JP5558665B2 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP5558665B2
JP5558665B2 JP2007305418A JP2007305418A JP5558665B2 JP 5558665 B2 JP5558665 B2 JP 5558665B2 JP 2007305418 A JP2007305418 A JP 2007305418A JP 2007305418 A JP2007305418 A JP 2007305418A JP 5558665 B2 JP5558665 B2 JP 5558665B2
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting element
emitting device
wavelength conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007305418A
Other languages
Japanese (ja)
Other versions
JP2009130237A (en
Inventor
俊秀 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007305418A priority Critical patent/JP5558665B2/en
Publication of JP2009130237A publication Critical patent/JP2009130237A/en
Application granted granted Critical
Publication of JP5558665B2 publication Critical patent/JP5558665B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/32257Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic the layer connector connecting to a bonding area disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)

Description

本発明は、発光素子からの光を波長変換する波長変換層を備えた発光装置に関する。   The present invention relates to a light-emitting device including a wavelength conversion layer that converts the wavelength of light from a light-emitting element.

従来の発光装置には、発光素子からの光を波長変換する波長変換層として、蛍光体を含有した樹脂層を備えたものがある。例えば、特許文献1には、サブマウント素子の上にフリップチップ型の発光素子を導通搭載すると共に、この発光素子を波長変換用の蛍光物質を含有した樹脂のパッケージによって封止し、発光素子の外郭面からのパッケージの厚さを発光方向の全方位でほぼ等しくすることで、発光素子の発光方向の全方位に対して蛍光物質による波長変換度を均一化した半導体発光装置が記載されている。
特開2000−208822号公報
Some conventional light-emitting devices include a resin layer containing a phosphor as a wavelength conversion layer for wavelength-converting light from a light-emitting element. For example, in Patent Document 1, a flip chip type light emitting element is conductively mounted on a submount element, and the light emitting element is sealed with a resin package containing a fluorescent substance for wavelength conversion. A semiconductor light emitting device is described in which the thickness of the package from the outer surface is substantially equal in all directions in the light emitting direction, and the wavelength conversion degree by the fluorescent material is made uniform with respect to all directions in the light emitting direction of the light emitting element. .
JP 2000-208822 A

特許文献1に記載の半導体発光装置は、波長変換層であるパッケージの厚さを発光素子の全方位について一様な厚さとすることで波長変換度を均一化しているが、発光素子の天面からパッケージの天面までの厚みは、複数個の発光装置を並べた上方からパッケージの天面を研磨装置などにより研磨することで、一度に大量の発光装置についての調整が可能である。しかし、発光素子の側面からパッケージの側面までの厚みを調整するには、個々に研磨していくことになるので、コントロールしにくい面がある。   In the semiconductor light emitting device described in Patent Document 1, the wavelength conversion degree is made uniform by setting the thickness of the package, which is the wavelength conversion layer, to be uniform in all directions of the light emitting element. The thickness from the top surface of the package to the top surface of the package can be adjusted for a large number of light emitting devices at a time by polishing the top surface of the package with a polishing device or the like from above where a plurality of light emitting devices are arranged. However, in order to adjust the thickness from the side surface of the light emitting element to the side surface of the package, since polishing is performed individually, there is a surface that is difficult to control.

この波長変換層の厚み調整について、図9(A)から同図(D)に基づいて説明する。図9(A)に示すように、従来の発光装置は、基板100x上に、発光素子20xを覆うようにして、波長変換層である平均厚みが500μm程度の蛍光体層102xを形成する。蛍光体層102xは、蛍光体ペーストをスクリーン印刷法により形成される。そして、図9(B)に示すように、蛍光体層102xの上面102xaを、回転式研磨機X等によって研磨する。例えば、蛍光体層102xの厚みが200〜300μm程度になるまで研磨する。   The thickness adjustment of the wavelength conversion layer will be described with reference to FIGS. 9A to 9D. As shown in FIG. 9A, in the conventional light emitting device, a phosphor layer 102x having an average thickness of about 500 μm as a wavelength conversion layer is formed on a substrate 100x so as to cover the light emitting element 20x. The phosphor layer 102x is formed by phosphor printing a phosphor paste. Then, as shown in FIG. 9B, the upper surface 102xa of the phosphor layer 102x is polished by a rotary polishing machine X or the like. For example, polishing is performed until the thickness of the phosphor layer 102x becomes about 200 to 300 μm.

そして、図9(C)に示すように、蛍光体層102xと基板100xとを、例えば回転式ブレード90等によって同時に切り抜いて個片化することにより、図9(D)に示すように、蛍光体層102xが波長変換層40xとなった従来の発光装置10xを得ることができる。   Then, as shown in FIG. 9C, the phosphor layer 102x and the substrate 100x are simultaneously cut out into individual pieces by, for example, the rotary blade 90, etc., and as shown in FIG. A conventional light emitting device 10x in which the body layer 102x becomes the wavelength conversion layer 40x can be obtained.

このように従来の発光装置は、蛍光体を含有することで光の波長を変換する波長変換層を天面側から研磨して厚みを調整するのみで、側面からの研磨は行われないため、天面からの光と側面からの光とで蛍光体の波長変換の度合いが異なってしまう。従って、複数個の発光装置を並べた上から波長変換層の天面を研磨装置などにより一律に研磨して色度を調整しようとしても、色むらが発生してしまう。   As described above, the conventional light-emitting device only contains the phosphor, and the wavelength conversion layer that converts the wavelength of light is polished from the top surface side to adjust the thickness, and polishing from the side surface is not performed. The degree of wavelength conversion of the phosphor differs between the light from the top surface and the light from the side surface. Therefore, even when a plurality of light emitting devices are arranged and the top surface of the wavelength conversion layer is uniformly polished by a polishing device or the like to adjust the chromaticity, color unevenness occurs.

また、発光素子は、天面からの光と側面からの光とでは、発光強度や発光比率が異なるため、1個の発光装置の場合であっても、波長変換層での波長変換の度合いが天面側と側面側とで異なるので、装置全体としての光に色むらがあるように見える。特に、発光装置にレンズや反射板などで配光を絞っていくと色むらの傾向は顕著となるので問題である。従って、発光装置は、装置全体の光に対する色むらの抑制が必要である。   In addition, since the light emitting element has different light emission intensity and light emission ratio between light from the top surface and light from the side surface, the degree of wavelength conversion in the wavelength conversion layer is even in the case of a single light emitting device. Since the top surface side and the side surface side are different, the light as the whole device seems to have uneven color. In particular, when the light distribution is narrowed down with a lens or a reflector on the light emitting device, the tendency of uneven color becomes significant, which is a problem. Therefore, the light emitting device needs to suppress color unevenness with respect to the light of the entire device.

そこで本発明は、装置全体からの光に対する色むらの抑制が可能な発光装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a light emitting device capable of suppressing color unevenness with respect to light from the entire device.

本発明の発光装置は、電源が供給されることで発光する発光素子と、前記発光素子の天面を除く周囲に形成された光遮蔽部と、前記発光素子の天面に設けられ、調整された厚みに形成された波長変換層とを備えたことを特徴とする。   The light-emitting device of the present invention is provided and adjusted by a light-emitting element that emits light when power is supplied, a light shielding portion formed around the top surface of the light-emitting element, and a top surface of the light-emitting element. And a wavelength conversion layer formed in a different thickness.

本発明の発光装置は、厚みが調整された波長変換層を通過した光のみが出射されることになるので、均一な波長変換度を確保することが可能である。よって、本発明の発光装置は、装置全体からの光に対する色むらの抑制が可能である。   Since the light emitting device of the present invention emits only the light that has passed through the wavelength conversion layer whose thickness is adjusted, it is possible to ensure a uniform degree of wavelength conversion. Therefore, the light emitting device of the present invention can suppress uneven color with respect to light from the entire device.

本願の第1の発明は、電源が供給されることで発光する発光素子と、発光素子の天面を除く周囲に形成された光遮蔽部と、発光素子の天面に設けられ、調整された厚みに形成された波長変換層とを備えたことを特徴としたものである。   1st invention of this application was provided and adjusted in the light emitting element which light-emits by supplying power, the light shielding part formed in the circumference | surroundings except the top surface of the light emitting element, and the top surface of the light emitting element And a wavelength conversion layer formed to have a thickness.

本発明の発光装置は、天面を除く周囲に光遮蔽部が設けられている。従って、発光素子から側面方向へ出射される光は、この光遮蔽部によって遮られるので外部へは出射されない。発光素子から天面方向へ出射される光は、この天面に設けられ、調整された厚みに形成された波長変換層を通過して出射される。従って、本発明の発光装置は、厚みが調整された波長変換層を通過した光のみが出射されることになるので、均一な波長変換度を確保することが可能である。   In the light emitting device of the present invention, a light shielding portion is provided around the top surface. Accordingly, the light emitted from the light emitting element in the side surface direction is blocked by the light shielding portion and is not emitted to the outside. The light emitted from the light emitting element toward the top surface is emitted through the wavelength conversion layer provided on the top surface and formed with the adjusted thickness. Therefore, since the light emitting device of the present invention emits only the light that has passed through the wavelength conversion layer whose thickness has been adjusted, it is possible to ensure a uniform degree of wavelength conversion.

