WO2014162650A1 - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
WO2014162650A1
WO2014162650A1 PCT/JP2014/000784 JP2014000784W WO2014162650A1 WO 2014162650 A1 WO2014162650 A1 WO 2014162650A1 JP 2014000784 W JP2014000784 W JP 2014000784W WO 2014162650 A1 WO2014162650 A1 WO 2014162650A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
light
emitting element
emitting device
fluorescent
Prior art date
Application number
PCT/JP2014/000784
Other languages
French (fr)
Japanese (ja)
Inventor
毅斉 尾之江
良幸 則光
明浩 中村
雅弘 林
康宏 柳樂
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2014162650A1 publication Critical patent/WO2014162650A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10158Shape being other than a cuboid at the passive surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • a flip chip type light emitting element that emits light by being supplied with power by a plurality of electrodes, and one or more other elements arranged adjacent to the light emitting element are mounted on a base and sealed.
  • the present invention relates to a light emitting device.
  • Patent Document As a light emitting device, for example, for the purpose of protecting a light emitting element, other elements are also mounted on a substrate together and sealed in a resin sealing portion for the purpose of protecting the light emitting element (Patent Document). 1 and 2).
  • the semiconductor light-emitting device described in Patent Document 1 is an LED element and a Zener diode that are flip-mounted on the upper surface of a circuit board, and is formed of a white ink obtained by kneading a metal film, reflective fine particles, and a binder.
  • the reflective layer is provided on the surface opposite to the surface where the circuit board and the Zener diode are connected.
  • a light emitting element and a Zener diode are mounted on an insulating substrate formed by bonding a first substrate and a second substrate, and the light emitting element is mounted on the first substrate.
  • a storage portion for storing the Zener diode is formed, and the light emitted from the light emitting element to the side is prevented from being obstructed by the Zener diode.
  • the Zener diode is not optically considered and is mounted adjacent to the LED element, the Zener diode is mounted on the side of the LED element. ing. In such a mounting position, the lateral light emitted from the LED element is blocked by the Zener diode.
  • the Zener diode is mounted at a position one step lower than the light emitting element due to optical considerations.
  • the thickness of the insulating substrate needs to be equal to or greater than the thickness of the Zener diode. Therefore, the light emitting device described in Patent Document 2 is thicker than the semiconductor light emitting device described in Patent Document 1.
  • an object of the present disclosure is to provide a light emitting device that can reduce the influence of other elements on the light emission of the light emitting element while maintaining the size.
  • a light-emitting device includes a flip-chip light-emitting element in which power is supplied by a first electrode and a second electrode, and a light-emitting region corresponding to the first electrode emits light. Another element disposed, and a light emitting element and a substrate on which the other element is mounted as a mounting element, and the other element is adjacent to a non-light emitting region formed by forming a second electrode on the light emitting element And is mounted on a substrate.
  • the other elements do not block or absorb the light emitted from the light emitting region of the light emitting elements and do not affect the mounting position of the other elements. There is no need to lower the light emitting element by one step, and the thickness of the substrate need not be increased. Therefore, the light emitting device of the present disclosure can reduce the influence of other elements on the light emission of the light emitting element while maintaining the size.
  • FIG. 1 is a plan view of the light emitting device shown in FIG. The top view which shows the submount board
  • the bottom view of the light emitting element of the light-emitting device shown in FIG. 1 is a circuit diagram for explaining a connection between a light emitting element and a protective element of the light emitting device shown in FIG.
  • a flip-chip light emitting element in which power is supplied by a first electrode and a second electrode and a light emitting region corresponding to the first electrode emits light is adjacent to the light emitting element.
  • the other element is disposed in a non-light-emitting region formed by forming the second electrode on the light-emitting element, and a base on which the light-emitting element and the other element are mounted as a mounting element. It is a light emitting device characterized in that it is mounted adjacent to and on a base.
  • the other element since the other element is disposed adjacent to the non-light emitting region formed by forming the second electrode on the light emitting element, the other element is separated from the light emitting region of the light emitting element. There is no effect because the emitted light to the side is not blocked or absorbed. Therefore, it is not necessary to lower the mounting position of other elements from that of the light emitting element, so that the thickness of the substrate does not have to be increased.
  • the light emitting element is formed in a rectangular shape
  • the second electrode is formed in a corner portion
  • the other elements are on a virtual extension line of a diagonal line of the light emitting element.
  • a light-emitting device that is mounted.
  • the second electrode is formed at the corner of the light emitting element formed in the rectangular shape, if another element is mounted on the virtual extension line of the diagonal line of the light emitting element, When the element is disposed adjacent to the light emitting element, it can correspond to a non-light emitting region.
  • a fluorescent part containing a phosphor is formed in a wider range than the light emitting element, and the fluorescent part includes a part or all of other elements. It is the light-emitting device characterized by this.
  • the fluorescent portion when the fluorescent portion receives light from the light emitting element, not only the periphery of the light emitting element but also the phosphor around the other element emits light. Can also emit light brightly. Therefore, even if the protective element is disposed adjacent to the non-light emitting region of the light emitting element, the phosphor in the resin sealing portion emits light, so that a light emitting device with high light emission efficiency can be obtained.
  • a fourth invention of the present application is the light emitting device according to the third invention, wherein the fluorescent part contains a phosphor in a resin sealing part for sealing the light emitting element and other elements.
  • the fluorescent part containing the phosphor around the light emitting element and the other element is provided. It can be formed, and the phosphors above the other elements can be made to emit light brighter.
  • the fluorescent part is formed by a sheet member that covers the top surface of the light emitting element and a part or all of the top surface of the other element. A light emitting device.
  • the fluorescent part is formed by the sheet member that covers the top surface of the light emitting element and a part or all of the top surface of the other element, so that the fluorescent material in which the phosphor is uniformly dispersed is provided. Since the thickness of the part can be made uniform, variation in wavelength conversion of light can be suppressed.
  • a sixth invention of the present application is the light emitting device according to the fifth invention, wherein a reflecting portion is formed around the light emitting element and other elements.
  • the reflection portion is formed around the light emitting element and the other elements, the light from the light emitting element can be returned to the light emitting element side without being influenced by the other elements. it can.
  • the reflection part is formed, for example, if another element is adjacent to the light emitting region of the light emitting element, the other element absorbs light from the fluorescent part located immediately above, and the fluorescent part By reducing the light emission of the part, it becomes a dark part.
  • the other elements are arranged adjacent to the non-light emitting area of the light emitting element, the light emission of the fluorescent part outside the light emitting area is not hindered, so that the light emission efficiency of the fluorescent part can be prevented from being lowered. .
  • the seventh invention of the present application is the light emitting device according to any one of the first to sixth inventions, wherein the fluorescent part is formed with a diffusion part for scattering light from the light emitting element.
  • the seventh invention by diffusing the light from the fluorescent part, the light from the light emitting element that has passed through the fluorescent part and the yellow light emitted in all directions by the fluorescent substance can be mixed in a balanced manner. Therefore, it can be white with suppressed color unevenness.
  • Embodiment 1 A light-emitting device according to Embodiment 1 of the present disclosure will be described with reference to the drawings.
  • the light emitting device 10 shown in FIGS. 1 and 2 includes a submount substrate 20 that is a base, a light emitting element 30, a protective element 40 that is another element, a resin sealing portion 50, and a diffusion portion 60. Yes.
  • the submount substrate 20 has a wiring pattern 22 formed on the mounting surface of an insulating substrate 21 as shown in FIG.
  • the wiring pattern 22 is formed by a first U-shaped pattern 22a and a second U-shaped pattern 22b. In FIG. 1, the wiring pattern 22 is not shown.
  • the submount substrate 20 uses the wiring pattern 22 as an element electrode, and the light emitting element 30 and the protective element 40 are mounted on the element electrode as a mounting element.
  • the element electrode is connected to a connection electrode (not shown) formed on the bottom surface of the insulating substrate 21 via a through-hole electrode.
  • a connection electrode (not shown) formed on the bottom surface of the insulating substrate 21 via a through-hole electrode.
  • the insulating substrate 21 for example, glass epoxy resin, BT resin (bismaleimide triazine resin-based thermosetting resin), ceramic, or the like can be used.
  • the light emitting element 30 is a flip chip type light emitting diode.
  • the light emitting element 30 is conductively mounted on the element electrode formed on the mounting surface of the submount substrate 20 via the bumps B.
  • the light emitting element 30 includes a substrate 31, a semiconductor layer 32, an n-side terminal 33 (second electrode), and a p-side terminal 34 (first electrode).
  • the substrate 31 serves to hold the semiconductor layer, and a surface opposite to the surface on which the semiconductor layers are stacked is a light emitting surface that emits light.
  • As the material of the substrate insulating sapphire, GaN, SiC, AlGaN, AlN, or the like can be used.
  • the top surface of the substrate 31 has a microtexture structure by making it a rough surface with minute irregularities by etching, blasting, processing with a laser or a dicing blade, or the like.
  • the substrate 31 may be formed with a flat surface.
  • the semiconductor layer 32 is formed by sequentially stacking an n-type layer 32 a, a light emitting layer 32 b, and a p-type layer 32 c on the substrate 31.
  • the material of the semiconductor layer 32 is preferably a gallium nitride compound.
  • the n-type layer 32a is GaN
  • the light-emitting layer 32b is InGaN
  • the p-type layer 32c is GaN, and the like.
  • Al, In, Ga, and N-based materials can also be used.
  • the light emitting layer 32b may have a multilayer structure (quantum well structure) in which InGaN and GaN are alternately stacked.
  • the n-side terminal 33 removes the light-emitting layer 32b and the p-type layer 32c from a part of the n-type layer 32a, the light-emitting layer 32b, and the p-type layer 32c laminated on the substrate 31, and exposes the n-type layer 32a. It is formed on this exposed n-type layer 32a.
  • the p-side terminal 34 is formed on the p-type layer 32c.
  • the p-side terminal 34 is a terminal formed of Ag, Al, Rh or the like having a high reflectivity in order to reflect the light emitted from the light emitting layer 32b to the substrate 31 side.
  • the n-side terminal 33 is formed at each corner of the rectangular substrate so that the circular arc side of the fan faces inward.
  • the p-side terminal 34 is formed in a region excluding the corner fan from the rectangle. Accordingly, the area of the top surface of the substrate 31 corresponding to the p-side terminal 34 and the side surface of the semiconductor layer 32 becomes the light-emitting region S1, and the light-emitting layer 32b is removed by the n-side terminal 33, thereby corresponding to the n-side terminal 33.
  • substrate 31 becomes non-light-emission area
  • the protective element 40 is for preventing an excessive voltage from being applied to the light emitting element 30 as shown in FIGS. 1 and 2.
  • a Zener diode is connected to the light emitting element 30 as the protection element 40. Since the n-side terminal 33 is formed at the corner portion of the light emitting element 30 that is formed in a rectangular shape, the protection element 40 is mounted on the diagonally extending virtual extension line L of the light emitting element 30.
