JP4045710B2 - Manufacturing method of semiconductor light emitting device - Google Patents

Manufacturing method of semiconductor light emitting device Download PDF

Info

Publication number
JP4045710B2
JP4045710B2 JP35725299A JP35725299A JP4045710B2 JP 4045710 B2 JP4045710 B2 JP 4045710B2 JP 35725299 A JP35725299 A JP 35725299A JP 35725299 A JP35725299 A JP 35725299A JP 4045710 B2 JP4045710 B2 JP 4045710B2
Authority
JP
Japan
Prior art keywords
light emitting
substrate
light
wavelength conversion
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35725299A
Other languages
Japanese (ja)
Other versions
JP2001177158A (en
Inventor
正美 根井
俊郎 北園
繁壽 大中原
俊秀 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP35725299A priority Critical patent/JP4045710B2/en
Publication of JP2001177158A publication Critical patent/JP2001177158A/en
Application granted granted Critical
Publication of JP4045710B2 publication Critical patent/JP4045710B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Description

【0001】
【発明の属する技術分野】
本発明は、たとえば青色発光の発光ダイオードによる発光を波長変換して白色発光を得るようにした半導体発光装置に係り、特にフリップチップ型の発光素子を用いてその主光取出し面からの白色発光の色度を最適化した半導体発光装置及びその製造方法に関する。
【0002】
【従来の技術】
青色発光の発光ダイオード(以下、「LED」と記す)は、近来になって、GaN,GaAlN,InGaN及びInAlGaN等のGaN系化合物半導体を利用することによって、発光輝度の高い製品が得られるようになった。そして、この青(B)のLEDと旧来からの赤(R),緑(G)発光のLEDとの組合せにより、これらのLEDの3個を1ドットとする高画質のフルカラー画像の形成が可能となった。
【0003】
LEDの分野では、フルカラー対応には光の三原色のR,G,B(青)が必要であるから、これらの発光色のLEDのより一層の開発と改良が主である。その一方で、たとえばR,G,Bの合成によってしか得られない白色発光を単一のLEDで達成しようとする試みも既になされている。このような試みの一つとして、たとえば特開平7−99345号公報に開示されたものがある。
【0004】
この公報に記載のLEDは、図4の概略図に示すように、発光チップ50を搭載するリードフレーム51のマウント部51aを含めて樹脂(図示せず)によって封止するいわゆるLEDランプのタイプとしたものである。そして、発光チップ50の発光波長を変えて異なった発光色とするために、発光チップ50の周りのマウント部51aを蛍光物質を含んだ樹脂52で封止した構成を持つ。すなわち、旧来のLEDランプでは発光チップを搭載するリードフレームの先端部を含めて被覆するとともにレンズ機能も兼ねるエポキシ樹脂の単層で封止していたものに代えて、発光チップ周りに波長変換用の樹脂層を形成し、その周りをエポキシ樹脂で封止したものである。
【0005】
また、図4のマウント部に発光チップを搭載して砲弾型に樹脂封止するLEDランプに代えて、本願出願人は、サブマウント素子の上にp側及びn側の電極を下向きにして実装したフリップチップ型の発光素子の周りを蛍光物質を含む樹脂パッケージで封止した白色発光の半導体装置を提案し、特願平11−3788号として出願した。この出願に係る半導体発光装置においても、発光素子からの青色発光を蛍光物質によって波長変換して白色発光が可能である。
【0006】
【発明が解決しようとする課題】
LEDランプの場合では、発光チップ50を搭載するマウント部51aの内面を光反射面として利用するので、図示の例のようにマウント部51aをすり鉢状とすることが有効である。この場合、樹脂52はディスペンサによってマウント部51aに注入されるので、その厚さを高精度で制御することは非常に難しく、発光チップ50の上面と蛍光物質を含んだ樹脂52の表面との間の層厚Aを設定された所定値にすることは現状では不可能である。
【0007】
ここで、発光チップ50がたとえばサファイアを基板とするGaN系化合物半導体を利用した半導体発光素子であると、基板を上向きにしてその上面が最も発光輝度が高い主光取出し面となる。一方、発光チップ50の上面に被さる蛍光物質を含む樹脂52の層厚Aが製品ごとにばらつくと、発光チップ50からの光の変換効率が不均一となって目的とする純粋な白色発光は得られない。すなわち、樹脂52の層厚Aが適正値より大きいほど発光チップ50からの青色発光が黄緑色に変換される割合が高くなって緑っぽい発光色となり、層厚Aが適正値より小さいと青色がかった発光色となる。このように、リードフレーム51のマウント部51aに発光チップ50を搭載してディスペンサによって蛍光物質を含む樹脂52を充填する方式では、蛍光物質による変換効率の一様化が達成できないので、白色発光の半導体発光装置としては適切でない面がある。
【0008】
一方、本願出願人による先の出願のフリップチップ型の発光素子周りを蛍光物質含有の樹脂パッケージで封止するものでは、ウエハ状態にある基板材に発光素子を実装搭載した後にこの発光素子の周囲全体を包み込む金型をセットし、この金型に樹脂を注入することで樹脂パッケージを形成できる。このような樹脂パッケージの形成方法では、樹脂パッケージの厚さは金型の形状によって一様に決められる。したがって、ダイシング後の最終製品では、発光素子の周りに金型により創成されたほぼ一様な厚さの樹脂パッケージが形成されるはずである。
【0009】
しかしながら、たとえばエポキシ樹脂を生地として各種の蛍光物質を混入したものを材料とするので、蛍光物質の混入濃度や粒子の大きさによって金型による最適な成形条件はさまざまに変わる。たとえば、樹脂の溶融温度や徐冷硬化の関係などから硬化成形後の樹脂パッケージの肉厚に微妙な影響を与え、成形された樹脂パッケージの肉厚を全ての製品について設計値にすることは非常に困難である。
【0010】
このようにフリップチップ型の発光素子を蛍光物質含有の樹脂で封止する場合では、図4で示したリードフレーム51のマウント部51aに樹脂をディスペンサで注入する場合に比べると、発光素子の主光取出し面を被膜する樹脂の厚さをある程度一様化できる。しかしながら、フリップチップ型の発光素子であっても、蛍光物質を含む樹脂の厚さが製品ごとに微妙に異なることは避けられない。そして、蛍光物質を含む樹脂の厚さが波長変換率に大きく影響するので、金型で樹脂パッケージを形成しただけでは、純粋な白色発光の製品の製造という面からは歩留まりが低下しやすい。
【0011】
本発明は、フリップチップ型の発光素子の主光取出し面からの光を白色に波長変換する樹脂層の層厚を最適化して純粋な白色発光が得られる半導体発光装置及びその製造方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明は、光透過性の基板の表面に化合物半導体を積層し、前記化合物半導体の表面側にp側及びn側の電極を形成し、前記p側及びn側の電極を実装面に導通搭載し且つ前記基板の裏面側を主光取出し面としたフリップチップ型の半導体発光素子を含む半導体発光装置であって、少なくとも前記基板の主光取出し面を、波長変換用の蛍光物質を含有した光透過性の波長変換層によって被覆し、前記波長変換層の表面を前記主光取出し面と平行となるように研磨創成したことを特徴とする。
【0013】