本願の第2の発明は、光遮蔽部は、反射機能を備えた光反射部であることを特徴としたものである。   The second invention of the present application is characterized in that the light shielding portion is a light reflecting portion having a reflecting function.

本願の第2の発明においては、光遮蔽部を、反射機能を備えた光反射部とすることで、発光素子から側面方向へ出射される光が光反射部で反射して、発光素子から天面方向へ出射される光と合わさって天面に設けられた波長変換層を通過して外部へ出射させることができる。従って、光遮蔽部を光反射部とすることで、発光効率を向上させることができる。   In the second invention of the present application, the light shielding portion is a light reflecting portion having a reflecting function, so that light emitted from the light emitting element in the side surface direction is reflected by the light reflecting portion, and the light is emitted from the light emitting element to the ceiling. Together with the light emitted in the surface direction, the light can be emitted to the outside through the wavelength conversion layer provided on the top surface. Therefore, the light emission efficiency can be improved by using the light shielding portion as the light reflecting portion.

本願の第3の発明は、光反射部は、金属酸化物の粉体を液状樹脂に分散させ、硬化させたものであることを特徴としたものである。   The third invention of the present application is characterized in that the light reflecting portion is obtained by dispersing and curing a metal oxide powder in a liquid resin.

本願の第3の発明においては、光反射部を、金属酸化物の粉体を液状樹脂に分散させ、硬化させることで形成すると、絶縁性を保ちつつ、反射機能を備えたものとすることができる。   In the third invention of the present application, when the light reflecting portion is formed by dispersing and curing the metal oxide powder in the liquid resin, the light reflecting portion may be provided with a reflecting function while maintaining insulation. it can.

本願の第4の発明は、波長変換層は、発光素子および光遮蔽部の全体を覆うように形成されていることを特徴としたものである。   According to a fourth aspect of the present invention, the wavelength conversion layer is formed so as to cover the entire light emitting element and the light shielding portion.

本願の第4の発明においては、波長変換層を、発光素子および光遮蔽部の全体を覆うように形成することで、スクリーン印刷法などを用いて容易に波長変換層を形成することができる。   In 4th invention of this application, a wavelength conversion layer can be easily formed using a screen printing method etc. by forming a wavelength conversion layer so that the whole light emitting element and the light-shielding part may be covered.

本願の第5の発明は、光遮蔽部は、発光素子と同じ高さに形成されていることを特徴としたものである。   The fifth invention of the present application is characterized in that the light shielding portion is formed at the same height as the light emitting element.

本願の第5の発明においては、光遮蔽部が発光素子と同じ高さに形成されることで、発光素子の側面からの光を、側面方向へ出射することを抑止することができる。   In the fifth invention of the present application, the light shielding portion is formed at the same height as the light emitting element, so that it is possible to prevent the light from the side surface of the light emitting element from being emitted in the side surface direction.

本願の第6の発明は、発光素子は、フリップチップ実装されていることを特徴としたものである。   The sixth invention of the present application is characterized in that the light emitting element is flip-chip mounted.

本願の第6の発明においては、発光素子がフリップチップ実装されていることで、ワイヤボンドが不要なので、接続信頼性が向上する。   In the sixth invention of the present application, since the light emitting element is flip-chip mounted, wire bonding is unnecessary, so that connection reliability is improved.

本願の第7の発明は、発光素子は、430nmを超え500nm以下の波長領域に主発光ピークを有する青色光を放つ青色発光ダイオードであり、波長変換層は、青色発光ダイオードが放つ青色光を吸収して黄色系の蛍光を放つ黄色系蛍光体を含み、黄色系蛍光体は、(Sr1−al−b2−XBaalCab2EuSiOの化学式(但し、この式において、a1、b2、xは、各々、0≦a1≦0.3、0≦b2≦0.8、0<x<1を満足する数値である。)で表される化合物を主体にした珪酸塩蛍光体であることを特徴としたものである。 In a seventh invention of the present application, the light emitting element is a blue light emitting diode that emits blue light having a main light emission peak in a wavelength region of more than 430 nm and not more than 500 nm, and the wavelength conversion layer absorbs blue light emitted by the blue light emitting diode. and includes a yellow phosphor that emits yellow fluorescence system, yellow phosphor, in (Sr 1-al-b2- X Ba al Ca b2 Eu X) 2 SiO 4 of the formula (where this expression, a1 , B2, and x are numerical values satisfying 0 ≦ a1 ≦ 0.3, 0 ≦ b2 ≦ 0.8, and 0 <x <1, respectively.) It is characterized by being.

本願の第7の発明においては、発光素子の主光ピークを上記範囲とし、黄色系蛍光体を上記化学式で表される珪酸塩蛍光体とすることで、蛍光体の熱に対する結晶の安定性、発光特性の耐熱性、黄色系発光の発光強度、および光色を図ることができる。   In the seventh invention of the present application, the main light peak of the light emitting element is in the above range, and the yellow phosphor is a silicate phosphor represented by the above chemical formula, whereby the stability of the crystal with respect to the heat of the phosphor, The heat resistance of the light emission characteristics, the light emission intensity of yellow light emission, and the light color can be achieved.

本願の第8の発明は、発光素子は、400nmを超え530nm以下の波長領域に主発光ピークを有する青色光を放つ青色発光ダイオードであり、波長変換層は、青色発光ダイオードが放つ青色光を吸収して黄色系の蛍光を放つ黄色系蛍光体を含み、黄色系蛍光体は、(RE1−XSm(Al1−yGa12:Ceの化学式(但し、この式において、x、yは、0≦x<1、0≦y≦1を満足する数値であり、REは、Y,Gd,Laから選択される少なくとも一種の元素である。)で表されるYAG系蛍光体であることを特徴としたものである。 In an eighth invention of the present application, the light emitting element is a blue light emitting diode that emits blue light having a main light emission peak in a wavelength region of more than 400 nm and not more than 530 nm, and the wavelength conversion layer absorbs blue light emitted by the blue light emitting diode. and it includes a yellow phosphor that emits yellow fluorescence system, the yellow phosphor is, (RE 1-X Sm X ) 3 (Al 1-y Ga y) 5 O 12: Ce of formula (however, this formula X and y are numerical values satisfying 0 ≦ x <1 and 0 ≦ y ≦ 1, and RE is at least one element selected from Y, Gd, and La). It is characterized by the fact that it is a system phosphor.

本願の第9の発明は、発光素子と波長変換層との混色光は、CIE色度図における発光色度点(x,y)が、0.21≦x≦0.48、0.19≦y≦0.45の範囲であることを特徴としたものである。   In the ninth invention of the present application, the mixed color light of the light emitting element and the wavelength conversion layer has an emission chromaticity point (x, y) in the CIE chromaticity diagram of 0.21 ≦ x ≦ 0.48, 0.19 ≦ The range is y ≦ 0.45.

本願の第9の発明においては、発光素子と前記波長変換層との混色光を、CIE色度図における発光色度点(x,y)が、0.21≦x≦0.48、0.19≦y≦0.45の範囲とすることで、需要の多い白色の発光装置とすることができる。   In the ninth invention of the present application, the mixed color light of the light emitting element and the wavelength conversion layer has a light emission chromaticity point (x, y) in the CIE chromaticity diagram of 0.21 ≦ x ≦ 0.48,. By setting it as the range of 19 <= y <= 0.45, it can be set as a white light-emitting device with much demand.

本願の第10の発明は、発光素子は、窒化ガリウム系化合物半導体、セレン化亜鉛半導体、酸化亜鉛半導体のいずれかであることを特徴としたものである。   According to a tenth aspect of the present invention, the light-emitting element is any one of a gallium nitride-based compound semiconductor, a zinc selenide semiconductor, and a zinc oxide semiconductor.

本願の第11の発明は、発光素子を導通搭載したサブマウント素子を備えたことを特徴としたものである。   The eleventh invention of the present application is characterized by including a submount element on which a light emitting element is conductively mounted.

本願の第11の発明においては、サブマウント素子を備えることで、サブマウント素子を目的に応じた回路構成や、プリント配線基板とすることで、発光素子を過電圧から保護したり、量産性を図ったりすることができる。   In the eleventh invention of the present application, by providing the submount element, the light emitting element can be protected from overvoltage or mass productivity can be achieved by using the submount element as a circuit configuration or a printed wiring board according to the purpose. Can be.

本願の第12の発明は、発光素子と、発光素子を導通搭載したサブマウント素子とを封止する樹脂パッケージを備えたことを特徴としたものである。   According to a twelfth aspect of the present invention, there is provided a resin package for sealing a light emitting element and a submount element on which the light emitting element is conductively mounted.

本願の第12の発明においては、発光素子と、発光素子を導通搭載したサブマウント素子とを封止する樹脂パッケージを備えることで、色むらのない照明装置や表示装置を形成することができる。   In the twelfth invention of the present application, an illumination device and a display device having no color unevenness can be formed by providing a resin package for sealing a light emitting element and a submount element on which the light emitting element is conductively mounted.

(実施の形態1)
本発明の実施の形態1に係る発光装置を、図面に基づいて説明する。図1は、本発明の実施の形態1に係る発光装置を示す図であり、(A)は平面図、(B)は(A)におけるA−A線断面図である。図2は、図1に示す発光装置の発光素子の断面図である。図3は、図1に示す発光装置の回路構成を示す回路図である。図4は、サブマウント素子をプリント配線基板とした発光装置を示す断面図である。
(Embodiment 1)
A light emitting device according to Embodiment 1 of the present invention will be described with reference to the drawings. 1A and 1B are diagrams showing a light-emitting device according to Embodiment 1 of the present invention, in which FIG. 1A is a plan view and FIG. 1B is a cross-sectional view taken along line AA in FIG. FIG. 2 is a cross-sectional view of a light emitting element of the light emitting device shown in FIG. FIG. 3 is a circuit diagram showing a circuit configuration of the light emitting device shown in FIG. FIG. 4 is a cross-sectional view showing a light emitting device using a submount element as a printed wiring board.

図1(A)および同図(B)に示すように、発光装置10は、発光素子20と、光反射部30と、波長変換層40と、サブマウント素子50とを備えている。   As shown in FIGS. 1A and 1B, the light emitting device 10 includes a light emitting element 20, a light reflecting portion 30, a wavelength conversion layer 40, and a submount element 50.

発光素子20は、図2に示すように、フリップチップタイプの青色LEDであり、基板21に、n層22と、発光層23と、p層24とが順次積層されている。そして、n層22上にn側電極25が形成され、p層24上にp側電極26が形成されている。   As illustrated in FIG. 2, the light emitting element 20 is a flip chip type blue LED, and an n layer 22, a light emitting layer 23, and a p layer 24 are sequentially stacked on a substrate 21. An n-side electrode 25 is formed on the n-layer 22, and a p-side electrode 26 is formed on the p-layer 24.

基板21は、窒化ガリウム系半導体であるn型GaNで形成され、一辺が約1mm、厚みが200μmの平面視してほぼ正方形状の直方体状に形成されている。   The substrate 21 is made of n-type GaN, which is a gallium nitride-based semiconductor, and is formed in a substantially rectangular parallelepiped shape with a side of about 1 mm and a thickness of 200 μm in plan view.

n層22は、基板21にGaNやAlGaN等を積層して形成され、層厚が0.5μm〜5μmとしたn型半導体層である。n層22と基板21の間にGaNやInGaN等で形成したバッファ層を設けることも可能である。   The n layer 22 is an n-type semiconductor layer formed by laminating GaN, AlGaN or the like on the substrate 21 and having a layer thickness of 0.5 μm to 5 μm. It is also possible to provide a buffer layer made of GaN, InGaN or the like between the n layer 22 and the substrate 21.

発光層23は、n層22に、井戸層となるInGaN等を0.001μm〜0.005μmの層厚とし、障壁層となるGaN等を0.005μm〜0.02μmの層厚とし、これらを交互に積層した多重量子井戸構造で積層したものである。   The light emitting layer 23 has a thickness of 0.001 μm to 0.005 μm for InGaN or the like as a well layer and a thickness of 0.005 μm to 0.02 μm for a GaN or the like as a barrier layer. They are stacked with multiple quantum well structures stacked alternately.

また、p層24は、発光層23にAlGaNを積層して形成され、層厚が0.05μm〜0.5μmとしたp型半導体層である。   The p layer 24 is a p-type semiconductor layer formed by stacking AlGaN on the light emitting layer 23 and having a layer thickness of 0.05 μm to 0.5 μm.

n側電極25は、n層22に、発光層23とp層24とを積層した後に、ドライエッチングにより発光層23とp層24とn層22の一部とを除去して、n側電極25を形成する領域を露出させたn層22上に形成されている。p側電極26は、p層24上に形成されている。   The n-side electrode 25 is formed by laminating the light-emitting layer 23 and the p-layer 24 on the n-layer 22, and then removing the light-emitting layer 23, the p-layer 24, and a part of the n-layer 22 by dry etching. 25 is formed on the n layer 22 where the region for forming 25 is exposed. The p-side electrode 26 is formed on the p layer 24.

なお、本実施の形態1では、発光素子20として青色LEDとしたが、レーザーダイオード、無機エレクトロルミネッセンス素子または有機エレクトロルミネッセンス素子とすることができる。また、発光素子20は、窒化ガリウム系化合物半導体の他に、セレン化亜鉛半導体、または酸化亜鉛半導体の発光素子とすることができる。   In the first embodiment, a blue LED is used as the light emitting element 20, but a laser diode, an inorganic electroluminescent element, or an organic electroluminescent element can be used. In addition to the gallium nitride compound semiconductor, the light-emitting element 20 can be a light-emitting element made of zinc selenide semiconductor or zinc oxide semiconductor.

光反射部30は、発光素子20の天面を除く周囲に、平面視して矩形状に形成されている。この光反射部30は、反射材として粉体状の酸化チタンと分散剤とを液状樹脂に含有させたものを硬化させることで形成することができる。光反射部30を、粉体状の酸化チタンと分散剤とを液状樹脂に含有させたものを硬化させて形成することで、絶縁性を保ちつつ、反射機能を備えたものとすることができる。また、光反射部30を形成する際に、流動性を高めることを目的として、液状樹脂にチキソトロピー付与剤を添加してもよい。チキソトロピー付与剤としては、例えば、微粉末シリカ等が使用できる。光反射部30は、その高さが発光素子20と同じ高さに形成されている。光反射部30を発光素子20と同じ高さとすることで、発光素子20の側面からの光を、側面方向へ出射することを抑止し、天面の方向へ反射させることができる。なお、本実施の形態1では、反射材として酸化チタンを使用しているが、酸化アルミや二酸化ケイ素なども反射材として使用することが可能である。つまり、反射材は、絶縁性を有すると共に、反射機能を有する金属酸化物であれば、使用することが可能である。   The light reflecting portion 30 is formed in a rectangular shape in plan view around the periphery of the light emitting element 20 except for the top surface. The light reflecting portion 30 can be formed by curing a liquid resin containing powdered titanium oxide and a dispersant as a reflecting material. The light reflecting portion 30 is formed by curing a liquid resin containing powdered titanium oxide and a dispersing agent, so that it can have a reflecting function while maintaining insulation. . Moreover, when forming the light reflection part 30, you may add a thixotropy imparting agent to liquid resin for the purpose of improving fluidity | liquidity. As the thixotropy-imparting agent, for example, fine powder silica can be used. The light reflecting portion 30 is formed at the same height as the light emitting element 20. By setting the light reflecting portion 30 to the same height as the light emitting element 20, it is possible to prevent light from the side surface of the light emitting element 20 from being emitted in the side surface direction and to reflect the light toward the top surface. In the first embodiment, titanium oxide is used as the reflective material, but aluminum oxide, silicon dioxide, or the like can also be used as the reflective material. That is, the reflective material can be used as long as it is a metal oxide having an insulating property and a reflective function.

本実施の形態1では、酸化チタンを含有させることで、光を遮蔽性と、反射性とを兼ね備える光反射部30としているが、樹脂にSiOを添加したり、他の金属酸化物を樹脂に混ぜたりして反射部としたり、発光素子20の周囲を囲うように発光素子20と同じ高さの反射性の周壁部を設けることで反射部としたりすることができる。光反射部30を形成する樹脂としては、エポキシ樹脂、アクリル樹脂、ポリイミド樹脂、ユリア樹脂、シリコーン樹脂、フッ素樹脂などの樹脂や、ガラスを用いることができるが、高い耐熱性を有し、かつ作業性に優れているという点で、エポキシ樹脂またはシリコーン樹脂とするのが望ましい。 In the first embodiment, by including titanium oxide, the light reflecting portion 30 has both light shielding properties and reflectivity. However, SiO 2 is added to the resin, or another metal oxide is used as the resin. Or a reflective portion by providing a reflective peripheral wall portion having the same height as the light emitting element 20 so as to surround the periphery of the light emitting element 20. As a resin for forming the light reflecting portion 30, a resin such as an epoxy resin, an acrylic resin, a polyimide resin, a urea resin, a silicone resin, a fluororesin, or glass can be used. It is desirable to use an epoxy resin or a silicone resin in terms of excellent properties.

波長変換層40は、光透過性樹脂で発光素子20および光反射部30の全体を覆うように形成され、図示しない蛍光体を内部に含有することで発光素子20からの光の波長を変換するものである。蛍光体は、発光素子20からの光に励起され、波長変換して補色となる色を発光するものである。本実施の形態1では、発光素子20が青色に発光するものなので、蛍光体として黄色に波長変換する黄色系蛍光体を採用することによって、波長変換層40の表面を、発光素子20からの青色と波長変換されたと黄色とが混色して白色に発光させることができる。   The wavelength conversion layer 40 is formed so as to cover the entire light emitting element 20 and the light reflecting portion 30 with a light transmissive resin, and converts the wavelength of light from the light emitting element 20 by containing a phosphor (not shown) inside. Is. The phosphor is excited by light from the light emitting element 20 and emits a complementary color by wavelength conversion. In the first embodiment, since the light emitting element 20 emits blue light, the surface of the wavelength conversion layer 40 is made blue from the light emitting element 20 by adopting a yellow phosphor that converts the wavelength to yellow as the phosphor. When the wavelength is converted, yellow can be mixed to emit white light.

ここで黄色系蛍光体について、詳細に説明する。黄色系蛍光体は、(Sr1−al−b2−XBaalCab2EuSiOの化学式で表される化合物を主体にした珪酸塩蛍光体とすることができる。 Here, the yellow phosphor will be described in detail. Yellow phosphor may be a silicate phosphor was mainly a compound represented by the chemical formula (Sr 1-al-b2- X Ba al Ca b2 Eu X) 2 SiO 4.

この化学式におけるa1、b2、xの数値は、蛍光体の熱に対する結晶の安定性、発光特性の耐熱性、黄色系発光の発光強度、および光色の観点から望ましくは、各々、0≦a1≦0.3、0≦b2≦0.8、0<x<1であり、さらに望ましくは、各々、0<a1≦0.15、0<b2≦0.3、0.01<x<0.05であり、最も望ましくは、各々、0.01≦a1≦0.1、0.001≦b2≦0.05、0.01<x≦0.02である。本実施の形態1に係る黄色系蛍光体を珪酸塩蛍光体とする場合には、(Sr、Ba)SiO:Eu2+とすることができる。 The numerical values of a1, b2, and x in this chemical formula are preferably 0 ≦ a1 ≦, respectively, from the viewpoints of the stability of the crystal with respect to the heat of the phosphor, the heat resistance of the light emission characteristics, the light emission intensity of yellow light emission, and the light color. 0.3, 0 ≦ b2 ≦ 0.8, 0 <x <1, and more preferably 0 <a1 ≦ 0.15, 0 <b2 ≦ 0.3, 0.01 <x <0. 05, and most preferably 0.01 ≦ a1 ≦ 0.1, 0.001 ≦ b2 ≦ 0.05, and 0.01 <x ≦ 0.02, respectively. When the yellow phosphor according to the first embodiment is a silicate phosphor, it can be (Sr, Ba) 2 SiO 4 : Eu 2+ .

黄色系蛍光体が珪酸塩蛍光体である場合には、発光素子20として、良好な白色光を放つ発光装置を得ることができる観点から、430nmを超え500nm以下、望ましくは440nm以上490nm以下、さらに望ましくは450nm以上480nm以下の波長領域に主発光ピークを有する発光を放つ青色発光素子とする。また、珪酸塩蛍光体は、550nm以上600nm以下、望ましくは560nm以上590nm以下、さらに望ましくは565nm以上585nm以下の波長領域に主発光ピークを有する蛍光を放つのがよい。   When the yellow phosphor is a silicate phosphor, from the viewpoint of obtaining a light emitting device that emits good white light as the light emitting element 20, it exceeds 430 nm and is 500 nm or less, preferably 440 nm or more and 490 nm or less, Desirably, a blue light-emitting element that emits light having a main light emission peak in a wavelength region of 450 nm to 480 nm is used. The silicate phosphor preferably emits fluorescence having a main emission peak in a wavelength region of 550 nm to 600 nm, preferably 560 nm to 590 nm, and more preferably 565 nm to 585 nm.

また、黄色系蛍光体は、(RE1−XSm(Al1−yGa12:Ceの化学式)で表されるYAG系蛍光体とすることができる。この化学式におけるxおよびyは、0≦x<1、0≦y≦1を満足する数値であり、REは、Y,Gd,Laから選択される少なくとも一種の元素である。なお、本実施の形態1においては、黄色系蛍光体をYAG系蛍光体とする場合には、(Y、Gd)Al12:Ce3+とすることができる。 Furthermore, the yellow phosphor is, (RE 1-X Sm X ) 3 (Al 1-y Ga y) 5 O 12: may be a YAG-based phosphor represented by Ce formula). In this chemical formula, x and y are numerical values satisfying 0 ≦ x <1, 0 ≦ y ≦ 1, and RE is at least one element selected from Y, Gd, and La. In the first embodiment, when the yellow phosphor is a YAG phosphor, (Y, Gd) 3 Al 5 O 12 : Ce 3+ can be used.

また、黄色系蛍光体をYAG系蛍光体とした場合には、発光素子20として、400nmを超え530nm以下の波長領域に主発光ピークを有する青色光を放つ青色発光素子とするのが、蛍光体を効率よく発光させることができるので望ましい。   When the yellow phosphor is a YAG phosphor, the phosphor is a light emitting element 20 that is a blue light emitting element that emits blue light having a main emission peak in a wavelength region of more than 400 nm and less than 530 nm. Can be emitted efficiently, which is desirable.

このような蛍光体を含有した波長変換層40について、発光素子20の天面から波長変換層40の天面まで厚みを、50μm以上、200μm以下としている。厚みが50μm未満であれば青みがかった白色となり、200μmより厚くなれば透過率が低下するので、50μm以上、200μm以下とするのが望ましい。   The wavelength conversion layer 40 containing such a phosphor has a thickness of 50 μm or more and 200 μm or less from the top surface of the light emitting element 20 to the top surface of the wavelength conversion layer 40. If the thickness is less than 50 μm, the color is bluish white. If the thickness is greater than 200 μm, the transmittance decreases. Therefore, the thickness is desirably 50 μm or more and 200 μm or less.

波長変換層40に、発光素子20からの光と、波長変換層40に含有された黄色系蛍光体により波長変換された光とに、赤色成分を補う目的で、発光素子20の青色系光や黄色系蛍光体が放つ黄色系光を吸収して、波長600nmを超え660nm以下の赤色領域に主発光ピークを有する赤色系蛍光体を、更に添加してもよい。赤色系蛍光体としては、CaS:Eu2+蛍光体やSrS:Eu2+蛍光体や窒化物蛍光体などが使用できる。 For the purpose of supplementing the wavelength conversion layer 40 with light from the light emitting element 20 and light converted into wavelength by the yellow phosphor contained in the wavelength conversion layer 40 with a red component, A red phosphor that absorbs yellow light emitted by the yellow phosphor and has a main emission peak in the red region of a wavelength exceeding 600 nm and not more than 660 nm may be further added. As the red phosphor, CaS: Eu 2+ phosphor, SrS: Eu 2+ phosphor, nitride phosphor and the like can be used.

波長変換層40を形成する樹脂としては、エポキシ樹脂、アクリル樹脂、ポリイミド樹脂、ユリア樹脂、シリコーン樹脂、フッ素樹脂などの樹脂や、ガラスを用いることができるが、高い耐熱性を有し、かつ作業性に優れているという点で、エポキシ樹脂またはシリコーン樹脂とするのが望ましい。   As a resin for forming the wavelength conversion layer 40, a resin such as an epoxy resin, an acrylic resin, a polyimide resin, a urea resin, a silicone resin, a fluororesin, or glass can be used. It is desirable to use an epoxy resin or a silicone resin in terms of excellent properties.

発光素子20と波長変換層40との混色光は、CIE色度図における発光色度点(x,y)が、0.21≦x≦0.48、0.19≦y≦0.45の範囲である。この色度範囲は白色を広く含むので、発光素子20の光と波長変換層40に含有される黄色系蛍光体の光とが混色した光色をこの色度範囲にすることで、需要の多い白色の発光装置10が得られる。   The mixed color light of the light emitting element 20 and the wavelength conversion layer 40 has emission chromaticity points (x, y) in the CIE chromaticity diagram of 0.21 ≦ x ≦ 0.48 and 0.19 ≦ y ≦ 0.45. It is a range. Since this chromaticity range widely includes white, there is a great demand for a light color in which the light of the light emitting element 20 and the light of the yellow phosphor contained in the wavelength conversion layer 40 are mixed in this chromaticity range. A white light emitting device 10 is obtained.

サブマウント素子50は、発光素子20を、金バンプBを介在させて、表面電極51に導通搭載しているので、過度な電圧が発光素子20に印加しないよう、n型のシリコン基板52の一部にp型の半導体領域53を設けたツェナーダイオードである。表面電極51は、スルーホール電極54を介在させて底面電極55と導通接続されている。   In the submount element 50, the light emitting element 20 is conductively mounted on the surface electrode 51 with the gold bump B interposed therebetween, so that an excessive voltage is not applied to the light emitting element 20. This is a Zener diode in which a p-type semiconductor region 53 is provided in the part. The surface electrode 51 is electrically connected to the bottom electrode 55 with a through-hole electrode 54 interposed.

発光素子20をサブマウント素子50に搭載した場合の回路図を図3に示す。本実施の形態1では、サブマウント素子50を、ツェナーダイオードZとしているが、ダイオード、コンデンサ、抵抗、またはバリスタとすることも可能である。また、サブマウント素子として絶縁基板とすることも可能である。サブマウント素子を絶縁基板に配線パターンを形成したプリント配線基板とした場合の発光装置を、図4に示す。なお、図4においては、図1(B)と同じ構成のものは同符号を付している。   A circuit diagram when the light emitting element 20 is mounted on the submount element 50 is shown in FIG. In the first embodiment, the submount element 50 is the Zener diode Z. However, it may be a diode, a capacitor, a resistor, or a varistor. Also, an insulating substrate can be used as the submount element. FIG. 4 shows a light-emitting device when the submount element is a printed wiring board in which a wiring pattern is formed on an insulating substrate. In FIG. 4, the same components as those in FIG. 1B are denoted by the same reference numerals.

図4に示すように、サブマウント素子60は、絶縁基板61に、配線パターンである表面電極51と底面電極55とがスルーホール電極54によって接続されているプリント配線基板である。絶縁基板61は、ガラスエポキシ樹脂、BTレジン(ビスマレイミドトリアジン樹脂系の熱硬化樹脂)、またはセラミック(アルミナ、窒化アルミ)基板とすることができる。   As shown in FIG. 4, the submount element 60 is a printed wiring board in which a surface electrode 51 and a bottom electrode 55, which are wiring patterns, are connected to an insulating substrate 61 by through-hole electrodes 54. The insulating substrate 61 can be a glass epoxy resin, a BT resin (bismaleimide triazine resin thermosetting resin), or a ceramic (alumina, aluminum nitride) substrate.

以上のように構成される本発明の実施の形態1に係る発光装置の製造方法について、図5および図6に基づいて説明する。図5(A)から同図(D)および図6(A)から同図(C)は、本発明の実施の形態1に係る発光装置の製造工程を説明する図である。   A method for manufacturing the light emitting device according to Embodiment 1 of the present invention configured as described above will be described with reference to FIGS. 5 (A) to FIG. 5 (D) and FIG. 6 (A) to FIG. 5 (C) are diagrams for explaining a manufacturing process of the light-emitting device according to Embodiment 1 of the present invention.

図5(A)に示すように、まず、n型のシリコン基板52の所定位置に、p型の半導体領域53(図示せず)と、表面電極51を形成した半導体基板材100を準備し、金バンプBを形成する。この半導体基板材100は、ダイシングすることでサブマウント素子50となる。   As shown in FIG. 5A, first, a semiconductor substrate material 100 in which a p-type semiconductor region 53 (not shown) and a surface electrode 51 are formed at a predetermined position of an n-type silicon substrate 52 is prepared. Gold bump B is formed. The semiconductor substrate material 100 becomes the submount element 50 by dicing.

図5(B)に示すように、半導体基板材100に形成された表面電極51に発光素子20をフリップチップ実装する。発光素子20を、表面電極51にフリップチップ実装する場合には、Agペーストなどの導電性接着剤を介在させて加熱することで接合したり、錫めっきが施された表面電極51と、金めっきが施された発光素子20の電極(n側電極25、p側電極26)とを当接させて加熱することで金錫共晶により接合したりすることができる。   As shown in FIG. 5B, the light emitting element 20 is flip-chip mounted on the surface electrode 51 formed on the semiconductor substrate material 100. When the light-emitting element 20 is flip-chip mounted on the surface electrode 51, the surface electrode 51 is joined by heating with a conductive adhesive such as an Ag paste, or is plated with tin, and gold plating The electrodes (n-side electrode 25, p-side electrode 26) of the light emitting element 20 subjected to the above can be brought into contact with each other and heated to be joined by gold-tin eutectic.

図5(C)に示すように、半導体基板材100に搭載した発光素子20に、光反射部30を形成する樹脂で、発光素子20全体を覆う第1樹脂部101を、スクリーン印刷法により形成する。この樹脂は、前述したように、粉体状の酸化チタンと分散剤とを液状樹脂に含有したもので、印刷版で成型した後に、液状樹脂が熱硬化性であれば熱硬化炉により硬化する。スクリーン印刷法により光反射部30を形成することで、発光素子20全体に隙間無く第1樹脂部101を形成することができるので、発光素子20からの光が、発光素子20と光反射部30となる第1樹脂部101との隙間から漏れ出ることを防止することができる。   As shown in FIG. 5C, a first resin portion 101 that covers the entire light emitting element 20 is formed by screen printing on the light emitting element 20 mounted on the semiconductor substrate material 100 with a resin that forms the light reflecting portion 30. To do. As described above, this resin contains powdered titanium oxide and a dispersant in a liquid resin. After molding with a printing plate, this resin is cured in a thermosetting furnace if the liquid resin is thermosetting. . By forming the light reflecting portion 30 by the screen printing method, the first resin portion 101 can be formed on the entire light emitting element 20 without a gap, so that the light from the light emitting element 20 is reflected by the light emitting element 20 and the light reflecting portion 30. It is possible to prevent leakage from the gap with the first resin portion 101.

本実施の形態1では、光反射部30の外側周囲面がサブマウント素子50となる半導体基板材100の表面に対して垂直となるように設けられているが、光反射部30の外側周囲面を発光素子20の天面方向に向かって徐々に広がる傾斜面となるように形成してもよい。   In the first embodiment, the outer peripheral surface of the light reflecting portion 30 is provided so as to be perpendicular to the surface of the semiconductor substrate material 100 that becomes the submount element 50. The light emitting element 20 may be formed to have an inclined surface that gradually spreads toward the top surface direction.

図5(D)に示すように、この第1樹脂部101の天面を研磨装置により、発光素子20の天面、つまり基板21(図2参照)が露出するまで研磨する。第1樹脂部101の天面を発光素子20の天面が露出するまで研磨することで、第1樹脂部101が光反射部30となる。第1樹脂部101の天面を研磨することで、第1樹脂部101を光反射部30としているので、第1樹脂部101を、スクリーン印刷法により形成する以外に、ディスペンサーによるポッティング、フォトリソグラフィ法、転写法、インクジェットを用いても形成することができる。   As shown in FIG. 5D, the top surface of the first resin portion 101 is polished by a polishing apparatus until the top surface of the light emitting element 20, that is, the substrate 21 (see FIG. 2) is exposed. By polishing the top surface of the first resin portion 101 until the top surface of the light emitting element 20 is exposed, the first resin portion 101 becomes the light reflecting portion 30. By polishing the top surface of the first resin portion 101, the first resin portion 101 is used as the light reflecting portion 30. Therefore, in addition to forming the first resin portion 101 by a screen printing method, potting or photolithography using a dispenser is performed. It can also be formed using a method, a transfer method, or an ink jet.

光反射部30となる第1樹脂部101を研磨する際に、半導体基板材100の裏面を基準面とするために研磨する。第1樹脂部101を研磨する際に、発光素子20の基板も研磨することにより、研磨後、発光素子20の天面が半導体基板材100の裏面と平行になる。これは、スクリーン印刷法で第1樹脂部101を形成する場合、樹脂の外郭面のエッジ部に角がたちやすく、これをなくすためにも研磨が有効である。   When the 1st resin part 101 used as the light reflection part 30 is grind | polished, it grind | polishes in order to make the back surface of the semiconductor substrate material 100 into a reference plane. When the first resin portion 101 is polished, the substrate of the light emitting element 20 is also polished, so that the top surface of the light emitting element 20 is parallel to the back surface of the semiconductor substrate material 100 after polishing. This is because when the first resin portion 101 is formed by the screen printing method, corners easily reach the edge portion of the outer surface of the resin, and polishing is also effective for eliminating this.

図6(A)に示すように、半導体基板材100上の光反射部30が周囲に形成された発光素子20を覆うように、波長変換層40を形成する蛍光体を含有した樹脂で、第2樹脂部102を、スクリーン印刷法により形成する。この第2樹脂部102は、厚みが約200μmから400μm程度に形成される。なお、本実施の形態1では、第2樹脂部102を半導体基板材100上の発光素子20全部を覆うように形成しているが、それぞれの発光素子20を覆うように形成してもよい。また、第2樹脂部102を、スクリーン印刷法により形成する以外に、ディスペンサーによるポッティング、フォトリソグラフィ法、転写法、インクジェットを用いても形成することができる。   As shown in FIG. 6 (A), a resin containing a phosphor that forms the wavelength conversion layer 40 so that the light reflecting portion 30 on the semiconductor substrate material 100 covers the light emitting element 20 formed around it, Two resin portions 102 are formed by a screen printing method. The second resin portion 102 is formed with a thickness of about 200 μm to 400 μm. In the first embodiment, the second resin portion 102 is formed so as to cover the entire light emitting element 20 on the semiconductor substrate material 100, but may be formed so as to cover each light emitting element 20. Further, the second resin portion 102 can be formed by using potting with a dispenser, a photolithography method, a transfer method, or an ink jet, in addition to the screen printing method.

図6(B)に示すように、発光素子20に電源を供給して発光させ、第2樹脂部102の表面にて波長変換度を確認しながら研磨する。この研磨は、半導体基板材100の裏面を基準面とすることで、第2樹脂部102(波長変換層40)の表面が、半導体基板材100の裏面と平行になるので、発光素子20の天面部分の第2樹脂部102の厚みが均一になり色むらのない発光が得られる。また、スクリーン印刷法で第2樹脂部102を形成する場合、樹脂の外郭面のエッジ部に角がたちやすく、これをなくすためにも研磨が有効である。   As shown in FIG. 6B, power is supplied to the light emitting element 20 to emit light, and polishing is performed while checking the degree of wavelength conversion on the surface of the second resin portion 102. This polishing uses the back surface of the semiconductor substrate material 100 as a reference surface, so that the surface of the second resin portion 102 (wavelength conversion layer 40) is parallel to the back surface of the semiconductor substrate material 100. The surface portion of the second resin portion 102 has a uniform thickness, and light emission with no color unevenness can be obtained. Further, when the second resin portion 102 is formed by the screen printing method, corners are easily reached at the edge portion of the outer surface of the resin, and polishing is effective for eliminating this.

この第2樹脂部102の表面を研磨する厚みは、波長変換度の度合いに応じて変わるが、第2樹脂部102が含有する黄色系蛍光体が珪酸塩蛍光体であれば、発光素子20の天面(主光取り出し面)上に位置する第2樹脂部102(波長変換層)の厚みは、50μm〜200μmに形成される。また、黄色系蛍光体がYAG系蛍光体であれば、発光素子20の天面(主光取り出し面)上に位置する第2樹脂部102(波長変換層)の厚みは、10μm〜100μmに形成される。   The thickness of polishing the surface of the second resin portion 102 varies depending on the degree of wavelength conversion, but if the yellow phosphor contained in the second resin portion 102 is a silicate phosphor, the thickness of the light emitting element 20 The thickness of the second resin portion 102 (wavelength conversion layer) located on the top surface (main light extraction surface) is 50 μm to 200 μm. If the yellow phosphor is a YAG phosphor, the thickness of the second resin portion 102 (wavelength conversion layer) located on the top surface (main light extraction surface) of the light emitting element 20 is formed to be 10 μm to 100 μm. Is done.

図6(C)に示すように、第2樹脂部102の厚み調整が終了すると、第2樹脂部102と半導体基板材100とを切断して個片とすることで、第2樹脂部102が波長変換層40となり、半導体基板材100がサブマウント素子50となることで、発光装置10を得ることができる。   As shown in FIG. 6C, when the thickness adjustment of the second resin portion 102 is completed, the second resin portion 102 is cut into pieces by cutting the second resin portion 102 and the semiconductor substrate material 100. The light emitting device 10 can be obtained by forming the wavelength conversion layer 40 and the semiconductor substrate material 100 being the submount element 50.

このように形成された発光装置10は、発光素子20から側面方向へ出射される光が、この光遮蔽部として機能する光反射部30によって遮られるので、厚み調整がされていない波長変換層40の側面からは出射されない。従って、厚みが調整された波長変換層40の天面側を通過した光のみが出射されることになるので、均一な波長変換度を確保することが可能である。よって、発光装置10は、装置全体からの光に対する色むらの抑制が可能である。   In the light emitting device 10 formed in this way, the light emitted from the light emitting element 20 in the side surface direction is blocked by the light reflecting portion 30 that functions as the light shielding portion, and thus the wavelength conversion layer 40 that is not adjusted in thickness. The light is not emitted from the side surface. Therefore, since only the light that has passed through the top surface side of the wavelength conversion layer 40 whose thickness is adjusted is emitted, it is possible to ensure a uniform degree of wavelength conversion. Therefore, the light emitting device 10 can suppress color unevenness with respect to light from the entire device.

また、光反射部30が発光素子20の側面方向への光を遮蔽するので、発光素子20および光反射部30の全体を覆うように波長変換層40を、スクリーン印刷法などを用いて容易に形成することができる。   Moreover, since the light reflection part 30 shields the light in the side surface direction of the light emitting element 20, the wavelength conversion layer 40 can be easily formed using a screen printing method or the like so as to cover the entire light emitting element 20 and the light reflection part 30. Can be formed.

なお、本実施の形態1では、波長変換層40を発光素子20および光反射部30の全体を覆うように形成しているが、光反射部30が発光素子20の側面方向への光を遮蔽しているので、発光素子20の天面側のみ形成するようにしてもよい。   In the first embodiment, the wavelength conversion layer 40 is formed so as to cover the entire light emitting element 20 and the light reflecting portion 30, but the light reflecting portion 30 shields light in the side surface direction of the light emitting element 20. Therefore, only the top surface side of the light emitting element 20 may be formed.

(実施の形態2)
次に、本発明の実施の形態2に係る発光装置を、図7に基づいて説明する。図7は、本発明の実施の形態2に係る発光装置を示す図である。なお、図7においては、図1と同じ構成のものは同符号を付して説明を省略する。
(Embodiment 2)
Next, a light-emitting device according to Embodiment 2 of the present invention will be described with reference to FIG. FIG. 7 is a diagram showing a light-emitting device according to Embodiment 2 of the present invention. In FIG. 7, the same components as those in FIG.

図7に示す本発明の実施の形態2に係る発光装置70は、図2に示す発光素子20が搭載されたサブマウント素子71を搭載した砲弾型LEDである。サブマウント素子71は、n型のシリコン基板71aの一部にp型の半導体領域71bを設けたツェナーダイオードである。発光素子20は、このサブマウント素子71上に、光反射部30が形成されると共に、波長変換層40が形成された状態で配置されている。   A light emitting device 70 according to Embodiment 2 of the present invention shown in FIG. 7 is a bullet-type LED equipped with a submount element 71 on which the light emitting element 20 shown in FIG. 2 is mounted. The submount element 71 is a Zener diode in which a p-type semiconductor region 71b is provided on a part of an n-type silicon substrate 71a. The light emitting element 20 is disposed on the submount element 71 in a state where the light reflecting portion 30 is formed and the wavelength conversion layer 40 is formed.

発光素子20は、一方のカップ部72xaを有する一方の導電リード72xに搭載されることで導通接続すると共に、p型の半導体領域71b上に形成されたワイヤボンドパッド電極71cと他方の導電リード72yとがワイヤ73により導通接続されている。そして、全体を、光透過性を有する樹脂により砲弾型に形成された樹脂パッケージ74で封止している。   The light emitting element 20 is electrically connected by being mounted on one conductive lead 72x having one cup portion 72xa, and the wire bond pad electrode 71c formed on the p-type semiconductor region 71b and the other conductive lead 72y. Are electrically connected by a wire 73. Then, the whole is sealed with a resin package 74 formed in a shell shape with a resin having optical transparency.

このように形成された砲弾型LEDである発光装置70は、発光素子20が、発光素子20の天面を除く周囲に形成された光反射部30と、光反射部30と発光素子20とを覆うように、調整された厚みに形成された波長変換層40とを備えているので、実施の形態1と同様に、均一な波長変換度を確保することが可能である。よって、発光装置70は、装置全体からの光に対する色むらの抑制が可能である。   In the light emitting device 70 that is a bullet-type LED formed in this way, the light emitting element 20 includes the light reflecting portion 30 formed around the light emitting element 20 except the top surface, the light reflecting portion 30, and the light emitting element 20. Since the wavelength conversion layer 40 formed to have an adjusted thickness is provided so as to cover, it is possible to ensure a uniform wavelength conversion degree as in the first embodiment. Therefore, the light emitting device 70 can suppress uneven color with respect to light from the entire device.

(実施の形態3)
次に、本発明の実施の形態3に係る発光装置を、図8に基づいて説明する。図8は、本発明の実施の形態3に係る発光装置を示す図である。なお、図8においては、図1と同じ構成のものは同符号を付して説明を省略する。
(Embodiment 3)
Next, a light-emitting device according to Embodiment 3 of the present invention will be described with reference to FIG. FIG. 8 is a diagram showing a light-emitting device according to Embodiment 3 of the present invention. In FIG. 8, the same components as those in FIG.

図8に示す本発明の実施の形態3に係る発光装置80は、図1に示す発光装置10がプリント配線基板81に搭載された表面実装型LEDである。プリント配線基板81は、例えば、絶縁基板81aの両端部に、配線パターンである接続電極81x,81yが形成され、サブマウント素子50の底面電極55をそれぞれ接続電極81x,81yに接続した状態で発光装置10を搭載している。絶縁基板81aは、ガラスエポキシ樹脂、BTレジン、またはセラミック基板とすることができる。そして、全体を光透過性を有する樹脂によりキャラメル型に形成された樹脂パッケージ82にて封止している。   A light-emitting device 80 according to Embodiment 3 of the present invention shown in FIG. 8 is a surface-mounted LED in which the light-emitting device 10 shown in FIG. 1 is mounted on a printed wiring board 81. For example, the printed wiring board 81 has connection electrodes 81x and 81y as wiring patterns formed at both ends of the insulating substrate 81a, and emits light in a state where the bottom electrode 55 of the submount element 50 is connected to the connection electrodes 81x and 81y, respectively. The device 10 is mounted. The insulating substrate 81a can be a glass epoxy resin, a BT resin, or a ceramic substrate. Then, the whole is sealed with a resin package 82 formed in a caramel type with a resin having optical transparency.

このように形成された表面実装型LEDである発光装置80は、発光素子20が、発光素子20の天面を除く周囲に形成された光反射部30と、光反射部30と発光素子20とを覆うように、調整された厚みに形成された波長変換層40とを備えているので、実施の形態1および2と同様に、均一な波長変換度を確保することが可能である。よって、発光装置80は、装置全体からの光に対する色むらの抑制が可能である。   In the light-emitting device 80 that is a surface-mounted LED formed as described above, the light-emitting element 20 includes a light reflecting unit 30 formed around the top surface of the light-emitting element 20, the light reflecting unit 30, and the light-emitting element 20. Since the wavelength conversion layer 40 formed in the adjusted thickness is provided so as to cover the thickness, it is possible to ensure a uniform wavelength conversion degree as in the first and second embodiments. Therefore, the light emitting device 80 can suppress uneven color with respect to light from the entire device.

本発明は、装置全体からの光に対する色むらの抑制が可能なので、発光素子からの光を波長変換する波長変換層を備えた発光装置に好適である。   The present invention is suitable for a light-emitting device including a wavelength conversion layer that converts the wavelength of light from a light-emitting element because color unevenness with respect to light from the entire device can be suppressed.

本発明の実施の形態1に係る発光装置を示す図であり、(A)は平面図、(B)は(A)におけるA−A線断面図It is a figure which shows the light-emitting device which concerns on Embodiment 1 of this invention, (A) is a top view, (B) is the sectional view on the AA line in (A). 図1に示す発光装置の発光素子の断面図Sectional drawing of the light emitting element of the light-emitting device shown in FIG. 図1に示す発光装置の回路構成を示す回路図The circuit diagram which shows the circuit structure of the light-emitting device shown in FIG. サブマウント素子をプリント配線基板とした発光装置を示す断面図Sectional drawing which shows the light-emitting device which used the submount element as the printed wiring board. (A)から(D)は、本発明の実施の形態1に係る発光装置の製造工程を説明する図FIGS. 4A to 4D are diagrams illustrating a manufacturing process of a light-emitting device according to Embodiment 1 of the present invention. (A)から(C)は、本発明の実施の形態1に係る発光装置の製造工程を説明する図FIGS. 4A to 4C are diagrams illustrating a manufacturing process of a light emitting device according to Embodiment 1 of the present invention. FIGS. 本発明の実施の形態2に係る発光装置を示す図The figure which shows the light-emitting device which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る発光装置を示す図The figure which shows the light-emitting device which concerns on Embodiment 3 of this invention. (A)から(D)は、従来の発光装置の波長変換層の厚み調整について説明するための図(A) to (D) are diagrams for explaining thickness adjustment of a wavelength conversion layer of a conventional light emitting device.

符号の説明Explanation of symbols

10 発光装置
20 発光素子
21 基板
22 n層
23 発光層
24 p層
25 n側電極
26 p側電極
30 光反射部
40 波長変換層
50 サブマウント素子
51 表面電極
52 n型のシリコン基板
53 p型の半導体領域
54 スルーホール電極
55 底面電極
60 サブマウント素子
61 絶縁基板
70 発光装置
71 サブマウント素子
71a n型のシリコン基板
71b p型の半導体領域
71c ワイヤボンドパッド電極
72x,72y 導電リード
73 ワイヤ
74 樹脂パッケージ
80 発光装置
81 プリント配線基板
81a 絶縁基板
81x,81y 接続電極
82 樹脂パッケージ
100 半導体基板材
101 第1樹脂部
102 第2樹脂部
B 金バンプ
DESCRIPTION OF SYMBOLS 10 Light emitting device 20 Light emitting element 21 Substrate 22 N layer 23 Light emitting layer 24 P layer 25 N side electrode 26 P side electrode 30 Light reflection part 40 Wavelength conversion layer 50 Submount element 51 Surface electrode 52 N type silicon substrate 53 P type Semiconductor region 54 Through-hole electrode 55 Bottom electrode 60 Submount element 61 Insulating substrate 70 Light emitting device 71 Submount element 71a n-type silicon substrate 71b p-type semiconductor region 71c Wire bond pad electrode 72x, 72y Conductive lead 73 Wire 74 Resin package 80 Light Emitting Device 81 Printed Wiring Board 81a Insulating Board 81x, 81y Connection Electrode 82 Resin Package 100 Semiconductor Substrate Material 101 First Resin Part 102 Second Resin Part B Gold Bump

Claims (11)

電源が供給されることで発光する発光素子と、
前記発光素子の天面を除く周囲に形成され、前記発光素子の側面および裏面を覆う光遮蔽部と、
前記発光素子の天面に設けられ、調整された厚みに形成された波長変換層と、を備え、
前記光遮蔽部は、反射機能を備えた光反射部であり、
前記光反射部は、金属酸化物の粉体を液状樹脂またはガラスに分散させ、硬化させたものであることを特徴とする発光装置。
A light emitting element that emits light when power is supplied;
A light shielding part that is formed around the top surface of the light emitting element, and covers a side surface and a back surface of the light emitting element ;
A wavelength conversion layer provided on the top surface of the light-emitting element and formed to an adjusted thickness; and
The light shielding part is a light reflecting part having a reflecting function,
The light reflecting portion is a light emitting device in which a metal oxide powder is dispersed in a liquid resin or glass and cured.
前記発光素子の裏面には複数のバンプが配置され、A plurality of bumps are disposed on the back surface of the light emitting element,
前記光遮光部は前記複数のバンプの間を埋めるように形成されていることを特徴とする請求項1記載の発光装置。The light emitting device according to claim 1, wherein the light shielding portion is formed so as to fill a space between the plurality of bumps.
前記波長変換層は、前記発光素子および前記光遮蔽部の全体を覆うように形成されている
請求項1または2のいずれかの項に記載の発光装置。
Wherein the wavelength conversion layer, the light emitting device according to any one of claims 1 or 2 is formed so as to cover the entirety of the light emitting element and the light-shielding portion.
前記光遮蔽部は、前記発光素子と同じ高さに形成されている請求項1から3のいずれかの項に記載の発光装置。 The light-shielding portion, the light emitting device according to any one of claims 3 to claim 1, which is formed at the same height as the light emitting element. 前記発光素子は、フリップチップ実装されている請求項1からのいずれかの項に記載の発光装置。 The light emitting device, light emitting device according to claim 1, which is flip-chip mounted on one of the section 4. 前記発光素子は、430nmを超え500nm以下の波長領域に主発光ピークを有する青色光を放つ青色発光ダイオードであり、
前記波長変換層は、前記青色発光ダイオードが放つ青色光を吸収して黄色系の蛍光を放つ黄色系蛍光体を含み、
前記黄色系蛍光体は、(Sr1−al−b2−XBaalCab2EuX)2SiO4の化学式(但し、この式において、a1、b2、xは、各々、0≦a1≦0.3、0≦b2≦0.8、0<x<1を満足する数値である。)で表される化合物を主体にした珪酸塩蛍光体である請求項1からのいずれかの項に記載の発光装置。
The light emitting element is a blue light emitting diode that emits blue light having a main emission peak in a wavelength region of more than 430 nm and not more than 500 nm,
The wavelength conversion layer includes a yellow phosphor that absorbs blue light emitted by the blue light emitting diode and emits yellow fluorescence,
The yellow phosphor has a chemical formula of (Sr1-al-b2-XBaalCab2EuX) 2SiO4 (where a1, b2, and x are 0 ≦ a1 ≦ 0.3 and 0 ≦ b2 ≦ 0.8, respectively). , 0 <x <is a numerical value satisfying 1.) the light emitting device as claimed in any one of Items 5 is a silicate phosphor compounds were mainly represented by.
前記発光素子は、400nmを超え530nm以下の波長領域に主発光ピークを有する青色光を放つ青色発光ダイオードであり、
前記波長変換層は、前記青色発光ダイオードが放つ青色光を吸収して黄色系の蛍光を放つ黄色系蛍光体を含み、
前記黄色系蛍光体は、(RE1−XSmX)3(Al1−yGay)5O12:Ceの化学式(但し、この式において、x、yは、0≦x<1、0≦y≦1を満足する数値であり、REは、Y,Gd,Laから選択される少なくとも一種の元素である。)で表されるYAG系蛍光体である請求項1からのいずれかの項に記載の発光装置。
The light emitting element is a blue light emitting diode that emits blue light having a main light emission peak in a wavelength region of more than 400 nm and not more than 530 nm,
The wavelength conversion layer includes a yellow phosphor that absorbs blue light emitted by the blue light emitting diode and emits yellow fluorescence,
The yellow phosphor is a chemical formula of (RE1-XSmX) 3 (Al1-yGay) 5O12: Ce (where x and y are numerical values satisfying 0 ≦ x <1 and 0 ≦ y ≦ 1). in it, RE is, Y, Gd, at least one element selected from La.) in the light-emitting device according to claim 1 is a YAG-based phosphor to any one of Items 5 represented.
前記発光素子と前記波長変換層との混色光は、CIE色度図における発光色度点(x,y)が、0.21≦x≦0.48、0.19≦y≦0.45の範囲である請求項1からのいずれかの項に記載の発光装置。 The mixed color light of the light emitting element and the wavelength conversion layer has an emission chromaticity point (x, y) in the CIE chromaticity diagram of 0.21 ≦ x ≦ 0.48 and 0.19 ≦ y ≦ 0.45. the light emitting device according to any one of claims 1 7 ranges. 前記発光素子は、窒化ガリウム系化合物半導体、セレン化亜鉛半導体、酸化亜鉛半導体のいずれかである請求項1からのいずれかの項に記載の発光装置。 The light emitting device according to any one of claims 1 to 8 , wherein the light emitting element is any one of a gallium nitride compound semiconductor, a zinc selenide semiconductor, and a zinc oxide semiconductor. 前記発光素子を導通搭載したサブマウント素子を備えた1からのいずれかの項に記載の発光装置。 The light-emitting device according to any one of 1 to 9 , further comprising a submount element on which the light-emitting element is conductively mounted. 前記発光素子と、前記発光素子を導通搭載したサブマウント素子とを封止する光透過性を有する樹脂パッケージを備えた請求項10記載の発光装置。 The light emitting device according to claim 10 , further comprising a light-transmissive resin package that seals the light emitting element and a submount element on which the light emitting element is conductively mounted.
JP2007305418A 2007-11-27 2007-11-27 Light emitting device Active JP5558665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007305418A JP5558665B2 (en) 2007-11-27 2007-11-27 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007305418A JP5558665B2 (en) 2007-11-27 2007-11-27 Light emitting device

Publications (2)

Publication Number Publication Date
JP2009130237A JP2009130237A (en) 2009-06-11
JP5558665B2 true JP5558665B2 (en) 2014-07-23

Family

ID=40820826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007305418A Active JP5558665B2 (en) 2007-11-27 2007-11-27 Light emitting device

Country Status (1)

Country Link
JP (1) JP5558665B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009572A (en) * 2009-06-26 2011-01-13 Citizen Electronics Co Ltd Flip-chip packaging type led and method for manufacturing flip-chip packaging type led
US8431423B2 (en) * 2009-07-16 2013-04-30 Koninklijke Philips Electronics N.V. Reflective substrate for LEDS
WO2011099384A1 (en) 2010-02-09 2011-08-18 日亜化学工業株式会社 Light emitting device and method for manufacturing light emitting device
TWI456798B (en) * 2010-04-23 2014-10-11 Formosa Epitaxy Inc Method of manufacturing light emitting device
DE102010034565A1 (en) 2010-08-17 2012-02-23 Osram Opto Semiconductors Gmbh Method for producing at least one optoelectronic semiconductor component
DE102010044560A1 (en) 2010-09-07 2012-03-08 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic semiconductor component
JP2016086191A (en) * 2010-11-05 2016-05-19 ローム株式会社 Semiconductor light-emitting device
WO2012086517A1 (en) * 2010-12-20 2012-06-28 ローム株式会社 Light-emitting element unit, and light-emitting element package
JP5666962B2 (en) * 2011-03-28 2015-02-12 日東電工株式会社 Light emitting diode device and manufacturing method thereof
JP2013021175A (en) * 2011-07-12 2013-01-31 Toshiba Corp Semiconductor light-emitting element
JP2013065773A (en) * 2011-09-20 2013-04-11 Toshiba Corp Semiconductor light-emitting element
JP5364771B2 (en) * 2011-10-17 2013-12-11 株式会社東芝 Optical semiconductor device and manufacturing method thereof
JP5205502B2 (en) * 2011-11-07 2013-06-05 株式会社東芝 Semiconductor light emitting device
JP6038443B2 (en) * 2011-11-21 2016-12-07 スタンレー電気株式会社 Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
DE102012104494A1 (en) * 2012-05-24 2013-11-28 Epcos Ag light emitting diode device
JP6094062B2 (en) * 2012-06-01 2017-03-15 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
WO2014208495A1 (en) * 2013-06-28 2014-12-31 シチズンホールディングス株式会社 Led device
JP2015207754A (en) 2013-12-13 2015-11-19 日亜化学工業株式会社 light-emitting device
JP6343923B2 (en) * 2013-12-18 2018-06-20 日亜化学工業株式会社 Light emitting device
KR101584201B1 (en) * 2014-01-13 2016-01-13 삼성전자주식회사 Semiconductor light emitting device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW383508B (en) * 1996-07-29 2000-03-01 Nichia Kagaku Kogyo Kk Light emitting device and display
DE19829197C2 (en) * 1998-06-30 2002-06-20 Siemens Ag Component emitting and / or receiving radiation
JP2007235184A (en) * 2001-09-03 2007-09-13 Matsushita Electric Ind Co Ltd Semiconductor light-emitting device
JP4622253B2 (en) * 2004-01-22 2011-02-02 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP4667803B2 (en) * 2004-09-14 2011-04-13 日亜化学工業株式会社 Light emitting device

Also Published As

Publication number Publication date
JP2009130237A (en) 2009-06-11

Similar Documents

Publication Publication Date Title
JP5558665B2 (en) Light emitting device
US11393803B2 (en) Light emitting device
US10056357B2 (en) Semiconductor light emitting device
KR102491241B1 (en) Light emitting device
JP6149487B2 (en) LIGHT EMITTING DEVICE MANUFACTURING METHOD AND LIGHT EMITTING DEVICE
JP4622253B2 (en) Light emitting device and manufacturing method thereof
JP6524904B2 (en) Light emitting device
EP3276681B1 (en) Light emitting device and the manufacturing method for same
JP6769248B2 (en) Light emitting device
US20120146077A1 (en) Light emitting device
KR20120110050A (en) Producing method of light emitting diode device and light emitting diode element
KR20120110006A (en) Light emitting diode device and producing method thereof
EP2461380A2 (en) Light emitting device package and manufacturing method thereof
TW201218428A (en) Light emitting diode package structure
US11342312B2 (en) Light emitting element with particular phosphors
JP2014093311A (en) Light-emitting device and manufacturing method thereof
JP2001298216A (en) Surface-mounting semiconductor light-emitting device
US10546982B2 (en) Light emitting device
WO2017013869A1 (en) Light emitting device and light emitting module
JP4534513B2 (en) Light emitting device
JP6985615B2 (en) Luminescent device
KR102397909B1 (en) Board and light source module having the same
JP2018191015A (en) Method for manufacturing light-emitting device
JP6520482B2 (en) Light emitting device
WO2014162650A1 (en) Light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101118

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20101214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120920

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130605

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131024

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20131213

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140106

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140605

R151 Written notification of patent or utility model registration

Ref document number: 5558665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250