JP2001177157A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JP2001177157A
JP2001177157A JP35543299A JP35543299A JP2001177157A JP 2001177157 A JP2001177157 A JP 2001177157A JP 35543299 A JP35543299 A JP 35543299A JP 35543299 A JP35543299 A JP 35543299A JP 2001177157 A JP2001177157 A JP 2001177157A
Authority
JP
Japan
Prior art keywords
light
light emitting
layer
wavelength conversion
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35543299A
Other languages
Japanese (ja)
Inventor
Tadaaki Ikeda
忠昭 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP35543299A priority Critical patent/JP2001177157A/en
Publication of JP2001177157A publication Critical patent/JP2001177157A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor light emitting device for obtaining a white light emission having a uniform chromaticity in total bearing from a light emitting element, even without accurate formation of a layer or a package of a resin containing a phosphor necessary for wavelength conversion of blue light. SOLUTION: The surface of the light emitting element 3 including at least a light emitting surface is covered with a wavelength conversion layer 6 for converting the light wavelength of the element 3 with the contained phosphor. Further, the surface of the layer 6 is covered with a light diffusion layer 7 for scattering the light directed from the layer 6 itself toward outward to return the part of the light to the layer 6. Thus, the wavelength converted light is diffused as it is by the layer 7, and radiated. The phosphor is re-stimulated by the partial light returned to the layer 6 and further expedited to obtain white light.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、たとえば青色発光
の発光ダイオードによる発光を波長変換して白色発光を
得るようにした半導体発光装置に係り、特に発光観測面
の方向に関係なく一様な色度で白色発光が可能な半導体
発光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light-emitting device in which light emitted by a blue light-emitting diode is converted into a wavelength to obtain white light, and more particularly, to a uniform color regardless of the direction of a light emission observation surface. The present invention relates to a semiconductor light emitting device capable of emitting white light at a temperature.

【0002】[0002]

【従来の技術】青色発光の発光ダイオード(以下、「L
ED」と記す)は、近来になって、GaN,GaAl
N,InGaN及びInAlGaN等のGaN系化合物
半導体を利用することによって、発光輝度の高い製品が
得られるようになった。そして、この青(B)のLED
と旧来からの赤(R),緑(G)発光のLEDとの組合
せにより、これらのLEDの3個を1ドットとする高画
質のフルカラー画像の形成が可能となった。
2. Description of the Related Art Light emitting diodes emitting blue light (hereinafter referred to as "L").
ED ”) recently became GaN, GaAl
By using GaN-based compound semiconductors such as N, InGaN, and InAlGaN, products with high emission luminance can be obtained. And this blue (B) LED
With the combination of the conventional red (R) and green (G) light emitting LEDs, a high-quality full-color image using three of these LEDs as one dot can be formed.

【0003】LEDの分野では、フルカラー対応には光
の三原色のR,G,B(青)が必要であるから、これら
の発光色のLEDのより一層の開発と改良が主である。
その一方で、たとえばR,G,Bの合成によってしか得
られない白色発光を単一のLEDで達成しようとする試
みも既になされている。このような試みの一つとして、
たとえば特開平7−99345号公報に開示されたもの
がある。
In the field of LEDs, R, G, and B (blue) of the three primary colors of light are required for full-color support. Therefore, further development and improvement of LEDs of these luminescent colors are mainly performed.
On the other hand, attempts have already been made to achieve white light emission that can be obtained only by combining R, G, and B with a single LED. One such attempt is
For example, there is one disclosed in JP-A-7-99345.

【0004】この公報に記載のLEDは、図3の概略図
に示すように、発光チップ50を搭載するリードフレー
ム51のマウント部51aを含めて樹脂(図示せず)に
よって封止するいわゆるLEDランプのタイプとしたも
のである。そして、発光チップ50の発光波長を変えて
異なった発光色とするために、発光チップ50の周りの
マウント部51aに蛍光物質を含んだ樹脂52で封止し
た構成を持つ。すなわち、旧来のLEDランプでは発光
チップを搭載するリードフレームの先端部を含めて被覆
するとともにレンズ機能も兼ねるエポキシ樹脂の単層で
封止していたものに代えて、発光チップ周りに波長変換
用の樹脂層を形成し、その周りをエポキシ樹脂で封止し
たものである。
The LED described in this publication is a so-called LED lamp which is sealed with a resin (not shown) including a mounting portion 51a of a lead frame 51 on which a light emitting chip 50 is mounted, as shown in a schematic diagram of FIG. Of the type. Then, in order to change the emission wavelength of the light emitting chip 50 to obtain a different emission color, the mounting portion 51a around the light emitting chip 50 is sealed with a resin 52 containing a fluorescent substance. In other words, instead of using a conventional LED lamp that is covered with a single layer of epoxy resin that also covers the tip of the lead frame on which the light-emitting chip is mounted and also functions as a lens, it is used for wavelength conversion around the light-emitting chip. Is formed, and the periphery thereof is sealed with an epoxy resin.

【0005】このような波長変換用の蛍光物質を含む樹
脂52で発光チップ50を封止することで、発光チップ
50からの青色発光の波長が蛍光物質によって変えら
れ、高輝度のGaN系半導体を利用した青色の発光チッ
プを白色発光のデバイスとして使えるようになる。すな
わち、GaN系化合物半導体を利用した青色発光の発光
チップ50の場合では、それ自身の青色発光の成分と、
樹脂52に含まれた蛍光物質によって波長変換された黄
緑色の成分との混色によって白色発光が得られる。
[0005] By sealing the light emitting chip 50 with such a resin 52 containing a fluorescent substance for wavelength conversion, the wavelength of blue light emitted from the light emitting chip 50 can be changed by the fluorescent substance, and a high-brightness GaN-based semiconductor can be obtained. The blue light emitting chip used can be used as a white light emitting device. That is, in the case of the blue light emitting chip 50 using a GaN-based compound semiconductor, the blue light emitting component itself has:
White light emission is obtained by mixing color with a yellow-green component whose wavelength has been converted by the fluorescent substance contained in the resin 52.

【0006】また、図3のマウント部に発光チップを搭
載して砲弾型に樹脂封止するLEDランプに代えて、発
光チップをプリント配線基板に表面実装して樹脂封止す
る半導体発光装置についても、同様に蛍光物質を含む樹
脂層によって白色発光を得ることができる。このような
半導体発光装置の例としては、たとえば特開平11−3
1845号公報に記載のものがある。これは、プリント
配線基板の上に実装搭載された発光チップの主光取出し
面の上に接着剤の層を塗布してその上面に蛍光体の層を
付着させたものである。
A semiconductor light emitting device in which a light emitting chip is surface-mounted on a printed wiring board and resin sealed is used instead of an LED lamp in which a light emitting chip is mounted on a mount portion and sealed with a shell-shaped resin. Similarly, white light emission can be obtained by a resin layer containing a fluorescent substance. As an example of such a semiconductor light emitting device, see, for example,
There is one described in Japanese Patent No. 1845. In this method, an adhesive layer is applied on a main light extraction surface of a light emitting chip mounted and mounted on a printed wiring board, and a phosphor layer is attached to the upper surface.

【0007】また、本願出願人は、サブマウント素子の
上にp側及びn側の電極を下向きにして実装した発光素
子の周りを蛍光物質を含む樹脂パッケージで封止した白
色発光の半導体装置を提案し、特願平11−3788号
として出願した。この出願に係る半導体発光装置におい
ても、発光素子からの青色発光を蛍光物質によって波長
変換して白色発光を可能としたものである。
The applicant of the present application has disclosed a white light emitting semiconductor device in which a light emitting element mounted on a submount element with p-side and n-side electrodes facing downward is sealed with a resin package containing a fluorescent substance. Proposed and filed as Japanese Patent Application No. 11-3788. Also in the semiconductor light emitting device according to this application, white light can be emitted by converting the wavelength of blue light emitted from the light emitting element with a fluorescent substance.

【0008】[0008]

【発明が解決しようとする課題】LEDランプの場合で
は、発光チップ50を搭載するマウント部51aの内面
を光反射面として利用するので、図示の例のようにマウ
ント部51aをすり鉢状とすることが有効である。とこ
ろが、マウント部51aがすり鉢状であると、図3の
(a)に示すように、発光チップ50の発光方向と側方
の樹脂52の厚さA,Bが異なる場合が多い。これらの
厚さA,Bの相違はマウント部51aの形状や発光チッ
プ50の大きさ及び樹脂52の充填厚さ等によってさま
ざまに変わる。このため、これらの条件をもし最適化で
きれば、発光チップ50周りの全方向で樹脂52の層厚
を均一にすることはできる。しかしながら、樹脂52は
ディスペンサによってマウント部51aに注入されるの
で、その厚さを高精度で制御することは非常に難しく、
図示のようなA,Bの厚さの関係だけでなく発光チップ
50周りの樹脂52の厚さを均一化することは現状では
不可能である。
In the case of an LED lamp, since the inner surface of the mount portion 51a on which the light emitting chip 50 is mounted is used as a light reflecting surface, the mount portion 51a is formed in a mortar shape as shown in the example of FIG. Is valid. However, when the mount portion 51a has a mortar shape, the light emitting direction of the light emitting chip 50 and the thicknesses A and B of the resin 52 on the side are often different as shown in FIG. The difference between the thicknesses A and B varies depending on the shape of the mount portion 51a, the size of the light emitting chip 50, the filling thickness of the resin 52, and the like. Therefore, if these conditions can be optimized, the layer thickness of the resin 52 can be made uniform in all directions around the light emitting chip 50. However, since the resin 52 is injected into the mount portion 51a by the dispenser, it is very difficult to control the thickness with high precision.
At present, it is impossible to make the thickness of the resin 52 around the light emitting chip 50 uniform as well as the relationship between the thicknesses of A and B as shown in the figure.

【0009】発光チップ50周りの樹脂52の厚さが異
なると、厚さが大きいほど発光チップ50からの青色発
光が黄緑色に変換される割合も高くなる。このため、厚
さA方向では良好な白色発光が得られても、厚さB方向
のマウント部51aの内周面に近い部分では黄緑色の成
分が白色を上回るようになる。したがって、マウント部
51aの底面及び内周面を反射面とする発光なので、中
央部では白色が占め周縁部では黄色みを帯びた発光とな
ってしまう。
If the thickness of the resin 52 around the light emitting chip 50 is different, the larger the thickness, the higher the rate of conversion of blue light emission from the light emitting chip 50 to yellow green. For this reason, even if good white light emission is obtained in the thickness A direction, the yellow-green component exceeds the white color in the portion near the inner peripheral surface of the mount portion 51a in the thickness B direction. Accordingly, since the light is emitted with the bottom surface and the inner peripheral surface of the mount portion 51a as the reflecting surfaces, white light is occupied at the center portion and yellowish light is emitted at the peripheral portion.

【0010】一方、先の公報に記載のように発光素子の
主光取出し面に対向させて樹脂層を形成するものや、本
願出願人による先の出願のフリップチップ型の発光素子
周りを蛍光物質含有の樹脂パッケージで封止するものに
おいても同様の問題がある。すなわち、樹脂層の塗布や
樹脂パッケージによる封止では、その製造技術上の限界
から、発光素子の主光取出し面に対してまたはその全周
囲に対して一様な厚さとなるように蛍光物質を含む層を
形成することは困難である。このため、蛍光物質を含む
樹脂層が所定値よりも厚いと発光素子からの光は緑っぽ
くなり、所定値よりも薄いと青色がかった発光となり、
全ての観測面から観たとき色度のばらつきが目立つよう
になる。
On the other hand, as described in the above-mentioned publication, a resin layer is formed so as to face a main light extraction surface of a light-emitting element, or a fluorescent material is applied around a flip-chip type light-emitting element of the earlier application by the present applicant. There is a similar problem in the case of sealing with a contained resin package. In other words, when applying a resin layer or encapsulating with a resin package, due to limitations in the manufacturing technology, a fluorescent substance is applied so as to have a uniform thickness on the main light extraction surface of the light emitting element or on the entire periphery thereof. It is difficult to form a layer that contains. For this reason, when the resin layer containing the fluorescent substance is thicker than a predetermined value, light from the light emitting element becomes greenish, and when the resin layer containing the fluorescent substance is thinner than the predetermined value, light emission becomes bluish,
When viewed from all observation planes, chromaticity variations become noticeable.

【0011】このように、青色発光の発光素子周りを蛍
光物質を含む樹脂の層やパッケージで被膜しても、これ
らの層及びパッケージの厚さに応じて波長変換率が変わ
るので、一様な白色発光は得られない。したがって、観
る方角によって色度差が大きく現れてしまい、液晶表示
パネル等のバックライト用光源に組み込んだとき色度む
らが発生するという問題がある。
As described above, even when the area around the light emitting element emitting blue light is coated with a resin layer or a package containing a fluorescent substance, the wavelength conversion rate changes according to the thickness of these layers and the package. No white light emission is obtained. Therefore, there is a problem that a large difference in chromaticity appears depending on the viewing direction, and chromaticity unevenness occurs when incorporated in a backlight light source such as a liquid crystal display panel.

【0012】本発明は、青色発光の波長変換に必要な蛍
光物質を含む樹脂の層またはパッケージの成形が高精度
で得られなくても発光素子から全方位で一様な色度の白
色発光が得られる半導体発光装置を提供することを目的
とする。
According to the present invention, even if molding of a resin layer or a package containing a fluorescent substance necessary for wavelength conversion of blue light emission cannot be obtained with high precision, white light emission of uniform chromaticity in all directions can be obtained from the light emitting element. It is an object to provide a semiconductor light emitting device obtained.

【0013】[0013]

【課題を解決するための手段】本発明は、発光素子の少
なくとも発光面を含む表面を、含有蛍光物質によって前
記発光素子の発光波長を変換する波長変換層で被覆した
半導体発光装置であって、前記波長変換層の表面を、当
該波長変換層から外に向かう光を散乱させて光の一部を
前記波長変換層に戻す光拡散層によって被覆したことを
特徴とする。
SUMMARY OF THE INVENTION The present invention is a semiconductor light emitting device in which at least a surface including a light emitting surface of a light emitting element is covered with a wavelength conversion layer for converting a light emitting wavelength of the light emitting element with a contained fluorescent substance, The surface of the wavelength conversion layer is covered with a light diffusion layer that scatters light going outward from the wavelength conversion layer and returns a part of the light to the wavelength conversion layer.

【0014】このような構成において、光拡散層は透明
樹脂中にSiO2を混入した成形層とすることができ、
また光拡散層を透明の光透過性の樹脂によって封止した
ものとしてもよい。
In such a configuration, the light diffusion layer can be a molded layer in which SiO 2 is mixed in a transparent resin,
Further, the light diffusion layer may be sealed with a transparent light transmitting resin.

【0015】[0015]

【発明の実施の形態】請求項1に記載の発明は、発光素
子の少なくとも発光面を含む表面を、含有蛍光物質によ
って前記発光素子の発光波長を変換する波長変換層で被
覆した半導体発光装置であって、前記波長変換層の表面
を、当該波長変換層から外に向かう光を散乱させて光の
一部を前記波長変換層に戻す光拡散層によって被覆した
ことを特徴とする半導体発光装置であり、波長変換され
た光を光拡散層で外部に拡散させて放出すると同時に一
部を波長変換層に戻すことにより蛍光物質を再励起させ
て白色化を促すという作用をする。
The invention according to claim 1 is a semiconductor light emitting device in which at least a surface including a light emitting surface of a light emitting element is covered with a wavelength conversion layer for converting a light emitting wavelength of the light emitting element with a contained fluorescent substance. There is provided a semiconductor light emitting device characterized in that the surface of the wavelength conversion layer is covered with a light diffusion layer that scatters light outward from the wavelength conversion layer and returns a part of the light to the wavelength conversion layer. In addition, the wavelength-converted light is diffused to the outside by the light diffusion layer and emitted, and at the same time, a part of the light is returned to the wavelength conversion layer, thereby re-exciting the fluorescent substance to promote whitening.

【0016】請求項2に記載の発明は、前記光拡散層
は、透明樹脂中にSiO2を混入した成形層であること
を特徴とする請求項1に記載の半導体発光装置であり、
安価に光拡散層を形成できるという作用を有する。
According to a second aspect of the present invention, in the semiconductor light emitting device according to the first aspect, the light diffusion layer is a molded layer in which SiO 2 is mixed in a transparent resin.
The light diffusion layer can be formed at low cost.

【0017】請求項3に記載の発明は、前記光拡散層を
透明の光透過性の樹脂によって封止したことを特徴とす
る請求項1または2記載の半導体発光装置であり、光拡
散層を保護して耐用性を向上させるとともに、光透過性
の樹脂をレンズ形状とすることにより軸上光度を向上さ
せることができるという作用を有する。
The invention according to claim 3 is the semiconductor light emitting device according to claim 1 or 2, wherein the light diffusion layer is sealed with a transparent light transmitting resin. It has the effect of improving the durability by protecting, and improving the on-axis luminous intensity by making the light-transmitting resin into a lens shape.

【0018】以下、本発明の実施の形態について図面に
基づき説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0019】図1は本発明の一実施の形態による半導体
発光装置の概略縦断面図である。
FIG. 1 is a schematic vertical sectional view of a semiconductor light emitting device according to one embodiment of the present invention.

【0020】図示のように、本発明の半導体発光装置
は、実装基板1と、その上に搭載したサブマウント素子
2と、その上に搭載した発光素子3と、これらのサブマ
ウント素子2及び発光素子3を含めて封止した透明の樹
脂パッケージ4とを主な部材としたものである。そし
て、発光素子3の周りには、後述するように、白色化の
ための蛍光物質の樹脂層と光拡散作用による色度均一化
のための樹脂層がそれぞれ形成されている。
As shown in the drawing, the semiconductor light emitting device of the present invention comprises a mounting substrate 1, a submount element 2 mounted thereon, a light emitting element 3 mounted thereon, The main component is a transparent resin package 4 sealed including the element 3. As will be described later, a resin layer of a fluorescent substance for whitening and a resin layer for uniforming chromaticity by light diffusion are formed around the light emitting element 3.

【0021】実装基板1は絶縁性であって、従来のフリ
ップチップ型の半導体発光素子と同様にウエハ状態の基
板材にスリットを切開したものを用い、このスリットを
通して電極1a,1bをメッキ法によって実装基板1の
表裏両面にかけて形成したものである。また、樹脂パッ
ケージ4はサブマウント素子2及び発光素子3の実装及
びワイヤボンディングの後にウエハ状態の基板材の表面
を樹脂で封止し、最終工程のダイシングによって図示の
形状の実装基板1及び樹脂パッケージ4として創成され
る。
The mounting substrate 1 is insulative, and a slit is formed in a substrate material in a wafer state as in the case of a conventional flip-chip type semiconductor light emitting element. The electrodes 1a and 1b are formed by plating through the slits. It is formed on both sides of the mounting substrate 1. After the mounting of the sub-mount element 2 and the light-emitting element 3 and the wire bonding, the resin package 4 seals the surface of the substrate material in a wafer state with a resin, and the mounting board 1 and the resin package having the illustrated shapes by dicing in the final step. Created as 4.

【0022】サブマウント素子2はn型のシリコン基板
2aを用いたもので、このシリコン基板2aの底面には
実装基板1の電極1aに導通搭載されるn電極2bを形
成している。また、シリコン基板2aの上面には、この
シリコン基板2aの一部に形成したp型半導体領域に接
触するp側電極2cとn型半導体領域に接触するn側電
極2dがそれぞれ形成されている。
The sub-mount element 2 uses an n-type silicon substrate 2a. On the bottom surface of the silicon substrate 2a, an n-electrode 2b which is electrically mounted on the electrode 1a of the mounting substrate 1 is formed. On the upper surface of the silicon substrate 2a, a p-side electrode 2c that contacts a p-type semiconductor region formed on a part of the silicon substrate 2a and an n-side electrode 2d that contacts an n-type semiconductor region are formed.

【0023】発光素子3は、従来技術の項で述べたGa
N系化合物半導体を利用した高輝度の青色発光のLED
である。この発光素子3は、サファイアを素材とした基
板3aの表面に、たとえばGaNのn型層,InGaN
の活性層及びGaNのp型層を積層したものである。そ
して、従来周知のように、p型層の一部をエッチングし
てn型層を露出させ、この露出したn型層の表面にn側
電極3bを形成し、p型層の表面にはp側電極3cを形
成し、n側電極3bをサブマウント素子2のp側電極2
cに及びp側電極3cをサブマウント素子2のn側電極
2dにそれぞれバンプ電極を介して接合している。
The light emitting element 3 is formed of Ga as described in the section of the prior art.
High-brightness blue light emitting LED using N-based compound semiconductor
It is. The light-emitting element 3 includes, for example, an n-type layer of GaN, InGaN, on a surface of a substrate 3a made of sapphire.
Of an active layer and a p-type layer of GaN. Then, as is well known in the art, a part of the p-type layer is etched to expose the n-type layer, an n-side electrode 3b is formed on the exposed surface of the n-type layer, and a p-type electrode is formed on the surface of the p-type layer. The side electrode 3c is formed, and the n-side electrode 3b is connected to the p-side electrode 2 of the submount element 2.
c and the p-side electrode 3c are joined to the n-side electrode 2d of the submount element 2 via bump electrodes.

【0024】更に、サブマウント素子2のp側電極2c
と実装基板1の電極1bとの間にはワイヤ5がボンディ
ングされている。なお、実装基板1は電子機器等の配線
基板に実装されそれぞれの電極1a,1bをこの配線基
板の配線パターンに実装搭載することにより、発光素子
3をサブマウント素子2を介して電源回路側に導通させ
る。また、樹脂パッケージ4は、従来からLEDランプ
の分野で使用されている光透過性のエポキシ樹脂を素材
としたものである。
Further, the p-side electrode 2c of the submount element 2
A wire 5 is bonded between the substrate 1 and the electrode 1b of the mounting board 1. The mounting substrate 1 is mounted on a wiring substrate of an electronic device or the like, and the electrodes 1a and 1b are mounted and mounted on the wiring pattern of the wiring substrate. Make it conductive. The resin package 4 is made of a light-transmissive epoxy resin conventionally used in the field of LED lamps.

【0025】ここで、本発明では、発光素子3の周りを
波長変換層6で被膜するとともに、この波長変換層6の
表面の全体を光拡散層7で被膜する。波長変換層6は先
に説明した特願平11−3788号の出願明細書にも記
載しているように、発光素子3の青色発光を白色に変換
するための蛍光物質をエポキシ樹脂に混入したものであ
る。この青色発光を白色発光に変換する蛍光物質は、発
光素子3の発光色である青色と補色の関係を持つもので
あればよく、蛍光染料,蛍光顔料,蛍光体などが利用で
き、たとえば(Y,Gd)3(Al,Ga)512:Ce
等が好適である。また、光拡散層7は波長変換層6で波
長変換された光を散乱及び乱反射させて光の一部を波長
変換層6に戻してから蛍光体による白色変換を再励起さ
せるためのものであり、エポキシ樹脂にSiO2を混入
したものである。
Here, in the present invention, the periphery of the light emitting element 3 is coated with the wavelength conversion layer 6, and the entire surface of the wavelength conversion layer 6 is coated with the light diffusion layer 7. As described in the specification of Japanese Patent Application No. 11-3788, the wavelength conversion layer 6 is obtained by mixing a fluorescent substance for converting blue light emission of the light emitting element 3 into white light into the epoxy resin. Things. The fluorescent substance that converts the blue light emission to the white light emission may be any substance that has a complementary color relationship with the blue color that is the light emission color of the light emitting element 3, and a fluorescent dye, a fluorescent pigment, a fluorescent substance, or the like can be used. , Gd) 3 (Al, Ga) 5 O 12 : Ce
Etc. are preferred. The light diffusion layer 7 is for scattering and irregularly reflecting the light whose wavelength has been converted by the wavelength conversion layer 6, returning a part of the light to the wavelength conversion layer 6, and then re-exciting the white light conversion by the phosphor. , Epoxy resin mixed with SiO 2 .

【0026】波長変換層6は発光素子3からの青色発光
を白色発光に変換するが、その変換効率は波長変換層6
の厚さに依存する。すなわち、前述のように波長変換層
6が所定値よりも厚いと緑がかった発光色となり、所定
値より薄いと青みが強い発光色となり、厚さが異なる部
分の発光観測面からの光は白色光から外れた色調となり
やすい。したがって、波長変換層6の厚さは発光素子3
の全方位で同じ厚さであって最適な効率で白色光に変換
できるように設定することが好ましい。しかしながら、
先に説明したように、現状の製造技術の面からは波長変
換層6を一様な厚さに成形することは非常に困難であ
る。
The wavelength conversion layer 6 converts blue light emission from the light emitting element 3 into white light emission.
Depends on the thickness of the That is, as described above, when the wavelength conversion layer 6 is thicker than a predetermined value, a greenish emission color is obtained, and when the wavelength conversion layer 6 is thinner than the predetermined value, a bluish emission color is obtained. It is easy to have a color tone that deviates from light. Therefore, the thickness of the wavelength conversion layer 6 is
It is preferable to set the thickness so that it can be converted to white light with the same efficiency in all directions. However,
As described above, it is very difficult to form the wavelength conversion layer 6 to have a uniform thickness from the viewpoint of the current manufacturing technology.

【0027】これに対し、本発明では波長変換層6の表
面を光拡散層7によって被覆されているので、波長変換
層6を抜けた光は光拡散層7に混入したSiO2により
光拡散または乱反射される。すなわち、波長変換層6か
ら光拡散層7に入射した光は、そのまま放出またはSi
2による拡散によって外部に照射される成分と、Si
2により反射されて波長変換層6に戻される成分とに
分かれる。このとき、波長変換層6に戻された光は、波
長変換層6内の蛍光物質を再励起して更に白色変換が促
進され、この変換促進された白色光が光拡散層7に入射
して外部に放出される。
On the other hand, in the present invention, since the surface of the wavelength conversion layer 6 is covered with the light diffusion layer 7, the light that has passed through the wavelength conversion layer 6 is diffused by SiO 2 mixed in the light diffusion layer 7. Diffusely reflected. That is, the light incident on the light diffusion layer 7 from the wavelength conversion layer 6 is emitted as it is or
A component irradiated to the outside by diffusion by O 2 and Si
The light is separated into components reflected by O 2 and returned to the wavelength conversion layer 6. At this time, the light returned to the wavelength conversion layer 6 re-excites the fluorescent substance in the wavelength conversion layer 6 to further promote white conversion, and the converted white light enters the light diffusion layer 7. Released outside.

【0028】以上の構成において、発光素子3に通電さ
れるとその発光層からの光が放出される。この場合、透
明のサファイアの基板3aを用いたGaN系化合物半導
体の青色発光の発光素子3では、基板3aの上面を主光
取出し面とするものの、基板3aはこれに積層した半導
体薄膜層の底面や側面からも光が放出され、発光素子3
の全体の表面がほぼ一様に発光する。そして、発光素子
3からの光は蛍光物質を含む波長変換層6を抜ける間に
白色に波長変換され、光拡散層7から放出される。
In the above configuration, when the light emitting element 3 is energized, light from the light emitting layer is emitted. In this case, in the blue light emitting element 3 of the GaN-based compound semiconductor using the transparent sapphire substrate 3a, the upper surface of the substrate 3a is used as the main light extraction surface, but the substrate 3a is formed on the bottom surface of the semiconductor thin film layer laminated thereon. Light is also emitted from the side and the light emitting element 3
Illuminates almost uniformly over the entire surface. Then, the light from the light emitting element 3 is wavelength-converted to white while passing through the wavelength conversion layer 6 containing a fluorescent substance, and is emitted from the light diffusion layer 7.

【0029】ここで、光拡散層7はSiO2を混入した
樹脂層なので、前述のとおり波長変換層6からの光の一
部はSiO2による乱反射を受け、波長変換層6に戻さ
れる。したがって、発光素子3から放出された光の一部
は再び波長変換層6の蛍光物質によって波長変換され、
白色化が促される。このため、波長変換層6の厚さが一
様でなくても、光拡散層7からの光の戻りと蛍光物質の
再励起による高効率の白色化が達成できる。更に、光拡
散層7に混入されたSiO2によって光が拡散されるの
で、発光素子3の全方位について一様な白色発光が得ら
れる。
[0029] Here, since the light diffusion layer 7 is a resin layer obtained by mixing SiO 2, part of the light from the wavelength converting layer 6 as described above receives a diffused reflection SiO 2, is returned to the wavelength conversion layer 6. Therefore, a part of the light emitted from the light emitting element 3 is again wavelength-converted by the fluorescent substance of the wavelength conversion layer 6, and
Whitening is promoted. Therefore, even if the thickness of the wavelength conversion layer 6 is not uniform, highly efficient whitening can be achieved by returning light from the light diffusion layer 7 and re-exciting the fluorescent substance. Further, since light is diffused by the SiO 2 mixed into the light diffusion layer 7, uniform white light emission is obtained in all directions of the light emitting element 3.

【0030】このように、波長変換層6の周りに光拡散
層7を設けたことにより、白色波長変換の促進と同時に
出射光の拡散とが可能となるので、波長変換層6の肉厚
を高精度で一様化しなくても、色度むらのない白色発光
が可能となる。
As described above, the provision of the light diffusion layer 7 around the wavelength conversion layer 6 makes it possible to promote white wavelength conversion and to diffuse outgoing light at the same time, so that the thickness of the wavelength conversion layer 6 can be reduced. It is possible to emit white light without unevenness in chromaticity without uniformity with high precision.

【0031】図2は図3の従来例のようにリードフレー
ムのマウント部に実装して砲弾型のLEDランプとした
例の概略縦断面図である。なお、図1の例と同じ構成部
材については共通の符号で指示しその詳細な説明は省略
する。
FIG. 2 is a schematic longitudinal sectional view of an example in which the LED lamp is mounted on a mount portion of a lead frame as in the conventional example of FIG. Note that the same components as those in the example of FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0032】図2において、二股状のリードフレーム1
0の一方のリード10aにマウント部10bが形成さ
れ、このマウント部10bにサブマウント素子2と発光
素子3とからなる複合発光素子が実装搭載され、エポキ
シ樹脂による樹脂パッケージ11によって封止されてい
る。サブマウント素子2と発光素子3との導通構造は図
1の例と全く同様であり、サブマウント素子2の底面の
n電極2bをマウント部10bに導通搭載し、サブマウ
ント素子2の上面のp側電極2cと他方のリード10c
との間をワイヤ12によってボンディングしている。
In FIG. 2, a forked lead frame 1 is shown.
A mount portion 10b is formed on one of the leads 10a, and a composite light emitting device including a submount device 2 and a light emitting device 3 is mounted and mounted on the mount portion 10b, and is sealed with a resin package 11 made of epoxy resin. . The conduction structure between the submount element 2 and the light emitting element 3 is exactly the same as that of the example of FIG. 1. The n electrode 2 b on the bottom surface of the submount element 2 is conductively mounted on the mount portion 10 b, and the p Side electrode 2c and other lead 10c
Are bonded by a wire 12.

【0033】マウント部10bの中には、先の例と同様
に蛍光物質を混入したエポキシ樹脂がディスペンサによ
って注入され、これによりサブマウント素子2及び発光
素子3の全体を被覆する波長変換層13が形成されてい
る。そして、この波長変換層13の表面には、ディスペ
ンサまたはコーティング用具によりSiO2を混入した
エポキシ樹脂を素材とする光拡散層14が形成されてい
る。
An epoxy resin mixed with a fluorescent substance is injected into the mount portion 10b by a dispenser in the same manner as in the previous example, whereby the wavelength conversion layer 13 covering the entire submount element 2 and light emitting element 3 is formed. Is formed. A light diffusion layer 14 made of epoxy resin mixed with SiO 2 is formed on the surface of the wavelength conversion layer 13 by a dispenser or a coating tool.

【0034】この例においても、発光素子3からの光は
波長変換層13を抜けるときに白色光に波長変換され、
一部は光拡散層14をそのまま抜けて放射され、残りは
光拡散層14に混入したSiO2によって乱反射されて
波長変換層13に戻る挙動をする。したがって、図1の
例と同様に、波長変換層13の蛍光物質の再励起による
白色化の促進と光拡散層14のSiO2による光拡散の
相乗効果によって、色度むらのない一様な発光色を全方
位に放出することができる。特に、波長変換層13をデ
ィスペンサによる樹脂注入により行い図示のように凸面
の山状に波長変換層13が形成され、発光素子3の上面
の光取出し面との間が平行でなく肉厚差が大きくても、
光拡散層14の機能によって良好な白色光が得られる。
Also in this example, when the light from the light emitting element 3 passes through the wavelength conversion layer 13, the wavelength is converted to white light,
A part of the light diffuses through the light diffusion layer 14 and is radiated, and the remaining part is irregularly reflected by SiO 2 mixed into the light diffusion layer 14 and returns to the wavelength conversion layer 13. Therefore, as in the example of FIG. 1, uniform light emission without chromaticity unevenness is caused by the synergistic effect of whitening by re-excitation of the fluorescent substance in the wavelength conversion layer 13 and light diffusion by the SiO 2 in the light diffusion layer 14. Color can be emitted in all directions. In particular, the wavelength conversion layer 13 is formed by injecting a resin with a dispenser so that the wavelength conversion layer 13 is formed in a convex mountain shape as shown in the figure, and the difference between the thickness and the light extraction surface on the upper surface of the light emitting element 3 is not parallel. Even if big,
Good white light is obtained by the function of the light diffusion layer 14.

【0035】なお、以上の実施の形態では、エポキシ樹
脂に蛍光物質を混入したものを波長変換層6,13とし
て発光素子3の周りに形成したが、これに代えて蛍光体
を発光素子3の表面に付着させたものとしてもよい。す
なわち、先に例示した(Y,Gd)3(Al,Ga)5
12:Ce等の蛍光染料,蛍光顔料,蛍光体などをそのま
ま発光素子3の発光面に塗布したりして蛍光体層を形成
すればよく、このような蛍光体層によっても発光素子3
からの青色発光を白色光に変換することができる。
In the above embodiment, the wavelength conversion layers 6 and 13 are formed around the light emitting element 3 by mixing the epoxy resin with the fluorescent substance as the wavelength conversion layers 6 and 13. It may be attached to the surface. That is, (Y, Gd) 3 (Al, Ga) 5 O exemplified above.
12 : The fluorescent layer may be formed by directly applying a fluorescent dye such as Ce, a fluorescent pigment, a fluorescent substance, or the like to the light emitting surface of the light emitting element 3, and the light emitting element 3 may be formed by such a fluorescent layer.
Can be converted to white light.

【0036】[0036]

【発明の効果】本発明では、発光素子の光を波長変換す
る波長変換層を一様な厚さに形成しなくても、その表面
に設けた光拡散層によって、波長変換された光を光拡散
層で外部に拡散させて放出すると同時に一部を波長変換
層に戻すことにより蛍光物質を再励起させて白色化を促
すことができる。したがって、拡散と白色化の促進とに
より発光素子の全方位に一様な色度及び色調の白色発光
を得ることができ、各種の用途の光源として有効に利用
できる。
According to the present invention, the wavelength-converted light can be converted into light by the light diffusion layer provided on the surface of the light-emitting element without forming the wavelength conversion layer having a uniform thickness. The phosphor is diffused to the outside and emitted, and at the same time, a part of the phosphor is returned to the wavelength conversion layer, whereby the fluorescent substance is re-excited and whitening can be promoted. Therefore, white light emission having uniform chromaticity and color tone can be obtained in all directions of the light emitting element by promoting diffusion and whitening, and can be effectively used as a light source for various applications.

【0037】また、光拡散層に混入するSiO2等の拡
散材の量を変更することで色度のコントロールもできる
ので、発色の色度を微妙に調整でき、要求される発光色
にマッチした製品が作成できる。
Further, since the chromaticity can be controlled by changing the amount of the diffusing material such as SiO 2 mixed in the light diffusion layer, the chromaticity of the color development can be finely adjusted and matched to the required emission color. Products can be created.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態による半導体発光装置の
概略縦断面図
FIG. 1 is a schematic longitudinal sectional view of a semiconductor light emitting device according to an embodiment of the present invention.

【図2】リードフレームのマウント部に搭載して樹脂封
止したLEDランプ型とした例の半導体発光装置の概略
縦断面図
FIG. 2 is a schematic longitudinal sectional view of a semiconductor light emitting device of an example of an LED lamp type mounted on a mounting portion of a lead frame and sealed with a resin;

【図3】青色発光の発光素子を樹脂に蛍光物質を混入し
た波長変換層によって封止した従来例であって、(a)
はその概略縦断面図 (b)は概略平面図
FIG. 3 is a conventional example in which a blue light emitting element is sealed with a wavelength conversion layer in which a fluorescent substance is mixed into a resin, and FIG.
Is a schematic vertical sectional view, and (b) is a schematic plan view.

【符号の説明】[Explanation of symbols]

1 実装基板 1a,1b 電極 2 サブマウント素子 2a シリコン基板 2b n電極 2c p側電極 2d n側電極 3 発光素子 3a 基板 3b n側電極 3c p側電極 4 樹脂パッケージ 5 ワイヤ 6 波長変換層 7 光拡散層 10 リードフレーム 10a リード 10b マウント部 10c リード 11 樹脂パッケージ 12 ワイヤ 13 波長変換層 14 光拡散層 Reference Signs List 1 mounting substrate 1a, 1b electrode 2 submount element 2a silicon substrate 2b n electrode 2c p-side electrode 2d n-side electrode 3 light-emitting element 3a substrate 3b n-side electrode 3c p-side electrode 4 resin package 5 wire 6 wavelength conversion layer 7 light diffusion Layer 10 Lead frame 10a Lead 10b Mounting part 10c Lead 11 Resin package 12 Wire 13 Wavelength conversion layer 14 Light diffusion layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 発光素子の少なくとも発光面を含む表面
を、含有蛍光物質によって前記発光素子の発光波長を変
換する波長変換層で被覆した半導体発光装置であって、
前記波長変換層の表面を、当該波長変換層から外に向か
う光を散乱させて光の一部を前記波長変換層に戻す光拡
散層によって被覆したことを特徴とする半導体発光装
置。
1. A semiconductor light emitting device in which at least a surface including a light emitting surface of a light emitting element is coated with a wavelength conversion layer that converts an emission wavelength of the light emitting element with a contained fluorescent substance,
A semiconductor light emitting device, wherein a surface of the wavelength conversion layer is covered with a light diffusion layer that scatters light going outward from the wavelength conversion layer and returns a part of the light to the wavelength conversion layer.
【請求項2】 前記光拡散層は、透明樹脂中にSiO2
を混入した成形層であることを特徴とする請求項1記載
の半導体発光装置。
2. The light diffusion layer according to claim 1, wherein said light diffusion layer comprises SiO 2 in a transparent resin.
2. The semiconductor light emitting device according to claim 1, wherein the molded layer is a molded layer containing a mixed material.
【請求項3】 前記光拡散層を透明の光透過性の樹脂に
よって封止したことを特徴とする請求項1または2記載
の半導体発光装置。
3. The semiconductor light emitting device according to claim 1, wherein said light diffusion layer is sealed with a transparent light transmitting resin.
JP35543299A 1999-12-15 1999-12-15 Semiconductor light emitting device Pending JP2001177157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35543299A JP2001177157A (en) 1999-12-15 1999-12-15 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35543299A JP2001177157A (en) 1999-12-15 1999-12-15 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JP2001177157A true JP2001177157A (en) 2001-06-29

Family

ID=18443925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35543299A Pending JP2001177157A (en) 1999-12-15 1999-12-15 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2001177157A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003158302A (en) * 2001-11-21 2003-05-30 Toyoda Gosei Co Ltd Light emitting diode
WO2003049207A1 (en) * 2001-11-16 2003-06-12 Toyoda Gosei Co., Ltd. Light-emitting diode, led light, and light apparatus
JP2004128434A (en) * 2002-03-20 2004-04-22 Toyoda Gosei Co Ltd Light emitter and lighting fixture
KR20040044701A (en) * 2002-11-21 2004-05-31 삼성전기주식회사 A light emitting device package and a method of manufacturing the same
WO2005104247A1 (en) * 2004-04-19 2005-11-03 Matsushita Electric Industrial Co., Ltd. Method for fabricating led illumination light source and led illumination light source
JP2005310911A (en) * 2004-04-19 2005-11-04 Kyocera Corp Package for housing light emitting element, light emitting device, and lighting apparatus
JP2006049735A (en) * 2004-08-09 2006-02-16 Stanley Electric Co Ltd Led and its manufacturing method
JP2006135288A (en) * 2004-11-05 2006-05-25 Samsung Electro Mech Co Ltd White emitting diode package and its manufacturing method
JP2006210588A (en) * 2005-01-27 2006-08-10 Konica Minolta Holdings Inc White color light emitting diode and method for manufacturing same
KR100693463B1 (en) * 2005-10-21 2007-03-12 한국광기술원 Light diffusion type light emitting diode
KR20100066397A (en) * 2008-12-09 2010-06-17 스탠리 일렉트릭 컴퍼니, 리미티드 Semiconductor light-emitting device and method for manufacturing thereof
US7910940B2 (en) 2005-08-05 2011-03-22 Panasonic Corporation Semiconductor light-emitting device
KR101030659B1 (en) * 2006-03-10 2011-04-20 파나소닉 전공 주식회사 Light-emitting device
WO2011096171A1 (en) * 2010-02-08 2011-08-11 パナソニック株式会社 Light-emitting device and surface light source device using the same
JP2012142614A (en) * 2002-09-02 2012-07-26 Samsung Led Co Ltd Light emitting diode and method of manufacturing the same
WO2013011628A1 (en) * 2011-07-19 2013-01-24 パナソニック株式会社 Light emitting device and method for manufacturing same
JP2014072309A (en) * 2012-09-28 2014-04-21 Stanley Electric Co Ltd Light-emitting device for automobile headlamp and process of manufacturing the same

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003049207A1 (en) * 2001-11-16 2003-06-12 Toyoda Gosei Co., Ltd. Light-emitting diode, led light, and light apparatus
US7781787B2 (en) 2001-11-16 2010-08-24 Toyoda Gosei, Co., Ltd. Light-emitting diode, led light, and light apparatus
CN100369274C (en) * 2001-11-16 2008-02-13 丰田合成株式会社 Light-emitting diode, led light, and light apparatus
JP2003158302A (en) * 2001-11-21 2003-05-30 Toyoda Gosei Co Ltd Light emitting diode
JP2004128434A (en) * 2002-03-20 2004-04-22 Toyoda Gosei Co Ltd Light emitter and lighting fixture
JP2012142614A (en) * 2002-09-02 2012-07-26 Samsung Led Co Ltd Light emitting diode and method of manufacturing the same
KR20040044701A (en) * 2002-11-21 2004-05-31 삼성전기주식회사 A light emitting device package and a method of manufacturing the same
JPWO2005104247A1 (en) * 2004-04-19 2008-03-13 松下電器産業株式会社 Manufacturing method of LED illumination light source and LED illumination light source
WO2005104247A1 (en) * 2004-04-19 2005-11-03 Matsushita Electric Industrial Co., Ltd. Method for fabricating led illumination light source and led illumination light source
JP2005310911A (en) * 2004-04-19 2005-11-04 Kyocera Corp Package for housing light emitting element, light emitting device, and lighting apparatus
US7514867B2 (en) 2004-04-19 2009-04-07 Panasonic Corporation LED lamp provided with optical diffusion layer having increased thickness and method of manufacturing thereof
CN100454596C (en) * 2004-04-19 2009-01-21 松下电器产业株式会社 Method for fabricating LED illumination light source and LED illumination light source
JP2006049735A (en) * 2004-08-09 2006-02-16 Stanley Electric Co Ltd Led and its manufacturing method
JP2006135288A (en) * 2004-11-05 2006-05-25 Samsung Electro Mech Co Ltd White emitting diode package and its manufacturing method
JP2006210588A (en) * 2005-01-27 2006-08-10 Konica Minolta Holdings Inc White color light emitting diode and method for manufacturing same
US7910940B2 (en) 2005-08-05 2011-03-22 Panasonic Corporation Semiconductor light-emitting device
KR100693463B1 (en) * 2005-10-21 2007-03-12 한국광기술원 Light diffusion type light emitting diode
WO2007046664A1 (en) * 2005-10-21 2007-04-26 Korea Photonics Technology Institute Light diffusion type light emitting diode
KR101030659B1 (en) * 2006-03-10 2011-04-20 파나소닉 전공 주식회사 Light-emitting device
US8049233B2 (en) 2006-03-10 2011-11-01 Panasonic Electric Works Co., Ltd. Light-emitting device
JP2010140942A (en) * 2008-12-09 2010-06-24 Stanley Electric Co Ltd Semiconductor light emitting device, and method of manufacturing the same
KR20100066397A (en) * 2008-12-09 2010-06-17 스탠리 일렉트릭 컴퍼니, 리미티드 Semiconductor light-emitting device and method for manufacturing thereof
KR101639353B1 (en) * 2008-12-09 2016-07-13 스탠리 일렉트릭 컴퍼니, 리미티드 Semiconductor light-emitting device and method for manufacturing thereof
WO2011096171A1 (en) * 2010-02-08 2011-08-11 パナソニック株式会社 Light-emitting device and surface light source device using the same
WO2013011628A1 (en) * 2011-07-19 2013-01-24 パナソニック株式会社 Light emitting device and method for manufacturing same
JP2014072309A (en) * 2012-09-28 2014-04-21 Stanley Electric Co Ltd Light-emitting device for automobile headlamp and process of manufacturing the same

Similar Documents

Publication Publication Date Title
KR100710102B1 (en) Light emitting apparatus
KR100425566B1 (en) Light emitting diode
US7691650B2 (en) Thin film light emitting diode
JP2000208822A (en) Semiconductor light-emitting device
US20100227424A1 (en) Light emitting diode package and manufacturing method thereof
JP3725413B2 (en) Semiconductor light emitting device
JP2001177157A (en) Semiconductor light emitting device
JP4045710B2 (en) Manufacturing method of semiconductor light emitting device
JPH11284234A (en) Light emitting device
US10418515B2 (en) Optoelectronic lighting device
JP2007324417A (en) Semiconductor light-emitting device and manufacturing method therefor
JPH07288341A (en) Led display
US20110141716A1 (en) Illumination Device for Backlighting a Display, and a Display Comprising such an Illumination Device
JP2001298216A (en) Surface-mounting semiconductor light-emitting device
JP2005311395A (en) Manufacturing method of semiconductor light-emitting device
KR20070025899A (en) Light emitting diode lamp
JP2001217461A (en) Compound light-emitting device
JP2007324275A (en) Light emitting device
JP2003168828A (en) Surface mounting light emitting diode and its producing method
KR100665181B1 (en) Light emitting diode package and method for manufacturing the same
JP7236016B2 (en) light emitting device
JP2007324630A (en) Semiconductor light-emitting device
JP4366981B2 (en) Semiconductor light emitting device and method for forming the same
JP3834188B2 (en) Semiconductor light emitting device
KR20090002026A (en) Light emitting device