また、このような半導体発光装置を製造するための本発明の製造方法は、(1)前記発光素子の基板が上を向く姿勢として前記p側及びn側の電極をそれぞれ基板材の上に導通搭載する工程と、
(2)少なくとも前記基板が上を向いた面として形成される主光取出し面を含めて、前記発光素子の周りを、波長変換用の蛍光物質を含有する樹脂材料によって被膜する工程と、
(3)白色発光の色度を調節するために、前記樹脂材料の上面を前記基板の主光取出し面と平行となるように研磨量を調整しながら研磨する工程と、
(4)前記基板材をダイシングしてサブマウント素子と半導体発光素子との複合化素子とする工程とを含むことを特徴とする。
【0014】
【発明の実施の形態】
本願第一の発明は、光透過性の基板の表面に化合物半導体を積層し、前記化合物半導体の表面側にp側及びn側の電極を形成し、前記p側及びn側の電極を実装面に導通搭載し且つ前記基板の裏面側を主光取出し面としたフリップチップ型の半導体発光素子を含む半導体発光装置であって、少なくとも前記基板の主光取出し面を、波長変換用の蛍光物質を含有した光透過性の波長変換層によって被覆し、前記波長変換層の表面を前記主光取出し面と平行となるように研磨創成したことを特徴とする半導体発光装置であり、主光取出し面を被覆する波長変換層の厚さを均一化できるので主光取出し面からの光の波長変換率を一様化でき色度むらのない発光が得られるという作用を有する。
【0015】
本願第二の発明は、前記発光素子は、前記基板として透明のサファイアを用い且つ前記化合物半導体をGaN系化合物半導体として構成したことを特徴とする請求項1記載の半導体発光装置であり、GaN系化合物半導体の高輝度の青色発光を蛍光物質含有の波長変換層によって白色発光に変換して発光させるという作用を有する。
【0016】
本願第三の発明は、光透過性の基板の表面に化合物半導体を積層し、前記化合物半導体の表面側にp側及びn側の電極を形成し、前記p側及びn側の電極をサブマウント素子の上に導通搭載し且つ前記基板の裏面側を主光取出し面としたフリップチップ型の半導体発光素子の少なくとも前記基板の主光取出し面を、波長変換用の蛍光物質を含有した光透過性の波長変換層によって被覆した半導体発光装置の製造方法であって、(1)前記発光素子の基板が上を向く姿勢として前記p側及びn側の電極をそれぞれ基板材の上に導通搭載する工程と、(2)少なくとも前記基板が上を向いた面として形成される主光取出し面を含めて前記発光素子の周りを、波長変換用の蛍光物質を含有する樹脂材料によって被膜する工程と、(3)白色発光の色度を調節するために、前記樹脂材料の上面を前記基板の主光取出し面と平行となるように研磨量を調整しながら研磨する工程と、(4)前記基板材をダイシングしてサブマウント素子と半導体発光素子との複合化素子とする工程とを含むことを特徴とする半導体発光装置の製造方法であり、樹脂材料を主光取出し面と平行になるように研磨して波長変換層を形成することで色度むらのない波長変換光が得られるとともに、研磨量を調整することで波長変換度も調節でき発光色の色調の調整も自在に行えるという作用を有する。
【0017】
以下、本発明の実施の形態について図面に基づき説明する。
【0018】
図1は本発明の一実施の形態による半導体発光装置の概略縦断面図である。
【0019】
図示のように、本発明の半導体発光装置は、実装基板1と、その上に搭載したサブマウント素子2と、その上に搭載した発光素子3と、これらのサブマウント素子2及び発光素子3を含めて封止した透明の樹脂パッケージ4とを主な部材としたものである。そして、発光素子3の周りには、後述するように、白色化のための蛍光物質の波長変換層がそれぞれ形成されている。
【0020】
実装基板1は絶縁性であって、従来のフリップチップ型の半導体発光素子と同様にウエハ状態の基板材にスリットを切開したものを用い、このスリットを通して電極1a,1bをメッキ法によって実装基板1の表裏両面にかけて形成したものである。また、樹脂パッケージ4はサブマウント素子2及び発光素子3の実装及びワイヤボンディングの後にウエハ状態の基板材の表面を樹脂で封止し、最終工程のダイシングによって図示の形状の実装基板1及び樹脂パッケージ4として創成される。
【0021】
サブマウント素子2はn型のシリコン基板2aを用いたもので、このシリコン基板2aの底面には実装基板1の電極1aに導通搭載されるn電極2bを形成している。また、シリコン基板2aの上面には、このシリコン基板2aの一部に形成したp型半導体領域に接触するp側電極2cとn型半導体領域に接触するn側電極2dがそれぞれ形成されている。
【0022】
発光素子3は、従来技術の項で述べたGaN系化合物半導体を利用した高輝度の青色発光のLEDである。この発光素子3は、サファイアを素材とした基板3aの表面に、たとえばGaNのn型層,InGaNの活性層及びGaNのp型層を積層したものである。そして、従来周知のように、p型層の一部をエッチングしてn型層を露出させ、この露出したn型層の表面にn側電極3bを形成し、p型層の表面にはp側電極3cを形成し、n側電極3bをサブマウント素子2のp側電極2cに及びp側電極3cをサブマウント素子2のn側電極2dにそれぞれバンプ電極を介して接合している。
【0023】
更に、サブマウント素子2のp側電極2cと実装基板1の電極1bとの間にはワイヤ5がボンディングされている。なお、実装基板1は電子機器等の配線基板に実装され、それぞれの電極1a,1bをこの配線基板の配線パターンに実装搭載することにより、発光素子3をサブマウント素子2を介して電源回路側に導通させる。また、樹脂パッケージ4は、従来からLEDランプの分野で使用されている光透過性のエポキシ樹脂を素材としたものである。
【0024】
ここで、本発明では、発光素子3の周りを波長変換層6で被覆し、この波長変換層6を樹脂パッケージ4で封止して保護している。波長変換層6は先に説明した特願平11−3788号の出願明細書にも記載しているように、発光素子3の青色発光を白色に変換するための蛍光物質をエポキシ樹脂に混入したものである。この青色発光を白色発光に変換する蛍光物質は、発光素子3の発光色である青色と補色の関係を持つものであればよく、蛍光染料,蛍光顔料,蛍光体などが利用でき、たとえば(Y,Gd)3(Al,Ga)512:Ceなどが好適である。
【0025】
波長変換層6は発光素子3からの青色発光を白色発光に変換するが、その変換効率は波長変換層6の厚さに依存する。すなわち、前述のように波長変換層6が所定値よりも厚いと緑がかった発光色となり、所定値より薄いと青みが強い発光色となり、厚さが異なる部分の発光観測面からの光は白色光から外れた色調となりやすい。したがって、波長変換層6の厚さは発光素子3の全方位で同じ厚さであって最適な効率で白色光に変換できるように設定することが好ましい。しかしながら、先に説明したように、現状の製造技術の面からは波長変換層6を一様な厚さに成形することは非常に困難である。
【0026】
一方、透明のサファイアを基板3aとするGaN系化合物半導体による発光素子3では、InGaNの活性層からの発光の大部分は基板3aの上面から放出される。すなわち、図1において基板3aの上面が主光取出し面となり、この主光取出し面からの青色発光を純粋な白色に変換すれば、全体として良好な白色発光が得られる。無論、波長変換層6は主光取出し面だけでなく基板3aの側面からあるいはp側,n側の電極3c,3bの形成部分からも光は放出されるが、目的とする発光方向は図1において上向きであり、これらの側面や電極形成面側からの発光は使途への貢献度は比較的小さい。したがって、主光取出し面からの光を純粋な白色発光とすれば半導体発光装置として満足なものが得られ、この主光取出し面すなわちサファイアの基板3aの上面を被覆している部分の波長変換層6の厚さを均等にすれば色度むらのない発光が得られることになる。なお、波長変換層6は発光素子3の側面及び電極形成面側も含めて封止しているので、発光素子3の全体からの光を白色に波長変換されることに変わりはない。
【0027】
ここで、波長変換層6をその中に含んだ蛍光物質が青色発光により励起されて白色発光として観察される。この場合、波長変換層6の厚さが波長変換率を一義的に決めるので、発光素子3の表面を被覆する波長変換層6の厚さが均一であること及びその厚さが最適値であるかが重要な因子となる。これに対し、本発明者らは波長変換層6を形成した後にその表面を研磨すれば主光取出し面との間の厚さを一様化できることを知見し、さらにその最適厚さを経験的に導出した。図2にサブマウント素子2と発光素子3とによる複合化素子の製造工程の概略を順に示す。
【0028】
図2において、予めダイシングによってチップ化した発光素子3をサブマウント素子用の基板材11に予め形成したバンプ電極11a,11bにp側及びn側の電極3c,3bを位置合わせし、バキュームヘッドによって発光素子3を基板材11に実装してチップ接合する(同図(a))。次いで、蛍光物質を含んだ樹脂材料12を塗布または金型によって発光素子3の全体を被覆する(同図(b))。この樹脂材料12の塗布または金型による形成では、図中のように表面に凹凸ができたりして一様な平坦度が得られないので、研磨ヘッド13によって樹脂材料12の上面を研磨する(同図(c))。最後に、ダイサー14によって基板材11をダイシングすることによって図1に示したサブマウント素子2と発光素子3とによる複合化素子が得られる。
【0029】
このような製造工程では、基板材11の上に発光素子3の基板3aの上面が水平姿勢となるように実装しておき、研磨工程で研磨ヘッド13を高精度で水平回転させる。これにより研磨工程の後では、基板3aの上面と研磨された後の樹脂材料すなわち波長変換層6の上面とは平行な関係となり、波長変換層6の肉厚を高精度で一様化できる。したがって、発光素子3の主光取出し面の全体からの光は、全て一様な波長変換効率を受けて白色に波長変換され、色度が一様な白色発光が得られる。
【0030】
図3は以上の研磨工程によって形成された波長変換層6の層厚と色度座標xとの関係を実測によって得たデータである。
【0031】
波長変換層6の層厚は40μm〜60μmの間で変えたものを製作し、図1に示したGaN系化合物半導体による発光素子3を点灯させて色度座標xをプロットした。このプロットから明らかなように、波長変換層6が厚くなるにつれてx座標の座標値はほぼリニア増加していき、波長変換層6の厚さtとx座標の座標値との間に明瞭な相関があることが判る。このことから、波長変換層6の厚さtを調整することによって、色度座標の座標x値を設定することができ、その結果色度の調整も可能となる。
【0032】
また、図3におけるプロット線図により得られたデータによれば、色度座標値のx値の経験式(実験式)はx=0.0035t+0.0867であった。したがって、予め目標とする色度座標のx座標に対して波長変換層6の厚さtを容易に導き出すことができ、所望の白色発光を得ることができる。なお、色度座標におけるy座標については、青色発光の発光素子の発光波長が支配的であり、白色発光への相関は無視できる。
【0033】
以上のように、発光素子3の主光取出し面を被覆する波長変換層6の層厚を均一化するように研磨するので、主光取出し面からの光の全てについて同じ波長変換の条件を加えることができ、色度を一様化した良好な白色発光が得られる。また、図2の(c)での研磨工程による樹脂材料12の研磨量を調整することで、白色発光の色調も自在に調節でき、用途に応じた発光源として最適に利用することができる。
【0034】
【発明の効果】
本発明では、発光素子の主光取出し面を被覆する波長変換層の厚さを均一化できるので主光取出し面からの光の波長変換率を一様化でき、色度むらのない発光が得られる。また、波長変換層の厚さを研磨によって調整するので、層厚を任意に設定でき色度も自在に調節でき、青色発光の発光素子を使用する場合では純粋な白色発光が得られ、従来の蛍光灯等に代わる光源として利用できる。
【図面の簡単な説明】
【図1】本発明の一実施の形態による半導体発光装置の概略縦断面図
【図2】サブマウント素子と発光素子とによる複合化素子の製造工程を順に示す概略図
【図3】本発明の半導体発光装置における波長変換層の層厚と色度座標のx座標値との関係を示すプロット線図
【図4】青色発光の発光素子を樹脂に蛍光物質を混入した波長変換層によって封止した従来例であって、(a)はその概略縦断面図
(b)は概略平面図
【符号の説明】
1 実装基板
1a,1b 電極
2 サブマウント素子
2a シリコン基板
2b n電極
2c p側電極
2d n側電極
3 発光素子
3a 基板
3b n側電極
3c p側電極
4 樹脂パッケージ
5 ワイヤ
6 波長変換層
11 基板材
11a,11b バンプ電極
12 樹脂材料
13 研磨ヘッド
14 ダイサー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor light emitting device which obtains white light emission by converting the wavelength of light emitted from a blue light emitting diode, for example, and in particular, emits white light from the main light extraction surface using a flip chip type light emitting element. The present invention relates to a semiconductor light emitting device with optimized chromaticity and a method for manufacturing the same.
[0002]
[Prior art]
Blue light-emitting diodes (hereinafter referred to as “LEDs”) have recently come to be able to obtain products with high emission brightness by using GaN-based compound semiconductors such as GaN, GaAlN, InGaN, and InAlGaN. became. And, by combining this blue (B) LED with the traditional red (R) and green (G) LEDs, it is possible to form a high-quality full-color image with three of these LEDs as one dot. It became.
[0003]
In the field of LEDs, full-color correspondence requires R, G, B (blue) of the three primary colors of light, so further development and improvement of these light emitting color LEDs is main. On the other hand, attempts have already been made to achieve white light emission with a single LED, which can be obtained only by the synthesis of R, G, B, for example. One such attempt is disclosed in, for example, Japanese Patent Application Laid-Open No. 7-99345.
[0004]
As shown in the schematic diagram of FIG. 4, the LED described in this publication includes a so-called LED lamp type that is sealed with a resin (not shown) including a mount portion 51a of a lead frame 51 on which the light emitting chip 50 is mounted. It is a thing. And in order to change the light emission wavelength of the light emitting chip 50 and make it a different light emission color, it has the structure which sealed the mount part 51a around the light emitting chip 50 with the resin 52 containing a fluorescent substance. In other words, in the conventional LED lamp, instead of the LED lamp that covers the tip of the lead frame on which the light-emitting chip is mounted and is sealed with a single layer of epoxy resin that also functions as a lens, it is used for wavelength conversion around the light-emitting chip. The resin layer is formed and the periphery thereof is sealed with an epoxy resin.
[0005]
Further, instead of the LED lamp in which the light emitting chip is mounted on the mount portion in FIG. 4 and resin-sealed in a bullet shape, the applicant of the present application mounts the sub-mount element with the p-side and n-side electrodes facing downward. A white light emitting semiconductor device in which the periphery of the flip chip type light emitting element is sealed with a resin package containing a fluorescent substance has been proposed and filed as Japanese Patent Application No. 11-3788. The semiconductor light emitting device according to this application can also emit white light by converting the wavelength of blue light emitted from the light emitting element with a fluorescent material.
[0006]
[Problems to be solved by the invention]
In the case of an LED lamp, the inner surface of the mount portion 51a on which the light emitting chip 50 is mounted is used as a light reflecting surface. Therefore, it is effective to make the mount portion 51a into a mortar shape as in the illustrated example. In this case, since the resin 52 is injected into the mount portion 51a by the dispenser, it is very difficult to control the thickness thereof with high accuracy, and between the upper surface of the light emitting chip 50 and the surface of the resin 52 containing the fluorescent material. At present, it is impossible to set the layer thickness A to a predetermined value.
[0007]
Here, when the light emitting chip 50 is a semiconductor light emitting device using a GaN-based compound semiconductor having sapphire as a substrate, for example, the upper surface of the light emitting chip 50 is the main light extraction surface having the highest light emission luminance. On the other hand, if the layer thickness A of the resin 52 containing the fluorescent material covering the upper surface of the light emitting chip 50 varies from product to product, the conversion efficiency of light from the light emitting chip 50 becomes non-uniform and the intended pure white light emission is obtained. I can't. That is, as the layer thickness A of the resin 52 is larger than the appropriate value, the ratio of the blue light emitted from the light emitting chip 50 being converted to yellow-green is increased, resulting in a greenish emission color. The emission color becomes tinged. As described above, in the method in which the light emitting chip 50 is mounted on the mount portion 51a of the lead frame 51 and the resin 52 containing the fluorescent material is filled by the dispenser, the uniform conversion efficiency by the fluorescent material cannot be achieved. There are aspects that are not suitable as semiconductor light emitting devices.
[0008]
On the other hand, in the case where the periphery of the flip chip type light emitting element of the previous application by the applicant of the present application is sealed with a resin package containing a fluorescent material, the periphery of the light emitting element is mounted after mounting the light emitting element on a substrate material in a wafer state. A resin package can be formed by setting a mold that wraps the whole and injecting resin into the mold. In such a resin package forming method, the thickness of the resin package is uniformly determined by the shape of the mold. Therefore, in the final product after dicing, a resin package having a substantially uniform thickness created by a mold around the light emitting element should be formed.
[0009]
However, for example, since an epoxy resin is used as a material and various fluorescent substances are mixed, the optimum molding conditions depending on the mold vary depending on the concentration of the fluorescent substances and the size of the particles. For example, it is very difficult to make the thickness of the molded resin package the design value for all products, because it has a subtle effect on the thickness of the resin package after curing and molding due to the relationship between the melting temperature of the resin and slow cooling curing. It is difficult to.
[0010]
As described above, when the flip chip type light emitting element is sealed with the resin containing the fluorescent material, the main part of the light emitting element is compared with the case where the resin is injected into the mount portion 51a of the lead frame 51 shown in FIG. The thickness of the resin coating the light extraction surface can be made uniform to some extent. However, even in a flip-chip type light emitting element, it is inevitable that the thickness of the resin containing the fluorescent material is slightly different for each product. Since the thickness of the resin containing the fluorescent material greatly affects the wavelength conversion rate, the yield is likely to be reduced from the standpoint of producing a pure white light emitting product simply by forming the resin package with a mold.
[0011]
The present invention provides a semiconductor light emitting device capable of obtaining pure white light emission by optimizing the layer thickness of a resin layer that converts the wavelength of light from a main light extraction surface of a flip chip type light emitting element into white, and a method for manufacturing the same. For the purpose.
[0012]
[Means for Solving the Problems]
In the present invention, a compound semiconductor is laminated on the surface of a light-transmitting substrate, p-side and n-side electrodes are formed on the surface side of the compound semiconductor, and the p-side and n-side electrodes are conductively mounted on a mounting surface. And a semiconductor light-emitting device including a flip-chip type semiconductor light-emitting element having a back surface side of the substrate as a main light extraction surface, wherein at least the main light extraction surface of the substrate contains light containing a wavelength converting fluorescent material. It is covered with a transmissive wavelength conversion layer, and the surface of the wavelength conversion layer is polished and created so as to be parallel to the main light extraction surface.
[0013]
The manufacturing method of the present invention for manufacturing such a semiconductor light emitting device is as follows. (1) Conducting the p-side and n-side electrodes on a substrate material in such a posture that the substrate of the light-emitting element faces upward. Mounting process,
(2) coating the periphery of the light emitting element with a resin material containing a fluorescent substance for wavelength conversion, including at least a main light extraction surface formed as a surface with the substrate facing upward;
(3) In order to adjust the chromaticity of white light emission, the step of polishing while adjusting the polishing amount so that the upper surface of the resin material is parallel to the main light extraction surface of the substrate;
(4) including a step of dicing the substrate material to form a composite element of a submount element and a semiconductor light emitting element .
[0014]
DETAILED DESCRIPTION OF THE INVENTION
In the first invention of the present application , a compound semiconductor is laminated on the surface of a light-transmitting substrate, p-side and n-side electrodes are formed on the surface side of the compound semiconductor, and the p-side and n-side electrodes are mounted on the mounting surface. A semiconductor light emitting device including a flip-chip type semiconductor light emitting element that is conductively mounted and has a back surface side of the substrate as a main light extraction surface, wherein at least the main light extraction surface of the substrate is made of a fluorescent substance for wavelength conversion. The semiconductor light emitting device is characterized in that it is coated with a light-transmitting wavelength conversion layer, and the surface of the wavelength conversion layer is polished so as to be parallel to the main light extraction surface. Since the thickness of the wavelength conversion layer to be coated can be made uniform, the wavelength conversion rate of light from the main light extraction surface can be made uniform, and light emission without chromaticity unevenness can be obtained.
[0015]
The second invention of the present application is the semiconductor light-emitting device according to claim 1, wherein the light-emitting element uses transparent sapphire as the substrate and the compound semiconductor is a GaN-based compound semiconductor. The compound semiconductor has the effect of converting blue light emission of high brightness into white light emission by a wavelength conversion layer containing a fluorescent material to emit light.
[0016]
According to a third aspect of the present invention , a compound semiconductor is laminated on the surface of a light-transmitting substrate, p-side and n-side electrodes are formed on the surface of the compound semiconductor, and the p-side and n-side electrodes are submounted. A flip chip type semiconductor light emitting device that is conductively mounted on the device and has the back side of the substrate as a main light extraction surface, at least the main light extraction surface of the substrate contains a light-transmitting material containing a fluorescent substance for wavelength conversion A method for manufacturing a semiconductor light-emitting device covered with a wavelength conversion layer of (1), wherein the p-side and n-side electrodes are conductively mounted on a substrate material so that the substrate of the light-emitting element faces upward When the steps of coating a resin material including a main light extracting surface, which is formed, around the light emitting element, which contains a fluorescent material for wavelength conversion as a surface facing upward at least the substrate (2), (3) of the white light emitting In order to adjust the degree, and a step of polishing while adjusting the polishing amount of the upper surface of the resin material so as to be parallel to the main light extraction surface of the substrate, submount by dicing the (4) the substrate material A method of manufacturing a semiconductor light-emitting device, comprising a step of forming a composite element of a semiconductor light-emitting element and a semiconductor light-emitting element, wherein a wavelength conversion layer is formed by polishing a resin material parallel to a main light extraction surface Thus, wavelength-converted light having no chromaticity unevenness can be obtained, and the wavelength conversion degree can be adjusted by adjusting the polishing amount, and the color tone of the emitted color can be freely adjusted.
[0017]
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0018]
FIG. 1 is a schematic longitudinal sectional view of a semiconductor light emitting device according to an embodiment of the present invention.
[0019]
As shown, the semiconductor light emitting device of the present invention includes a mounting substrate 1, a submount element 2 mounted thereon, a light emitting element 3 mounted thereon, and the submount element 2 and light emitting element 3 mounted thereon. The transparent resin package 4 that has been sealed is used as a main member. A wavelength conversion layer of a fluorescent material for whitening is formed around the light emitting element 3 as described later.
[0020]
The mounting substrate 1 is insulative and uses a wafer-like substrate material in which slits are cut in the same manner as conventional flip-chip type semiconductor light-emitting elements, and the electrodes 1a and 1b are plated by the mounting substrate 1 through the slits. It was formed over both front and back surfaces. In addition, the resin package 4 seals the surface of the substrate material in the wafer state with a resin after mounting the submount element 2 and the light emitting element 3 and wire bonding, and the mounting substrate 1 and the resin package having the shape shown in the figure by dicing in the final process. Created as 4.
[0021]
The submount element 2 uses an n-type silicon substrate 2a, and an n-electrode 2b that is conductively mounted on the electrode 1a of the mounting substrate 1 is formed on the bottom surface of the silicon substrate 2a. Further, on the upper surface of the silicon substrate 2a, a p-side electrode 2c that contacts a p-type semiconductor region formed on a part of the silicon substrate 2a and an n-side electrode 2d that contacts an n-type semiconductor region are formed.
[0022]
The light-emitting element 3 is a high-luminance blue light-emitting LED using the GaN-based compound semiconductor described in the section of the related art. The light emitting element 3 is formed by laminating, for example, a GaN n-type layer, an InGaN active layer, and a GaN p-type layer on the surface of a substrate 3a made of sapphire. Then, as is well known, a part of the p-type layer is etched to expose the n-type layer, and the n-side electrode 3b is formed on the exposed surface of the n-type layer. A side electrode 3c is formed, and the n-side electrode 3b is bonded to the p-side electrode 2c of the submount element 2 and the p-side electrode 3c is bonded to the n-side electrode 2d of the submount element 2 via bump electrodes.
[0023]
Further, a wire 5 is bonded between the p-side electrode 2 c of the submount element 2 and the electrode 1 b of the mounting substrate 1. The mounting board 1 is mounted on a wiring board such as an electronic device, and the respective electrodes 1a and 1b are mounted on the wiring pattern of the wiring board, whereby the light emitting element 3 is connected to the power circuit side via the submount element 2. To conduct. The resin package 4 is made of a light-transmitting epoxy resin that has been used in the field of LED lamps.
[0024]
Here, in the present invention, the periphery of the light emitting element 3 is covered with the wavelength conversion layer 6, and the wavelength conversion layer 6 is sealed and protected by the resin package 4. As described in the application specification of Japanese Patent Application No. 11-3788 described above, the wavelength conversion layer 6 is mixed with an epoxy resin with a fluorescent material for converting blue light emission of the light emitting element 3 into white. Is. The fluorescent material that converts the blue light emission into white light emission may be any material that has a complementary color relationship with the blue light emission color of the light emitting element 3, and fluorescent dyes, fluorescent pigments, phosphors, and the like can be used. , Gd) 3 (Al, Ga) 5 O 12 : Ce and the like are suitable.
[0025]
The wavelength conversion layer 6 converts blue light emission from the light emitting element 3 into white light emission, and the conversion efficiency depends on the thickness of the wavelength conversion layer 6. That is, as described above, when the wavelength conversion layer 6 is thicker than a predetermined value, the light emission color becomes greenish, and when the wavelength conversion layer 6 is thinner than the predetermined value, the light emission color becomes bluish. It tends to be out of light. Therefore, the thickness of the wavelength conversion layer 6 is preferably set so as to be the same thickness in all directions of the light emitting element 3 and can be converted into white light with optimum efficiency. However, as described above, it is very difficult to form the wavelength conversion layer 6 with a uniform thickness from the viewpoint of the current manufacturing technology.
[0026]
On the other hand, in the GaN-based compound semiconductor light emitting device 3 using transparent sapphire as the substrate 3a, most of light emitted from the InGaN active layer is emitted from the upper surface of the substrate 3a. That is, in FIG. 1, the upper surface of the substrate 3a becomes the main light extraction surface, and if the blue light emission from this main light extraction surface is converted into pure white, good white light emission as a whole can be obtained. Of course, the wavelength conversion layer 6 emits light not only from the main light extraction surface, but also from the side surface of the substrate 3a or from the portions where the p-side and n-side electrodes 3c and 3b are formed. The light emission from these side surfaces and the electrode formation surface side has a relatively small contribution to the usage. Therefore, if the light from the main light extraction surface is made pure white light emission, a satisfactory semiconductor light emitting device can be obtained, and the wavelength conversion layer in the portion covering the main light extraction surface, that is, the upper surface of the sapphire substrate 3a. If the thickness 6 is made uniform, light emission without chromaticity unevenness can be obtained. Since the wavelength conversion layer 6 is sealed including the side surface of the light emitting element 3 and the electrode forming surface side, the wavelength of light from the entire light emitting element 3 is still converted to white.
[0027]
Here, the fluorescent substance containing the wavelength conversion layer 6 is excited by blue light emission and observed as white light emission. In this case, since the thickness of the wavelength conversion layer 6 uniquely determines the wavelength conversion rate, the thickness of the wavelength conversion layer 6 covering the surface of the light emitting element 3 is uniform and the thickness is an optimum value. Is an important factor. In contrast, the present inventors have found that if the surface is polished after the wavelength conversion layer 6 is formed, the thickness between the main light extraction surface can be made uniform, and the optimum thickness is empirically determined. Derived. FIG. 2 shows an outline of the manufacturing process of the composite element by the submount element 2 and the light emitting element 3 in order.
[0028]
In FIG. 2, the light emitting element 3 that has been formed into chips by dicing is aligned with bump electrodes 11a and 11b formed in advance on the substrate material 11 for the submount elements, and the p-side and n-side electrodes 3c and 3b are aligned, and the vacuum head is used. The light-emitting element 3 is mounted on the substrate material 11 and chip-bonded (FIG. 1A). Next, the entire light-emitting element 3 is coated with a resin material 12 containing a fluorescent substance or coated with a mold ((b) in the figure). In the application of the resin material 12 or the formation by a mold, the surface is uneven as shown in the figure and uniform flatness cannot be obtained, so the upper surface of the resin material 12 is polished by the polishing head 13 ( (C) in the figure. Finally, the substrate material 11 is diced by the dicer 14 to obtain a composite element composed of the submount element 2 and the light emitting element 3 shown in FIG.
[0029]
In such a manufacturing process, it mounts so that the upper surface of the board | substrate 3a of the light emitting element 3 may become a horizontal attitude | position on the board | substrate material 11, and the grinding | polishing head 13 is horizontally rotated with high precision at a grinding | polishing process. Thus, after the polishing step, the upper surface of the substrate 3a and the polished resin material, that is, the upper surface of the wavelength conversion layer 6 are in a parallel relationship, and the thickness of the wavelength conversion layer 6 can be made uniform with high accuracy. Accordingly, the light from the entire main light extraction surface of the light emitting element 3 is subjected to uniform wavelength conversion efficiency and is converted into white, and white light emission with uniform chromaticity is obtained.
[0030]
FIG. 3 shows data obtained by actual measurement of the relationship between the layer thickness of the wavelength conversion layer 6 formed by the above polishing process and the chromaticity coordinate x.
[0031]
The layer thickness of the wavelength conversion layer 6 was changed between 40 μm and 60 μm, and the light emitting element 3 made of the GaN compound semiconductor shown in FIG. 1 was turned on to plot the chromaticity coordinates x. As is apparent from this plot, the coordinate value of the x coordinate increases substantially linearly as the wavelength conversion layer 6 becomes thicker, and a clear correlation exists between the thickness t of the wavelength conversion layer 6 and the coordinate value of the x coordinate. I know that there is. Thus, by adjusting the thickness t of the wavelength conversion layer 6, the coordinate x value of the chromaticity coordinates can be set, and as a result, the chromaticity can also be adjusted.
[0032]
Further, according to the data obtained from the plot diagram in FIG. 3, the empirical formula (empirical formula) of the x value of the chromaticity coordinate value was x = 0.0035t + 0.0867. Therefore, the thickness t of the wavelength conversion layer 6 can be easily derived with respect to the x coordinate of the target chromaticity coordinate in advance, and desired white light emission can be obtained. Regarding the y coordinate in the chromaticity coordinates, the emission wavelength of the blue light emitting element is dominant, and the correlation with the white light emission can be ignored.
[0033]
As described above, since the polishing is performed so that the thickness of the wavelength conversion layer 6 covering the main light extraction surface of the light emitting element 3 is uniform, the same wavelength conversion condition is applied to all the light from the main light extraction surface. And good white light emission with uniform chromaticity can be obtained. Further, by adjusting the polishing amount of the resin material 12 in the polishing step in FIG. 2C, the color tone of white light emission can be freely adjusted, and it can be optimally used as a light emission source according to the application.
[0034]
【The invention's effect】
In the present invention, since the thickness of the wavelength conversion layer covering the main light extraction surface of the light emitting element can be made uniform, the wavelength conversion rate of light from the main light extraction surface can be made uniform, and light emission without unevenness in chromaticity can be obtained. It is done. In addition, since the thickness of the wavelength conversion layer is adjusted by polishing, the layer thickness can be arbitrarily set and the chromaticity can be freely adjusted. When a blue light emitting element is used, pure white light emission can be obtained. It can be used as a light source to replace fluorescent lamps.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view of a semiconductor light emitting device according to an embodiment of the present invention. FIG. 2 is a schematic view sequentially illustrating a manufacturing process of a composite element using a submount element and a light emitting element. FIG. 4 is a plot diagram showing the relationship between the layer thickness of the wavelength conversion layer and the x coordinate value of the chromaticity coordinate in a semiconductor light emitting device. FIG. 4 is a blue light emitting element sealed with a wavelength conversion layer in which a fluorescent material is mixed in a resin. It is a conventional example, (a) is a schematic longitudinal sectional view (b) is a schematic plan view
DESCRIPTION OF SYMBOLS 1 Mounting substrate 1a, 1b Electrode 2 Submount element 2a Silicon substrate 2b N electrode 2c p side electrode 2d n side electrode 3 Light emitting element 3a Substrate 3b n side electrode 3c p side electrode 4 Resin package 5 Wire 6 Wavelength conversion layer 11 Substrate material 11a, 11b Bump electrode 12 Resin material 13 Polishing head 14 Dicer

Claims (1)

光透過性の基板の表面に化合物半導体を積層し、前記化合物半導体の表面側にp側及びn側の電極を形成し、前記p側及びn側の電極をサブマウント素子の上に導通搭載し且つ前記基板の裏面側を主光取出し面としたフリップチップ型の半導体発光素子の少なくとも前記基板の主光取出し面を、波長変換用の蛍光物質を含有した光透過性の波長変換層によって被覆した半導体発光装置の製造方法であって、
(1)前記発光素子の基板が上を向く姿勢として前記p側及びn側の電極をそれぞれ基板材の上に導通搭載する工程と、
(2)少なくとも前記基板が上を向いた面として形成される主光取出し面を含めて、前記発光素子の周りを、波長変換用の蛍光物質を含有する樹脂材料によって被膜する工程と、
(3)白色発光の色度を調節するために、前記樹脂材料の上面を前記基板の主光取出し面と平行となるように研磨量を調整しながら研磨する工程と、
(4)前記基板材をダイシングしてサブマウント素子と半導体発光素子との複合化素子とする工程
とを含むことを特徴とする半導体発光装置の製造方法
A compound semiconductor is stacked on the surface of a light-transmitting substrate, p-side and n-side electrodes are formed on the surface side of the compound semiconductor, and the p-side and n-side electrodes are conductively mounted on a submount element. And at least the main light extraction surface of the substrate of the flip-chip type semiconductor light emitting device having the back side of the substrate as the main light extraction surface is covered with a light transmissive wavelength conversion layer containing a wavelength converting fluorescent material. A method of manufacturing a semiconductor light emitting device,
(1) a step of conductively mounting the p-side and n-side electrodes on the substrate material so that the substrate of the light emitting element faces upward;
(2) coating the periphery of the light emitting element with a resin material containing a fluorescent substance for wavelength conversion, including at least a main light extraction surface formed as a surface with the substrate facing upward;
(3) In order to adjust the chromaticity of white light emission, the step of polishing while adjusting the polishing amount so that the upper surface of the resin material is parallel to the main light extraction surface of the substrate;
(4) A step of dicing the substrate material to form a composite element of a submount element and a semiconductor light emitting element.
A method for manufacturing a semiconductor light-emitting device , comprising:
JP35725299A 1999-12-16 1999-12-16 Manufacturing method of semiconductor light emitting device Expired - Fee Related JP4045710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35725299A JP4045710B2 (en) 1999-12-16 1999-12-16 Manufacturing method of semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35725299A JP4045710B2 (en) 1999-12-16 1999-12-16 Manufacturing method of semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2001177158A JP2001177158A (en) 2001-06-29
JP4045710B2 true JP4045710B2 (en) 2008-02-13

Family

ID=18453177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35725299A Expired - Fee Related JP4045710B2 (en) 1999-12-16 1999-12-16 Manufacturing method of semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP4045710B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3749243B2 (en) 2001-09-03 2006-02-22 松下電器産業株式会社 Semiconductor light emitting device, light emitting apparatus, and method for manufacturing semiconductor light emitting device
US7858403B2 (en) * 2001-10-31 2010-12-28 Cree, Inc. Methods and systems for fabricating broad spectrum light emitting devices
CN100508221C (en) * 2002-10-30 2009-07-01 奥斯兰姆奥普托半导体有限责任公司 Method for producing a light source provided with electroluminescent diodes and comprising a luminescence conversion element
WO2004040661A2 (en) 2002-10-30 2004-05-13 Osram Opto Semiconductors Gmbh Method for producing a light source provided with electroluminescent diodes and comprising a luminescence conversion element
JP4292794B2 (en) * 2002-12-04 2009-07-08 日亜化学工業株式会社 Light emitting device, method for manufacturing light emitting device, and method for adjusting chromaticity of light emitting device
WO2005008791A2 (en) * 2003-07-16 2005-01-27 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting device, method of manufacturing the same, and lighting apparatus and display apparatus using the same
US7820462B2 (en) * 2003-07-24 2010-10-26 Reflex Photonics Inc. Encapsulated optical package
DE102004036295A1 (en) * 2003-07-29 2005-03-03 GELcore, LLC (n.d.Ges.d. Staates Delaware), Valley View Fabrication of flip-chip light emitting diode device by fabricating light emitting diode devices on epitaxial wafer, dicing the epitaxial wafer, flip chip bonding the device die to mount, and reducing thickness of growth substrate
JP2005210042A (en) * 2003-09-11 2005-08-04 Kyocera Corp Light emitting apparatus and illumination apparatus
EP1783838A1 (en) * 2004-06-23 2007-05-09 Rohm Co., Ltd. White light-emitting device and method for producing same
JP2008515184A (en) * 2004-09-28 2008-05-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Light emitting device with improved conversion layer
US7462502B2 (en) * 2004-11-12 2008-12-09 Philips Lumileds Lighting Company, Llc Color control by alteration of wavelength converting element
JP2006156668A (en) * 2004-11-29 2006-06-15 Nichia Chem Ind Ltd Light emitting device and its manufacturing method
JP2006216765A (en) * 2005-02-03 2006-08-17 Nippon Leiz Co Ltd Light source apparatus
EP1693904B1 (en) 2005-02-18 2020-03-25 Nichia Corporation Light emitting device provided with lens for controlling light distribution characteristic
JP5709943B2 (en) * 2008-04-24 2015-04-30 シチズンホールディングス株式会社 LED light source manufacturing method
JP4799606B2 (en) 2008-12-08 2011-10-26 株式会社東芝 Optical semiconductor device and method for manufacturing optical semiconductor device
JP4724222B2 (en) 2008-12-12 2011-07-13 株式会社東芝 Method for manufacturing light emitting device
JPWO2010119934A1 (en) 2009-04-14 2012-10-22 パナソニック株式会社 Light emitting device, light characteristic adjusting method, and light emitting device manufacturing method
JP5498417B2 (en) * 2011-03-15 2014-05-21 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
JP2018010188A (en) * 2016-07-14 2018-01-18 日本電気硝子株式会社 Manufacturing method for wavelength conversion member, and wavelength conversion member group
JP7212319B2 (en) * 2017-11-21 2023-01-25 日本電気硝子株式会社 Wavelength conversion member and light emitting device

Also Published As

Publication number Publication date
JP2001177158A (en) 2001-06-29

Similar Documents

Publication Publication Date Title
JP4045710B2 (en) Manufacturing method of semiconductor light emitting device
US8598608B2 (en) Light emitting device
US7414271B2 (en) Thin film led
US7871850B2 (en) Light emitting device and manufacturing method thereof
US7714342B2 (en) Chip coated light emitting diode package and manufacturing method thereof
US20120193662A1 (en) Reflective mounting substrates for flip-chip mounted horizontal leds
KR20050034936A (en) Wavelength - converted light emitting diode package using phosphor and manufacturing method
JP2000208822A (en) Semiconductor light-emitting device
JP2002094123A (en) Surface-mounted light emitting diode and its manufacturing method
JP3725413B2 (en) Semiconductor light emitting device
JP2001298216A (en) Surface-mounting semiconductor light-emitting device
JPH1131845A (en) Formation of light emitting diode
JP2001177157A (en) Semiconductor light emitting device
JP2003168828A (en) Surface mounting light emitting diode and its producing method
JP2000150966A (en) Semiconductor light emitting device and manufacture thereof
JP2005537655A (en) White light emitting diode and method for manufacturing white light emitting diode
JP2002134792A (en) Manufacturing method of white semiconductor light- emitting device
JP2000252523A (en) Formation of led
JP4534513B2 (en) Light emitting device
JP2007324630A (en) Semiconductor light-emitting device
KR100450514B1 (en) White light emitting diode
JP3412601B2 (en) Method for manufacturing semiconductor light emitting device
JP6978708B2 (en) Semiconductor light emitting device
JP3674387B2 (en) Light emitting diode and method for forming the same
JP2002100813A (en) Wavelength-converting paste material, semiconductor light-emitting device and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041207

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees