JP4534513B2 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP4534513B2
JP4534513B2 JP2004040201A JP2004040201A JP4534513B2 JP 4534513 B2 JP4534513 B2 JP 4534513B2 JP 2004040201 A JP2004040201 A JP 2004040201A JP 2004040201 A JP2004040201 A JP 2004040201A JP 4534513 B2 JP4534513 B2 JP 4534513B2
Authority
JP
Japan
Prior art keywords
light
phosphor
light emitting
emitting element
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004040201A
Other languages
Japanese (ja)
Other versions
JP2005235847A (en
Inventor
正太 下西
暁子 木村
賢士 佐久間
寿夫 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2004040201A priority Critical patent/JP4534513B2/en
Publication of JP2005235847A publication Critical patent/JP2005235847A/en
Application granted granted Critical
Publication of JP4534513B2 publication Critical patent/JP4534513B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

本発明は、LED素子を光源として白色、昼白色、昼光色、電球色等の白色系の光を生じる波長変換型の発光装置に関し、特に、LED素子から放射される光の発光波長ずれが生じたとしても、白色光の色ずれを生じることのない発光装置に関する。   The present invention relates to a wavelength conversion type light emitting device that generates white light such as white, day white, daylight color, light bulb color, etc. using an LED element as a light source, and in particular, an emission wavelength shift of light emitted from the LED element occurs. The present invention also relates to a light emitting device that does not cause a color shift of white light.

従来の発光装置として、光源にLED素子を使用し、このLED素子から放射される白色、昼白色、昼光色、電球色等の白色系の光(以下、「白色光」という。)を波長変換することによってLED素子本来の発光色と異なる色の光、例えば、白色光を得る波長変換型の発光装置が実用化されている。このような白色光を放射する発光装置では、中心波長が約450nm付近の青色光を放射するGaN系LED素子を用いるのが一般的である。   As a conventional light emitting device, an LED element is used as a light source, and wavelength conversion is performed on white light (hereinafter, referred to as “white light”) emitted from the LED element, such as white, day white, daylight, and bulb color. Accordingly, a wavelength conversion type light emitting device that obtains light of a color different from the original emission color of the LED element, for example, white light, has been put into practical use. In such a light emitting device that emits white light, a GaN-based LED element that emits blue light having a center wavelength of about 450 nm is generally used.

係る波長変換型の発光装置として、青色光によって励起される黄色系蛍光体に3価のセリウム付活アルミン酸イットリウム(YAG)蛍光体を使用し、青色光の照射に基づいて励起されることにより生じた黄色光と青色光とを混合することによって白色光を得るようにしたものがある(例えば、特許文献1参照。)。
特開2000−183408号公報(図1)
As such a wavelength conversion type light emitting device, a trivalent cerium-activated yttrium aluminate (YAG) phosphor is used as a yellow phosphor that is excited by blue light, and is excited based on irradiation with blue light. There is one in which white light is obtained by mixing the generated yellow light and blue light (for example, see Patent Document 1).
JP 2000-183408 A (FIG. 1)

しかし、従来の発光装置によると、蛍光体から放射される励起光は、LED素子から放射される光の波長特性に依存する。また、LED素子に供給される電流やLED素子の電気的特性は環境条件や経年変化等により変動することがあるため、係る変動要因によってLED素子の発光波長が中心波長からシフトすると蛍光体の励起効率が変化し、青色光と黄色光の混合バランスが崩れて白色光の色ずれが生じるという問題がある。   However, according to the conventional light emitting device, the excitation light emitted from the phosphor depends on the wavelength characteristics of the light emitted from the LED element. In addition, since the current supplied to the LED element and the electrical characteristics of the LED element may fluctuate due to environmental conditions, aging, etc., when the emission wavelength of the LED element shifts from the center wavelength due to such fluctuation factors, the phosphor is excited. There is a problem in that the efficiency changes, the mixing balance of blue light and yellow light is lost, and color shift of white light occurs.

従って、本発明の目的は、LED素子から放射される光の発光波長ずれが生じたとしても、白色光の色ずれを生じることのない発光装置を提供することにある。   Accordingly, an object of the present invention is to provide a light emitting device that does not cause a color shift of white light even if a shift in the emission wavelength of light emitted from an LED element occurs.

本発明は、上記の目的を達成するため、青色光を放射する発光素子を収容する本体部と、前記本体内に収容された前記発光素子を封止し、異なった色度特性の第1の蛍光体および第2の蛍光体を含む封止体とを有し、前記発光素子は、GaN系のLED素子であり、前記第1の蛍光体は、化学式(Y,Gd,Ce) (Al,Ga) 12 で表される化合物を主体にしてなるガーネット系蛍光体であり、前記第2の蛍光体は、化学式(Sr 1−a−b−x Ba Ca Eu SiO 、(0≦a≦0.3,0≦b≦0.8,0<x<1)で表される化合物を主体にしてなる珪酸塩蛍光体であり、前記第1の蛍光体および前記第2の蛍光体は、前記青色光により励起されると黄色光を放射し、前記発光素子が第1の注入電流と第2の注入電流によって駆動されるとき、前記発光素子は第1のドミナント波長の光と第2のドミナント波長の光を発光するように変動し、前記第1の蛍光体は、第1の発光波長の光によって励起されて第1の光を放射するとともに前記第2の発光波長の光によって前記第1の光より色度の小なる第2の光を放射し、前記第2の蛍光体は、第1の発光波長の光によって励起されて第3の光を放射するとともに前記第2の発光波長の光によって前記第3の光より色度の大なる第4の光を放射し、前記発光素子から放射された光の発光波長に偏差があっても前記第1の蛍光体および前記第2の蛍光体から放射された光の色度の偏差は相殺され、青色光と黄色光の混合による白色光の色ずれが抑制されることを特徴とする発光装置を提供する。 In order to achieve the above object, the present invention seals a light emitting element that emits blue light and a light emitting element that is accommodated in the light emitting element, and has a first chromaticity characteristic. A sealing body including a phosphor and a second phosphor, wherein the light emitting element is a GaN-based LED element, and the first phosphor has a chemical formula (Y, Gd, Ce) 3 (Al , Ga) 5 O 12 is a garnet-based phosphor mainly composed of a compound, and the second phosphor has a chemical formula (Sr 1- abx Ba a Ca b Eu x ) 2 SiO. 4 , a silicate phosphor mainly composed of a compound represented by (0 ≦ a ≦ 0.3, 0 ≦ b ≦ 0.8, 0 <x <1), the first phosphor and the The second phosphor emits yellow light when excited by the blue light, and the light emitting element emits the first injected current. When driven by the second injection current, the light emitting element is varied so as to emit light of the light and a second dominant wavelength of the first dominant wavelength, the first phosphor, the first light emitting The second phosphor is excited by light having a wavelength to emit first light and emits second light having a chromaticity smaller than that of the first light by light having the second emission wavelength. The third light is emitted by being excited by the light having the first emission wavelength, and the fourth light having a higher chromaticity than the third light is emitted by the light having the second emission wavelength, and the light emission Even if there is a deviation in the emission wavelength of the light emitted from the element, the deviation in chromaticity of the light emitted from the first phosphor and the second phosphor is canceled out, and due to the mixture of blue light and yellow light Provided is a light-emitting device in which color shift of white light is suppressed.

前記第1の蛍光体は、Y、Lu、Sc、La、GdおよびSmからなる群から選ばれた少なくとも1つの元素と、Al、GaおよびInからなる群から選ばれる少なくとも1つの元素と含んでなるセリウムで賦活されたガーネット系蛍光体を用いることができる。   The first phosphor includes at least one element selected from the group consisting of Y, Lu, Sc, La, Gd and Sm and at least one element selected from the group consisting of Al, Ga and In. A garnet-based phosphor activated with cerium can be used.

前記第1の蛍光体は、化学式(Y,Gd,Ce)(Al,Ga)12で表される化合物を主体にしてなるガーネット系蛍光体を用いることができる。 As the first phosphor, a garnet phosphor mainly composed of a compound represented by the chemical formula (Y, Gd, Ce) 3 (Al, Ga) 5 O 12 can be used.

前記第2の蛍光体は、Euで賦活されたアルカリ土類金属珪酸塩蛍光体を用いることができる。   The second phosphor may be an alkaline earth metal silicate phosphor activated with Eu.

前記第2の蛍光体は、化学式(Sr1−a−b−xBaCaEuSiO、(0≦a≦0.3,0≦b≦0.8,0<x<1)で表される化合物を主体にしてなる珪酸塩蛍光体を用いることができる。 The second phosphor has the formula (Sr 1-a-b- x Ba a Ca b Eu x) 2 SiO 4, (0 ≦ a ≦ 0.3,0 ≦ b ≦ 0.8,0 <x < A silicate phosphor mainly composed of the compound represented by 1) can be used.

前記発光素子は、青色光を放射するLED素子を用いた構成とすることができる。   The light emitting element may be configured using an LED element that emits blue light.

前記本体部は、一対のリードフレームの一方の末端に形成されており、前記末端はカップ状に形成された窪みを有して前記封止体で満たされている構成とすることができる。   The main body portion may be formed at one end of a pair of lead frames, and the end may have a recess formed in a cup shape and be filled with the sealing body.

前記本体部は、カップ状に形成された窪みを有する絶縁部であり、前記カップ状に形成された窪みは封止体で満たされている構成とすることができる。   The said main-body part is an insulation part which has the hollow formed in the cup shape, It can be set as the structure with which the hollow formed in the said cup shape is satisfy | filled with the sealing body.

前記発光素子の電極は、それぞれの電極が一対のリードフレームに電気的に接続され、前記発光素子、前記一対のリードフレーム、および前記封止体は光放射部がレンズ状に形成された他の封止体によって覆われている構成とすることができる。   Each of the electrodes of the light emitting element is electrically connected to a pair of lead frames. The light emitting element, the pair of lead frames, and the sealing body are other light emitting portions formed in a lens shape. It can be set as the structure covered with the sealing body.

前記発光素子の電極は、バンプによって絶縁部のカップ状に形成された窪みの底部に設けられるリードに接続される構成とすることができる。   The electrode of the light emitting element may be connected to a lead provided at the bottom of a recess formed in a cup shape of an insulating part by a bump.

本発明によれば、LED素子から放射される光の励起スペクトルの変化に対して異なる励起特性を有する第1および第2の蛍光体を封止体に有するようにしたため、LED素子の発光波長が中心波長からシフトして一方の蛍光体の励起特性が変化したとしても他方の蛍光体の励起特性によって黄色光の発光が補償されるので、色度の偏差が相殺されて白色光の色ずれが抑制される。   According to the present invention, the first and second phosphors having different excitation characteristics with respect to the change in the excitation spectrum of the light emitted from the LED element are included in the sealing body. Even if the excitation characteristic of one of the phosphors is shifted from the center wavelength, the emission of yellow light is compensated by the excitation characteristic of the other phosphor, so that the deviation of chromaticity is offset and the color deviation of white light is offset. It is suppressed.

〔第1の実施の形態〕
図1は、本発明の第1の実施の形態に係る発光素子パッケージを示す断面図である。この発光素子パッケージ1は、樹脂ハウジング103と、その上にマウントされたGaN系半導体発光素子106と、GaN系半導体発光素子106を覆うように設けられたエポキシ樹脂封止体111とを有する。
[First Embodiment]
FIG. 1 is a cross-sectional view showing a light emitting device package according to a first embodiment of the present invention. The light emitting device package 1 includes a resin housing 103, a GaN-based semiconductor light-emitting device 106 mounted thereon, and an epoxy resin sealing body 111 provided so as to cover the GaN-based semiconductor light-emitting device 106.

樹脂ハウジング103は、リードフレームから形成したリード101、102と一体的に成形されている。リード101、102は、それぞれの一端が近接対向するように配置されている。リード101、102の他端は、互いに反対方向に延在し、樹脂ハウジング103から外部に導出されている。   The resin housing 103 is integrally formed with leads 101 and 102 formed from a lead frame. The leads 101 and 102 are arranged so that one ends of the leads 101 and 102 face each other. The other ends of the leads 101 and 102 extend in opposite directions and are led out from the resin housing 103 to the outside.

樹脂ハウジング103にはすり鉢状反射面104が設けられ、GaN系半導体発光素子106は、その底面にマウントされている。すり鉢状反射面104の平面形状は、例えば、略楕円形あるいは円形とすることができる。   The resin housing 103 is provided with a mortar-shaped reflecting surface 104, and the GaN-based semiconductor light emitting element 106 is mounted on the bottom surface. The planar shape of the mortar-shaped reflecting surface 104 can be, for example, substantially elliptical or circular.

GaN系半導体発光素子106は、サファイア(Al)基板上にエピタキシャル成長したGaN系半導体層(例えば、n−GaN層、n−GaN層、MQW層(GaN障壁層とInGaN井戸層の多重量子井戸構造を有し、ピーク発光波長は460nm)、p−AlGaN層、p−GaN層)と、n−GaN層上に形成されたn−電極と、p−GaN層上に形成されたp−電極を有して構成されており、Al基板側を銀(Ag)ペーストなどの接着剤107によって、すり鉢状反射面104の底面のリード101上にマウントされている。GaN系半導体発光素子106は、n−電極およびp−電極(図示せず)を有し、金(Au)線などのボンディングワイヤ108、109によって、リード101、102と、それぞれ接続されている。 The GaN-based semiconductor light-emitting device 106 includes a GaN-based semiconductor layer (for example, an n + -GaN layer, an n-GaN layer, an MQW layer (multiple GaN barrier layers and InGaN well layers) epitaxially grown on a sapphire (Al 2 O 3 ) substrate. A quantum well structure with a peak emission wavelength of 460 nm), a p-AlGaN layer, a p + -GaN layer), an n − electrode formed on the n + -GaN layer, and a p + -GaN layer. The Al 2 O 3 substrate side is mounted on the lead 101 on the bottom surface of the mortar-shaped reflecting surface 104 by an adhesive 107 such as silver (Ag) paste. The GaN-based semiconductor light emitting device 106 has an n-electrode and a p-electrode (not shown), and is connected to leads 101 and 102 by bonding wires 108 and 109 such as gold (Au) wires, respectively.

すり鉢状反射面104内に充填されたエポキシ樹脂封止体111は、YAG系蛍光体110Aと珪酸塩蛍光体110Bとを含有している。YAG系蛍光体110Aは、Y、Lu、Sc、La、GdおよびSmからなる群から選ばれた少なくとも1つの元素と、Al、GaおよびInからなる群から選ばれる少なくとも1つの元素と含んでなるセリウムで賦活されたガーネット系蛍光体で、例えば、YAl12:Ceである。また、珪酸塩蛍光体110Bは、化学式(Sr1−a−b−xBaCaEuSiO、(0≦a≦0.3,0≦b≦0.8,0<x<1)で表される化合物を主体にしてなり、例えば、Sr1.9Ba0.02Ca0.08SiO:Euである蛍光体である。この蛍光体は樹脂中に均一に分散しやすいという特性を有している。 The epoxy resin encapsulant 111 filled in the mortar-shaped reflective surface 104 contains a YAG phosphor 110A and a silicate phosphor 110B. The YAG-based phosphor 110A includes at least one element selected from the group consisting of Y, Lu, Sc, La, Gd, and Sm and at least one element selected from the group consisting of Al, Ga, and In. A garnet-based phosphor activated with cerium, for example, Y 3 Al 5 O 12 : Ce. Further, silicate phosphor 110B has the formula (Sr 1-a-b- x Ba a Ca b Eu x) 2 SiO 4, (0 ≦ a ≦ 0.3,0 ≦ b ≦ 0.8,0 <x <1) is a phosphor mainly composed of a compound represented by <1), for example, Sr 1.9 Ba 0.02 Ca 0.08 SiO 4 : Eu. This phosphor has the property of being easily dispersed uniformly in the resin.

本発明においては、GaN系半導体発光素子106の発光ピーク波長を、例えば460nmとし、YAG系蛍光体110Aおよび珪酸塩蛍光体110Bも460nmの1次光により励起されるものを用いることができる。また、蛍光体は、上記したYAG系蛍光体110Aと珪酸塩蛍光体110Bとの他に、例えば、赤色に発光する蛍光体、緑色に発光する蛍光体、あるいは青色に発光する蛍光体とを組み合わせても良い。   In the present invention, the emission peak wavelength of the GaN-based semiconductor light-emitting element 106 is, for example, 460 nm, and the YAG-based phosphor 110A and the silicate phosphor 110B can be excited by primary light of 460 nm. In addition to the YAG phosphor 110A and the silicate phosphor 110B, for example, the phosphor is a combination of a phosphor emitting red light, a phosphor emitting green light, or a phosphor emitting blue light. May be.

以上の構成において、GaN系半導体発光素子106から放出される1次光をそのまま外部に取り出さずに、YAG系蛍光体110Aおよび珪酸塩蛍光体110Bによって波長変換してから取り出す。つまり、GaN系半導体発光素子106から放出された青色光は、YAG系蛍光体110Aおよび珪酸塩蛍光体110Bを励起し、そのことによってYAG系蛍光体110Aおよび珪酸塩蛍光体110Bから放射される黄色光と混合されることによって白色光を生じる。この白色光がエポキシ樹脂封止体111から外部に放射される。   In the above configuration, the primary light emitted from the GaN-based semiconductor light-emitting element 106 is extracted after being wavelength-converted by the YAG-based phosphor 110A and the silicate phosphor 110B without being directly extracted outside. That is, the blue light emitted from the GaN-based semiconductor light-emitting element 106 excites the YAG-based phosphor 110A and the silicate phosphor 110B, thereby radiating yellow from the YAG-based phosphor 110A and the silicate phosphor 110B. When mixed with light, white light is produced. This white light is emitted from the epoxy resin sealing body 111 to the outside.

第1の実施の形態におけるGaN系半導体発光素子106は、順方向電流が1mAから30mAに変化することによりドミナント波長が約475nmから約469nmに変化する傾向を示す。また、ドミナント波長の変化に伴って色度は2次元座標空間におけるX方向に0.005ほど大になる傾向を有し、Y軸方向に−0.07ほど小になる傾向を示す。   The GaN-based semiconductor light emitting device 106 in the first embodiment shows a tendency that the dominant wavelength changes from about 475 nm to about 469 nm when the forward current changes from 1 mA to 30 mA. Further, as the dominant wavelength changes, the chromaticity tends to increase by 0.005 in the X direction in the two-dimensional coordinate space, and tends to decrease by −0.07 in the Y-axis direction.

図2は、発光素子パッケージのGaN系半導体発光素子への電流値を変化させたときの相対色度変化を示す図である。ここでは、エポキシ樹脂75wt%に対してYAG系蛍光体110Aを2wt%、珪酸塩蛍光体110Bを23wt%の配合からなるエポキシ樹脂封止体111を用いて発光素子パッケージ1を形成している。GaN系半導体発光素子106に供給する電流を1mAから30mAに変化させたとき、YAG系蛍光体110Aについては、色度がX軸方向に−0.005、Y軸方向に−0.05ほど小になる傾向を示しており、珪酸塩蛍光体110Bについては、色度がX軸方向に0.02、Y軸方向に0.01ほど大になる傾向を示すが、2つの蛍光体を混合することによる色度の変化は、X軸方向に0.005、Y軸方向については殆ど変化が見られない状態であり、これら2つの蛍光体を混合して用いた本実施の形態では、色度の変化がほぼ無視できるレベルに抑制されている。   FIG. 2 is a diagram illustrating a change in relative chromaticity when the current value to the GaN-based semiconductor light-emitting element of the light-emitting element package is changed. Here, the light emitting element package 1 is formed using an epoxy resin sealing body 111 having a composition of 2 wt% of YAG phosphor 110A and 23 wt% of silicate phosphor 110B with respect to 75 wt% of epoxy resin. When the current supplied to the GaN-based semiconductor light-emitting element 106 is changed from 1 mA to 30 mA, the chromaticity of the YAG-based phosphor 110A is as small as −0.005 in the X-axis direction and −0.05 in the Y-axis direction. In the silicate phosphor 110B, the chromaticity tends to increase by 0.02 in the X-axis direction and 0.01 in the Y-axis direction, but the two phosphors are mixed. The change in chromaticity due to this is 0.005 in the X-axis direction and almost no change in the Y-axis direction. In the present embodiment in which these two phosphors are mixed, the chromaticity is changed. The change of is suppressed to a level that can be almost ignored.

上記した第1の実施の形態の発光素子パッケージによると、色度変化特性の異なる複数の蛍光体をエポキシ樹脂封止体111に混合したことによって、GaN系半導体発光素子106の発光波長に偏差があってもYAG系蛍光体110Aおよび珪酸塩蛍光体110Bから放射される励起光の色度の偏差は相殺されるので、青色光と黄色光の混合性を安定化させることができ、白色光の色ずれの発生を抑制することができる。   According to the light emitting device package of the first embodiment described above, by mixing a plurality of phosphors having different chromaticity change characteristics into the epoxy resin sealing body 111, there is a deviation in the emission wavelength of the GaN-based semiconductor light emitting device 106. Even if it exists, since the deviation of the chromaticity of the excitation light emitted from the YAG-based phosphor 110A and the silicate phosphor 110B is offset, the mixing of blue light and yellow light can be stabilized, and the white light Occurrence of color misregistration can be suppressed.

なお、上記したエポキシ樹脂封止体111は、光透過性および加工性を阻害するものでなければ他の樹脂材料、例えば、シリコン樹脂材料等で形成することも可能である。   Note that the epoxy resin sealing body 111 described above can be formed of other resin materials such as a silicon resin material as long as it does not impair light transmittance and workability.

〔第2の実施の形態〕
図3は、本発明の第2の実施の形態に係る発光素子パッケージを示す断面図である。なお、第1の実施の形態と同一の構成を有する部分については同一の引用数字を付している。この発光素子パッケージは、セラミックス(Al)ハウジング40と、Alハウジング40に収容されてフリップチップ接合されるGaN系半導体発光素子20と、GaN系半導体発光素子20を封止するエポキシ樹脂封止体111より構成されている。
[Second Embodiment]
FIG. 3 is a cross-sectional view showing a light emitting device package according to a second embodiment of the present invention. Note that portions having the same configuration as those of the first embodiment are denoted by the same reference numerals. This light emitting device package encapsulates a ceramic (Al 2 O 3 ) housing 40, a GaN-based semiconductor light-emitting device 20 housed in the Al 2 O 3 housing 40 and flip-chip bonded, and the GaN-based semiconductor light-emitting device 20. An epoxy resin sealing body 111 is used.

Alハウジング40は、メタライズされたすり鉢状の反射面41を形成されており、その底面にタングステン配線15、16がプリント配線によって形成されている。タングステン配線15、16は、ビアホールの壁面に形成されているタングステン配線13、14を介してAlハウジング40の底面のリード11,12に電気的に接続されている。 The Al 2 O 3 housing 40 has a metallized mortar-like reflecting surface 41, and tungsten wirings 15 and 16 are formed on the bottom surface by printed wiring. The tungsten wirings 15 and 16 are electrically connected to the leads 11 and 12 on the bottom surface of the Al 2 O 3 housing 40 via the tungsten wirings 13 and 14 formed on the wall surface of the via hole.

GaN系半導体発光素子20は、第1の実施の形態で説明したGaN系半導体発光素子106と同様の構成を有し、Al基板21上にエピタキシャル成長したGaN系半導体層22と、n−GaN層上に形成されたn−電極23と、p−GaN層上に形成されたp−電極24を有して構成されており、半田バンプ25、26を介してn−電極23をタングステン配線16に接続するとともにAlハウジング40のすり鉢状反射面41の底面にマウントされている。 The GaN-based semiconductor light-emitting element 20 has the same configuration as that of the GaN-based semiconductor light-emitting element 106 described in the first embodiment, and includes a GaN-based semiconductor layer 22 epitaxially grown on the Al 2 O 3 substrate 21, and n + The n-electrode 23 is formed on the GaN layer and the p-electrode 24 is formed on the p + -GaN layer. The n-electrode 23 is connected via the solder bumps 25 and 26. It is connected to the tungsten wiring 16 and mounted on the bottom surface of the mortar-shaped reflecting surface 41 of the Al 2 O 3 housing 40.

エポキシ樹脂封止体111は、第1の実施の形態と同様にYAG系蛍光体110Aと珪酸塩蛍光体110Bとを含有している。   The epoxy resin sealing body 111 contains a YAG phosphor 110A and a silicate phosphor 110B, as in the first embodiment.

以上の構成において、リード11、12を図示しない電源部に接続して通電することにより、半田バンプ25,26を介してGaN系半導体発光素子20に通電される。GaN系半導体発光素子20は、図示しないMQW層において発光し、Al基板側から発光波長460nmの青色光を放射する。エポキシ樹脂封止体111に含有されたYAG系蛍光体110Aおよび珪酸塩蛍光体110Bは、青色光によって励起されて黄色光を放射する。この青色光と黄色光とがエポキシ樹脂封止体111において混合されることにより白色光を生じてAlハウジング40の外部に放射される。 In the above configuration, the leads 11 and 12 are connected to a power supply unit (not shown) and energized, whereby the GaN-based semiconductor light emitting element 20 is energized via the solder bumps 25 and 26. The GaN-based semiconductor light-emitting element 20 emits light in an MQW layer (not shown) and emits blue light having an emission wavelength of 460 nm from the Al 2 O 3 substrate side. The YAG phosphor 110A and the silicate phosphor 110B contained in the epoxy resin encapsulant 111 are excited by blue light and emit yellow light. When the blue light and the yellow light are mixed in the epoxy resin sealing body 111, white light is generated and emitted to the outside of the Al 2 O 3 housing 40.

上記した第2の実施の形態によると、第1の実施の形態の好ましい効果に加えてフリップチップ型のGaN系半導体発光素子20を用いているので、MQW層において生じた青色光をGaN系半導体層から効率良く取り出すことができ、高輝度化を実現することができる。   According to the second embodiment described above, since the flip-chip type GaN-based semiconductor light emitting device 20 is used in addition to the preferable effects of the first embodiment, the blue light generated in the MQW layer can be converted into the GaN-based semiconductor. It can be efficiently taken out from the layer, and high brightness can be realized.

〔第3の実施の形態〕
図4は、本発明の第3の実施の形態に係るLEDランプを示す断面図である。なお、第2の実施の形態と同一の構成を有する部分については同一の引用数字を付している。このLEDランプ50は、銅からなるリードフレーム51A、51Bと、リードフレーム51Aの末端に反射面52Bを有した窪みとして設けられるカップ52と、Agペースト等の導電性接着剤54によってカップ52の底面52Aに接着されるサブマウント53と、サブマウント53と金バンプ55を介して電気的に接続されるフリップチップ型のGaN系半導体発光素子20と、サブマウント53とリードフレーム51Bとを電気的に接続するワイヤ56と、YAG系蛍光体110Aと珪酸塩蛍光体110Bとを含有してカップ52に充填されることによりGaN系半導体発光素子20を封止する光透過性を有したエポキシ樹脂封止体57と、エポキシ樹脂封止体57によって封止されたリードフレーム51A、リードフレーム51B、およびワイヤ56を一体的に封止する透明なエポキシ樹脂封止体58とを有し、エポキシ樹脂封止体58の表面は凸レンズ状の光学形状部58Aが形成されている。
[Third Embodiment]
FIG. 4 is a sectional view showing an LED lamp according to a third embodiment of the present invention. Note that portions having the same configuration as those of the second embodiment are denoted by the same reference numerals. The LED lamp 50 includes a lead frame 51A, 51B made of copper, a cup 52 provided as a recess having a reflecting surface 52B at the end of the lead frame 51A, and a bottom surface of the cup 52 by a conductive adhesive 54 such as Ag paste. The submount 53 bonded to 52A, the flip chip type GaN-based semiconductor light emitting element 20 electrically connected to the submount 53 via the gold bump 55, the submount 53, and the lead frame 51B are electrically connected. Epoxy resin sealing having light transmissivity for sealing the GaN-based semiconductor light-emitting element 20 by filling the cup 52 with the wire 56 to be connected, the YAG-based phosphor 110A and the silicate phosphor 110B. Body 57, lead frame 51A and lead frame 51B sealed with epoxy resin sealing body 57 And and a transparent epoxy resin sealing body 58 for sealing integrally a wire 56, the surface of the epoxy resin sealing body 58 is a convex lens-like optical shape portion 58A is formed.

GaN系半導体発光素子20およびエポキシ樹脂封止体111は、図3に示す第2の実施の形態と同一である。サブマウント53は、熱伝導性に優れる窒化アルミニウム(AlN)によって形成されている。また、サブマウント53は、金バンプ55との接合面および導電性接着剤54による接着面に図示しないタングステン配線が形成されており、p−電極側のタングステン配線は、接着面側のタングステン配線とビアホールによって電気的に接続されている。また、n−電極側のタングステン配線は、ワイヤ56によってリードフレーム51Bと電気的に接続されている。   The GaN-based semiconductor light-emitting element 20 and the epoxy resin sealing body 111 are the same as those in the second embodiment shown in FIG. The submount 53 is made of aluminum nitride (AlN) having excellent thermal conductivity. The submount 53 has a tungsten wiring (not shown) formed on the bonding surface with the gold bump 55 and the bonding surface with the conductive adhesive 54. The tungsten wiring on the p-electrode side is the same as the tungsten wiring on the bonding surface side. They are electrically connected by via holes. Further, the tungsten wiring on the n-electrode side is electrically connected to the lead frame 51 </ b> B by a wire 56.

以上の構成において、リードフレーム51A、51Bを図示しない電源部に接続して通電することにより、サブマウント53を介してGaN系半導体発光素子20に通電される。GaN系半導体発光素子20は、図示しないMQW層において発光し、Al基板側から発光波長460nmの青色光を放射する。エポキシ樹脂封止体111に含有されたYAG系蛍光体110Aおよび珪酸塩蛍光体110Bは、青色光によって励起されて黄色光を放射する。この青色光と黄色光とがエポキシ樹脂封止体111において混合されることにより白色光を生じてカップ52の外部に放射され、エポキシ樹脂封止体58を介して光学形状部58Aから所定の放射方向に放射される。 In the above configuration, the GaN-based semiconductor light-emitting element 20 is energized through the submount 53 by connecting the lead frames 51A and 51B to a power supply unit (not shown) and energizing. The GaN-based semiconductor light-emitting element 20 emits light in an MQW layer (not shown) and emits blue light having an emission wavelength of 460 nm from the Al 2 O 3 substrate side. The YAG phosphor 110A and the silicate phosphor 110B contained in the epoxy resin encapsulant 111 are excited by blue light and emit yellow light. When the blue light and the yellow light are mixed in the epoxy resin sealing body 111, white light is generated and radiated to the outside of the cup 52, and a predetermined radiation is emitted from the optical shape portion 58A via the epoxy resin sealing body 58. Radiated in the direction.

上記した第3の実施の形態によると、第2の実施の形態の好ましい効果に加えてGaN系半導体発光素子20の発光に伴って生じる熱をAlNからなるサブマウント53およびリードフレーム51Aを介して効率良く放熱させることができ、熱による発光波長の変化を小にすることができる。また、発光波長に変化が生じたとしても、色度変化特性の異なるYAG系蛍光体110Aおよび珪酸塩蛍光体110Bを樹脂封止体に混合しているので励起光の色度の偏差は相殺され、白色光の色ずれの発生を抑制することができる。   According to the above-described third embodiment, in addition to the preferable effects of the second embodiment, heat generated by light emission of the GaN-based semiconductor light-emitting element 20 is transmitted via the submount 53 and lead frame 51A made of AlN. It is possible to dissipate heat efficiently, and change in emission wavelength due to heat can be reduced. Even if the emission wavelength changes, since the YAG phosphor 110A and the silicate phosphor 110B having different chromaticity change characteristics are mixed in the resin sealing body, the chromaticity deviation of the excitation light is offset. The occurrence of color shift of white light can be suppressed.

なお、第3の実施の形態では、カップ52を封止するエポキシ樹脂封止体57にYAG系蛍光体110Aおよび珪酸塩蛍光体110Bを混合した構成を説明したが、変形例としてエポキシ樹脂封止体57にこれら蛍光体を含有せずにエポキシ樹脂封止体58の外周を覆うキャップ状の蛍光体含有樹脂部を設け、これにYAG系蛍光体110Aおよび珪酸塩蛍光体110Bを含有させるようにしても良い。   In the third embodiment, the configuration in which the YAG phosphor 110A and the silicate phosphor 110B are mixed with the epoxy resin sealing body 57 that seals the cup 52 has been described. The body 57 is provided with a cap-like phosphor-containing resin portion that does not contain these phosphors and covers the outer periphery of the epoxy resin sealing body 58, and contains YAG phosphor 110A and silicate phosphor 110B. May be.

この構成によれば、YAG系蛍光体110Aおよび珪酸塩蛍光体110Bを含有した蛍光体含有樹脂部を薄く形成することができるので、白色光の外部放射効率を向上させることができる。   According to this configuration, since the phosphor-containing resin portion containing the YAG phosphor 110A and the silicate phosphor 110B can be formed thin, the external radiation efficiency of white light can be improved.

〔第4の実施の形態〕
図5は、本発明の第4の実施の形態に係る発光装置の全体図である。この発光装置60は、GaN系半導体発光素子20を光源とするLEDランプ62と、LEDランプ62から放射された光を直角方向に反射する光反射器61によって構成されている。
[Fourth Embodiment]
FIG. 5 is an overall view of a light emitting device according to the fourth embodiment of the present invention. The light emitting device 60 includes an LED lamp 62 using the GaN-based semiconductor light emitting element 20 as a light source, and a light reflector 61 that reflects light emitted from the LED lamp 62 in a right angle direction.

LEDランプ62は、GaN系半導体発光素子20をエポキシ樹脂封止体58でモールドして形成されており、所望の方向に光を集光するようにドーム状の光学形状部58Aを有している。   The LED lamp 62 is formed by molding the GaN-based semiconductor light emitting element 20 with an epoxy resin sealing body 58, and has a dome-shaped optical shape portion 58A so as to collect light in a desired direction. .

光反射器61は、YAG系蛍光体110Aおよび珪酸塩蛍光体110Bを含有して平板状に構成されるエポキシ樹脂部材61Aと、エポキシ樹脂部材61Aに薄膜形成方法によって形成されたアルミニウムの蒸着部61Bとを有する。   The light reflector 61 includes an epoxy resin member 61A that includes a YAG phosphor 110A and a silicate phosphor 110B and is configured in a flat plate shape, and an aluminum vapor deposition portion 61B formed on the epoxy resin member 61A by a thin film forming method. And have.

この第4の実施の形態の発光装置60は、LEDランプ62から放射された青色光が光反射器61に入射すると、エポキシ樹脂部材61AにおいてYAG系蛍光体110Aおよび珪酸塩蛍光体110Bが青色光によって励起されて黄色光を生じる。黄色光は蒸着部61Bで反射されて直角方向に反射する。また、蛍光体に達しない青色光は蒸着部61Bで直角方向に反射される。この黄色光と青色光の混合に基づいて白色光が生成される。   In the light emitting device 60 according to the fourth embodiment, when the blue light emitted from the LED lamp 62 enters the light reflector 61, the YAG phosphor 110A and the silicate phosphor 110B are blue light in the epoxy resin member 61A. Excited to produce yellow light. The yellow light is reflected by the vapor deposition part 61B and reflected in a right angle direction. Further, the blue light that does not reach the phosphor is reflected in the perpendicular direction by the vapor deposition part 61B. White light is generated based on the mixture of yellow light and blue light.

上記した第4の実施の形態によると、GaN系半導体発光素子106の発光波長が中心波長からシフトしたとしても、第1の実施の形態で説明したように励起光の色度の偏差は相殺されるので、蛍光体を含有した波長変換部が光源と別体となる構成であっても、青色光と黄色光の混合性を安定化させることができ、白色光の色ずれの発生を抑制することができる。   According to the above-described fourth embodiment, even if the emission wavelength of the GaN-based semiconductor light-emitting element 106 is shifted from the center wavelength, the chromaticity deviation of the excitation light is canceled as described in the first embodiment. Therefore, even if the wavelength conversion unit containing the phosphor is separated from the light source, the mixing property of blue light and yellow light can be stabilized and the occurrence of color shift of white light can be suppressed. be able to.

なお、第4の実施の形態では、波長変換部として光反射器61を設けた構成を説明したが、例えば、光透過型の波長変換部を光源と別体で設ける構成であっても良い。   In the fourth embodiment, the configuration in which the light reflector 61 is provided as the wavelength conversion unit has been described. However, for example, a configuration in which the light transmission type wavelength conversion unit is provided separately from the light source may be used.

本発明の第1の実施の形態に係る発光素子パッケージを示す断面図である。It is sectional drawing which shows the light emitting element package which concerns on the 1st Embodiment of this invention. 発光素子パッケージのGaN系半導体発光素子への電流値を変化させたときの相対色度変化を示す図である。It is a figure which shows the relative chromaticity change when changing the electric current value to the GaN-type semiconductor light emitting element of a light emitting element package. 本発明の第2の実施の形態に係る発光素子パッケージを示す断面図である。It is sectional drawing which shows the light emitting element package which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係るLEDランプを示す断面図である。It is sectional drawing which shows the LED lamp which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係る発光装置の全体図である。It is a general view of the light-emitting device which concerns on the 4th Embodiment of this invention.

符号の説明Explanation of symbols

1、発光素子パッケージ 11,12、リード 13、タングステン配線
15、タングステン配線 16、タングステン配線
20、GaN系半導体発光素子 21、セラミックス(Al)基板
22、GaN系半導体層 23、n−電極 24、p−電極
25,26、半田バンプ 40、セラミックス(Al)ハウジング
41、すり鉢状反射面50、LEDランプ 51A、リードフレーム
51B、リードフレーム 52、カップ 52A、底面 52B、反射面
53、サブマウント 54、導電性接着剤 55、金バンプ
56、ワイヤ 57、エポキシ樹脂封止体 58、エポキシ樹脂封止体
58A、光学形状部 60、発光装置 61A、エポキシ樹脂部材
61、光反射器 61B、蒸着部 62、LEDランプ
101,102、リード 103、樹脂ハウジング
104、鉢状反射面 106、GaN系半導体発光素子
107、導電性接着剤 108、ボンディングワイヤ
110A、YAG系蛍光体 110B、珪酸塩蛍光体
111、エポキシ樹脂封止体
1, the light emitting device package 11, the lead 13, the tungsten wire 15, tungsten wires 16, tungsten wires 20, GaN-based semiconductor light-emitting element 21, ceramic (Al 2 O 3) substrate 22, GaN-based semiconductor layer 23, n-electrodes 24, p-electrodes 25 and 26, solder bumps 40, ceramics (Al 2 O 3 ) housing 41, mortar-shaped reflecting surface 50, LED lamp 51A, lead frame 51B, lead frame 52, cup 52A, bottom surface 52B, reflecting surface 53 , Submount 54, conductive adhesive 55, gold bump 56, wire 57, epoxy resin sealing body 58, epoxy resin sealing body 58A, optical shape part 60, light emitting device 61A, epoxy resin member 61, light reflector 61B , Evaporation unit 62, LED lamps 101 and 102, lead 103, tree Fat housing 104, bowl-shaped reflecting surface 106, GaN-based semiconductor light-emitting element 107, conductive adhesive 108, bonding wire 110A, YAG-based phosphor 110B, silicate phosphor 111, epoxy resin encapsulant

Claims (5)

青色光を放射する発光素子を収容する本体部と、
前記本体内に収容された前記発光素子を封止し、異なった色度特性の第1の蛍光体および第2の蛍光体を含む封止体とを有し、
前記発光素子は、GaN系のLED素子であり、
前記第1の蛍光体は、化学式(Y,Gd,Ce) (Al,Ga) 12 で表される化合物を主体にしてなるガーネット系蛍光体であり、
前記第2の蛍光体は、化学式(Sr 1−a−b−x Ba Ca Eu SiO 、(0≦a≦0.3,0≦b≦0.8,0<x<1)で表される化合物を主体にしてなる珪酸塩蛍光体であり、
前記第1の蛍光体および前記第2の蛍光体は、前記青色光により励起されると黄色光を放射し、
前記発光素子が第1の注入電流と第2の注入電流によって駆動されるとき、前記発光素子は第1のドミナント波長の光と第2のドミナント波長の光を発光するように変動し、
前記第1の蛍光体は、第1の発光波長の光によって励起されて第1の光を放射するとともに前記第2の発光波長の光によって前記第1の光より色度の小なる第2の光を放射し、
前記第2の蛍光体は、第1の発光波長の光によって励起されて第3の光を放射するとともに前記第2の発光波長の光によって前記第3の光より色度の大なる第4の光を放射し、
前記発光素子から放射された光の発光波長に偏差があっても前記第1の蛍光体および前記第2の蛍光体から放射された光の色度の偏差は相殺され、青色光と黄色光の混合による白色光の色ずれが抑制されることを特徴とする発光装置。
A main body that houses a light emitting element that emits blue light;
Sealing the light-emitting element accommodated in the main body, and having a first phosphor and a second phosphor having different chromaticity characteristics,
The light emitting element is a GaN-based LED element,
The first phosphor is a garnet phosphor mainly composed of a compound represented by the chemical formula (Y, Gd, Ce) 3 (Al, Ga) 5 O 12 .
The second phosphor has the formula (Sr 1-a-b- x Ba a Ca b Eu x) 2 SiO 4, (0 ≦ a ≦ 0.3,0 ≦ b ≦ 0.8,0 <x < 1) a silicate phosphor mainly composed of the compound represented by
The first phosphor and the second phosphor emit yellow light when excited by the blue light,
When the light emitting element is driven by the first injection current and the second injection current, the light emitting element is varied so as to emit light of the light and a second dominant wavelength of the first dominant wavelength,
The first phosphor is excited by the light having the first emission wavelength to emit the first light, and has a second chromaticity smaller than that of the first light by the light having the second emission wavelength. Radiate light,
The second phosphor is excited by light having a first emission wavelength to emit third light, and has a chromaticity greater than that of the third light by the light having the second emission wavelength. Radiate light,
Even if there is a deviation in the emission wavelength of the light emitted from the light emitting element, the deviation in chromaticity of the light emitted from the first phosphor and the second phosphor is canceled, and the blue light and the yellow light A light emitting device characterized in that color shift of white light due to mixing is suppressed.
前記本体部は、一対のリードフレームの一方の末端に形成されており、前記末端はカップ状に形成された窪みを有して前記封止体で満たされていることを特徴とする請求項に記載の発光装置。 Said body portion, claim 1, characterized in that is formed on one end of the pair of lead frames, wherein the end is filled with the sealing body has a recess formed in a cup-shaped The light emitting device according to 1. 前記本体部は、カップ状に形成された窪みを有する絶縁体であり、前記カップ状に形成された窪みは前記封止体で満たされていることを特徴とする請求項に記載の発光装置。 The light emitting device according to claim 1 , wherein the main body is an insulator having a depression formed in a cup shape, and the depression formed in the cup shape is filled with the sealing body. . 前記発光素子の電極は、それぞれの電極が一対のリードフレームに電気的に接続され、
前記発光素子、前記一対のリードフレーム、および前記封止体は光放射部がレンズ状に形成された他の封止体によって覆われていることを特徴とする請求項に記載の発光装置。
The electrodes of the light emitting element are electrically connected to a pair of lead frames,
The light emitting device according to claim 1, wherein the light emitting element, the pair of lead frames, and the sealing body is covered by other sealing body light emitting unit is formed in a lens shape.
前記発光素子の電極は、バンプによって絶縁部のカップ状に形成された窪みの底部に設けられるリードに接続されることを特徴とする請求項に記載の発光装置。 The light emitting device according to claim 1 , wherein the electrode of the light emitting element is connected to a lead provided at a bottom of a recess formed in a cup shape of an insulating portion by a bump.
JP2004040201A 2004-02-17 2004-02-17 Light emitting device Expired - Fee Related JP4534513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004040201A JP4534513B2 (en) 2004-02-17 2004-02-17 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004040201A JP4534513B2 (en) 2004-02-17 2004-02-17 Light emitting device

Publications (2)

Publication Number Publication Date
JP2005235847A JP2005235847A (en) 2005-09-02
JP4534513B2 true JP4534513B2 (en) 2010-09-01

Family

ID=35018518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004040201A Expired - Fee Related JP4534513B2 (en) 2004-02-17 2004-02-17 Light emitting device

Country Status (1)

Country Link
JP (1) JP4534513B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100463239C (en) * 2006-02-15 2009-02-18 亿光电子工业股份有限公司 Light emitted semiconductor assembly package structure and producing method thereof
JP5075552B2 (en) * 2007-09-25 2012-11-21 株式会社東芝 Phosphor and LED lamp using the same
JP5330263B2 (en) 2007-12-07 2013-10-30 株式会社東芝 Phosphor and LED light emitting device using the same
JP5000479B2 (en) 2007-12-27 2012-08-15 シャープ株式会社 Surface light source, display device and manufacturing method thereof
JP5361333B2 (en) * 2008-10-30 2013-12-04 京セラ株式会社 Light emitting device
JP5330040B2 (en) * 2009-03-17 2013-10-30 株式会社東芝 Semiconductor device, semiconductor device, semiconductor wafer, and semiconductor crystal growth method
JP2014168051A (en) * 2013-01-29 2014-09-11 Citizen Holdings Co Ltd Light-emitting device and temperature compensation method of the same
JP6081235B2 (en) 2013-03-07 2017-02-15 株式会社東芝 White light emitting device
CN107636113B (en) 2015-06-12 2020-09-22 株式会社东芝 Phosphor, method for producing same, and LED lamp
JP2017045807A (en) 2015-08-25 2017-03-02 デクセリアルズ株式会社 Light-emitting device, and manufacturing method of light-emitting device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349347A (en) * 1999-06-08 2000-12-15 Sanken Electric Co Ltd Semiconductor light emitting element
JP2001315826A (en) * 2000-05-09 2001-11-13 Santoku:Kk Preserving method for volatile substance
JP2002314142A (en) * 2001-04-09 2002-10-25 Toyoda Gosei Co Ltd Light emitting device
JP2003008071A (en) * 2001-06-22 2003-01-10 Stanley Electric Co Ltd Led lamp using led substrate assembly
JP2003110150A (en) * 2001-10-01 2003-04-11 Matsushita Electric Ind Co Ltd Semiconductor light-emitting element and light-emitting device using it
JP2003249694A (en) * 2002-02-25 2003-09-05 Mitsubishi Cable Ind Ltd Light emitting device and illuminator using it
WO2003080763A1 (en) * 2002-03-25 2003-10-02 Philips Intellectual Property & Standards Gmbh Tri-color white light led lamp
JP2003535477A (en) * 2000-05-29 2003-11-25 パテント−トロイハント−ゲゼルシヤフト フユール エレクトリツシエ グリユーラムペン ミツト ベシユレンクテル ハフツング LED-based lighting unit that emits white light

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349347A (en) * 1999-06-08 2000-12-15 Sanken Electric Co Ltd Semiconductor light emitting element
JP2001315826A (en) * 2000-05-09 2001-11-13 Santoku:Kk Preserving method for volatile substance
JP2003535477A (en) * 2000-05-29 2003-11-25 パテント−トロイハント−ゲゼルシヤフト フユール エレクトリツシエ グリユーラムペン ミツト ベシユレンクテル ハフツング LED-based lighting unit that emits white light
JP2002314142A (en) * 2001-04-09 2002-10-25 Toyoda Gosei Co Ltd Light emitting device
JP2003008071A (en) * 2001-06-22 2003-01-10 Stanley Electric Co Ltd Led lamp using led substrate assembly
JP2003110150A (en) * 2001-10-01 2003-04-11 Matsushita Electric Ind Co Ltd Semiconductor light-emitting element and light-emitting device using it
JP2003249694A (en) * 2002-02-25 2003-09-05 Mitsubishi Cable Ind Ltd Light emitting device and illuminator using it
WO2003080763A1 (en) * 2002-03-25 2003-10-02 Philips Intellectual Property & Standards Gmbh Tri-color white light led lamp

Also Published As

Publication number Publication date
JP2005235847A (en) 2005-09-02

Similar Documents

Publication Publication Date Title
JP3809760B2 (en) Light emitting diode
JP5101650B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP5558665B2 (en) Light emitting device
JP5284006B2 (en) Light emitting device
JP4417906B2 (en) Light emitting device and manufacturing method thereof
JP5369486B2 (en) Light emitting device
JP5133120B2 (en) Light emitting device
JP4773755B2 (en) Chip-type semiconductor light emitting device
TWI523273B (en) Led package with contrasting face
JP2009059896A (en) Light-emitting device
JP2004363537A (en) Semiconductor equipment, manufacturing method therefor and optical device using the same
JP2002252372A (en) Light-emitting diode
JP2007109947A (en) Phosphor plate and light-emitting device provided with the same
JP2006332269A (en) Light emitting device
JP2005136420A (en) Light emitting device with enhanced luminous efficiency
JP2007194525A (en) Semiconductor light emitting device
JP2001298216A (en) Surface-mounting semiconductor light-emitting device
JP2001177158A (en) Semiconductor light emitting device and manufacturing method therefor
JP4534717B2 (en) Light emitting device
JP2009543328A (en) Light emitting element
JP2007324275A (en) Light emitting device
JP4534513B2 (en) Light emitting device
KR100849828B1 (en) Light emitting diode package
JP2006324407A (en) Light emitting device
JP2007096240A (en) Led lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4534513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees