543A (en) * 2004-09-29 2006-04-13 Stanley Electric Co Ltd Method for manufacturing semiconductor light-emitting device
US8481349B2 (en) 2004-10-04 2013-07-09 Stanley Electric Co., Ltd. Method for manufacturing semiconductor light emitting device
JP2006135300A (en) * 2004-10-04 2006-05-25 Stanley Electric Co Ltd Manufacturing method of semiconductor light emitting device
US7371593B2 (en) 2004-10-04 2008-05-13 Stanley Electric Co., Ltd. Method for manufacturing semiconductor light emitting device
DE102005046420B4 (en) 2004-10-04 2019-07-11 Stanley Electric Co. Ltd. A method of manufacturing a semiconductor light-emitting device
JP2008541411A (en) * 2005-05-12 2008-11-20 松下電器産業株式会社 LIGHT EMITTING DEVICE, DISPLAY DEVICE AND LIGHTING DEVICE USING THE SAME, AND METHOD FOR MANUFACTURING LIGHT EMITTING DEVICE
JP2006351773A (en) * 2005-06-15 2006-12-28 Rohm Co Ltd Semiconductor light-emitting apparatus
EP1768195A3 (en) * 2005-09-27 2009-11-18 Sanyo Electric Co., Ltd. Light emitting diode and method for manufacturing the same
US7750551B2 (en) 2005-09-27 2010-07-06 Sanyo Electric Co., Ltd. Light emitting device and method for manufacturing the same
US8294165B2 (en) 2006-03-30 2012-10-23 Kabushiki Kaisha Toshiba Semiconductor light-emitting device
US7872410B2 (en) 2007-04-16 2011-01-18 Toyoda Gosei Co., Ltd. Light emitting device and light emitter
JP2009231785A (en) * 2007-04-16 2009-10-08 Toyoda Gosei Co Ltd Light-emitting device and light emitter
JP2010103147A (en) * 2008-10-21 2010-05-06 Panasonic Electric Works Co Ltd Light-emitting device
JP2010147183A (en) * 2008-12-17 2010-07-01 Toshiba Corp Semiconductor light-emitting device
US7985981B2 (en) 2008-12-17 2011-07-26 Kabushiki Kaisha Toshiba Semiconductor light-emitting device
JP2010251659A (en) * 2009-04-20 2010-11-04 Toshiba Lighting & Technology Corp Light-emitting device and luminaire
JP2011119402A (en) * 2009-12-02 2011-06-16 Fuji Electric Fa Components & Systems Co Ltd Light source unit
JP2012156180A (en) * 2011-01-24 2012-08-16 Stanley Electric Co Ltd Light-emitting device and manufacturing method thereof
JP2012186337A (en) * 2011-03-07 2012-09-27 Stanley Electric Co Ltd Light-emitting device and manufacturing method thereof
EP2565947A2 (en) 2011-05-25 2013-03-06 Panasonic Corporation Light-emitting device and illumination device using same
US8546823B2 (en) 2011-06-16 2013-10-01 Panasonic Corporation Light emitting device and illumination apparatus including same
JP2013077684A (en) * 2011-09-30 2013-04-25 Mitsubishi Electric Corp Light emitting device and lighting device
JP2012080146A (en) * 2012-01-27 2012-04-19 Toshiba Corp Optical semiconductor device
JP2014057061A (en) * 2012-09-13 2014-03-27 Lg Innotek Co Ltd Light emitting element and lighting system having the same
CN103219453A (en) * 2013-04-03 2013-07-24 杭州杭科光电股份有限公司 Low-attenuation light emitting diode (LED)
JP2016201545A (en) * 2016-06-06 2016-12-01 エムテックスマート株式会社 LED manufacturing method and LED
JP2018049875A (en) * 2016-09-20 2018-03-29 スタンレー電気株式会社 Semiconductor light-emitting device and lamp for vehicle

Similar Documents

Publication Publication Date Title
JP2004111882A (en) Light emitting apparatus
KR100710102B1 (en) Light emitting apparatus
US7038246B2 (en) Light emitting apparatus
KR100617432B1 (en) Light emitting diode
JP4791951B2 (en) Illumination module and method of manufacturing the illumination module
JP4447806B2 (en) Light emitting device
JP2004343059A (en) Semiconductor device and its manufacturing method
CN101410993B (en) Light emitting device
JP2004266148A (en) Light emitting device and manufacturing method thereof
JP2004127988A (en) White light emitting device
JP2011222641A (en) Light-emitting device
JP5543386B2 (en) LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LIGHTING DEVICE
JP2004235337A (en) Light emitting diode
WO2005117148A1 (en) Light emitting diode lamp
JP3492945B2 (en) Light emitting diode
JP2001177157A (en) Semiconductor light emitting device
JP2003243724A (en) Light emitting apparatus
JP6225910B2 (en) Light emitting device
JP2005026401A (en) Light emitting diode
JP5786278B2 (en) Light emitting device
JP2004165541A (en) Light emitting diode and led light
JP4709405B2 (en) Light emitting diode
JP3798588B2 (en) Light emitting diode
JPH11112028A (en) Semiconductor light emitting device
JP2008166661A (en) Semiconductor light-emitting apparatus