  • a circuit diagram in a state where the light emitting element 30 is connected to the protective element 40 is shown in FIG.
  • the protective element 40 is the Zener diode ZD, but it may be a diode, a varistor, a capacitor, a resistor, or the like.
  • the resin sealing portion 50 is formed so as to cover the entirety of the light emitting element 30 and the protection element 40.
  • the resin sealing portion 50 includes a phosphor that converts a wavelength to light that is excited by light from the light emitting element 30 and becomes complementary color in a transparent medium that is a main material such as resin or glass or ceramics. Functions as a fluorescent part.
  • the phosphor may emit yellow light.
  • the blue light from the light emitting element 30 and the yellow light from the phosphor are mixed, so that white light can be obtained.
  • a silicate phosphor or a YAG phosphor can be used as the phosphor.
  • a resin mainly composed of a silicone resin, an epoxy resin and a fluororesin, or a glass material produced by a sol-gel method can be used.
  • Some glass materials have a curing reaction temperature of about 200 degrees Celsius, and can be said to be a suitable material in consideration of heat resistance of materials used for bumps and terminals.
  • the diffusing unit 60 contains a diffusing material that diffuses light from the resin sealing unit 50 in a transparent medium mainly composed of resin.
  • the diffusing material can be, for example, particulate silicon dioxide or ceramic.
  • the transparent medium can be a silicone resin, glass, acrylic resin, or the like.
  • the diffusing unit 60 can be formed by attaching a sheet member containing a diffusing material in a transparent medium to the resin sealing unit 50 or applying a transparent medium containing a diffusing material by a printing method.
  • the light emitting region S1 of the light emitting element 30 emits light.
  • the light emitting device 10 is equipped with a protective element 40 for protecting the light emitting element 30.
  • the protective element 40 is formed by removing the light emitting layer 32b when the n-side terminal 33 is formed on the light emitting element 30. Since the protective element 40 is arranged adjacent to the non-light emitting region S2, the protective element 40 does not block or absorb the light emitted from the light emitting region S1 of the light emitting element 30 to the side, so that there is no influence.
  • the n-side terminal 33 is formed at the corner of the light emitting element 30 formed in a rectangular shape. Therefore, by mounting the protection element 40 on the virtual extension line L of the diagonal line of the light emitting element 30, it is possible to correspond to the non-light emitting region S2 when the protection element 40 is disposed adjacent to the light emitting element 30. .
  • the thickness of the submount substrate 20 does not need to be increased. Therefore, the light emitting device 10 maintains the size of the conventional light emitting device. However, the influence of the protective element 40 on the light emission of the light emitting element 30 can be reduced.
  • the fluorescent part containing the fluorescent substance can be formed around the light emitting element 30 and the protective element 40 by causing the resin sealing part 50 to contain the fluorescent substance and functioning as the fluorescent part. Blue light from the light emitting element 30 enters the resin sealing portion 50 and becomes light that passes through the diffusion portion 60 and light that excites the phosphor in the resin sealing portion 50.
  • the resin sealing portion 50 containing the phosphor is wider than the light emitting element 30 and is formed so as to include all of the protective element 40, when the light from the light emitting element 30 is received, the light emitting element 30. Since the phosphor around the protective element 40 is excited and emits light, not only around the light emitting element 30, but also around the n-side terminal 33 of the light emitting element 30 emits light brightly. Therefore, even if the protective element 40 is disposed adjacent to the non-light emitting region S2 of the light emitting element 30, the phosphor of the resin sealing portion 50 emits light, so that a wide light emitting area can be secured and the light emitting efficiency can be increased. A good light emitting device 10 can be obtained.
  • the diffusion portion 60 is formed on the top surface of the light emitting device 10 and on the upper surface of the resin sealing portion 50, the resin sealing portion 50 is diffused by diffusing light from the resin sealing portion 50. Since the blue light that has passed through and the yellow light emitted in all directions by the phosphor can be mixed in a well-balanced manner, the color can be white with reduced color unevenness. Therefore, the light emitting device 10 can suppress uneven color of light emitted from the diffusion unit 60 to the outside while suppressing variations in wavelength conversion in the resin sealing unit 50.
  • the diffusion part 60 is formed of a sheet member, the sheet member having a predetermined thickness is only pasted, so that the degree of diffusion can be made uniform.
  • the top surface of the substrate of the light emitting element 30 is formed as a concavo-convex surface by the microtexture structure, the return light that is totally reflected by the top surface of the light emitting element 30 and returns to the light emitting element 30 may be reduced. Therefore, the light extraction efficiency of the light emitting element 30 can be improved. Accordingly, the light emission intensity in the direction directly above the light emitting element 30 can be increased.
  • Embodiment 2 Next, a light-emitting device according to Embodiment 2 of the present disclosure will be described based on the drawings.
  • FIG. 7 the same components as those in FIG.
  • the fluorescent part 70 and the diffusing part 60 are formed on the top surface of the light emitting element 30, and the reflecting part 80 is formed around the light emitting element 30 and the protective element 40. Yes.
  • the fluorescent part 70 and the diffusing part 60 have a two-layer structure in which a sheet-like light-transmitting member contains a phosphor and a diffusing material, respectively, and is bonded to the top surface of the light emitting element 30 with an adhesive.
  • This is a sheet member.
  • the fluorescent part 70 and the diffusing part 60 are bonded together in a manufacturing process in a state where they are in close contact with each other by being laminated on the other layer.
  • the sheet member is formed so as to be larger than the top surface of the light emitting element 30 and partially cover the protection element 40.
  • a silicone resin material can be used as the adhesive for bonding the fluorescent part 70 and the diffusing part 60 together. If the diffusion part 60 is formed of a silicone resin and the adhesive is made of a silicone resin, refraction and reflection upon incidence on the diffusion part 60 can be reduced.
  • the reflection unit 80 is a region on the submount substrate 20 on which the light emitting element 30 is mounted, and is a region around the light emitting element 30, the fluorescent unit 70, and the diffusion unit 60 in the remaining region of the mounting region of the light emitting element 30. Is formed so as to surround the protective element 40 and to have a height at which the diffusion portion 60 is exposed.
  • the reflecting portion 80 is a granular reflecting material that reflects light from the light emitting element 30 in a transparent medium such as epoxy resin, acrylic resin, polyimide resin, urea resin, silicone resin, fluororesin, or a main material such as glass. Are dispersed.
  • the reflecting part 80 can be formed by curing a liquid resin containing titanium oxide or zinc oxide particles and a dispersant as a reflecting material that reflects light.
  • a liquid resin containing powdered titanium oxide and a dispersant By forming the reflecting portion 80 by curing a liquid resin containing powdered titanium oxide and a dispersant, the reflecting portion 80 can be provided with a reflecting function while maintaining insulation.
  • the thixotropy-imparting agent for example, fine powder silica can be used.
  • titanium oxide is used as the reflective material, but zinc oxide, aluminum oxide, silicon dioxide, boron nitride, or the like can also be used as the reflective material. That is, the reflective material can be used as long as it is a metal oxide having an insulating property and a reflective function.
  • the light emitting element 30 and the protection element 40 are mounted on the submount substrate 20 via the bumps B.
  • an adhesive is applied to the top surface of the light emitting element 30, and the single fluorescent part 70 and the diffusing part 60 formed in a size larger than the light emitting element 30 are attached. Since the fluorescent part 70 and the diffusing part 60 are a single sheet member, they can be easily attached to the light emitting element 30.
  • a resin containing a reflective material to be the reflective portion 80 (reflective material-containing resin) is filled and cured by a printing method or a potting method. At this time, the reflecting material-containing resin is filled so that the fluorescent part 70 and the diffusing part 60 are covered.
  • the cured reflecting material-containing resin is cut to form the reflecting portion 80, and the height positions of the diffusing portion 60 and the reflecting portion 80 are aligned.
  • the reflecting unit 80 becomes lower than the diffusing unit 60, and light leaks from the side surface of the diffusing unit 60. It can be prevented that the diffusion part 60 is covered and the emission of light is blocked.
  • the light traveling from the light emitting element 30 toward the protective element 40 can be returned to the light emitting element 30, and from the top surface of the light emitting element 30. Can be emitted.
  • the protection element 40 absorbs light from the fluorescent part 70 located immediately above. By reducing the light emission of the fluorescent part 70, it becomes a dark part.
  • the protective element 40 since the protective element 40 is disposed adjacent to the non-light emitting area S2 of the light emitting element 30, it does not hinder the light emission of the fluorescent portion 70 outside the light emitting area S1. Therefore, it is possible to prevent a decrease in the light emission efficiency of the fluorescent part 70.
  • the blue light from the light emitting element 30 is incident on the fluorescent portion 70 and becomes light that passes through the fluorescent portion 70 and passes through the diffusing portion 60 and light that excites the phosphor.
  • the fluorescent portion 70 is a part of the sheet member. Since the thickness of the fluorescent part 70 can be made uniform because it is formed in a sheet shape, variations in the degree of wavelength conversion by the phosphor can be suppressed. Moreover, since the diffusion part 60 is formed in a sheet shape as a part of the sheet member, the thickness of the diffusion part 60 can be made uniform. Accordingly, since the degree of diffusion by the diffusion unit 60 can be made uniform as a whole, color unevenness can be further suppressed. Therefore, the light emitting device 10x can suppress color unevenness of light emitted from the diffusion unit 60 to the outside while suppressing variation in wavelength conversion in the fluorescent unit 70.
  • the sheet member is larger than the top surface of the light emitting element 30, it is possible to secure a wide area of light emission by the fluorescent portion 70. Therefore, the light emitting device 10x with high luminance can be obtained.
  • the submount substrate 20 has been described as an example of the base body.
  • a lead frame formed of a thin metal plate may be used.
  • one protection element 40 is mounted on the submount substrate 20 as another element, two to four protection elements are provided adjacent to the n-side terminal 33 at each corner of the light emitting element 30. Other elements may be arranged.
  • the protection element 40 is disposed on the diagonal virtual extension line L of the light emitting element 30, the light from the light emitting area S 1 is adjacent to the non-light emitting area S 2 of the light emitting element 30 even if there is a slight deviation. Any position that does not shield or absorb the light may be used.
  • the light emitting element 30 emits blue light and the phosphor emits yellow light which is a complementary color of blue light.
  • the light emitting element emits ultraviolet light or other colors. Can emit light.
  • the phosphor may emit other colors.
  • the n-side terminal 33 is described by taking the four light-emitting elements 30 as an example, but one to three or five or more n-side terminals may be formed.
  • the first electrode is an n-side terminal and the second electrode is a p-side terminal.
  • the non-light-emitting region is a light-emitting element corresponding to the p-side terminal
  • the first electrode is a p-side terminal.
  • the second electrode may be an n-side terminal.
  • a flip chip light emitting element that emits light by being supplied with power by a plurality of electrodes, It is suitable for a light emitting device in which one or more other elements arranged adjacent to the light emitting element are mounted on a base and sealed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)

Abstract

A light-emitting device is provided with a flip chip type light-emitting element which is supplied with power from a p-side terminal and an n-side terminal, and in which a light-emitting region corresponding to the p-side terminal emits light; a protection element disposed adjacent to the light-emitting element for protecting the light-emitting element; and a submount substrate in which the light-emitting element and the protection element are implemented as mounted elements. The protection element neighbors non-light-emitting regions created by forming n-side terminals on the light-emitting element, is implemented on the submount substrate, and therefore, does not interrupt or absorb light emitted from the light-emitting region of the light-emitting element to another side, and therefore, does not impart effects.

Description

発光装置Light emitting device
 本開示は、複数の電極により電源が供給されて発光するフリップチップ型の発光素子と、この発光素子に隣接して配置される1以上の他の素子とが、基体に実装され、封止される発光装置に関する。 In the present disclosure, a flip chip type light emitting element that emits light by being supplied with power by a plurality of electrodes, and one or more other elements arranged adjacent to the light emitting element are mounted on a base and sealed. The present invention relates to a light emitting device.
 発光装置は、発光素子だけでなく、例えば、発光素子の保護を目的として、他の素子も、一緒に基板に搭載され、樹脂封止部に封止されたものが知られている(特許文献1、2参照)。 As a light emitting device, for example, for the purpose of protecting a light emitting element, other elements are also mounted on a substrate together and sealed in a resin sealing portion for the purpose of protecting the light emitting element (Patent Document). 1 and 2).
 特許文献1に記載の半導体発光装置は、LED素子とツェナーダイオードとが、回路基板の上面にフリップ実装されたものであり、金属膜や反射性微粒子とバインダーとを混練した白色インクにより形成された反射層を、回路基板とツェナーダイオードが接続する面とは反対側の面に備えたものである。 The semiconductor light-emitting device described in Patent Document 1 is an LED element and a Zener diode that are flip-mounted on the upper surface of a circuit board, and is formed of a white ink obtained by kneading a metal film, reflective fine particles, and a binder. The reflective layer is provided on the surface opposite to the surface where the circuit board and the Zener diode are connected.
 特許文献2に記載の発光装置は、発光素子とツェナーダイオードとが、第1基板および第2基板とを貼り合わせて形成された絶縁基板に搭載されており、発光素子が第1基板に、ツェナーダイオードが第2基板に搭載されることで、ツェナーダイオードを収納する収納部が形成され、発光素子から側方へ出射した光がツェナーダイオードによって阻害されることを防止したものである。 In the light emitting device described in Patent Document 2, a light emitting element and a Zener diode are mounted on an insulating substrate formed by bonding a first substrate and a second substrate, and the light emitting element is mounted on the first substrate. By mounting the diode on the second substrate, a storage portion for storing the Zener diode is formed, and the light emitted from the light emitting element to the side is prevented from being obstructed by the Zener diode.
特開2012-15437号公報JP 2012-15437 A 特開2008-85113号公報JP 2008-85113 A
 しかし、特許文献1に記載の半導体発光装置では、ツェナーダイオードが、光学的な配慮がなされておらず、LED素子に隣接して実装されているため、ツェナーダイオードがLED素子の側方に実装されている。このような実装位置では、LED素子から出射される側方への光はツェナーダイオードにより遮られてしまう。 However, in the semiconductor light emitting device described in Patent Document 1, since the Zener diode is not optically considered and is mounted adjacent to the LED element, the Zener diode is mounted on the side of the LED element. ing. In such a mounting position, the lateral light emitted from the LED element is blocked by the Zener diode.
 特許文献2に記載の発光装置では、光学的な配慮により、ツェナーダイオードが発光素子より一段下がった位置に実装されている。しかし、ツェナーダイオードを発光素子の実装位置より一段下げるために、絶縁基板の厚みをツェナーダイオードの厚み以上とする必要がある。従って、特許文献2に記載の発光装置は、特許文献1に記載の半導体発光装置と比較して厚みが厚くなってしまう。 In the light emitting device described in Patent Document 2, the Zener diode is mounted at a position one step lower than the light emitting element due to optical considerations. However, in order to lower the Zener diode by one step from the mounting position of the light emitting element, the thickness of the insulating substrate needs to be equal to or greater than the thickness of the Zener diode. Therefore, the light emitting device described in Patent Document 2 is thicker than the semiconductor light emitting device described in Patent Document 1.
 そこで本開示は、大きさを維持しつつ、他の素子による発光素子の発光への影響を低減することができる発光装置を提供することを目的とする。 Therefore, an object of the present disclosure is to provide a light emitting device that can reduce the influence of other elements on the light emission of the light emitting element while maintaining the size.
 本開示の発光装置は、第1の電極と第2の電極とにより電源が供給されて、第1の電極に対応する発光領域が発光するフリップチップ型の発光素子と、発光素子に隣接して配置された他の素子と、発光素子および他の素子が搭載素子として実装される基体とを備え、他の素子は、発光素子に第2の電極が形成されることによりできる非発光領域に隣接させて、基体に実装されていることを特徴とする。 A light-emitting device according to an embodiment of the present disclosure includes a flip-chip light-emitting element in which power is supplied by a first electrode and a second electrode, and a light-emitting region corresponding to the first electrode emits light. Another element disposed, and a light emitting element and a substrate on which the other element is mounted as a mounting element, and the other element is adjacent to a non-light emitting region formed by forming a second electrode on the light emitting element And is mounted on a substrate.
 本開示の発光装置によれば、他の素子が、発光素子の発光領域から出射される側方への光を遮断したり吸収したりせず影響を与えないため、他の素子の搭載位置を発光素子より一段下げる必要がなく、基体の厚みを厚くしなくてもよい。従って、本開示の発光装置は、大きさを維持しつつ、他の素子による発光素子の発光への影響を低減することができる。 According to the light emitting device of the present disclosure, the other elements do not block or absorb the light emitted from the light emitting region of the light emitting elements and do not affect the mounting position of the other elements. There is no need to lower the light emitting element by one step, and the thickness of the substrate need not be increased. Therefore, the light emitting device of the present disclosure can reduce the influence of other elements on the light emission of the light emitting element while maintaining the size.
本開示の実施の形態1に係る発光装置の正面図Front view of light-emitting device according to Embodiment 1 of the present disclosure 図1に示す発光装置の平面図FIG. 1 is a plan view of the light emitting device shown in FIG. 図1に示す発光装置のサブマウント基板を示す平面図The top view which shows the submount board | substrate of the light-emitting device shown in FIG. 図1に示す発光装置の発光素子の正面図The front view of the light emitting element of the light-emitting device shown in FIG. 図1に示す発光装置の発光素子の底面図The bottom view of the light emitting element of the light-emitting device shown in FIG. 図1に示す発光装置の発光素子と保護素子との接続を説明するための回路図1 is a circuit diagram for explaining a connection between a light emitting element and a protective element of the light emitting device shown in FIG. 本開示の実施の形態2に係る発光装置の正面図Front view of light-emitting device according to Embodiment 2 of the present disclosure
 本願の第1の発明は、第1の電極と第2の電極とにより電源が供給されて、第1の電極に対応する発光領域が発光するフリップチップ型の発光素子と、発光素子に隣接して配置された他の素子と、発光素子および他の素子が搭載素子として実装される基体とを備え、他の素子は、発光素子に第2の電極が形成されることによりできる非発光領域に隣接させて、基体に実装されていることを特徴とした発光装置である。 According to a first aspect of the present invention, a flip-chip light emitting element in which power is supplied by a first electrode and a second electrode and a light emitting region corresponding to the first electrode emits light is adjacent to the light emitting element. The other element is disposed in a non-light-emitting region formed by forming the second electrode on the light-emitting element, and a base on which the light-emitting element and the other element are mounted as a mounting element. It is a light emitting device characterized in that it is mounted adjacent to and on a base.
 第1の発明によれば、他の素子が発光素子に第2の電極が形成されることによりできる非発光領域に隣接させて配置されているため、他の素子が、発光素子の発光領域から出射される側方への光を遮断したり吸収したりしないため影響を与えない。従って、他の素子の搭載位置を発光素子より一段下げる必要がないため、基体の厚みを厚くしなくてもよい。 According to the first invention, since the other element is disposed adjacent to the non-light emitting region formed by forming the second electrode on the light emitting element, the other element is separated from the light emitting region of the light emitting element. There is no effect because the emitted light to the side is not blocked or absorbed. Therefore, it is not necessary to lower the mounting position of other elements from that of the light emitting element, so that the thickness of the substrate does not have to be increased.
 本願の第2の発明は、第1の発明において、発光素子は、矩形状に形成され、第2の電極は、角部に形成され、他の素子は、発光素子の対角線の仮想延長線上に実装されていることを特徴とした発光装置である。 According to a second invention of the present application, in the first invention, the light emitting element is formed in a rectangular shape, the second electrode is formed in a corner portion, and the other elements are on a virtual extension line of a diagonal line of the light emitting element. A light-emitting device that is mounted.
 第2の発明によれば、矩形状に形成された発光素子の角部に第2の電極が形成されているため、他の素子を発光素子の対角線の仮想延長線上に実装すれば、他の素子を発光素子に隣接して配置するときに、非発光領域に対応させることができる。 According to the second invention, since the second electrode is formed at the corner of the light emitting element formed in the rectangular shape, if another element is mounted on the virtual extension line of the diagonal line of the light emitting element, When the element is disposed adjacent to the light emitting element, it can correspond to a non-light emitting region.
 本願の第3の発明は、第1または第2の発明において、発光素子より広い範囲に、蛍光体を含有した蛍光部が形成され、蛍光部は、他の素子の一部または全部を含むことを特徴とした発光装置である。 According to a third invention of the present application, in the first or second invention, a fluorescent part containing a phosphor is formed in a wider range than the light emitting element, and the fluorescent part includes a part or all of other elements. It is the light-emitting device characterized by this.
 第3の発明によれば、蛍光部が、発光素子からの光を受けると、発光素子の周囲だけでなく、他の素子の周囲の蛍光体が発光するため、発光素子の非発光領域の周囲も明るく発光させることができる。従って、保護素子が発光素子の非発光領域に隣接して配置されていても、樹脂封止部の蛍光体が発光するので、発光効率のよい発光装置とすることができる。 According to the third invention, when the fluorescent portion receives light from the light emitting element, not only the periphery of the light emitting element but also the phosphor around the other element emits light. Can also emit light brightly. Therefore, even if the protective element is disposed adjacent to the non-light emitting region of the light emitting element, the phosphor in the resin sealing portion emits light, so that a light emitting device with high light emission efficiency can be obtained.
 本願の第4の発明は、第3の発明において、蛍光部は、発光素子および他の素子を封止する樹脂封止部に蛍光体を含有させたことを特徴とした発光装置である。 A fourth invention of the present application is the light emitting device according to the third invention, wherein the fluorescent part contains a phosphor in a resin sealing part for sealing the light emitting element and other elements.
 第4の発明によれば、発光素子と他の素子を封止する樹脂封止部に蛍光体を含有させれば、発光素子と他の素子との周囲に蛍光体を含有させた蛍光部を形成することができ、他の素子の上方も蛍光体により明るく発光させることができる。 According to the fourth invention, if a phosphor is contained in the resin sealing portion that seals the light emitting element and the other element, the fluorescent part containing the phosphor around the light emitting element and the other element is provided. It can be formed, and the phosphors above the other elements can be made to emit light brighter.
 本願の第5の発明は、第3の発明において、蛍光部は、発光素子の天面と他の素子の天面の一部または全部とを覆うシート部材により形成されていることを特徴とした発光装置である。 According to a fifth invention of the present application, in the third invention, the fluorescent part is formed by a sheet member that covers the top surface of the light emitting element and a part or all of the top surface of the other element. A light emitting device.
 第5の発明によれば、蛍光部が発光素子の天面と他の素子の天面の一部または全部とを覆うシート部材により形成されていることで、蛍光体を均一に分散させた蛍光部の厚みを均一とすることができるので、光の波長変換のばらつきを抑えることができる。 According to the fifth invention, the fluorescent part is formed by the sheet member that covers the top surface of the light emitting element and a part or all of the top surface of the other element, so that the fluorescent material in which the phosphor is uniformly dispersed is provided. Since the thickness of the part can be made uniform, variation in wavelength conversion of light can be suppressed.
 本願の第6の発明は、第5の発明において、発光素子および他の素子との周囲に反射部が形成されていることを特徴とした発光装置である。 A sixth invention of the present application is the light emitting device according to the fifth invention, wherein a reflecting portion is formed around the light emitting element and other elements.
 第6の発明によれば、発光素子および他の素子との周囲に反射部が形成されているので、発光素子からの光を他の素子の影響を受けることなく、発光素子側へ戻すことができる。また、反射部が形成されていても、例えば、他の素子を発光素子の発光領域に隣接させていれば、他の素子が、直上に位置する蛍光部からの光を吸収してしまい、蛍光部の発光を低下させることで、暗部となってしまう。しかし、他の素子が発光素子の非発光領域に隣接して配置されているため、発光領域より外側の蛍光部の発光の妨げにならないため、蛍光部の発光効率の低下を防止することができる。 According to the sixth invention, since the reflection portion is formed around the light emitting element and the other elements, the light from the light emitting element can be returned to the light emitting element side without being influenced by the other elements. it can. In addition, even if the reflection part is formed, for example, if another element is adjacent to the light emitting region of the light emitting element, the other element absorbs light from the fluorescent part located immediately above, and the fluorescent part By reducing the light emission of the part, it becomes a dark part. However, since the other elements are arranged adjacent to the non-light emitting area of the light emitting element, the light emission of the fluorescent part outside the light emitting area is not hindered, so that the light emission efficiency of the fluorescent part can be prevented from being lowered. .
 本願の第7の発明は、第1から第6のいずれかの発明において、蛍光部には、発光素子からの光を散乱させる拡散部が形成されていることを特徴とした発光装置である。 The seventh invention of the present application is the light emitting device according to any one of the first to sixth inventions, wherein the fluorescent part is formed with a diffusion part for scattering light from the light emitting element.
 第7の発明によれば、蛍光部からの光を拡散させることにより、蛍光部を通過した発光素子からの光と蛍光体により全方位的に発光する黄色光とをバランスよく混色させることができるので、色ムラを抑えた白色とすることができる。 According to the seventh invention, by diffusing the light from the fluorescent part, the light from the light emitting element that has passed through the fluorescent part and the yellow light emitted in all directions by the fluorescent substance can be mixed in a balanced manner. Therefore, it can be white with suppressed color unevenness.
 (実施の形態1)
 本開示の実施の形態1に係る発光装置を、図面に基づいて説明する。
(Embodiment 1)
A light-emitting device according to Embodiment 1 of the present disclosure will be described with reference to the drawings.
 図1および図2に示す発光装置10は、基体であるサブマウント基板20と、発光素子30と、他の素子である保護素子40と、樹脂封止部50と、拡散部60とを備えている。 The light emitting device 10 shown in FIGS. 1 and 2 includes a submount substrate 20 that is a base, a light emitting element 30, a protective element 40 that is another element, a resin sealing portion 50, and a diffusion portion 60. Yes.
 サブマウント基板20は、図3に示すように、絶縁性基板21の実装面に配線パターン22が形成されたものである。配線パターン22は、ト字状の第1パターン22aとコ字状の第2パターン22bとから形成されている。なお、図1では配線パターン22は図示していない。 The submount substrate 20 has a wiring pattern 22 formed on the mounting surface of an insulating substrate 21 as shown in FIG. The wiring pattern 22 is formed by a first U-shaped pattern 22a and a second U-shaped pattern 22b. In FIG. 1, the wiring pattern 22 is not shown.
 サブマウント基板20は、この配線パターン22を素子用電極とし、この素子用電極に、発光素子30と保護素子40とを搭載素子として搭載している。この素子用電極は、絶縁性基板21の底面に形成された接続用電極(図示せず)にスルーホール電極を介して接続されている。絶縁性基板21としては、例えば、ガラスエポキシ樹脂やBTレジン(ビスマレイミドトリアジン樹脂系の熱硬化樹脂)、セラミックなどを採用することができる。 The submount substrate 20 uses the wiring pattern 22 as an element electrode, and the light emitting element 30 and the protective element 40 are mounted on the element electrode as a mounting element. The element electrode is connected to a connection electrode (not shown) formed on the bottom surface of the insulating substrate 21 via a through-hole electrode. As the insulating substrate 21, for example, glass epoxy resin, BT resin (bismaleimide triazine resin-based thermosetting resin), ceramic, or the like can be used.
 発光素子30は、フリップチップ型の発光ダイオードである。発光素子30は、バンプBを介してサブマウント基板20の搭載面に形成された素子用電極に導通搭載されている。 The light emitting element 30 is a flip chip type light emitting diode. The light emitting element 30 is conductively mounted on the element electrode formed on the mounting surface of the submount substrate 20 via the bumps B.
 発光素子30は、図4に示すように、基板31と、半導体層32と、n側端子33(第2の電極)と、p側端子34(第1の電極)とを備えている。基板31は、半導体層を保持する役目を負うと共に、半導体層が積層された面とは反対側となる面が、光を出射する発光面となる。基板の材質としては、絶縁性のサファイアやGaN、SiC、AlGaN、AlNなどを採用することができる。基板31の天面は、エッチング加工やブラスト加工、レーザーやダイシングブレードによる加工などにより微小な凹凸とした粗面とすることによりマイクロテクスチャ構造を有している。なお、基板31がサファイア等で、GaNより低屈折率である基板を基材とする場合には、平坦面で形成してもよい。 As shown in FIG. 4, the light emitting element 30 includes a substrate 31, a semiconductor layer 32, an n-side terminal 33 (second electrode), and a p-side terminal 34 (first electrode). The substrate 31 serves to hold the semiconductor layer, and a surface opposite to the surface on which the semiconductor layers are stacked is a light emitting surface that emits light. As the material of the substrate, insulating sapphire, GaN, SiC, AlGaN, AlN, or the like can be used. The top surface of the substrate 31 has a microtexture structure by making it a rough surface with minute irregularities by etching, blasting, processing with a laser or a dicing blade, or the like. When the substrate 31 is made of sapphire or the like and has a lower refractive index than GaN, the substrate 31 may be formed with a flat surface.
 半導体層32は、n型層32aと、発光層32bと、p型層32cとを基板31上に順次積層したものである。これらの半導体層32の材質は、窒化ガリウム系化合物であれば好ましい。具体的には、それぞれ、n型層32aをGaN、発光層32bをInGaN、p型層32cをGaNとするなどである。なお、n型層32aやp型層32cとしては、Al、In、Ga、N系を用いることもできる。また、n型層32aと基板31との間に、GaNやInGaNで形成したバッファ層を形成することも可能である。更に、例えば、発光層32bは、InGaNとGaNとを交互に積層した多層構造(量子井戸構造)とすることもできる。 The semiconductor layer 32 is formed by sequentially stacking an n-type layer 32 a, a light emitting layer 32 b, and a p-type layer 32 c on the substrate 31. The material of the semiconductor layer 32 is preferably a gallium nitride compound. Specifically, the n-type layer 32a is GaN, the light-emitting layer 32b is InGaN, the p-type layer 32c is GaN, and the like. As the n-type layer 32a and the p-type layer 32c, Al, In, Ga, and N-based materials can also be used. It is also possible to form a buffer layer made of GaN or InGaN between the n-type layer 32a and the substrate 31. Further, for example, the light emitting layer 32b may have a multilayer structure (quantum well structure) in which InGaN and GaN are alternately stacked.
 n側端子33は、基板31上に積層したn型層32aと発光層32bとp型層32cの一部から、発光層32bとp型層32cを除去し、n型層32aを露出させ、この露出させたn型層32a上に形成されている。p側端子34は、p型層32c上に形成されている。p側端子34は発光層32bで発した光を基板31の側に反射するために反射率の高いAgやAl、Rh等により形成された端子である。 The n-side terminal 33 removes the light-emitting layer 32b and the p-type layer 32c from a part of the n-type layer 32a, the light-emitting layer 32b, and the p-type layer 32c laminated on the substrate 31, and exposes the n-type layer 32a. It is formed on this exposed n-type layer 32a. The p-side terminal 34 is formed on the p-type layer 32c. The p-side terminal 34 is a terminal formed of Ag, Al, Rh or the like having a high reflectivity in order to reflect the light emitted from the light emitting layer 32b to the substrate 31 side.
 ここで、p側端子34およびn側端子33について、図5に基づいて説明する。 Here, the p-side terminal 34 and the n-side terminal 33 will be described with reference to FIG.
 図5に示すように、n側端子33は、矩形状に形成された基板のそれぞれの角部に、扇の円弧側を内側に向けた形状に形成されている。p側端子34は、矩形から角部の扇部を除いた領域に形成されている。従って、p側端子34に対応する基板31の天面および半導体層32の側面の領域が発光領域S1となり、n側端子33により発光層32bが除去されることで、n側端子33に対応する基板31の天面および基板31の側面の領域が非発光領域S2となる。 As shown in FIG. 5, the n-side terminal 33 is formed at each corner of the rectangular substrate so that the circular arc side of the fan faces inward. The p-side terminal 34 is formed in a region excluding the corner fan from the rectangle. Accordingly, the area of the top surface of the substrate 31 corresponding to the p-side terminal 34 and the side surface of the semiconductor layer 32 becomes the light-emitting region S1, and the light-emitting layer 32b is removed by the n-side terminal 33, thereby corresponding to the n-side terminal 33. The area | region of the top | upper surface of the board | substrate 31 and the side surface of the board | substrate 31 becomes non-light-emission area | region S2.
 保護素子40は、図1および図2に示すように、過度な電圧が発光素子30に印加しないようにするためのものである。本実施の形態では、保護素子40として、ツェナーダイオードを発光素子30に接続している。保護素子40は、矩形状に形成された発光素子30の角部にn側端子33が形成されているため、発光素子30の対角線の仮想延長線L上に実装されている。この保護素子40に発光素子30を接続した状態の回路図を図6に示す。本実施の形態1では、保護素子40をツェナーダイオードZDとしたが、ダイオードやバリスタ、コンデンサ、抵抗などとすることもできる。 The protective element 40 is for preventing an excessive voltage from being applied to the light emitting element 30 as shown in FIGS. 1 and 2. In the present embodiment, a Zener diode is connected to the light emitting element 30 as the protection element 40. Since the n-side terminal 33 is formed at the corner portion of the light emitting element 30 that is formed in a rectangular shape, the protection element 40 is mounted on the diagonally extending virtual extension line L of the light emitting element 30. A circuit diagram in a state where the light emitting element 30 is connected to the protective element 40 is shown in FIG. In the first embodiment, the protective element 40 is the Zener diode ZD, but it may be a diode, a varistor, a capacitor, a resistor, or the like.
 樹脂封止部50は、図1および図2に示すように、発光素子30と保護素子40との全体を覆うように形成されている。樹脂封止部50は、樹脂もしくはガラスやセラミックスといった主材である透明媒体中に、発光素子30からの光に励起されて補色となる光に波長を変換する蛍光体が含有されていることで蛍光部として機能する。 As shown in FIGS. 1 and 2, the resin sealing portion 50 is formed so as to cover the entirety of the light emitting element 30 and the protection element 40. The resin sealing portion 50 includes a phosphor that converts a wavelength to light that is excited by light from the light emitting element 30 and becomes complementary color in a transparent medium that is a main material such as resin or glass or ceramics. Functions as a fluorescent part.
 例えば、発光素子30が青色光を発光する青色発光素子であれば、蛍光体は黄色光を発光するものとすることができる。黄色光を発光する蛍光体を樹脂封止部50に含有させることで、発光素子30からの青色光と蛍光体からの黄色光とが混色するので、白色光とすることができる。蛍光体としては、珪酸塩蛍光体やYAG系蛍光体を使用することができる。 For example, if the light emitting element 30 is a blue light emitting element that emits blue light, the phosphor may emit yellow light. By including the phosphor that emits yellow light in the resin sealing portion 50, the blue light from the light emitting element 30 and the yellow light from the phosphor are mixed, so that white light can be obtained. As the phosphor, a silicate phosphor or a YAG phosphor can be used.
 透明媒体としては、例えば、シリコーン樹脂、エポキシ樹脂及びフッ素樹脂を主成分とする樹脂や、ゾルゲル法で作製されるガラス材料を用いることもできる。ガラス材料は硬化反応温度が摂氏200度程度のものもあり、バンプや端子各部に用いる材料の耐熱性を考慮しても好適な材料と言える。 As the transparent medium, for example, a resin mainly composed of a silicone resin, an epoxy resin and a fluororesin, or a glass material produced by a sol-gel method can be used. Some glass materials have a curing reaction temperature of about 200 degrees Celsius, and can be said to be a suitable material in consideration of heat resistance of materials used for bumps and terminals.
 拡散部60は、樹脂を主材とした透明媒体中に、樹脂封止部50からの光を拡散させる拡散材を含有している。拡散材は、例えば、粒子状の二酸化ケイ素やセラミックなどとすることができる。透明媒体は、シリコーン樹脂、ガラス、アクリル樹脂等とすることができる。拡散部60は、透明媒体に拡散材を含有させたシート部材を樹脂封止部50に貼り付けたり、拡散材を含有させた透明媒体を印刷法により塗布したりして形成することができる。 The diffusing unit 60 contains a diffusing material that diffuses light from the resin sealing unit 50 in a transparent medium mainly composed of resin. The diffusing material can be, for example, particulate silicon dioxide or ceramic. The transparent medium can be a silicone resin, glass, acrylic resin, or the like. The diffusing unit 60 can be formed by attaching a sheet member containing a diffusing material in a transparent medium to the resin sealing unit 50 or applying a transparent medium containing a diffusing material by a printing method.
 以上のように構成された本開示の実施の形態1に係る発光装置10の使用状態について説明する。 The usage state of the light-emitting device 10 according to Embodiment 1 of the present disclosure configured as described above will be described.
 図1および図2に示す発光装置10に電源が供給されると、発光素子30の発光領域S1が発光する。発光装置10には、発光素子30を保護するための保護素子40が搭載されているが、保護素子40は、発光素子30にn側端子33を形成する際に発光層32bが除去されてできる非発光領域S2に隣接させて配置されているため、保護素子40が、発光素子30の発光領域S1から出射される側方への光を遮断したり吸収したりしないため影響を与えない。 When power is supplied to the light emitting device 10 shown in FIGS. 1 and 2, the light emitting region S1 of the light emitting element 30 emits light. The light emitting device 10 is equipped with a protective element 40 for protecting the light emitting element 30. The protective element 40 is formed by removing the light emitting layer 32b when the n-side terminal 33 is formed on the light emitting element 30. Since the protective element 40 is arranged adjacent to the non-light emitting region S2, the protective element 40 does not block or absorb the light emitted from the light emitting region S1 of the light emitting element 30 to the side, so that there is no influence.
 特に、本実施の形態1に係る発光装置10では、矩形状に形成された発光素子30の角部にn側端子33が形成されている。そのため、保護素子40を、発光素子30の対角線の仮想延長線L上に実装することで、保護素子40を発光素子30に隣接して配置するときに、非発光領域S2に対応させることができる。 In particular, in the light emitting device 10 according to the first embodiment, the n-side terminal 33 is formed at the corner of the light emitting element 30 formed in a rectangular shape. Therefore, by mounting the protection element 40 on the virtual extension line L of the diagonal line of the light emitting element 30, it is possible to correspond to the non-light emitting region S2 when the protection element 40 is disposed adjacent to the light emitting element 30. .
 従って、保護素子40の搭載位置を発光素子30より一段下げる必要がないため、サブマウント基板20の厚みを厚くしなくてもよいので、発光装置10は、従来の発光装置の大きさを維持しつつ、保護素子40による発光素子30の発光への影響を低減することができる。 Therefore, since it is not necessary to lower the mounting position of the protection element 40 from the light emitting element 30, the thickness of the submount substrate 20 does not need to be increased. Therefore, the light emitting device 10 maintains the size of the conventional light emitting device. However, the influence of the protective element 40 on the light emission of the light emitting element 30 can be reduced.
 樹脂封止部50に蛍光体を含有させて蛍光部として機能させることで、発光素子30と保護素子40との周囲に蛍光体を含有させた蛍光部を形成することができる。この樹脂封止部50に発光素子30からの青色光が入射して、拡散部60に抜ける光と樹脂封止部50内の蛍光体を励起する光となる。 The fluorescent part containing the fluorescent substance can be formed around the light emitting element 30 and the protective element 40 by causing the resin sealing part 50 to contain the fluorescent substance and functioning as the fluorescent part. Blue light from the light emitting element 30 enters the resin sealing portion 50 and becomes light that passes through the diffusion portion 60 and light that excites the phosphor in the resin sealing portion 50.
 蛍光体が含有された樹脂封止部50は、発光素子30より広い範囲であり、保護素子40の全部を含むように形成されているため、発光素子30からの光を受けると、発光素子30の周囲だけでなく、保護素子40の周囲の蛍光体が励起され発光するため、発光素子30のn側端子33の周囲も明るく発光する。従って、保護素子40が発光素子30の非発光領域S2に隣接して配置されていても、樹脂封止部50の蛍光体が発光するので、発光面積を広く確保することができ、発光効率のよい発光装置10とすることができる。 Since the resin sealing portion 50 containing the phosphor is wider than the light emitting element 30 and is formed so as to include all of the protective element 40, when the light from the light emitting element 30 is received, the light emitting element 30. Since the phosphor around the protective element 40 is excited and emits light, not only around the light emitting element 30, but also around the n-side terminal 33 of the light emitting element 30 emits light brightly. Therefore, even if the protective element 40 is disposed adjacent to the non-light emitting region S2 of the light emitting element 30, the phosphor of the resin sealing portion 50 emits light, so that a wide light emitting area can be secured and the light emitting efficiency can be increased. A good light emitting device 10 can be obtained.
 また、発光装置10の天面であって、樹脂封止部50の上面に、拡散部60が形成されているため、樹脂封止部50からの光を拡散させることにより、樹脂封止部50を通過した青色光と蛍光体により全方位的に発光する黄色光とをバランスよく混色させることができるので、色ムラを抑えた白色とすることができる。従って、発光装置10は、樹脂封止部50での波長変換のばらつきを抑えつつ、拡散部60から外部へ出射する光の色ムラを抑えることができる。 Further, since the diffusion portion 60 is formed on the top surface of the light emitting device 10 and on the upper surface of the resin sealing portion 50, the resin sealing portion 50 is diffused by diffusing light from the resin sealing portion 50. Since the blue light that has passed through and the yellow light emitted in all directions by the phosphor can be mixed in a well-balanced manner, the color can be white with reduced color unevenness. Therefore, the light emitting device 10 can suppress uneven color of light emitted from the diffusion unit 60 to the outside while suppressing variations in wavelength conversion in the resin sealing unit 50.
 更に、拡散部60がシート部材により形成されていれば、所定厚みのシート部材を貼り付けるだけなので、拡散度合いを均一にすることができる。 Furthermore, if the diffusion part 60 is formed of a sheet member, the sheet member having a predetermined thickness is only pasted, so that the degree of diffusion can be made uniform.
 また、発光素子30の基板の天面は、マイクロテクスチャ構造により凹凸面に形成されているため、発光素子30の天面で全反射して、発光素子30内へ返る戻り光を少なくすることができるので、発光素子30の光取り出し効率を向上させることができる。従って、発光素子30の直上方向への発光強度を高くすることができる。 In addition, since the top surface of the substrate of the light emitting element 30 is formed as a concavo-convex surface by the microtexture structure, the return light that is totally reflected by the top surface of the light emitting element 30 and returns to the light emitting element 30 may be reduced. Therefore, the light extraction efficiency of the light emitting element 30 can be improved. Accordingly, the light emission intensity in the direction directly above the light emitting element 30 can be increased.
 (実施の形態2)
 次に、本開示の実施の形態2に係る発光装置について、図面に基づいて説明する。なお、図7においては図1と同じ構成のものは同符号を付して説明を省略する。
(Embodiment 2)
Next, a light-emitting device according to Embodiment 2 of the present disclosure will be described based on the drawings. In FIG. 7, the same components as those in FIG.
 図7に示すように、発光装置10xは、発光素子30の天面に、蛍光部70と拡散部60とが形成され、発光素子30と保護素子40との周囲に反射部80が形成されている。 As shown in FIG. 7, in the light emitting device 10 x, the fluorescent part 70 and the diffusing part 60 are formed on the top surface of the light emitting element 30, and the reflecting part 80 is formed around the light emitting element 30 and the protective element 40. Yes.
 蛍光部70と拡散部60とは、シート状の光透過性部材に、蛍光体と拡散材とをそれぞれに含有させ、発光素子30の天面に接着材により貼り合わせることで、2層構造のシート部材としたものである。蛍光部70と拡散部60とは、製造過程において一方の層を他方の層に積層することで密着した状態で貼り合わされる。シート部材は、発光素子30の天面より大きく、一部が保護素子40に覆うように形成されている。 The fluorescent part 70 and the diffusing part 60 have a two-layer structure in which a sheet-like light-transmitting member contains a phosphor and a diffusing material, respectively, and is bonded to the top surface of the light emitting element 30 with an adhesive. This is a sheet member. The fluorescent part 70 and the diffusing part 60 are bonded together in a manufacturing process in a state where they are in close contact with each other by being laminated on the other layer. The sheet member is formed so as to be larger than the top surface of the light emitting element 30 and partially cover the protection element 40.
 蛍光部70と拡散部60とを貼り合わせ接合する接着材は、シリコーン樹脂製のものが使用できる。拡散部60をシリコーン樹脂により形成し、接着材をシリコーン樹脂とすれば、拡散部60への入射の際の屈折や反射を少ないものとすることができる。 As the adhesive for bonding the fluorescent part 70 and the diffusing part 60 together, a silicone resin material can be used. If the diffusion part 60 is formed of a silicone resin and the adhesive is made of a silicone resin, refraction and reflection upon incidence on the diffusion part 60 can be reduced.
 反射部80は、発光素子30が搭載されたサブマウント基板20上の領域であって、発光素子30の搭載領域の残余の領域に、発光素子30と、蛍光部70および拡散部60との周囲を囲うように、かつ保護素子40を覆うように形成され、拡散部60を露出させる高さに形成されている。反射部80は、エポキシ樹脂、アクリル樹脂、ポリイミド樹脂、ユリア樹脂、シリコーン樹脂、フッ素樹脂などの樹脂もしくはガラスといった主材である透明媒体中に発光素子30からの光を反射する粒状体の反射材を分散させたものである。反射部80は、光を反射する反射材として酸化チタンや酸化亜鉛の粒子と分散剤とを液状樹脂に含有させたものを硬化させることで形成することができる。反射部80を、粉体状の酸化チタンと分散剤とを液状樹脂に含有させたものを硬化させて形成することで、絶縁性を保ちつつ、反射機能を備えたものとすることができる。また、反射部80を形成する際に、流動性を高めることを目的として、液状樹脂にチキソトロピー付与剤を添加してもよい。チキソトロピー付与剤としては、例えば、微粉末シリカ等が使用できる。 The reflection unit 80 is a region on the submount substrate 20 on which the light emitting element 30 is mounted, and is a region around the light emitting element 30, the fluorescent unit 70, and the diffusion unit 60 in the remaining region of the mounting region of the light emitting element 30. Is formed so as to surround the protective element 40 and to have a height at which the diffusion portion 60 is exposed. The reflecting portion 80 is a granular reflecting material that reflects light from the light emitting element 30 in a transparent medium such as epoxy resin, acrylic resin, polyimide resin, urea resin, silicone resin, fluororesin, or a main material such as glass. Are dispersed. The reflecting part 80 can be formed by curing a liquid resin containing titanium oxide or zinc oxide particles and a dispersant as a reflecting material that reflects light. By forming the reflecting portion 80 by curing a liquid resin containing powdered titanium oxide and a dispersant, the reflecting portion 80 can be provided with a reflecting function while maintaining insulation. Moreover, when forming the reflection part 80, you may add a thixotropy imparting agent to liquid resin for the purpose of improving fluidity | liquidity. As the thixotropy-imparting agent, for example, fine powder silica can be used.
 なお、本実施の形態2では、反射材として酸化チタンを使用しているが、酸化亜鉛、酸化アルミや二酸化ケイ素、窒化ホウ素なども反射材として使用することが可能である。つまり、反射材は、絶縁性を有すると共に、反射機能を有する金属酸化物であれば、使用することが可能である。 In Embodiment 2, titanium oxide is used as the reflective material, but zinc oxide, aluminum oxide, silicon dioxide, boron nitride, or the like can also be used as the reflective material. That is, the reflective material can be used as long as it is a metal oxide having an insulating property and a reflective function.
 以上のように構成された本開示の実施の形態2に係る発光装置10xの製造方法を説明する。 A method of manufacturing the light emitting device 10x according to the second embodiment of the present disclosure configured as described above will be described.
 まず、発光素子30および保護素子40を、サブマウント基板20へバンプBを介して搭載する。次に、発光素子30の天面に接着材を塗布して、発光素子30より大きいサイズに形成された一枚化した蛍光部70と拡散部60とを貼り付ける。蛍光部70と拡散部60とが1枚のシート部材となっているため、簡単に発光素子30に貼り付けることができる。 First, the light emitting element 30 and the protection element 40 are mounted on the submount substrate 20 via the bumps B. Next, an adhesive is applied to the top surface of the light emitting element 30, and the single fluorescent part 70 and the diffusing part 60 formed in a size larger than the light emitting element 30 are attached. Since the fluorescent part 70 and the diffusing part 60 are a single sheet member, they can be easily attached to the light emitting element 30.
 次に、印刷法またはポッティング法により、反射部80となる反射材を含有した樹脂(反射材含有樹脂)を充填し、硬化させる。このとき反射材含有樹脂は、蛍光部70と拡散部60が覆われるように充填する。 Next, a resin containing a reflective material to be the reflective portion 80 (reflective material-containing resin) is filled and cured by a printing method or a potting method. At this time, the reflecting material-containing resin is filled so that the fluorescent part 70 and the diffusing part 60 are covered.
 そして、拡散部60が露出するまで、硬化した反射材含有樹脂を切削して反射部80を形成して、拡散部60と反射部80との高さ位置を合わせる。 Then, until the diffusing portion 60 is exposed, the cured reflecting material-containing resin is cut to form the reflecting portion 80, and the height positions of the diffusing portion 60 and the reflecting portion 80 are aligned.
 このように、切削して拡散部60と反射部80との高さ位置を合わせることで、反射部80が拡散部60より低くなって拡散部60の側面から光が漏れたり、反射部80が拡散部60を覆ってしまって光の出射を遮蔽したりすることを防止することができる。 Thus, by cutting and matching the height positions of the diffusing unit 60 and the reflecting unit 80, the reflecting unit 80 becomes lower than the diffusing unit 60, and light leaks from the side surface of the diffusing unit 60. It can be prevented that the diffusion part 60 is covered and the emission of light is blocked.
 このように、反射部80により他の素子である保護素子40の周囲を覆うことにより、発光素子30から保護素子40へ向かう光を発光素子30へ戻すことができ、発光素子30の天面から出射させることができる。 Thus, by covering the periphery of the protective element 40 which is another element with the reflecting portion 80, the light traveling from the light emitting element 30 toward the protective element 40 can be returned to the light emitting element 30, and from the top surface of the light emitting element 30. Can be emitted.
 反射部80が形成されていても、例えば、保護素子40を発光素子30の発光領域S1に隣接させていれば、保護素子40が、直上に位置する蛍光部70からの光を吸収してしまい、蛍光部70の発光を低下させることで、暗部となってしまう。しかし、保護素子40は発光素子30の非発光領域S2に隣接して配置されているため、発光領域S1より外側の蛍光部70の発光の妨げにならない。従って、蛍光部70の発光効率の低下を防止することができる。 Even if the reflection part 80 is formed, for example, if the protection element 40 is adjacent to the light emitting region S1 of the light emitting element 30, the protection element 40 absorbs light from the fluorescent part 70 located immediately above. By reducing the light emission of the fluorescent part 70, it becomes a dark part. However, since the protective element 40 is disposed adjacent to the non-light emitting area S2 of the light emitting element 30, it does not hinder the light emission of the fluorescent portion 70 outside the light emitting area S1. Therefore, it is possible to prevent a decrease in the light emission efficiency of the fluorescent part 70.
 発光素子30からの青色光は、蛍光部70に入射して、蛍光部70を通過して拡散部60へ抜ける光と蛍光体を励起する光となるが、蛍光部70がシート部材の一部として、シート状に形成されているため、蛍光部70の厚みを均一とすることができるので、蛍光体による波長変換の度合いのばらつきを抑えることができる。また、拡散部60がシート部材の一部として、シート状に形成されているため、拡散部60の厚みを均一とすることができる。従って、拡散部60による拡散の度合いを、全体的に均一にすることができるので、更に、色ムラを抑えたものとすることができる。従って、発光装置10xは、蛍光部70での波長変換のばらつきを抑えつつ、拡散部60から外部へ出射する光の色ムラを抑えることができる。 The blue light from the light emitting element 30 is incident on the fluorescent portion 70 and becomes light that passes through the fluorescent portion 70 and passes through the diffusing portion 60 and light that excites the phosphor. The fluorescent portion 70 is a part of the sheet member. Since the thickness of the fluorescent part 70 can be made uniform because it is formed in a sheet shape, variations in the degree of wavelength conversion by the phosphor can be suppressed. Moreover, since the diffusion part 60 is formed in a sheet shape as a part of the sheet member, the thickness of the diffusion part 60 can be made uniform. Accordingly, since the degree of diffusion by the diffusion unit 60 can be made uniform as a whole, color unevenness can be further suppressed. Therefore, the light emitting device 10x can suppress color unevenness of light emitted from the diffusion unit 60 to the outside while suppressing variation in wavelength conversion in the fluorescent unit 70.
 シート部材は、発光素子30の天面より大きいため、蛍光部70による発光の面積を広く確保することができる。従って、高輝度な発光装置10xとすることができる。 Since the sheet member is larger than the top surface of the light emitting element 30, it is possible to secure a wide area of light emission by the fluorescent portion 70. Therefore, the light emitting device 10x with high luminance can be obtained.
 なお、本実施の形態1、2では、基体としてサブマウント基板20を例に説明したが、金属薄板により形成されたリードフレームとしてもよい。また、他の素子として1個の保護素子40がサブマウント基板20に実装されていたが、発光素子30のそれぞれの角部のn側端子33に隣接させて2個から4個の保護素子や他の素子を配置させてもよい。 In the first and second embodiments, the submount substrate 20 has been described as an example of the base body. However, a lead frame formed of a thin metal plate may be used. In addition, although one protection element 40 is mounted on the submount substrate 20 as another element, two to four protection elements are provided adjacent to the n-side terminal 33 at each corner of the light emitting element 30. Other elements may be arranged.
 また、保護素子40を発光素子30の対角線の仮想延長線Lに配置したが、多少ずれていても、保護素子40が発光素子30の非発光領域S2に隣接して、発光領域S1からの光を遮蔽したり、吸収したりしない位置であればよい。 Further, although the protection element 40 is disposed on the diagonal virtual extension line L of the light emitting element 30, the light from the light emitting area S 1 is adjacent to the non-light emitting area S 2 of the light emitting element 30 even if there is a slight deviation. Any position that does not shield or absorb the light may be used.
 また、発光素子30として青色光を発光するものとし、蛍光体として青色光の補色となる黄色光を発光するものを例に説明したが、発光素子は紫外線を発光するものとしたり、他の色を発光するものとしたりすることができる。また、蛍光体も他の色を発光するものとすることができる。 Further, the light emitting element 30 emits blue light and the phosphor emits yellow light which is a complementary color of blue light. However, the light emitting element emits ultraviolet light or other colors. Can emit light. In addition, the phosphor may emit other colors.
 更に、本実施の形態1、2では、n側端子33が4つの発光素子30を例に説明したが、1つから3つでも、5以上のn側端子が形成された発光素子でもよい。また、第1の電極がn側端子で、第2の電極がp側端子であったが、非発光領域がp側端子に対応する発光素子であれば、第1の電極がp側端子で、第2の電極がn側端子であってもよい。 Furthermore, in the first and second embodiments, the n-side terminal 33 is described by taking the four light-emitting elements 30 as an example, but one to three or five or more n-side terminals may be formed. In addition, the first electrode is an n-side terminal and the second electrode is a p-side terminal. However, if the non-light-emitting region is a light-emitting element corresponding to the p-side terminal, the first electrode is a p-side terminal. The second electrode may be an n-side terminal.
 本開示は、大きさを維持しつつ、他の素子による発光素子の発光への影響を低減することができるので、複数の電極により電源が供給されて発光するフリップチップ型の発光素子と、この発光素子に隣接して配置される1以上の他の素子とが、基体に実装され、封止される発光装置に好適である。 Since the present disclosure can reduce the influence of other elements on the light emission of the light emitting element while maintaining the size, a flip chip light emitting element that emits light by being supplied with power by a plurality of electrodes, It is suitable for a light emitting device in which one or more other elements arranged adjacent to the light emitting element are mounted on a base and sealed.
10,10x  発光装置
20  サブマウント基板
21  絶縁性基板
22  配線パターン
22a  第1パターン
22b  第2パターン
30  発光素子
31  基板
32  半導体層
32a  n型層
32b  発光層
32c  p型層
33  n側端子
34  p側端子
40  保護素子
50  樹脂封止部
60  拡散部
70  蛍光部
80  反射部
B  バンプ
S1  発光領域
S2  非発光領域
L  仮想延長線
ZD  ツェナーダイオード
10, 10x light emitting device 20 submount substrate 21 insulating substrate 22 wiring pattern 22a first pattern 22b second pattern 30 light emitting element 31 substrate 32 semiconductor layer 32a n type layer 32b light emitting layer 32c p type layer 33 n side terminal 34 p side Terminal 40 Protective element 50 Resin sealing part 60 Diffusion part 70 Fluorescence part 80 Reflection part B Bump S1 Light emission area S2 Non-light emission area L Virtual extension line ZD Zener diode

Claims (7)

  1. 第1の電極と第2の電極とにより電源が供給されて、前記第1の電極に対応する発光領域が発光するフリップチップ型の発光素子と、
    前記発光素子に隣接して配置された他の素子と、
    前記発光素子および前記他の素子が搭載素子として実装される基体とを備え、
    前記他の素子は、前記発光素子に前記第2の電極が形成されることによりできる非発光領域に隣接させて、前記基体に実装されていることを特徴とする発光装置。
    A flip-chip type light emitting element in which power is supplied by the first electrode and the second electrode, and a light emitting region corresponding to the first electrode emits light;
    Another element disposed adjacent to the light emitting element;
    A substrate on which the light emitting element and the other element are mounted as a mounting element;
    The other element is mounted on the substrate adjacent to a non-light-emitting region formed by forming the second electrode on the light-emitting element.
  2. 前記発光素子は、矩形状に形成され、
    前記第2の電極は、角部に形成され、
    前記他の素子は、前記発光素子の対角線の仮想延長線上に実装されている請求項1記載の発光装置。
    The light emitting element is formed in a rectangular shape,
    The second electrode is formed at a corner,
    The light emitting device according to claim 1, wherein the other element is mounted on a virtual extension line of a diagonal line of the light emitting element.
  3. 前記発光素子より広い範囲に、蛍光体を含有した蛍光部が形成され、
    前記蛍光部は、前記他の素子の一部または全部を覆うように形成されている請求項1記載の発光装置。
    A fluorescent part containing a phosphor is formed in a wider range than the light emitting element,
    The light emitting device according to claim 1, wherein the fluorescent portion is formed so as to cover a part or all of the other element.
  4. 前記蛍光部は、前記発光素子および前記他の素子を封止する樹脂封止部に蛍光体を含有させたものである請求項3記載の発光装置。 The light-emitting device according to claim 3, wherein the fluorescent part is a resin sealing part that seals the light-emitting element and the other elements.
  5. 前記蛍光部は、前記発光素子の天面と前記他の素子の天面の一部または全部とを覆うシート部材により形成された請求項3記載の発光装置。 The light emitting device according to claim 3, wherein the fluorescent portion is formed by a sheet member that covers a top surface of the light emitting element and a part or all of the top surface of the other element.
  6. 前記発光素子および前記他の素子との周囲に反射部が形成されている請求項5記載の発光装置。 The light emitting device according to claim 5, wherein a reflection portion is formed around the light emitting element and the other element.
  7. 前記蛍光部には、前記発光素子からの光を散乱させる拡散部が形成されている請求項1から6のいずれかの項に記載の発光装置。 The light emitting device according to any one of claims 1 to 6, wherein a diffusion part that scatters light from the light emitting element is formed in the fluorescent part.
PCT/JP2014/000784 2013-04-05 2014-02-17 Light-emitting device WO2014162650A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-079219 2013-04-05
JP2013079219A JP2016115688A (en) 2013-04-05 2013-04-05 Light-emitting device

Publications (1)

Publication Number Publication Date
WO2014162650A1 true WO2014162650A1 (en) 2014-10-09

Family

ID=51657966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000784 WO2014162650A1 (en) 2013-04-05 2014-02-17 Light-emitting device

Country Status (2)

Country Link
JP (1) JP2016115688A (en)
WO (1) WO2014162650A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017168767A (en) * 2016-03-18 2017-09-21 豊田合成株式会社 Light-emitting device and method for manufacturing light-emitting device
US10361346B2 (en) 2015-10-27 2019-07-23 Soko Kagaku Co., Ltd. Nitride semiconductor ultraviolet light emitting device and method for manufacturing same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154804A (en) * 1997-07-30 1999-02-26 Rohm Co Ltd Chip type light-emitting element
JP2002314138A (en) * 2001-04-09 2002-10-25 Toshiba Corp Light emitting device
JP2008541411A (en) * 2005-05-12 2008-11-20 松下電器産業株式会社 LIGHT EMITTING DEVICE, DISPLAY DEVICE AND LIGHTING DEVICE USING THE SAME, AND METHOD FOR MANUFACTURING LIGHT EMITTING DEVICE
JP2010238846A (en) * 2009-03-31 2010-10-21 Nichia Corp Light-emitting device
JP2011258916A (en) * 2010-05-13 2011-12-22 Citizen Holdings Co Ltd Semiconductor light-emitting device
JP2012084930A (en) * 2012-02-01 2012-04-26 Stanley Electric Co Ltd Semiconductor light-emitting device
JP2012138454A (en) * 2010-12-27 2012-07-19 Citizen Holdings Co Ltd Semiconductor light-emitting device and manufacturing method of the same
JP2013502066A (en) * 2009-08-13 2013-01-17 セミエルイーディーズ オプトエレクトロニクス カンパニー リミテッド High performance integrated light emitting system including light emitting diode and application specific integrated circuit (ASIC)

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154804A (en) * 1997-07-30 1999-02-26 Rohm Co Ltd Chip type light-emitting element
JP2002314138A (en) * 2001-04-09 2002-10-25 Toshiba Corp Light emitting device
JP2008541411A (en) * 2005-05-12 2008-11-20 松下電器産業株式会社 LIGHT EMITTING DEVICE, DISPLAY DEVICE AND LIGHTING DEVICE USING THE SAME, AND METHOD FOR MANUFACTURING LIGHT EMITTING DEVICE
JP2010238846A (en) * 2009-03-31 2010-10-21 Nichia Corp Light-emitting device
JP2013502066A (en) * 2009-08-13 2013-01-17 セミエルイーディーズ オプトエレクトロニクス カンパニー リミテッド High performance integrated light emitting system including light emitting diode and application specific integrated circuit (ASIC)
JP2011258916A (en) * 2010-05-13 2011-12-22 Citizen Holdings Co Ltd Semiconductor light-emitting device
JP2012138454A (en) * 2010-12-27 2012-07-19 Citizen Holdings Co Ltd Semiconductor light-emitting device and manufacturing method of the same
JP2012084930A (en) * 2012-02-01 2012-04-26 Stanley Electric Co Ltd Semiconductor light-emitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10361346B2 (en) 2015-10-27 2019-07-23 Soko Kagaku Co., Ltd. Nitride semiconductor ultraviolet light emitting device and method for manufacturing same
JP2017168767A (en) * 2016-03-18 2017-09-21 豊田合成株式会社 Light-emitting device and method for manufacturing light-emitting device

Also Published As

Publication number Publication date
JP2016115688A (en) 2016-06-23

Similar Documents

Publication Publication Date Title
US9882097B2 (en) Optoelectronic semiconductor chip, optoelectronic semiconductor component, and a method for producing an optoelectronic semiconductor component
JP5558665B2 (en) Light emitting device
US10461065B2 (en) Method of manufacturing light emitting device
KR101517644B1 (en) Light-emitting device and its manufacturing method
JP2014207349A (en) Light-emitting device and manufacturing method thereof
TWI481077B (en) Semiconductor light emitting device and manufacturing method of semiconductor light emitting device
WO2014122881A1 (en) Light-emitting device
WO2011021402A1 (en) Light-emitting device
US20110012151A1 (en) Light emitting device
WO2013011628A1 (en) Light emitting device and method for manufacturing same
JP6387954B2 (en) Method for manufacturing light emitting device using wavelength conversion member
JP2007242856A (en) Chip-type semiconductor light emitting device
TWI599078B (en) Moisture-resistant chip scale packaging light emitting device
JP2011222641A (en) Light-emitting device
TW201218428A (en) Light emitting diode package structure
TW201806190A (en) Light emitting device and the manufacturing method for same
JP2007012993A (en) Chip semiconductor light emitting device
JP7235944B2 (en) Light-emitting device and method for manufacturing light-emitting device
JP6665143B2 (en) Light emitting device manufacturing method
JP6575828B2 (en) Light emitting device and light emitting module
JP2013089717A (en) Led module
WO2014162650A1 (en) Light-emitting device
JP5678462B2 (en) Light emitting device
JP7236016B2 (en) light emitting device
JP6399132B2 (en) Light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14778158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14778158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP