JP2000349347A - Semiconductor light emitting element - Google Patents

Semiconductor light emitting element

Info

Publication number
JP2000349347A
JP2000349347A JP16158599A JP16158599A JP2000349347A JP 2000349347 A JP2000349347 A JP 2000349347A JP 16158599 A JP16158599 A JP 16158599A JP 16158599 A JP16158599 A JP 16158599A JP 2000349347 A JP2000349347 A JP 2000349347A
Authority
JP
Japan
Prior art keywords
light emitting
semiconductor light
emitting device
coating material
device according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16158599A
Other languages
Japanese (ja)
Other versions
JP3412152B2 (en
Inventor
Satoshi Honda
Takeshi Sano
Akira Shiraishi
武志 佐野
聡 本多
旭 白石
Original Assignee
Sanken Electric Co Ltd
サンケン電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd, サンケン電気株式会社 filed Critical Sanken Electric Co Ltd
Priority to JP16158599A priority Critical patent/JP3412152B2/en
Publication of JP2000349347A publication Critical patent/JP2000349347A/en
Application granted granted Critical
Publication of JP3412152B2 publication Critical patent/JP3412152B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Fee Related legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16245Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body

Abstract

PROBLEM TO BE SOLVED: To improve weather resistance and ultraviolet ray resistance of a semiconductor light emitting device.
SOLUTION: This semiconductor light emitting device is provided with a base body 11, a semiconductor light emitting element 2 fixed to the base body 11, and coating materials 10 for covering the semiconductor light emitting element 2. In this case, the polymetalloxan or ceramic coating materials 10 having light transmissivity can be prevented from being deteriorated even when irradiated with lights whose wavelength is short such as near ultraviolet rays. A pair of electrodes 2f and 2g formed at the bottom part of the semiconductor light emitting element 2 are respectively electrically connected with a pair of outer terminals 3 and 4 formed at the base body 11 so that sufficient amounts of light can be emitted from the semiconductor light emitting element 2 to the outside.
COPYRIGHT: (C)2000,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、半導体発光装置、 BACKGROUND OF THE INVENTION The present invention relates to a semiconductor light emitting device,
特にバンプ電極(突起形状電極)を有する半導体発光素子を使用する半導体発光装置に属する。 Especially belonging to the semiconductor light emitting device that uses the semiconductor light emitting device having a bump electrode (projection-shaped electrode).

【0002】 [0002]

【従来の技術】禁止帯幅(エネルギギャップ)の大きい半導体発光素子を用いると、波長の短い可視光から紫外域までの比較的短い波長で発光する半導体発光装置を実現することができる。 When BACKGROUND ART using large semiconductor light-emitting device of the band gap (energy gap), it is possible to realize a semiconductor light emitting device which emits light at relatively short wavelengths from the short wavelength visible light to ultraviolet region. 短波長の光を発生する半導体発光素子としては、GaN、GaAlN、InGaN、InGaAlN等の窒素ガリウム系化合物半導体があり、小型、低消費電力、長寿命等種々の利点を備えた新しい固体化紫外光源に利用することができる。 As the semiconductor light-emitting element for generating short wavelength light, GaN, GaAlN, InGaN, has a gallium nitride-based compound semiconductor such as InGaAlN, small size, low power consumption, a new solidification ultraviolet light source having various advantages such as long service life it can be used to.

【0003】また、図4は、発光ダイオードチップ(2) [0003] FIG. 4 is a light emitting diode chip (2)
から照射される光の波長を蛍光物質(13)によって変換する従来の発光ダイオード装置の断面図を示す。 It shows a cross-sectional view of a conventional light emitting diode device for converting the phosphor wavelengths of light to be irradiated (13) from. 図4に示す発光ダイオード装置(1)では、カソード側リードとしての第一の外部端子(3)の凹部(3a)の底面(3b)に発光ダイオードチップ(2)が固着され、リード細線(5)により発光ダイオードチップ(2)のカソード電極はカソード側の外部端子(3)の上端部(9a)に接続される。 In the light emitting diode device (1) shown in FIG. 4, the light emitting to the bottom surface of the recess (3a) of the first external terminal of the cathode-side lead (3) (3b) diode chip (2) is secured, the lead thin line (5 the cathode electrode of the LED chip (2) by) is connected to the upper end of the cathode side external terminal (3) (9a). また、発光ダイオードチップ(2)のアノード電極はリード細線(6)によりアノード側リードとしての第二の外部端子(4)の上端部(9b)に接続される。 The anode electrode of the light emitting diode chip (2) is connected to the upper end portion of the second external terminal as an anode side lead by lead thin line (6) (4) (9b). 凹部(3a)に固着された発光ダイオードチップ(2)は、凹部(3a)内に充填され且つ蛍光物質 Recess fixed to (3a) light emitting diode chip (2) is and the fluorescent substance is filled in the recess (3a)
(13)が混入された光透過性の保護樹脂(7)により被覆される。 (13) is covered by a mixed light transparent protective resin (7). 発光ダイオードチップ(2)、第一の外部端子(3)の凹部(3a)及び上端部(9a)、第二の外部端子(4)の上端部 Light emitting diode chip (2), the upper end of the recess (3a) and the upper end portion of the first external terminal (3) (9a), a second external terminal (4)
(9b)、リード細線(5, 6)は、更に光透過性の被覆体(18) (9b), lead thin line (5, 6) further optically transparent coating member (18)
内に封入される。 It is enclosed within.

【0004】発光ダイオード装置(1)の第一の外部端子 [0004] The first external terminal of the light emitting diode device (1)
(3)と第二の外部端子(4)との間に電圧を印加し、発光ダイオードチップ(2)に通電すると、発光ダイオードチップ(2)から照射される光は、保護樹脂(7)内を通り外部端子(3)の凹部(3a)の側壁(3c)で反射した後に、透明な被覆体(18)を通り発光ダイオード装置(1)の外部に放出される。 (3) and a voltage is applied between the second external terminal (4), when energized light emitting diode chip (2), the light emitted from the light emitting diode chip (2), the protective resin (7) in the after being reflected by the side walls (3c) of the recess (3a) of the street the external terminals (3), is discharged to the outside of the light-emission diode device a transparent coating member (18) (1). また、発光ダイオードチップ(2)の上面から放射されて凹部(3a)の側壁(3c)で反射されずに直接に保護樹脂(7)及び被覆体(18)を通って発光ダイオード装置(1)の外部に放出される光もある。 The light emitting diode device through a side wall directly protective resin without being reflected by the (3c) (7) and the covering body (18) of the upper surface is radiated from the recess of the light-emitting diode chips (2) (3a) (1) some of the light emitted to the outside. 被覆体(18)の先端にはレンズ部(8a)が形成され、被覆体(18)内を通過する光は、レンズ部(8a)によって集光され指向性が高められる。 The tip of the cladding (18) is a lens unit (8a) is formed, the light passing through the cover member (18) within is condensed directivity by the lens portion (8a) is enhanced. 発光ダイオードチップ(2)の発光時に、発光ダイオードチップ(2)から照射される光は保護樹脂(7)内に混入された蛍光物質(13)によって異なる波長に変換されて放出される結果、発光ダイオードチップ(2)から照射された光とは異なる波長の光が発光ダイオード装置(1)から放出される。 Emitting diode during light emission of the chip (2), the light emitting diode chip (2) is outcome light emitted is converted into a different wavelength by a protective resin (7) mixed fluorescent substance in the (13) irradiated from the light emitting the light emitted from the diode chip (2) different wavelengths of light emitted from the light emitting diode device (1).

【0005】 [0005]

【発明が解決しようとする課題】一般に、半導体発光素子は炭素、水素、酸素、窒素等の元素が網目状に結合した有機高分子化合物によって構成される樹脂封止体により被覆されるが、エポキシ系樹脂から成る外囲体と成る樹脂封止体にこれら紫外線等が照射されると、有機高分子の繋ぎ目が切断され、各種の光学的特性及び化学的特性が劣化することが知られている。 Generally [0005] The semiconductor light emitting element carbon, hydrogen, oxygen, and elements such as nitrogen is covered by constructed resin sealing member by an organic polymer compound bound in a network form, epoxy When these ultraviolet rays are irradiated to the resin sealing body comprising an outer enclosure made of system resin, joint of the organic polymer is cut, various optical and chemical properties of known to degrade there. 例えばGaN(窒化ガリウム)系の発光ダイオードチップは、波長365nm程度まで紫外線を発光することができるため、樹脂封止体は光強度の強い発光ダイオードチップの周囲から次第に黄変し、着色現象が発生する。 For example GaN (gallium nitride) based LED chip, since it is possible to emit the ultraviolet to a wavelength of about 365 nm, the resin sealing body gradually yellowing from the periphery of intense light-emitting diode chip of the light intensity, coloration phenomenon occurs to. このため、発光ダイオードチップが発した光は着色部で吸収され減衰する。 Therefore, the light emitting diode chip is emitted is absorbed by the colored portion is attenuated. 更に、樹脂封止体の劣化に伴って耐湿性が低下すると共に、イオン透過性が増大するため、樹脂封止体の外部から侵入した汚染物質イオンにより発光ダイオードチップ自体も劣化し、その結果、発光ダイオード装置の発光強度は相乗的に低減する。 Furthermore, the moisture resistance decreases with deterioration of the resin sealing body, the ion permeability is increased, the light-emitting diode chip itself degraded by contaminant ions entering from the outside of the resin sealing body, as a result, emission intensity of the light emitting diode device is synergistically reduced.

【0006】また、例えば順方向電圧が高いGaN(窒化ガリウム)系の発光ダイオードチップは、比較的低い順方向電流でも電力損失が大きく、作動時にチップ温度はかなり上昇する。 Further, for example, the forward voltage is high GaN (gallium nitride) based LED chip, the power loss at a relatively low forward current is large, the chip temperature is considerably increased during operation. 樹脂は一般に高温に加熱されると次第に劣化して黄変・着色を起こすことが知られている。 Resins are generally deteriorated gradually when heated to a high temperature has been known to cause yellowing coloring. 従ってGaN系の発光ダイオードチップを従来の発光ダイオード装置に用いると、発光ダイオードチップからの短波長の光の照射とあいまって高温の発光ダイオードチップと接する部分から樹脂が次第に黄変・着色するため、発光ダイオード装置の外観品質と発光強度は次第に低下する。 Therefore the use of GaN-based light-emitting diode chips of the conventional light emitting diode device, since the resin from irradiating a portion coupled in contact with the hot emitting diode chip having a short wavelength of light from the light emitting diode chip gradually yellow coloring, appearance quality and emission intensity of the light emitting diode device is reduced gradually. このように、従来の発光ダイオード装置では、選択する材料種類の減少、信頼性の低下、光変換機能の不完全性、製品価格の上昇を招来する原因となる。 Thus, in the conventional light-emitting diode device is responsible for Shorai reduction of the material type to be selected, reduced reliability, imperfection of light conversion function, an increase in product price.

【0007】このように、紫外光によって樹脂封止体は短時間で劣化して発光効率が低下するため、外囲容器によって半導体発光素子を密封して外部雰囲気から完全に遮断し、外囲容器内に窒素等の不活性の又は安定な封止気体を充填してハーメチックシール構造(hermetic-sea [0007] Thus, in order to decrease the resin sealing body luminous efficiency deteriorates in a short time by ultraviolet light, completely blocked from the outside atmosphere to seal the semiconductor light-emitting device by envelope, envelope hermetic seal structure filled with an inert or stable sealing gas such as nitrogen within (hermetic-sea
ling;気密封止構造)を形成した発光装置がある。 ling; there is a light emitting device to form a hermetic seal structure). しかし、樹脂封止体の特性劣化を生じないハーメチックシール構造は、高価な材料を必要とする上、その製造工程も比較的複雑なため、最終製品が高価と成る難点がある。 However, hermetic seal structure does not cause deterioration of the characteristics of the resin sealing body, on which requires an expensive material, therefore the manufacturing process is also relatively complex, the final product has a drawback which becomes expensive.
また、窒化ガリウム系化合物半導体の屈折率と大きく相違する屈折率を有する不活性気体を外囲容器内に充填するため、窒化ガリウム系化合物半導体と不活性気体との界面に反射面が形成される。 Further, in order to fill the inert gas having a refractive index which differs significantly from the index of refraction of the gallium nitride-based compound semiconductor on envelope, the reflecting surface is formed at the interface between the gallium-based compound semiconductor and an inert gas nitriding . 従って、半導体発光素子から放射される光は、窒化ガリウム系化合物半導体と不活性気体との界面で反復して反射する間に減衰して、発光効率が低下する欠点があった。 Therefore, light emitted from the semiconductor light emitting element, and attenuated while reflecting repeatedly at the interface between the gallium-based compound semiconductor and an inert gas nitriding, luminous efficiency is disadvantage to decrease.

【0008】また、蛍光物質(13)を含有する保護樹脂 [0008] The protective resin containing a fluorescent substance (13)
(7)で発光ダイオードチップ(2)を包囲し、更に全体を被覆体(18)で包囲する従来の発光ダイオード装置(1)では、次のような問題がある。 (7) light-emitting diodes surrounding the chip (2), in the further prior art light-emitting diode device which surrounds a coating material (18) across (1), it has the following problems.

【0009】第一に、保護樹脂(7)及び被覆体(18)の耐環境性が必ずしも十分でないとき、保護樹脂(7)に配合できる蛍光体が特定の種類に限定される。 [0009] First, when the environmental resistance of the protective resin (7) and the cover member (18) is not necessarily sufficient, a phosphor that can be blended in the protective resin (7) is limited to a particular type. 即ち、一般に樹脂は水分を透過し、高湿度の雰囲気中に放置されると、時間の経過と共に樹脂の内部に水分が浸透する。 That is, in general the resin passes through the water, when it is left in a high-humidity atmosphere, moisture in the resin over time to penetrate. この場合、侵入する水分によって分解又は変質して光波長変換機能が低下し又は消失する耐湿性の悪い蛍光体もある。 In this case, there is also a moisture resistance poor phosphor decomposed or altered by the optical wavelength converting function is reduced or eliminated by moisture intrusion. 例えば、水分によって加水分解する公知の代表的な硫化カルシウム系の蛍光物質(13)は従来の発光ダイオード装置(1)に使用できない。 For example, a fluorescent substance (13) of a known typical calcium sulfide-based hydrolyzed by water can not be used in the conventional light emitting diode device (1).

【0010】また、水分のみならずナトリウム又は塩素等の不純物イオンも樹脂を透過し、発光ダイオードチップに有害な影響を与える。 [0010] Also, the impurity ions of sodium or chlorine or the like not only water passes through the resin, adversely affecting the light emitting diode chip. 従って、清浄な環境で製造された発光ダイオード装置(1)でも、不純物イオンを含む雰囲気中に放置すると、不純物イオンが樹脂の内部に次第に浸透して発光ダイオードチップ(2)の電気的特性が劣化する難点がある。 Accordingly, the light emitting diode device (1) which is manufactured in a clean environment But if left in an atmosphere containing an impurity ion, the electrical characteristics of the impurity ions is gradually penetrate into the resin-emitting diode chips (2) the degradation there is a drawback to. 特に、重大な問題は、有害不純物イオンが遊離する化学的に不安定な有機蛍光体も少なくない点である。 Particularly, serious problems is that harmful impurity ions is not less chemically unstable organic phosphors free. 従って、従来の発光ダイオード装置(1) Accordingly, the conventional light emitting diode device (1)
では、この種の有機蛍光体を使用することができない。 So it is not possible to use the organic phosphors of this kind.

【0011】第二に、発光ダイオードチップ(2)から発生する短波長の光成分によって被覆樹脂蛍光体が劣化する問題がある。 [0011] Secondly, the coating resin phosphor by light component of a short wavelength generated from the light emitting diode chip (2) there is a problem of deterioration. 一般に、炭素、水素、酸素、窒素等の元素が網目状に結合した有機高分子化合物によって構成される保護樹脂(7)及び被覆体(18)は、紫外線が照射されると、有機高分子の繋ぎ目が切断され、各種の光学的特性及び化学的特性が劣化することが知られている。 In general, carbon, hydrogen, oxygen, protective resin (7) and the covering body composed of an organic polymer compound elements such as nitrogen is bound in a network form (18), when ultraviolet rays are irradiated, the organic polymer joint is cut, various optical and chemical properties has been known to degrade. 例えばGaN(窒化ガリウム)系の発光ダイオードチップは、 For example, a light-emitting diode chips of GaN (gallium nitride) system,
可視光成分以外にも波長380nm以下の紫外波長域にも発光成分を持つものがあるため、被覆樹脂は光強度の強い発光ダイオードチップの周囲から次第に黄変し、着色現象が発生する。 Since the ultraviolet wavelength region following wavelength 380nm other than visible light component are those having an emission component, coating resin gradually yellowing from the periphery of intense light-emitting diode chip of the light intensity, coloration phenomenon occurs. このため、発光ダイオードチップが発した光は着色部で吸収され減衰する。 Therefore, the light emitting diode chip is emitted is absorbed by the colored portion is attenuated. 更に、被覆樹脂の劣化に伴って耐湿性が低下すると共にイオン透過性が増大するため、発光ダイオードチップ(2)自体も劣化する結果、発光ダイオード装置(1)の発光強度は相乗的に低減する。 Furthermore, since the ion permeability along with moisture resistance is lowered increases with the degradation of the coating resin, the light emitting diode chip (2) itself deteriorates result, light emission intensity of the light emitting diode device (1) is synergistically reduced .

【0012】更に、被覆樹脂の劣化等の問題から、紫外線を発する発光ダイオードチップを使用できないため、 Furthermore, since the problem of deterioration of the coating resin, it can not be used a light emitting diode chip which emits ultraviolet light,
蛍光体の材料選択と発光ダイオード装置の発光特性が大きな制限を受けることが第三の問題である。 It is a third problem that light emission characteristics of the phosphor material selected and the light emitting diode device is subject to significant limitations. 蛍光ランプ又は水銀ランプ等に使用する紫外線で励起される紫外線用の蛍光体は、古くから開発・改良が行われた結果、現在では様々な発光波長分布を持つ安価で光変換効率の高い数多くの蛍光体が実用化されている。 Phosphor for UV excited by ultraviolet rays to be used for fluorescent lamps or mercury lamps or the like have been made development and improvement old results, a number of high light conversion efficiency at low cost with a variety of emission wavelength distribution in the current phosphor has been put to practical use. 紫外線を発光ダイオードチップと紫外線で励起される蛍光体を組み合わせると、一層明るく且つ変化に富む色調の発光ダイオード装置が得られると予想される。 The combination of phosphor excited with ultraviolet light emitting diode chip and the ultraviolet is expected that the color tone of the light emitting diode device can be obtained rich in brighter and changes. しかしながら、紫外線により樹脂が劣化する従来の発光ダイオード装置では、 However, the conventional light emitting diode device in which the resin is deteriorated by ultraviolet rays,
紫外線発光ダイオードチップを使用できず、光変換効率に優れた蛍光体を利用できない。 Not available ultraviolet light-emitting diode chip, unavailable excellent phosphor light conversion efficiency.

【0013】最後の問題は、耐熱性が低い被覆樹脂が黄変・着色するため、発光ダイオードチップから照射された光が被覆樹脂を通過する際に減衰する点にある。 [0013] The last problem is that heat resistance is low coating resin is yellow-colored, in that the light emitted from the light emitting diode chip is attenuated when passing through the coating resin. 例えば順方向電圧が高いGaN(窒化ガリウム)の青色発光ダイオードチップは、比較的低い順方向電流でも電力損失が大きく、作動時にチップ温度はかなり上昇する。 For example blue light emitting diode chip of the forward voltage is high GaN (gallium nitride), the power loss at a relatively low forward current is large, the chip temperature is considerably increased during operation. 一般に、樹脂は高温に加熱されると次第に劣化して黄変・着色を起こすことが知られている。 In general, resins are known to cause yellowing coloration deteriorates progressively when heated to a high temperature. 従ってGaNの発光ダイオードチップを従来の発光ダイオード装置に用いると、 Therefore the use of GaN light emitting diode chip to a conventional light emitting diode device,
高温の発光ダイオードチップと接する部分から樹脂が次第に黄変・着色するため、発光ダイオード装置の外観品質と発光強度は次第に低下する。 Since the resin from the portion in contact with the hot emitting diode chip gradually yellow coloring, appearance quality and emission intensity of the light emitting diode device is reduced gradually. このように、従来の発光ダイオード装置では、蛍光体を樹脂中に配合すると前記問題が生じ、このため選択する材料種類の減少、信頼性の低下、光変換機能の不完全性、製品価格の上昇を招来する原因となる。 Thus, in the conventional light-emitting diode device, the phosphor occurs the and blended into the resin problems, material type of reduction that selected for this, decrease in reliability, imperfection of light conversion function, increase product prices cause to lead to.

【0014】本発明は、発光量が低下せず且つ封止樹脂が劣化しない半導体発光装置を提供することを目的とする。 [0014] The present invention has an object to light emission amount to provide a semiconductor light-emitting device is not deteriorated and the sealing resin does not decrease. また、本発明は耐環境性及び耐紫外線性を有する半導体発光装置を提供することを目的とする。 Further, the present invention aims to provide a semiconductor light-emitting device having environmental resistance and UV resistance.

【0015】 [0015]

【課題を解決するための手段】本発明による半導体発光装置は、基体(3, 4, 11)と、基体(3, 4, 11)に固着された半導体発光素子(2)と、半導体発光素子(2)を被覆するコーティング材(10)とを備え、コーティング材(10)は、 The semiconductor light emitting device according to the present invention the means for solving problems], a substrate (3, 4, 11), a base semiconductor light emitting element fixed to (3, 4, 11) (2), the semiconductor light emitting element and a coating material covering (10) (2), the coating material (10) is
金属アルコキシド又はセラミック前駆体ポリマー等により形成されたポリメタロキサン又はセラミックである。 A polymetalloxane or ceramic which is formed by a metal alkoxide or ceramic precursor polymer or the like.
有機樹脂と異なり、紫外線等どの波長の短い光が照射されても、ポリメタロキサン又はセラミックより成るコーティング材(10)は劣化しない。 Unlike organic resin, be light of a short which ultraviolet rays wavelength is irradiated, the coating material (10) made of polymetalloxane or ceramic is not degraded.

【0016】本発明の実施の形態では、コーティング材 [0016] In the embodiment of the present invention, the coating material
(10)は高純度のガラス状であるため、硼素や酸化鉛等を含む低融点ガラスなどに比べて極めて不純物が少なく、 (10) Because of high purity glassy, ​​very few impurities than such a low-melting glass containing boron or lead oxide or the like,
半導体発光素子(2)の特性に悪影響を及ぼさない。 Does not adversely affect the characteristics of the semiconductor light emitting element (2). また、コーティング材(10)は耐熱性の高いガラス状であるため、黄変等による光透過性の低下を生じない。 Further, the coating material (10) is for a high glass-like heat resistance, does not cause reduction in light transmittance due to yellowing or the like.

【0017】基体(3, 4, 11)に半導体発光素子(2)を固着し、金属アルコキシドより得られたポリメタロキサン・ゾル又はセラミック前駆体ポリマーを塗布した後、乾燥及び熱処理を施してコーティング材(10)を形成する。 The base body (3, 4, 11) fixed to the semiconductor light emitting element (2), it was coated polymetalloxane sol or ceramic precursor polymer obtained from a metal alkoxide is subjected to a drying and heat treatment coating forming a timber (10).
コーティング材(10)は、金属アルコキシドのゾル・ゲル法又はセラミック前駆体ポリマーにより形成されるので、低温でガラス化して透明な非晶質金属酸化物を得ることができる。 The coating material (10) is so formed by the sol-gel method or a ceramic precursor polymer of a metal alkoxide, it is possible to obtain a vitrified transparent amorphous metal oxides at low temperatures.

【0018】ゾル・ゲル法では、有機金属化合物の一種である金属アルコキシドを出発物質とし、その溶液を加水分解、縮重合させゾルを形成させた後、空気中の水分等によって更に反応を進めてゲル化させ、固体の金属酸化物が得られる。 [0018] In the sol-gel method, a metal alkoxide which is a kind of organometallic compound as a starting material, the solution hydrolysis, after forming a sol by polycondensation proceed further reaction with moisture in air or the like gelled, solid metal oxide is obtained. 例えば、シリカガラス膜の形成過程では、珪素の金属アルコキシドであるテトラエトキシシラン(Si(OC 2 H 5 ) 4 )を用いる場合、テトラエトキシシランをアルコール等の溶媒に溶解し、酸等の触媒と少量の水を加えて十分に混合することにより下記の反応式に従い液状のポリシロキサン・ゾルが形成される。 For example, in the formation process of a silica glass film, in the case of using tetraethoxysilane is a metal alkoxide of silicon (Si (OC 2 H 5) 4), tetraethoxysilane dissolved in a solvent such as an alcohol, and a catalyst such as an acid liquid polysiloxane sols according to the reaction formula is formed by mixing thoroughly in a small amount of water. 加水分解反応: Si(OC 2 H 5 ) 4 +4H 2 O→Si(OH) 4 +4C 2 H 5 OH 脱水縮合反応: nSi(OH) 4 →[SiO 2 ] n +2nH 2 O The hydrolysis reaction: Si (OC 2 H 5) 4 + 4H 2 O → Si (OH) 4 + 4C 2 H 5 OH dehydration condensation reaction: nSi (OH) 4 → [ SiO 2] n + 2nH 2 O

【0019】ポリシロキサン・ゾルは、上記の反応によって生成されたSiO 2 (シリカ)が何重にも結合してポリマーを構成し、この微粒子がアルコール溶液中に分散する状態となる。 [0019] Polysiloxane sols is SiO 2 produced by the above reaction (silica) binds by multiple layers composed of polymer, the particles in a state dispersed in an alcohol solution. ポリシロキサン・ゾルを基体(3, 4, 11) Polysiloxane sol substrate (3, 4, 11)
に塗布して乾燥させると、溶媒や反応によって生じたエチルアルコール(C 2 H 5 OH)と水の蒸発に伴いゾルの体積が収縮し、その結果、隣り合うポリマー末端の残留OH基同士が脱水縮合反応を起こして結合し、塗膜はゲル(固化体)となる。 When applied to dried, the ethyl alcohol (C 2 H 5 OH) and the volume of the sol contracts due to evaporation of water caused by the solvent or the reaction, as a result, among the residual OH groups of adjacent polymer ends dehydration bonded undergo condensation reaction, the coating becomes gel (solidified). 更に、得られたゲル被膜を焼成して、ポリシロキサン粒子同士の結合を強化すると高強度のゲル被膜を得ることができる。 Moreover, by firing the resulting gel coating, to strengthen the bonds between the polysiloxane particles it is possible to obtain high strength of the gel coating.

【0020】コーティング材(10)は、半導体発光素子 The coating material (10) is a semiconductor light emitting element
(2)から照射された光の少なくとも一部を受光して波長変換を行う蛍光物質(13)を含む。 Including a fluorescent material for performing wavelength conversion by receiving at least a portion of the light emitted from (2) (13). 半導体発光素子(2)の発光をコーティング材(10)中の蛍光物質(13)によって所望の発光波長に変換し、半導体発光素子(2)を包囲するコーティング材(10)を通して外部に放出させることができる。 By coating the light emission of the semiconductor light emitting element (2) (10) of the fluorescent substance (13) into a desired emission wavelength, it is released to the outside through the coating material surrounding the semiconductor light emitting element (2) (10) can. コーティング材(10)の外部には、半導体発光素子 The external coating material (10), the semiconductor light emitting element
(2)から照射された光と蛍光物質(13)により波長変換された光とが混合されて放出される。 (2) the light whose wavelength is converted is emitted are mixed by irradiated light and a fluorescent substance (13) from. コーティング材(10) Coating material (10)
は、光散乱材が混入された樹脂により形成される被覆体 , The coating material light scattering material is formed by entrained resin
(18)により被覆される。 It is coated with (18). 半導体発光素子(2)から照射された光は、コーティング材(10)を透過して被覆体(18)の外部に放出される。 Light emitted from the semiconductor light emitting element (2) is released to the outside of the jacket passes through the coating material (10) (18). 被覆体(18)は凹部(3a)に嵌合し、コーティング材(10)は凹部(3a)の底面(3b)と被覆体(18)の間に形成される。 Covering body (18) is fitted in the recess (3a), the coating material (10) is formed between the recess and the cover member bottom surface of (3a) (3b) (18). 基体(11)を構成する絶縁性基板(11)の一方の主面に凹部(3a)が形成され、凹部(3a)の底面(3b) Base recess on one main surface of the insulating substrate which constitutes the (11) (11) (3a) is formed, the recess bottom surface of (3a) (3b)
に半導体発光素子(2)が固着され、半導体発光素子(2)の一対の電極(2f, 2g)が絶縁性基板(11)の一方の主面に形成された一対の外部端子(3, 4)に電気的に接続される。 The fixed semiconductor light emitting element (2) is a semiconductor light emitting element (2) of the pair of electrodes (2f, 2 g) an insulating substrate (11) one formed on the principal surface a pair of external terminals (3, 4 ) to be electrically connected.
基体(11)を構成するリードフレームは、一対の外部端子 Lead frame constituting the base body (11) has a pair of external terminals
(3, 4)を有し、外部端子(3, 4)の一方には凹部(3a)が形成され、凹部(3a)の底面(3b)に半導体発光素子(2)が固着され、半導体発光素子(2)の一対の電極(2f, 2g)が一対の外部端子(3,4)に電気的に接続される。 (3, 4) has a recess (3a) is formed on one of the external terminals (3, 4), the semiconductor light emitting element (2) to the bottom (3b) of the recess (3a) is fixed, the semiconductor light emitting a pair of electrodes (2f, 2 g) of the element (2) is electrically connected to the pair of external terminals (3,4).

【0021】 [0021]

【発明の実施の形態】窒化ガリウム系化合物から成る発光ダイオード装置に適用した本発明による半導体発光装置の実施の形態を図1〜図3について以下説明する。 About 1 to 3 an embodiment of a semiconductor light-emitting device according to the present invention applied to a light emitting diode device of gallium nitride compound PREFERRED EMBODIMENTS be described below. 図1〜図3に示す実施の形態では、図4に示す箇所と同一の部分には同一の符号を付し、説明を省略する。 In the embodiment shown in FIGS. 1 to 3, the same reference numerals are given to portions that are the same as the parts shown in FIG. 4, the description thereof is omitted.

【0022】図1に示すように、本実施の形態による発光ダイオード装置(20)は、一方の主面に凹部(3a)が形成された基体となる絶縁性基板(11)と、絶縁性基板(11)に相互に離間して形成された第一の外部端子(3)及び第二の外部端子(4)と、第一の外部端子(3)に接着されたカソード電極(2g)及び第二の外部端子(4)に接着されたアノード電極(2f)を有し且つ凹部(3a)内に配置された発光ダイオードチップ(2)と、凹部(3a)内に充填され発光ダイオードチップ(2)、アノード電極(2f)及びカソード電極 As shown in FIG. 1, the light emitting diode device according to this embodiment (20) includes a recess on one principal surface (3a) becomes the formed base insulative substrate (11), an insulating substrate a first external terminal formed apart from each other in (11) (3) and a second external terminal (4), a cathode electrode that is bonded to the first external terminal (3) (2 g) and the a second external terminal (4) to have adhered anode electrode (2f) and recesses (3a) arranged light-emitting diode chips in (2), is filled in the recess (3a) light emitting diode chip (2 ), an anode electrode (2f) and a cathode
(2g)を被覆するコーティング材(10)と、絶縁性基板(11) Coating material covering the (2 g) and (10), an insulating substrate (11)
の一方の主面に形成され且つコーティング材(10)の外側を被覆する台形状断面の被覆体(18)とを備えている。 It has one of the cladding of trapezoidal cross-section which covers the outside of the formed on the main surface and the coating material (10) and (18) of. 第一の外部端子(3)及び第二の外部端子(4)の一方の端部は、凹部(3a)内に配置される。 One end of the first external terminal (3) and a second external terminal (4) is arranged in the recess (3a). 第一の外部端子(3)及び第二の外部端子(4)の各他方の端部は、絶縁性基板(11) Each other end of the first external terminal (3) and a second external terminal (4) includes an insulating substrate (11)
の側面及び他方の主面に延びて配置される。 They are arranged to extend on the side surface and the other main surface of the. コーティング材(10)は凹部(3a)の上端部(3d)から突出しない。 The coating material (10) does not protrude from the upper end of the recess (3a) (3d). 凹部 Recess
(3a)の深さは、発光ダイオードチップ(2)の高さよりも大きく、凹部(3a)の底面(3b)に固着された発光ダイオードチップ(2)の上面は凹部(3a)の主面よりも内側に位置する。 The depth of the (3a), the light emitting diodes larger than the height of the chip (2), from the main surface of the concave top surface recess of the light-emitting diode chips is secured to the bottom surface of (3a) (3b) (2) (3a) also located on the inner side. このため、発光ダイオード装置(1)では、凹部(3 Therefore, the light emitting diode device (1), the recess (3
a)の内側に十分な量のコーティング材(10)を形成することができる。 It is possible to form a sufficient amount of the coating material (10) on the inside of a). コーティング材(10)は更に被覆体(18)により封止され、半導体発光素子(2)から照射される光は、 The coating material (10) is sealed further sealing by covering member (18), light emitted from the semiconductor light emitting element (2)
コーティング材(10)内を通過した後、被覆体(18)の外部に放出される。 After passing through the coating material (10) within, it is discharged to the outside of the cover (18).

【0023】発光ダイオードチップ(2)は、窒化ガリウム系化合物半導体から成り、約440〜470nmの青色光を発光する。 The light emitting diode chip (2) is made of a gallium nitride compound semiconductor emits blue light of approximately 440~470Nm. 窒化ガリウム系半導体は、周知のエピタキシャル成長方法等でサファイア等より成る光透過性の基板となる半導体基体(2a)上に形成されたIn (1-X) Ga X N Gallium nitride-based semiconductor is formed on a semiconductor substrate (2a) comprising a light-transmissive substrate made of sapphire or the like by a known epitaxial growth method such as In (1-X) Ga X N
(但し、0<X≦1)で表される。 (Where, 0 <X ≦ 1) it is represented by. 図2に示す実施の形態では、発光ダイオードチップ(2)は、例えば、周知のエピタキシャル成長方法によって光透過性を有するサファイアの半導体基体(2a)上にGaNから成る窒化ガリウム系半導体によってバッファ層(2b)が形成され、GaNから成る窒化ガリウム系半導体によってバッファ層(2b)の上にn形半導体領域(2c)が形成される。 In the embodiment shown in FIG. 2, the light emitting diode chip (2), for example, the buffer layer by GaN-based semiconductor made of GaN on a sapphire semiconductor substrate (2a) having a light transmitting property by a well-known epitaxial growth method (2b ) is formed, n-type semiconductor region (2c) is formed on the buffer layer (2b) by a gallium nitride based semiconductor made of GaN. エピタキシャル成長方法によってn形半導体領域(2c)上に、InGaNから成る窒化ガリウム系半導体によって活性層(2d)が形成される。 On the n-type semiconductor region (2c) by an epitaxial growth method, the active layer (2d) is formed by a gallium nitride-based semiconductor made of InGaN. 活性層(2d)上に形成される半導体基体(2e)は、GaN The semiconductor substrate to be formed on the active layer (2d) (2e) is, GaN
から成るp形半導体領域を備えた窒化ガリウム系半導体である。 A gallium nitride semiconductor having a p-type semiconductor region consisting of. バッファ層(2b)、n形半導体領域(2c)、活性層 Buffer layer (2b), n-type semiconductor region (2c), the active layer
(2d)及び半導体基体(2e)は半導体層を構成する。 (2d) and semiconductor body (2e) constitutes the semiconductor layer. 半導体基体(2e)上に形成されたアノード電極(外部電極)(2f) The anode electrode formed on a semiconductor substrate (2e) (outer electrode) (2f)
は半導体基体(2e)の上面に露出するp形半導体領域に電気的に接続される。 It is electrically connected to the p-type semiconductor region exposed to the upper surface of the semiconductor substrate (2e). p形半導体領域を備えた半導体基体 Semiconductor body having a p-type semiconductor region
(2e)と活性層(2d)の一部には、n形半導体領域(2c)が露出する切欠部(2h)が形成される。 Some of (2e) and the active layer (2d) has cutouts n-type semiconductor region (2c) is exposed (2h) is formed. n形半導体領域(2c)上に形成されたカソード電極(外部電極)(2g)は、n形半導体領域(2c)に電気的に接続される。 n-type semiconductor region (2c) cathode electrode formed on the (outer electrode) (2 g) is electrically connected to the n-type semiconductor region (2c).

【0024】半導体発光素子(2)では、光透過性を有する半導体基体(2a)に活性層(2d)で発生した光を導いて、 [0024] In the semiconductor light emitting element (2), it guides the light generated in the active layer to the semiconductor body (2a) (2d) having optical transparency,
半導体発光素子(2)の上面から光を取り出すことができる。 Light can be extracted from the upper surface of the semiconductor light emitting element (2). 半導体基体(2a)は光取出面を構成する一方の主面(2 Semiconductor body (2a) is one main surface constituting the light output surface (2
i)と、半導体層が形成される他方の主面(2j)とを有し、 And i), and a other main surface of the semiconductor layer is formed (2j),
半導体層は絶縁性基板(11)に対向して配置されて一対の外部電極(2g, 2f)に接続され、半導体基体(2a)の一方の主面(2i)は絶縁性基板(11)に対向する側とは反対側に配置される。 The semiconductor layer is disposed to face the insulating substrate (11) with a pair of external electrodes (2 g, 2f) is connected to, on one main surface of the semiconductor substrate (2a) (2i) is an insulating substrate (11) the opposite side is disposed on the opposite side. 半導体基体(2a)の光取出面には電極等が形成されないので、図2の半導体発光素子(2)では良好な光取出効率が得られる。 Since the light output surface of the semiconductor substrate (2a) not electrode or the like is formed, the excellent light extraction efficiency semiconductor light emitting device of FIG. 2 (2) is obtained.

【0025】半導体発光素子(2)から放射された光成分はコーティング材(10)に達し、その一部はコーティング材(10)内で異なる波長に波長変換され、波長変換されない半導体発光素子(2)からの光成分と混合して被覆体(1 The light components emitted from the semiconductor light emitting element (2) reaches the coating material (10), some of which are wavelength-converted to a different wavelength in the coating material (10) in a semiconductor light emitting element (2 not wavelength-converted covering body is mixed with the light components from) (1
8)を通して外部に放出される。 Is discharged to the outside through 8). 特定の発光波長を吸収する光吸収物質、半導体発光素子(2)の発光を散乱する光散乱物質又はコーティング材(10)のクラックを防止する結合材をコーティング材(10)内に配合してもよい。 Light absorbing material that absorbs a specific emission wavelength, be formulated semiconductor light emitting element (2) binder the coating material to prevent cracking of the light scattering material or coating material to scatter light emission (10) (10) good.

【0026】絶縁性基板(11)を備えた半導体発光装置を製造する際に、絶縁性基板(11)の一方の主面に凹部(3a) [0026] When manufacturing the semiconductor light-emitting device having an insulating substrate (11), the recess on one main surface of the insulating substrate (11) (3a)
を形成した後、絶縁性基板(11)の一方の主面に沿って互いに反対方向に延びる一対の外部端子(3, 4)を形成し、 After forming the, form a pair of external terminals along one main surface of the insulating substrate (11) extending in opposite directions (3, 4),
その後、凹部(3a)の底部(3b)にて一対の外部端子(3, 4) Thereafter, concave bottom of (3a) (3b) by a pair of external terminals (3, 4)
のそれぞれに半導体発光素子(2)のアノード電極(2f)及びカソード電極(2g)を電気的に接続して固着する。 To the fixed anode electrode (2f) and a cathode electrode (2 g) and electrically connected to the semiconductor light emitting element (2), respectively. 金属アルコキシド又はセラミック前駆体から成る塗布型の出発材料を凹部(3a)内に注入して、半導体発光素子(2)を被覆する。 The starting materials of the coating type consisting of a metal alkoxide or a ceramic precursor is injected into the recess (3a), covering the semiconductor light emitting element (2). 出発材料は、半導体発光素子(2)から照射される光を吸収して他の発光波長に変換する蛍光物質(13) The starting material is a fluorescent substance that converts to absorb the light emitted from the semiconductor light emitting element (2) to the other emission wavelength (13)
を含む。 including. その後、約150℃の温度で出発材料を焼成し固化して絶縁物封止体としてコーティング材(10)を形成する。 Thereafter, a coating material (10) as the insulator sealing body fired and solidified to the starting material at a temperature of from about 0.99 ° C.. コーティング材(10)の焼成温度は発光ダイオードチップ(2)の融点よりも十分に低い。 Baking temperature of the coating material (10) is sufficiently lower than the melting point of the light emitting diode chip (2). 蛍光物質(13)を含有するコーティング材(10)を更に透明な被覆体(18)により封止する。 Further sealed by a transparent covering member (18) coating material containing a fluorescent substance (13) to (10). コーティング材(10)は、半導体発光素子 The coating material (10) is a semiconductor light emitting element
(2)及び外部端子(3, 4)と強固に密着する。 (2) and the external terminals (3, 4) to be firmly adhered.

【0027】発光ダイオード装置(20)の外部端子(3, 4) The external terminals of the light emitting diode device (20) (3, 4)
間に電圧を印加して発光ダイオードチップ(2)に通電して発光ダイオードチップ(2)を発光させると、コーティング材(10)内の蛍光物質(13)によってその一部又は全部がその発光波長と異なる他の波長に変換された後、被覆体(18)から発光ダイオード装置(20)の外部に放出される。 When a voltage is applied by energizing the light emitting diode chip (2) to the light emitting diode to emit chip (2) in between, some or all of its emission wavelength by the fluorescent material (13) of the coating material (10) after being converted to the other different wavelengths, emitted from the coating material (18) to the outside of the light emitting diode device (20). 例えば、半導体発光素子には発光波長のピークが約440nmから約470nmのGaN系の青色の発光ダイオードチップ(2)を用い、蛍光物質(13)には付活剤としてCe For example, the use of a blue light emitting diode chip of GaN-based about 470nm to about the peak of the emission wavelength 440 nm (2) to the semiconductor light emitting element, Ce as an activator in the fluorescent substance (13)
(セリウム)を添加したYAG(イットリウム・アルミニウム・ガーネット、化学式Y 3 Al 5 O 12 、励起波長のピーク約450nm、発光波長のピーク約540nmの黄緑色光) YAG was added (cerium) (yttrium aluminum garnet, formula Y 3 Al 5 O 12, the peak of the excitation wavelength of about 450 nm, yellow-green light having a peak of about 540nm emission wavelength)
を用いる。 It is used. コーティング材(10)は、YAG蛍光物質(13)の粉末状微細結晶粒を含有する出発材料を凹部(3a)内に凹部(3a)の上端部(3d)から突出しない量で注入した後に焼成して得られる。 The coating material (10) is fired after implantation in an amount that does not protrude from the upper end (3d) of the recess (3a) of the starting material in the recess (3a) containing powdered fine grains of the YAG fluorescent substance (13) obtained by. 凹部(3a)の上端部(3d)より上方に突出しないようにコーティング材(10)の充填量を調整すれば、隣接して他の発光ダイオード装置(20)を設置しても偽灯を発生しない。 By adjusting the loading of the concave upper portion (3d) from projecting upward so as not to coating material (3a) (10), even if adjacent installing another light-emitting diode device (20) generates a false lighting do not do.

【0028】コーティング材(10)は、発光ダイオードチップ(2)から生ずる光が比較的長時間照射され温度上昇が生じても、発光ダイオードチップ(2)からの発光を減衰させる黄変・着色が発生しない。 The coating material (10) may be relatively long illuminated temperature increase light generated from the light emitting diode chip (2) is occurs, yellow-colored attenuate light emitted from the light emitting diode chip (2) It does not occur. 従来の発光ダイオードの樹脂封止体(8)と同様に、被覆体(18)は耐紫外線特性にあまり優れていないエポキシ系樹脂から成るが、発光ダイオードチップ(2)と被覆体(18)との間に介在する耐紫外線特性に優れたコーティング材(10)によって、短波長の光による被覆体(18)の黄変・着色も良好に防止される。 Similar to the resin sealing body of a conventional light emitting diode (8), the covering body (18) is made of an epoxy resin that is not very good ultraviolet resistance, light-emitting diode chip (2) and the covering body (18) the coating material having excellent ultraviolet resistance interposed between the (10), yellowing coloring of the cover by short-wavelength light (18) is also effectively prevented. 発光ダイオード装置(20)から外部に放出される光の指向角を広げるため、必要に応じて粉末シリカ等の散乱剤を被覆体(18)に混合させてもよい。 To broaden the directivity angle of light emitted from the light emitting diode device (20) to the outside, scattering agent in powder such as silica may be mixed into the coating material (18) as required.

【0029】コーティング材(10)を構成する塗布型出発材料は、通常は液状であるが、空気中又は酸素雰囲気中で加熱すると成分の分解又は酸素の吸収により金属酸化物のメタロキサン(metaloxane)結合を主体とする透明なコーティング材を生成する。 The coating type starting material constituting the coating material (10) is normally a liquid, metaloxane metal oxides by absorption of decomposition or oxygen components when heated in air or an oxygen atmosphere (Metaloxane) bond the to produce a clear coating material which is mainly. これらの出発材料に蛍光物質(13)の粉末を混合して半導体発光素子(2)の周囲に塗布すれば、光変換作用を発揮する蛍光物質(13)を含有するコーティング材(10)を形成することができる。 Formed when applying a mixture of powder of the fluorescent material to these starting materials (13) around the semiconductor light emitting element (2), a coating material containing a fluorescent substance (13) to exert a light conversion action (10) can do. 本実施の形態では、YAG蛍光物質(13)の波長変換効率の最大値が比較的高く、発光ダイオードチップ(2)の発光波長とYAG蛍光物質(13)の励起波長とが約450nmのピークでほぼ一致するため、実効波長変換効率の高い明るい発光ダイオード装置(20)が得られる。 In this embodiment, the maximum value of the wavelength conversion efficiency of the YAG fluorescent substance (13) is relatively high, with emission wavelength and excitation wavelength and a peak of about 450nm of YAG fluorescent substance (13) of the light-emitting diode chips (2) to substantially coincide, high bright light emitting diode device having an effective wavelength conversion efficiency (20) is obtained. また、YAG蛍光物質 In addition, YAG fluorescent substance
(13)の結晶粒がコーティング材(10)中に分散しているので、発光ダイオード装置(20)から外部に放出される光は、蛍光物質(13)で波長変換された光成分以外に蛍光物質(13)の結晶粒を透過せず波長変換されない本来の発光成分即ち発光ダイオードチップ(2)から照射された光成分も含まれる。 Since (13) of crystal grains are dispersed in the coating material (10), light emitted outside from the light emitting diode device (20) is fluorescent in addition the light component whose wavelength is converted by the fluorescent substance (13) original light emission component or light components emitted from the light emitting diode chip (2) are not wavelength-converted without transmitting the grain material (13) is also included.

【0030】従って、発光波長ピーク約440nm〜約4 [0030] Thus, the emission wavelength peak about 440nm~ about 4
70nmの青色光である発光ダイオードチップ(2)の発光成分と、半値幅約130nmの幅広い波長分布を持つ発光波長ピーク約540nmの黄緑色光であるYAG蛍光物質(1 Emitting component of the LED chip (2) is a blue light 70 nm, YAG fluorescent substance is a yellow-green light emission wavelength peak of about 540nm having a wide wavelength distribution half width of about 130 nm (1
3)の発光成分とが混合された白色光が発光ダイオード装置(20)から外部に放出される。 The white light emitting components are mixed in 3) is released to the outside from the light emitting diode device (20). この場合、出発材料に混合するYAG蛍光物質(13)の粉末量を調整し、コーティング材(10)内の分布濃度を変更することにより発光ダイオード装置(20)の発光色の色調を調整することができる。 It this case, by adjusting the amount of powder of YAG fluorescent substance (13) for mixing the starting materials, to adjust the color tone of the emission color of the light emitting diode device (20) by changing the distribution density of the coating material (10) can.
また、YAG蛍光物質(13)の製造時に適当な添加物を適量添加して結晶構造を一部変更して発光波長分布をシフトすると、発光ダイオード装置(20)の発光色を更に異なる色調に調整することができる。 Further, when shifting the emission wavelength distribution partially modified the appropriate amount to the crystal structure of suitable additives in the production of YAG fluorescent substance (13), adjusted to further different shades the light emission color of the light emitting diode device (20) can do. 例えばGa(ガリウム)又はLu(ルテチウム)を添加して短波長側にシフトし、Gd For example the addition of Ga (gallium) or Lu (lutetium) shifted to the short wavelength side, Gd
(ガドリニウム)を添加して長波長側にシフトすることができる。 It can be shifted to the long wavelength side by adding (gadolinium).

【0031】本発明では更に光学的特性や作業性を向上するため、種々の改善も可能である。 [0031] To improve further optical characteristics and workability in the present invention, it is possible various improvements. 例えば、コーティング材(10)内に散乱剤を混入して発光ダイオードチップ For example, the light emitting diode chip by mixing a scattering agent in the coating material (10)
(2)の光を散乱させ、蛍光物質(13)に当たる発光ダイオードチップ(2)の光量が増加し、波長変換効率を向上すると共に、発光ダイオード装置(20)から外部に放出される光の指向角を広げることができる。 Scatter light (2), and the amount of light is increased LED chip striking the fluorescent substance (13) (2), along with improving the wavelength conversion efficiency, directivity of light emitted outside from the light emitting diode device (20) it is possible to widen the corner. コーティング材(1 Coating material (1
0)のクラックを防止する結合材を配合する。 Cracks 0) formulating the binding member to prevent. 塗布型ガラス材料の粘度を高くする。 To increase the viscosity of the coating type glass material. 塗布型ガラス材料の使用量を減らす。 Reduce the amount of coating type glass material. このような場合は、塗布型ガラス材料に蛍光物質(13)の粉末と共にシリカ、酸化チタン等のセラミック粉末(10b)を目的に応じて適量混合すればよい。 In such cases, the silica together with the powder of the fluorescent material (13) to the coating type glass material, may be mixed with an appropriate amount depending on the purpose of ceramic powder (10b) such as titanium oxide.

【0032】形成されたコーティング材(10)は、光変換作用のみならず、下記の優れた特性を備えている。 The formed coating material (10) is not light conversion effect only, has excellent characteristics described below. [1] 半導体発光素子(2)の上部から効率よく光を取り出すことができ、且つこの光がリード細線に妨げられず、半導体発光素子(2)から十分な量の光が外部に放出される。 [1] can be taken out efficiently light from the upper portion of the semiconductor light emitting element (2), and the light is not hindered to lead fine wire, a sufficient amount of light from the semiconductor light emitting element (2) is released to the outside . [2] コーティング材(10)により被覆体(18)の黄変・着色を防止できる。 [2] coated body with a coating material (10) yellowing-colored (18) can be prevented. [3] 比較的安価な材料を使用してポッティング法やトランスファモールド法により樹脂封止が可能となり、製造コストの低減を実現できる。 [3] relatively using an inexpensive material enables a resin sealed by a potting method or a transfer molding, it can be realized to reduce the manufacturing cost. [4] ハーメチックシール構造の発光装置に比較して、 [4] Compared to the light emitting device of a hermetic seal structure,
安価な短波長の半導体発光装置を実現できる。 It can realize a semiconductor light-emitting device of inexpensive short wavelength. [5] 十分実用に適する短波長の半導体発光装置を実現できる。 [5] it can realize a semiconductor light-emitting device of a short wavelength suitable for sufficiently practical. [6] コーティング材(10)による光減衰は比較的小さい。 [6] light attenuation by the coating material (10) is relatively small. [7] 発光ダイオードチップ(2)とコーティング材(10) [7] emitting diode chip (2) and coating material (10)
との屈折率の差は比較的小さいのでハーメチックシール構造を採用した場合に比べて発光ダイオードチップ(2) Because the difference in refractive index is relatively small and in comparison with the case of employing the hermetic seal structure light emitting diode chips (2)
の界面での反射を減少できる。 It can reduce reflection at the interface. [8] 発光ダイオードチップ(2)から放射される光の発光効率を向上できる。 [8] can improve the luminous efficiency of the light emitted from the light emitting diode chip (2). [9] 耐湿性に優れ、内部に水分を浸透させず、半導体発光素子(2)及び蛍光物質(13)を劣化させない。 [9] excellent moisture resistance, internal without penetration of moisture, a semiconductor light emitting element (2) and does not degrade the fluorescent substance (13). [10] 有害イオンの浸透を防ぐイオンバリア効果が高いため、半導体発光装置(20)の外部や蛍光物質(13)からの有害イオンで半導体発光素子(2)を劣化させない。 [10] Since the high ion barrier effect of preventing the penetration of harmful ion, not degrade the semiconductor light emitting element (2) harmful ions from the outside and the fluorescent substance of the semiconductor light-emitting device (20) (13). [11] コーティング材(10)と被覆体(18)によって発光ダイオードチップ(2)を二重に被覆するので、発光ダイオード装置(1)の耐環境性が向上する。 [11] Since the coating material (10) and the covering body a light emitting diode chip by (18) (2) covering the double environmental resistance of the light emitting diode device (1) is improved. [12] 紫外線耐性に優れ、高温環境下又は紫外線発光下でも黄変・着色を起こさず、半導体発光素子(2)の発光を減衰させない。 [12] good UV resistance, without causing yellowing coloring even under high temperature environment or ultraviolet light, does not attenuate the light emission of the semiconductor light emitting element (2).

【0033】このように、コーティング材(10)を使用することにより従来の半導体発光装置の種々の弱点を克服でき、安価で信頼性の高い、蛍光物質(13)による波長変換機能を有する半導体発光装置(20)を得ることができる。 [0033] Thus, it is possible to overcome the various weaknesses of the conventional semiconductor light emitting device by using a coating material (10), high inexpensive and reliable, the semiconductor light-emitting having a wavelength converting function by the fluorescent substance (13) it can be obtained device (20). 特に、半導体発光素子(2)の上面から光を取り出すように構成された場合には、半導体発光素子(2)からの光が強くコーティング材に照射されるので、本発明の効果が顕著に得られる。 In particular, if it is constituted from the upper surface of the semiconductor light emitting element (2) so as to extract light, since light from the semiconductor light emitting element (2) is irradiated with strong coating material, the effect is remarkably obtained in the present invention It is.

【0034】また、金属アルコキシドから成る出発材料又はセラミック前駆体から成る出発材料は、凹部(3a)内に注入して、発光ダイオードチップ(2)の融点よりも低い150℃前後の温度で焼成可能であり、低温領域での光透過性コーティング材の形成が可能である。 Further, the starting material consisting of the starting material or ceramic precursor consisting of metal alkoxide, is injected into the recess (3a), capable baked at 0.99 ° C. of about a temperature below the melting point of the light emitting diode chip (2) and is a possible formation of a light-transmitting coating material in a low temperature range. 従って、 Therefore,
コーティング材(10)は、液状の出発材料を発光ダイオードチップ(2)の固着された凹部(3a)に滴下等により供給した後、焼成等の熱処理を施すことによりコーティング材(10)を容易に形成することができる。 The coating material (10) is, after supplying dropwise etc. anchored recess liquid emitting diode chip starting materials (2) (3a), the coating material (10) easily by heat treatment such as baking it can be formed. コーティング材 Coating material
(10)の焼成温度は発光ダイオードチップ(2)の融点よりも十分に低い。 (10) Firing temperature is sufficiently lower than the melting point of the light emitting diode chip (2). コーティング材(10)中の金属原子が金属又はセラミックの表面酸化物層の酸素原子と強固に結合するので、コーティング材(10)は発光ダイオードチップ Since the metal atoms in the coating material (10) is firmly bonded with an oxygen atom of a metal or ceramic surface oxide layer, the coating material (10) is a light emitting diode chip
(2)、第一の外部端子(3)及び第二の外部端子(4)との密着性がよい。 (2) good adhesion between the first external terminal (3) and a second external terminal (4).

【0035】被覆体(18)は、エポキシ系樹脂などから成る光透過性を有する樹脂封止体であり、周知のポッティング法やトランスファモールド方法等によって容易に形成することができる。 The coating member (18) is a resin sealed body having optical transparency made of an epoxy resin, it can be easily formed by a known potting method or transfer mold method or the like. 被覆体(18)は発光ダイオードチップ(2)から発生する短波長の光によって黄変・着色の生じる虞のあるエポキシ系樹脂等から成るが、発光ダイオードチップ(2)との界面には短波長の光によって黄変・ Covering body (18) is made of epoxy resin or the like with a possibility of occurrence of yellowing coloration by light of a short wavelength generated from the light emitting diode chip (2), short wavelength in the interface between the light-emitting diode chip (2) yellowing, by the light
着色が生じ難いコーティング材(10)が介在するため、被覆体(18)の黄変・着色は実質的に生じない。 Since coloring hardly occurs coating material (10) is interposed, yellow-colored coating material (18) is substantially occur. 従って、コーティング材(10)を介して発せられた光を被覆体(18)を通じてさほど減衰させずに被覆体(18)の外部に導出させることができる。 Therefore, it is possible to derive the light emitted through the coating material (10) to the outside of the cover without much attenuation through the cover member (18) (18).

【0036】発光ダイオードチップ(2)と蛍光物質(13) The light emitting diode chip (2) and fluorescent substance (13)
の前記組合わせは例示に過ぎず、発光ダイオードチップ The combination is only illustrative of the light-emitting diode chips
(2)の発光波長に適合する励起波長分布を持ち且つ波長変換効率が高ければ、いかなる蛍光物質(13)でも使用できる。 If the higher and the wavelength conversion efficiency have compatible excitation wavelength distribution to the emission wavelength of (2), can be used in any fluorescent substance (13). 例えばハロ燐酸カルシウム系、燐酸カルシウム系、珪酸塩系、アルミン酸塩系、タングステン酸塩系等の蛍光物質(13)から所望の特性を持つ蛍光物質(13)を選択することができる。 Such as halo calcium phosphate-based, calcium phosphate-based, silicate, aluminate-based fluorescent substance (13) having desired characteristics from the fluorescent substance (13) of tungstate-based or the like can be selected.

【0037】本発明の前記実施の形態は変更が可能である。 [0037] The embodiment of the present invention can be changed. コーティング材中に蛍光物質を含有しない近紫外線等を発光する半導体発光装置とすることもできる。 It may be a semiconductor light emitting device that emits near ultraviolet light or the like which does not contain a fluorescent substance in the coating material. また、図3に示すように、基体としてリードフレームを使用する構造とすることもできる。 Further, as shown in FIG. 3, it may be a structure using a lead frame as a substrate.

【0038】 [0038]

【発明の効果】前記のように、本発明では、耐紫外線特性・耐熱特性に優れるコーティング材により半導体発光素子を被覆するので、有害物質の浸透を防ぎ、紫外線耐性に優れ且つ安価で信頼性の高い半導体発光装置が得られる。 As above, according to the present invention, the present invention, since covering the semiconductor light-emitting device by a coating material having excellent ultraviolet resistance, heat resistance, prevents the penetration of harmful substances, the reliability high and inexpensive UV-resistant high semiconductor light-emitting device is obtained. また、半導体発光素子の底部に形成された一対の電極は、基体に形成された一対の外部端子にそれぞれ電気的に接続されるので、半導体発光素子の上部から光を効率よく取り出すことができ、この光をリード細線に妨げられたり、コーティング材によって減衰されたりすることなく、半導体発光素子から十分な量の光が外部に放出される。 Further, a pair of electrodes formed on the bottom of the semiconductor light emitting element, so are electrically connected to the pair of external terminals formed on the substrate, it is possible to take out good light efficiency from the upper portion of the semiconductor light emitting element, or interfere with the light to read fine line, without or attenuated by the coating material, a sufficient amount of light is emitted to the outside from the semiconductor light emitting element. 従って、湿度、温度又は紫外線等によって被覆体及びコーティング材並びに半導体発光素子に対する劣化が抑制され、半導体発光装置の耐環境性が向上する。 Therefore, humidity, deterioration with jacket and coating material as well as semiconductor light-emitting element is suppressed by the temperature or ultraviolet rays, environmental resistance of the semiconductor light-emitting device is improved. また、蛍光物質による発光波長変換機能を有しつつも信頼性が高く安価な半導体発光装置を得ることができる。 Further, it is also possible reliability while having an emission wavelength converting function by the fluorescent substance to obtain a high inexpensive semiconductor light-emitting device.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】 チップ型発光ダイオード装置に適用した本発明による半導体発光装置の断面図 Figure 1 is a cross-sectional view of a semiconductor light-emitting device according to the present invention applied to a chip type light emitting diode device

【図2】 半導体発光素子の断面図 2 is a cross-sectional view of a semiconductor light emitting element

【図3】 リードフレームを基体として使用する本発明による実施の形態を示す断面図 FIG. 3 is a cross-sectional showing an embodiment according to the invention using a lead frame as a base view

【図4】 従来の発光ダイオード装置の断面図 4 is a cross-sectional view of a conventional light emitting diode device

【符号の説明】 DESCRIPTION OF SYMBOLS

(2)・・半導体発光素子(発光ダイオードチップ)、 (2) ... semiconductor light-emitting element (LED chip),
(2a)・・絶縁性基板、(2b)・・バッファ層、 (2c)・・ (2a) · · insulating substrate, (2b) ·· buffer layer, (2c) · ·
n形半導体領域、 (2d)・・活性層、 (2e)・・半導体基体、 (2f, 2g)・・電極、 (3)・・第一の外部端子、 n-type semiconductor region, (2d) ... active layer, (2e) ... semiconductor substrate, (2f, 2 g) ... electrode, (3) ... first external terminal,
(3a)・・凹部、 (3b)・・底部、 (3c)・・側壁、 (3a) · · recess, (3b) · · bottom, (3c) · · sidewall,
(3d)・・上端部、 (4)・・第二の外部端子、 (8)・・ (3d) .. upper end (4) ... second external terminal, (8) ...
被覆体(封止樹脂)、 (10)・・コーティング材、 (11) Covering body (sealing resin), (10) ... coating material, (11)
・・絶縁性基板、 (20)・・発光ダイオード装置(発光半導体装置)、 ... insulating substrate (20) ... light emitting diode device (light-emitting semiconductor device),

フロントページの続き (72)発明者 佐野 武志 埼玉県新座市北野3丁目6番3号 サンケ ン電気株式会社内 Fターム(参考) 5F041 AA09 CA40 DA04 DA16 DA20 DA25 DA43 DA46 DA55 Front page of the continuation (72) inventor Takeshi Sano Saitama Prefecture Niiza Kitano 3-chome No. 6 No. 3 gas production emissions Electric Co., Ltd. in the F-term (reference) 5F041 AA09 CA40 DA04 DA16 DA20 DA25 DA43 DA46 DA55

Claims (26)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 基体と、該基体に固着された半導体発光素子と、該半導体発光素子を被覆するコーティング材とを備えた半導体発光装置において、 前記コーティング材は、光透過性を有するポリメタロキサン又はセラミックであり、 前記半導体発光素子の底部に形成された一対の電極は、 And 1. A substrate, a semiconductor light emitting element fixed to said substrate, in the semiconductor light emitting device that includes a coating material covering the semiconductor light-emitting device, the coating material is polymetalloxane having optical transparency or a ceramic, a pair of electrodes formed on the bottom of the semiconductor light emitting element,
    前記基体に形成された一対の外部端子にそれぞれ電気的に接続されることを特徴とする半導体発光装置。 The semiconductor light emitting device according to claim each be electrically connected to a pair of external terminals formed on the substrate.
  2. 【請求項2】 前記コーティング材は、メタロキサン(metaloxane)結合を主体とするガラスである請求項1 Wherein said coating material, according to claim 1, which is a glass composed mainly of metaloxane (metaloxane) bond
    に記載の半導体発光装置。 The semiconductor light emitting device according to.
  3. 【請求項3】 前記コーティング材は、ゲル状のシロキサン(siloxane)結合を主体とする請求項1又は2のいずれかに記載の半導体発光装置。 Wherein said coating material is a semiconductor light emitting device according to claim 1 or 2, mainly gelled siloxane (siloxane) bonds.
  4. 【請求項4】 前記コーティング材は、金属アルコキシドから形成されたポリメタロキサンから成る請求項1〜 Wherein said coating material, according to claim 1 consisting of polymetalloxane formed of metal alkoxide
    3のいずれか1項に記載の半導体発光装置。 The semiconductor light emitting device according to any one of 3.
  5. 【請求項5】 前記コーティング材は、金属アルコキシドからゾル−ゲル法を施して形成されたポリメタロキサンから成る請求項1〜3のいずれか1項に記載の半導体発光装置。 Wherein said coating material is a metal alkoxide sol - semiconductor light emitting device according to claim 1 consisting of polymetalloxane formed by performing a gel method.
  6. 【請求項6】 前記コーティング材は、金属アルコキシド又は金属アルコキシドを含有する溶液をゾル−ゲル法により加水分解重合して形成されたポリメタロキサンから成る請求項1〜5のいずれか1項に記載の半導体発光装置。 Wherein said coating material is a solution containing a metal alkoxide or a metal alkoxide sol - according to claim 1 consisting of polymetalloxane formed by hydrolytic polymerization gel method the semiconductor light-emitting device.
  7. 【請求項7】 前記金属アルコキシドはSi(OCH 3 ) 4 、Si Wherein said metal alkoxide is Si (OCH 3) 4, Si
    (OC 2 H 5 ) 4 、Si(i-OC 3 H 7 ) 4 、Si(t-OC 4 H 9 ) 4等のシリコンテトラアルコキシド、ZrSi(OCH 3 ) 4 、Zr(OC 2 H 5 ) 4 、Zr(OC 3 H (OC 2 H 5) 4, Si (i-OC 3 H 7) 4, Si (t-OC 4 H 9) 4 such as a silicon tetraalkoxide, ZrSi (OCH 3) 4, Zr (OC 2 H 5) 4 , Zr (OC 3 H
    7 ) 4 、Si(OC 4 H 9 ) 4 、Al(OCH 3 ) 3 、Al(OC 2 H 5 ) 3 、Al(iso-OC 3 7) 4, Si (OC 4 H 9) 4, Al (OCH 3) 3, Al (OC 2 H 5) 3, Al (iso-OC 3
    H 7 ) 3 、Al(OC 4 H 9 ) 3 、Ti(OCH 3 ) 4 、Ti(OC 2 H 5 ) 4 、Ti(iso-OC H 7) 3, Al (OC 4 H 9) 3, Ti (OCH 3) 4, Ti (OC 2 H 5) 4, Ti (iso-OC
    3 H 7 ) 4 、Ti(OC 4 H 9 ) 4等の単一金属アルコキシド又はLa[Al 3 H 7) 4, Ti ( OC 4 H 9) 4 and the like single metal alkoxide or La of [Al
    (iso-OC 3 H 7 ) 4 ] 3 、Mg[Al(iso-OC 3 H 7 ) 4 ] 2 、Mg[Al(sec-OC 4 (iso-OC 3 H 7) 4] 3, Mg [Al (iso-OC 3 H 7) 4] 2, Mg [Al (sec-OC 4
    H 9 ) 4 ] 2 、Ni[Al(iso-OC 3 H 7 ) 4 ] 2 、Ba[Zr 2 (C 2 H 5 ) 9 ] 2 、(OC 3 H 9) 4] 2, Ni [Al (iso-OC 3 H 7) 4] 2, Ba [Zr 2 (C 2 H 5) 9] 2, (OC 3
    H 7 ) 2 Zr[Al(OC 3 H 7 ) 4 ] 2等の二金属アルコキシド又は多金属アルコキシドから選択される請求項5又は6に記載の半導体発光装置。 H 7) 2 Zr [Al ( OC 3 H 7) 4] The semiconductor light emitting device according to claim 5 or 6 is selected from the bimetallic alkoxide or multi-metal alkoxide 2.
  8. 【請求項8】 前記コーティング材は、セラミック前駆体から形成されたセラミックから成る請求項1〜3のいずれか1項に記載の半導体発光装置。 Wherein said coating material is a semiconductor light emitting device according to claim 1 comprising a ceramic formed from a ceramic precursor.
  9. 【請求項9】 前記セラミック前駆体は、ポリシラザンである請求項8に記載の半導体発光装置。 Wherein said ceramic precursor is a semiconductor light emitting device according to claim 8 which is a polysilazane.
  10. 【請求項10】 前記コーティング材は、セラミック前駆体に熱処理を施して形成されたセラミックから成る請求項1〜3、8又は9のいずれか1項に記載の半導体発光装置。 Wherein said coating material is a semiconductor light emitting device according to any one of claims 1~3,8 or 9 of ceramic which is formed by heat treatment in the ceramic precursor.
  11. 【請求項11】 前記コーティング材は、前記半導体発光素子の少なくとも上面を被覆する請求項1〜3のいずれか1項に記載の半導体発光装置。 Wherein said coating material is a semiconductor light emitting device according to any one of claims 1 to 3 covering at least the upper surface of the semiconductor light emitting element.
  12. 【請求項12】 前記コーティング材は、前記半導体発光素子の下面を含む全面を被覆するように形成された請求項11に記載の半導体発光装置。 12. The method of claim 11, wherein the coating material is a semiconductor light emitting device according to claim 11, which is formed so as to cover the entire surface including the lower surface of the semiconductor light emitting element.
  13. 【請求項13】 前記基体は、前記コーティング材が充填された凹部を有する請求項1に記載の半導体発光装置。 Wherein said substrate is a semiconductor light emitting device according to claim 1 having a recess in which the coating material is filled.
  14. 【請求項14】 前記基体は絶縁性基板である請求項1 14. The method of claim 13, wherein the substrate is an insulating substrate according to claim 1
    に記載の半導体発光装置。 The semiconductor light emitting device according to.
  15. 【請求項15】 前記基体はリードフレームである請求項1に記載の半導体発光装置。 15. The base semiconductor light emitting device according to claim 1, wherein the lead frame.
  16. 【請求項16】 前記半導体発光素子は、365nm〜5 16. The semiconductor light emitting device, 365Nm~5
    50nmの光波長で発光する請求項1〜15のいずれか1 Any of claims 1 to 15, which emits light at a light wavelength of 50 nm 1
    項に記載の半導体発光装置。 The semiconductor light emitting device according to claim.
  17. 【請求項17】 前記半導体発光素子は、光透過性を有する半導体基体と、窒化ガリウム系化合物半導体から成る半導体層とから構成され、前記半導体基体は光取出面を構成する一方の主面と、前記半導体層が形成される他方の主面とを有し、前記半導体層は前記絶縁性基板に対向して配置されて前記一対の外部電極に接続され、前記半導体基体の一方の主面は前記絶縁性基板に対向する側とは反対側に配置された請求項16に記載の半導体発光装置。 17. The semiconductor light emitting device includes a semiconductor substrate having optical transparency, is composed of a semiconductor layer made of gallium nitride compound semiconductor, the semiconductor substrate and one main surface constituting the light output surface, and a other main surface of the semiconductor layer is formed, the semiconductor layer is connected to said pair of external electrodes are disposed so as to face the insulating substrate, one main surface of said semiconductor substrate wherein the semiconductor light emitting device according to claim 16 disposed on the side opposite to the side facing the insulating substrate.
  18. 【請求項18】 前記コーティング材は、前記半導体発光素子から照射された光の少なくとも一部を受光して波長変換を行う蛍光物質を含む請求項1〜17のいずれか1項に記載の半導体発光装置。 18. The method of claim 17, wherein the coating material is a semiconductor light emitting according to any one of claims 1 to 17 containing a fluorescent substance that performs wavelength conversion by receiving at least a portion of the light emitted from the semiconductor light emitting element apparatus.
  19. 【請求項19】 前記蛍光物質は、前記半導体発光素子から照射された光の少なくとも一部を吸収し、これよりも長い波長の光を放出する請求項18に記載の半導体発光装置。 19. The fluorescent material, the semiconductor to absorb at least a portion of the light emitted from the light emitting element, a semiconductor light emitting device according to claim 18 which emits light of a wavelength longer than this.
  20. 【請求項20】 前記コーティング材の外部には、前記半導体発光素子から照射された光と前記蛍光物質により波長変換された光とが混合されて放出される請求項18 20. The outside of the coating material, claims and wherein the semiconductor light whose wavelength is converted by the fluorescent material and the irradiation light from the light emitting element is emitted is mixed 18
    又は19に記載の半導体発光装置。 Or a semiconductor light emitting device according to 19.
  21. 【請求項21】 前記コーティング材は、被覆体により被覆された請求項1〜20のいずれか1項に記載の半導体発光装置。 21. The coating material is a semiconductor light emitting device according to any one of claims 1 to 20 which is coated with a coating material.
  22. 【請求項22】 前記被覆体は、光散乱材が混入された樹脂により形成された請求項21に記載の半導体発光装置。 22. The covering body is a semiconductor light emitting device according to claim 21 where the light-scattering material is formed by entrained resin.
  23. 【請求項23】 前記半導体発光素子から照射された光は、前記コーティング材を透過して前記被覆体の外部に放出される請求項22に記載の半導体発光装置。 23. Light emitted from the semiconductor light emitting element, a semiconductor light emitting device according to claim 22 which passes through the coating material is discharged to the outside of the jacket.
  24. 【請求項24】 前記被覆体は前記凹部に嵌合し、前記コーティング材は前記凹部の底面と前記被覆体の間に形成された請求項21〜23のいずれか1項に記載の半導体発光装置。 24. The coated body fitted in the recess, the coating material is a semiconductor light emitting device according to any one of claims 21 to 23 which is formed between the cover member and the bottom surface of the recess .
  25. 【請求項25】 前記基体を構成する絶縁性基板の一方の主面に凹部が形成され、該凹部の底面に前記半導体発光素子が固着され、前記半導体発光素子の一対の電極が前記絶縁性基板の一方の主面に形成された一対の外部端子に電気的に接続された請求項1に記載の半導体発光装置。 25. recess is formed on one main surface of the insulating substrate constituting the substrate, the semiconductor light emitting element is fixed to the bottom surface of the recess, a pair of electrodes is the insulating substrate of the semiconductor light emitting element the semiconductor light emitting device according to claim 1 which is electrically connected to the external terminal pair formed on one main surface of the.
  26. 【請求項26】 前記基体を構成するリードフレームは、一対の外部端子を有し、該外部端子の一方には凹部が形成され、該凹部の底面に前記半導体発光素子が固着され、前記半導体発光素子の一対の電極が前記一対の外部端子に電気的に接続された請求項1に記載の半導体発光装置。 26. The lead frame constituting the base has a pair of external terminals, the recess is formed on one of the external terminal, the semiconductor light emitting element is fixed to the bottom surface of the recess, the semiconductor light emitting the semiconductor light emitting device according to claim 1 in which a pair of electrodes are electrically connected to the pair of external terminals of the device.
JP16158599A 1999-06-08 1999-06-08 Semiconductor light-emitting device Expired - Fee Related JP3412152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16158599A JP3412152B2 (en) 1999-06-08 1999-06-08 Semiconductor light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16158599A JP3412152B2 (en) 1999-06-08 1999-06-08 Semiconductor light-emitting device

Publications (2)

Publication Number Publication Date
JP2000349347A true JP2000349347A (en) 2000-12-15
JP3412152B2 JP3412152B2 (en) 2003-06-03

Family

ID=15737934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16158599A Expired - Fee Related JP3412152B2 (en) 1999-06-08 1999-06-08 Semiconductor light-emitting device

Country Status (1)

Country Link
JP (1) JP3412152B2 (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203989A (en) * 2000-12-21 2002-07-19 Lumileds Lighting Us Llc Light emitting device and its manufacturing method
WO2003001612A1 (en) * 2001-06-20 2003-01-03 Nichia Corporation Semiconductor device and its fabriction method
JP2005235847A (en) * 2004-02-17 2005-09-02 Toyoda Gosei Co Ltd Light emitting device
JP2006128700A (en) * 2004-10-29 2006-05-18 Ledengin Inc Light-emitting device having material adaptive to heat insulation and refractive index
JP2006519481A (en) * 2003-02-28 2006-08-24 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Illumination module and method of manufacturing the illumination module
US7670872B2 (en) 2004-10-29 2010-03-02 LED Engin, Inc. (Cayman) Method of manufacturing ceramic LED packages
US7772609B2 (en) 2004-10-29 2010-08-10 Ledengin, Inc. (Cayman) LED package with structure and materials for high heat dissipation
US7963817B2 (en) 2007-09-18 2011-06-21 Nichia Corporation Phosphor-containing molded member, method of manufacturing the same, and light emitting device having the same
US7985000B2 (en) 2009-04-08 2011-07-26 Ledengin, Inc. Lighting apparatus having multiple light-emitting diodes with individual light-conversion layers
JP2011238778A (en) * 2010-05-11 2011-11-24 Konica Minolta Opto Inc Method for manufacturing wavelength conversion element, wavelength conversion element and light emitting device
US8075165B2 (en) 2008-10-14 2011-12-13 Ledengin, Inc. Total internal reflection lens and mechanical retention and locating device
JP2012060173A (en) * 2003-07-31 2012-03-22 Philips Lumileds Lightng Co Llc Mount for semiconductor light-emitting device
WO2012090999A1 (en) * 2010-12-28 2012-07-05 コニカミノルタオプト株式会社 Method for manufacturing light emitting device
KR101181112B1 (en) * 2005-10-27 2012-09-14 엘지이노텍 주식회사 Light-emitting diode, manufacturing method for the light-emitting diode and light-emitting diode module
WO2012124426A1 (en) 2011-03-11 2012-09-20 コニカミノルタオプト株式会社 Method for manufacturing light emitting device and mixed phosphor solution
US8294357B2 (en) 2010-05-12 2012-10-23 Konica Minolta Opto, Inc. Wavelength conversion element and light emitting device
US8303141B2 (en) 2009-12-17 2012-11-06 Ledengin, Inc. Total internal reflection lens with integrated lamp cover
US8324641B2 (en) 2007-06-29 2012-12-04 Ledengin, Inc. Matrix material including an embedded dispersion of beads for a light-emitting device
US8384097B2 (en) 2009-04-08 2013-02-26 Ledengin, Inc. Package for multiple light emitting diodes
WO2013054658A1 (en) * 2011-10-12 2013-04-18 コニカミノルタアドバンストレイヤー株式会社 Wavelength conversion element and method for manufacturing same, light-emitting device and method for manufacturing same, and liquid mixture
US8507300B2 (en) 2008-12-24 2013-08-13 Ledengin, Inc. Light-emitting diode with light-conversion layer
WO2013121903A1 (en) * 2012-02-13 2013-08-22 コニカミノルタ株式会社 Wavelength conversion element and method for manufacturing same, and light-emitting device and method for manufacturing same
US8598793B2 (en) 2011-05-12 2013-12-03 Ledengin, Inc. Tuning of emitter with multiple LEDs to a single color bin
US8643051B2 (en) 2009-12-25 2014-02-04 Konica Minolta Advanced Layers, Inc. Light emission device
US8816369B2 (en) 2004-10-29 2014-08-26 Led Engin, Inc. LED packages with mushroom shaped lenses and methods of manufacturing LED light-emitting devices
US8858022B2 (en) 2011-05-05 2014-10-14 Ledengin, Inc. Spot TIR lens system for small high-power emitter
US8912023B2 (en) 2009-04-08 2014-12-16 Ledengin, Inc. Method and system for forming LED light emitters
JP2015015485A (en) * 2008-11-28 2015-01-22 株式会社小糸製作所 Light emitting module, and lighting fixture unit
JPWO2013051281A1 (en) * 2011-10-07 2015-03-30 コニカミノルタ株式会社 Manufacturing method of LED device and phosphor dispersion used therefor
US9080729B2 (en) 2010-04-08 2015-07-14 Ledengin, Inc. Multiple-LED emitter for A-19 lamps
US9234801B2 (en) 2013-03-15 2016-01-12 Ledengin, Inc. Manufacturing method for LED emitter with high color consistency
US9345095B2 (en) 2010-04-08 2016-05-17 Ledengin, Inc. Tunable multi-LED emitter module
US9406654B2 (en) 2014-01-27 2016-08-02 Ledengin, Inc. Package for high-power LED devices
US9528665B2 (en) 2011-05-12 2016-12-27 Ledengin, Inc. Phosphors for warm white emitters
US9530943B2 (en) 2015-02-27 2016-12-27 Ledengin, Inc. LED emitter packages with high CRI
US9642206B2 (en) 2014-11-26 2017-05-02 Ledengin, Inc. Compact emitter for warm dimming and color tunable lamp
US9897284B2 (en) 2012-03-28 2018-02-20 Ledengin, Inc. LED-based MR16 replacement lamp
US10219345B2 (en) 2016-11-10 2019-02-26 Ledengin, Inc. Tunable LED emitter with continuous spectrum
DE10325951B4 (en) * 2002-06-13 2019-07-11 Lumileds Holding B.V. Light-emitting diode with associated contact scheme

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203989A (en) * 2000-12-21 2002-07-19 Lumileds Lighting Us Llc Light emitting device and its manufacturing method
WO2003001612A1 (en) * 2001-06-20 2003-01-03 Nichia Corporation Semiconductor device and its fabriction method
DE10325951B4 (en) * 2002-06-13 2019-07-11 Lumileds Holding B.V. Light-emitting diode with associated contact scheme
JP2006519481A (en) * 2003-02-28 2006-08-24 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Illumination module and method of manufacturing the illumination module
JP4791951B2 (en) * 2003-02-28 2011-10-12 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Illumination module and method of manufacturing the illumination module
JP2012060173A (en) * 2003-07-31 2012-03-22 Philips Lumileds Lightng Co Llc Mount for semiconductor light-emitting device
JP2005235847A (en) * 2004-02-17 2005-09-02 Toyoda Gosei Co Ltd Light emitting device
JP4534513B2 (en) * 2004-02-17 2010-09-01 豊田合成株式会社 Light emitting device
JP2006128700A (en) * 2004-10-29 2006-05-18 Ledengin Inc Light-emitting device having material adaptive to heat insulation and refractive index
US8816369B2 (en) 2004-10-29 2014-08-26 Led Engin, Inc. LED packages with mushroom shaped lenses and methods of manufacturing LED light-emitting devices
US7772609B2 (en) 2004-10-29 2010-08-10 Ledengin, Inc. (Cayman) LED package with structure and materials for high heat dissipation
US7670872B2 (en) 2004-10-29 2010-03-02 LED Engin, Inc. (Cayman) Method of manufacturing ceramic LED packages
US8134292B2 (en) 2004-10-29 2012-03-13 Ledengin, Inc. Light emitting device with a thermal insulating and refractive index matching material
KR101181112B1 (en) * 2005-10-27 2012-09-14 엘지이노텍 주식회사 Light-emitting diode, manufacturing method for the light-emitting diode and light-emitting diode module
US8343784B2 (en) 2005-10-27 2013-01-01 Lg Innotek Co., Ltd. Light emitting diode device, manufacturing method of the light emitting diode device and mounting structure of the light emitting diode device
US8324641B2 (en) 2007-06-29 2012-12-04 Ledengin, Inc. Matrix material including an embedded dispersion of beads for a light-emitting device
US7963817B2 (en) 2007-09-18 2011-06-21 Nichia Corporation Phosphor-containing molded member, method of manufacturing the same, and light emitting device having the same
US8246216B2 (en) 2008-10-14 2012-08-21 Ledengin, Inc. Total internal reflection lens with pedestals for LED emitter
US8075165B2 (en) 2008-10-14 2011-12-13 Ledengin, Inc. Total internal reflection lens and mechanical retention and locating device
US8430537B2 (en) 2008-10-14 2013-04-30 Ledengin, Inc. Total internal reflection lens for color mixing
JP2015015485A (en) * 2008-11-28 2015-01-22 株式会社小糸製作所 Light emitting module, and lighting fixture unit
US8507300B2 (en) 2008-12-24 2013-08-13 Ledengin, Inc. Light-emitting diode with light-conversion layer
US9222630B2 (en) 2009-04-08 2015-12-29 Ledengin, Inc. Method and system for forming LED light emitters
US8384097B2 (en) 2009-04-08 2013-02-26 Ledengin, Inc. Package for multiple light emitting diodes
US8912023B2 (en) 2009-04-08 2014-12-16 Ledengin, Inc. Method and system for forming LED light emitters
US9416928B2 (en) 2009-04-08 2016-08-16 Ledengin, Inc. Method and system for forming LED light emitters
US7985000B2 (en) 2009-04-08 2011-07-26 Ledengin, Inc. Lighting apparatus having multiple light-emitting diodes with individual light-conversion layers
US8716725B2 (en) 2009-04-08 2014-05-06 Ledengin, Inc. Package for multiple light emitting diodes
US9554457B2 (en) 2009-04-08 2017-01-24 Ledengin, Inc. Package for multiple light emitting diodes
US8303141B2 (en) 2009-12-17 2012-11-06 Ledengin, Inc. Total internal reflection lens with integrated lamp cover
US8643051B2 (en) 2009-12-25 2014-02-04 Konica Minolta Advanced Layers, Inc. Light emission device
US10149363B2 (en) 2010-04-08 2018-12-04 Ledengin, Inc. Method for making tunable multi-LED emitter module
US9345095B2 (en) 2010-04-08 2016-05-17 Ledengin, Inc. Tunable multi-LED emitter module
US9080729B2 (en) 2010-04-08 2015-07-14 Ledengin, Inc. Multiple-LED emitter for A-19 lamps
US9482407B2 (en) 2010-04-08 2016-11-01 Ledengin, Inc. Spot TIR lens system for small high-power emitter
JP2011238778A (en) * 2010-05-11 2011-11-24 Konica Minolta Opto Inc Method for manufacturing wavelength conversion element, wavelength conversion element and light emitting device
US8294357B2 (en) 2010-05-12 2012-10-23 Konica Minolta Opto, Inc. Wavelength conversion element and light emitting device
JP5803941B2 (en) * 2010-12-28 2015-11-04 コニカミノルタ株式会社 Method for manufacturing light emitting device
WO2012090999A1 (en) * 2010-12-28 2012-07-05 コニカミノルタオプト株式会社 Method for manufacturing light emitting device
US9260654B2 (en) 2011-03-11 2016-02-16 Konica Minolta, Inc. Manufacturing method for light emitting device and phosphor mixture
JP5761330B2 (en) * 2011-03-11 2015-08-12 コニカミノルタ株式会社 Method for manufacturing light emitting device and phosphor mixture
WO2012124426A1 (en) 2011-03-11 2012-09-20 コニカミノルタオプト株式会社 Method for manufacturing light emitting device and mixed phosphor solution
US8858022B2 (en) 2011-05-05 2014-10-14 Ledengin, Inc. Spot TIR lens system for small high-power emitter
US9528665B2 (en) 2011-05-12 2016-12-27 Ledengin, Inc. Phosphors for warm white emitters
US9024529B2 (en) 2011-05-12 2015-05-05 Ledengin, Inc. Tuning of emitter with multiple LEDs to a single color bin
US9816691B2 (en) 2011-05-12 2017-11-14 Ledengin, Inc. Method and system for forming LED light emitters
US8773024B2 (en) 2011-05-12 2014-07-08 Ledengin, Inc. Tuning of emitter with multiple LEDs to a single color bin
US8598793B2 (en) 2011-05-12 2013-12-03 Ledengin, Inc. Tuning of emitter with multiple LEDs to a single color bin
JPWO2013051281A1 (en) * 2011-10-07 2015-03-30 コニカミノルタ株式会社 Manufacturing method of LED device and phosphor dispersion used therefor
US9318646B2 (en) 2011-10-07 2016-04-19 Konica Minolta, Inc. LED device manufacturing method and fluorescent material-dispersed solution used in same
WO2013054658A1 (en) * 2011-10-12 2013-04-18 コニカミノルタアドバンストレイヤー株式会社 Wavelength conversion element and method for manufacturing same, light-emitting device and method for manufacturing same, and liquid mixture
WO2013121903A1 (en) * 2012-02-13 2013-08-22 コニカミノルタ株式会社 Wavelength conversion element and method for manufacturing same, and light-emitting device and method for manufacturing same
US9897284B2 (en) 2012-03-28 2018-02-20 Ledengin, Inc. LED-based MR16 replacement lamp
US9234801B2 (en) 2013-03-15 2016-01-12 Ledengin, Inc. Manufacturing method for LED emitter with high color consistency
US9406654B2 (en) 2014-01-27 2016-08-02 Ledengin, Inc. Package for high-power LED devices
US10172206B2 (en) 2014-11-26 2019-01-01 Ledengin, Inc. Compact emitter for warm dimming and color tunable lamp
US9642206B2 (en) 2014-11-26 2017-05-02 Ledengin, Inc. Compact emitter for warm dimming and color tunable lamp
US9530943B2 (en) 2015-02-27 2016-12-27 Ledengin, Inc. LED emitter packages with high CRI
US10219345B2 (en) 2016-11-10 2019-02-26 Ledengin, Inc. Tunable LED emitter with continuous spectrum

Also Published As

Publication number Publication date
JP3412152B2 (en) 2003-06-03

Similar Documents

Publication Publication Date Title
US7345317B2 (en) Light-radiating semiconductor component with a luminescene conversion element
JP4667803B2 (en) Light emitting device
US6608332B2 (en) Light emitting device and display
EP2276080B1 (en) Light emitting device and display
JP5521325B2 (en) Light emitting device and manufacturing method thereof
US7709852B2 (en) Wavelength-converting casting composition and light-emitting semiconductor component
CN100502066C (en) Light-radiating semiconductor component with a luminescence conversion element
US7301175B2 (en) Light emitting apparatus and method of manufacturing the same
US7382033B2 (en) Luminescent body and optical device including the same
KR100715580B1 (en) Light source comprising a light-emitting element
US8674388B2 (en) Phosphor, method of manufacturing the same, and light-emitting device
JP3717480B2 (en) Semiconductor light-emitting device
EP1605028B1 (en) Light emitting film, luminescent device, method for manufacturing light emitting film and method for manufacturing luminescent device
US6924514B2 (en) Light-emitting device and process for producing thereof
US6670748B2 (en) Illumination unit having at least one LED as light source
EP1503428B1 (en) Light-emitting device using fluorescent substance
EP1830418B1 (en) Light emitting device
US7910940B2 (en) Semiconductor light-emitting device
US20110101851A1 (en) Light-emitting device
US8710741B2 (en) Illuminating device
US6936857B2 (en) White light LED device
JP3091911U (en) Hybrid led
JPWO2012132232A1 (en) Semiconductor light emitting device
US20040061124A1 (en) Selective filtering of wavelength-converted semiconductor light emitting devices
JP3241338B2 (en) Semiconductor light-emitting device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080328

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080328

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090328

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090328

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100328

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100328

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees