JP2000349347A - Semiconductor light emitting element - Google Patents

Semiconductor light emitting element

Info

Publication number
JP2000349347A
JP2000349347A JP16158599A JP16158599A JP2000349347A JP 2000349347 A JP2000349347 A JP 2000349347A JP 16158599 A JP16158599 A JP 16158599A JP 16158599 A JP16158599 A JP 16158599A JP 2000349347 A JP2000349347 A JP 2000349347A
Authority
JP
Japan
Prior art keywords
light emitting
semiconductor light
emitting device
coating material
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16158599A
Other languages
Japanese (ja)
Other versions
JP3412152B2 (en
Inventor
Akira Shiraishi
旭 白石
Satoshi Honda
聡 本多
Takeshi Sano
武志 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP16158599A priority Critical patent/JP3412152B2/en
Publication of JP2000349347A publication Critical patent/JP2000349347A/en
Application granted granted Critical
Publication of JP3412152B2 publication Critical patent/JP3412152B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16245Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body

Abstract

PROBLEM TO BE SOLVED: To improve weather resistance and ultraviolet ray resistance of a semiconductor light emitting device. SOLUTION: This semiconductor light emitting device is provided with a base body 11, a semiconductor light emitting element 2 fixed to the base body 11, and coating materials 10 for covering the semiconductor light emitting element 2. In this case, the polymetalloxan or ceramic coating materials 10 having light transmissivity can be prevented from being deteriorated even when irradiated with lights whose wavelength is short such as near ultraviolet rays. A pair of electrodes 2f and 2g formed at the bottom part of the semiconductor light emitting element 2 are respectively electrically connected with a pair of outer terminals 3 and 4 formed at the base body 11 so that sufficient amounts of light can be emitted from the semiconductor light emitting element 2 to the outside.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体発光装置、
特にバンプ電極(突起形状電極)を有する半導体発光素
子を使用する半導体発光装置に属する。
The present invention relates to a semiconductor light emitting device,
In particular, it belongs to a semiconductor light emitting device using a semiconductor light emitting element having a bump electrode (projection-shaped electrode).

【0002】[0002]

【従来の技術】禁止帯幅(エネルギギャップ)の大きい
半導体発光素子を用いると、波長の短い可視光から紫外
域までの比較的短い波長で発光する半導体発光装置を実
現することができる。短波長の光を発生する半導体発光
素子としては、GaN、GaAlN、InGaN、InGaAlN等の窒素ガ
リウム系化合物半導体があり、小型、低消費電力、長寿
命等種々の利点を備えた新しい固体化紫外光源に利用す
ることができる。
2. Description of the Related Art When a semiconductor light emitting element having a large band gap (energy gap) is used, a semiconductor light emitting device that emits light at a relatively short wavelength from visible light having a short wavelength to an ultraviolet region can be realized. Semiconductor light-emitting devices that emit short-wavelength light include nitrogen gallium-based compound semiconductors such as GaN, GaAlN, InGaN, and InGaAlN. Can be used for

【0003】また、図4は、発光ダイオードチップ(2)
から照射される光の波長を蛍光物質(13)によって変換す
る従来の発光ダイオード装置の断面図を示す。図4に示
す発光ダイオード装置(1)では、カソード側リードとし
ての第一の外部端子(3)の凹部(3a)の底面(3b)に発光ダ
イオードチップ(2)が固着され、リード細線(5)により発
光ダイオードチップ(2)のカソード電極はカソード側の
外部端子(3)の上端部(9a)に接続される。また、発光ダ
イオードチップ(2)のアノード電極はリード細線(6)によ
りアノード側リードとしての第二の外部端子(4)の上端
部(9b)に接続される。凹部(3a)に固着された発光ダイオ
ードチップ(2)は、凹部(3a)内に充填され且つ蛍光物質
(13)が混入された光透過性の保護樹脂(7)により被覆さ
れる。発光ダイオードチップ(2)、第一の外部端子(3)の
凹部(3a)及び上端部(9a)、第二の外部端子(4)の上端部
(9b)、リード細線(5, 6)は、更に光透過性の被覆体(18)
内に封入される。
FIG. 4 shows a light emitting diode chip (2).
1 shows a cross-sectional view of a conventional light-emitting diode device that converts the wavelength of light emitted from a fluorescent material (13). In the light emitting diode device (1) shown in FIG. 4, a light emitting diode chip (2) is fixed to a bottom surface (3b) of a concave portion (3a) of a first external terminal (3) as a cathode lead, and a thin lead wire (5 ), The cathode electrode of the light emitting diode chip (2) is connected to the upper end (9a) of the external terminal (3) on the cathode side. Further, the anode electrode of the light emitting diode chip (2) is connected to the upper end (9b) of the second external terminal (4) as an anode lead by a thin lead wire (6). The light emitting diode chip (2) fixed to the concave portion (3a) is filled in the concave portion (3a) and the fluorescent substance
(13) is covered with a light-transmitting protective resin (7) mixed therein. Light emitting diode chip (2), recess (3a) and upper end (9a) of first external terminal (3), upper end of second external terminal (4)
(9b), the lead wires (5, 6) are further light-transmitting coatings (18)
Enclosed within.

【0004】発光ダイオード装置(1)の第一の外部端子
(3)と第二の外部端子(4)との間に電圧を印加し、発光ダ
イオードチップ(2)に通電すると、発光ダイオードチッ
プ(2)から照射される光は、保護樹脂(7)内を通り外部端
子(3)の凹部(3a)の側壁(3c)で反射した後に、透明な被
覆体(18)を通り発光ダイオード装置(1)の外部に放出さ
れる。また、発光ダイオードチップ(2)の上面から放射
されて凹部(3a)の側壁(3c)で反射されずに直接に保護樹
脂(7)及び被覆体(18)を通って発光ダイオード装置(1)の
外部に放出される光もある。被覆体(18)の先端にはレン
ズ部(8a)が形成され、被覆体(18)内を通過する光は、レ
ンズ部(8a)によって集光され指向性が高められる。発光
ダイオードチップ(2)の発光時に、発光ダイオードチッ
プ(2)から照射される光は保護樹脂(7)内に混入された蛍
光物質(13)によって異なる波長に変換されて放出される
結果、発光ダイオードチップ(2)から照射された光とは
異なる波長の光が発光ダイオード装置(1)から放出され
る。
A first external terminal of the light emitting diode device (1)
When a voltage is applied between (3) and the second external terminal (4) to energize the light-emitting diode chip (2), light emitted from the light-emitting diode chip (2) is transmitted through the protective resin (7). After being reflected by the side wall (3c) of the concave portion (3a) of the external terminal (3), the light is emitted to the outside of the light emitting diode device (1) through the transparent covering (18). Further, the light-emitting diode device (1) is radiated from the upper surface of the light-emitting diode chip (2) and directly passes through the protective resin (7) and the cover (18) without being reflected by the side wall (3c) of the concave portion (3a). Some light is emitted out of the room. A lens portion (8a) is formed at the tip of the covering (18), and light passing through the inside of the covering (18) is condensed by the lens portion (8a) to enhance directivity. When the light emitting diode chip (2) emits light, the light emitted from the light emitting diode chip (2) is converted into a different wavelength by the fluorescent substance (13) mixed in the protective resin (7) and emitted, resulting in light emission. Light having a different wavelength from the light emitted from the diode chip (2) is emitted from the light emitting diode device (1).

【0005】[0005]

【発明が解決しようとする課題】一般に、半導体発光素
子は炭素、水素、酸素、窒素等の元素が網目状に結合し
た有機高分子化合物によって構成される樹脂封止体によ
り被覆されるが、エポキシ系樹脂から成る外囲体と成る
樹脂封止体にこれら紫外線等が照射されると、有機高分
子の繋ぎ目が切断され、各種の光学的特性及び化学的特
性が劣化することが知られている。例えばGaN(窒化ガ
リウム)系の発光ダイオードチップは、波長365nm程
度まで紫外線を発光することができるため、樹脂封止体
は光強度の強い発光ダイオードチップの周囲から次第に
黄変し、着色現象が発生する。このため、発光ダイオー
ドチップが発した光は着色部で吸収され減衰する。更
に、樹脂封止体の劣化に伴って耐湿性が低下すると共
に、イオン透過性が増大するため、樹脂封止体の外部か
ら侵入した汚染物質イオンにより発光ダイオードチップ
自体も劣化し、その結果、発光ダイオード装置の発光強
度は相乗的に低減する。
Generally, a semiconductor light emitting device is covered with a resin encapsulant composed of an organic polymer compound in which elements such as carbon, hydrogen, oxygen, and nitrogen are bonded in a mesh. It is known that when these ultraviolet rays and the like are irradiated on the resin sealing body that forms the outer enclosure made of the base resin, the joint of the organic polymer is cut, and various optical and chemical properties are deteriorated. I have. For example, a GaN (gallium nitride) -based light emitting diode chip can emit ultraviolet light up to a wavelength of about 365 nm, so that the resin sealing body gradually turns yellow from around the light emitting diode chip having a high light intensity, and a coloring phenomenon occurs. I do. Therefore, the light emitted from the light emitting diode chip is absorbed and attenuated by the colored portion. Furthermore, since the moisture resistance decreases with the deterioration of the resin sealing body and the ion permeability increases, the light emitting diode chip itself also deteriorates due to contaminant ions invading from the outside of the resin sealing body, and as a result, The light emission intensity of the light emitting diode device decreases synergistically.

【0006】また、例えば順方向電圧が高いGaN(窒化
ガリウム)系の発光ダイオードチップは、比較的低い順
方向電流でも電力損失が大きく、作動時にチップ温度は
かなり上昇する。樹脂は一般に高温に加熱されると次第
に劣化して黄変・着色を起こすことが知られている。従
ってGaN系の発光ダイオードチップを従来の発光ダイオ
ード装置に用いると、発光ダイオードチップからの短波
長の光の照射とあいまって高温の発光ダイオードチップ
と接する部分から樹脂が次第に黄変・着色するため、発
光ダイオード装置の外観品質と発光強度は次第に低下す
る。このように、従来の発光ダイオード装置では、選択
する材料種類の減少、信頼性の低下、光変換機能の不完
全性、製品価格の上昇を招来する原因となる。
For example, a GaN (gallium nitride) based light emitting diode chip having a high forward voltage has a large power loss even at a relatively low forward current, and the chip temperature rises considerably during operation. It is known that a resin generally deteriorates gradually when heated to a high temperature, causing yellowing and coloring. Therefore, when a GaN-based light-emitting diode chip is used in a conventional light-emitting diode device, the resin gradually turns yellow and is colored from a portion in contact with the high-temperature light-emitting diode chip in combination with irradiation of short-wavelength light from the light-emitting diode chip. The appearance quality and emission intensity of the light emitting diode device gradually decrease. As described above, in the conventional light emitting diode device, the number of kinds of materials to be selected, the reliability is reduced, the light conversion function is incomplete, and the product price is increased.

【0007】このように、紫外光によって樹脂封止体は
短時間で劣化して発光効率が低下するため、外囲容器に
よって半導体発光素子を密封して外部雰囲気から完全に
遮断し、外囲容器内に窒素等の不活性の又は安定な封止
気体を充填してハーメチックシール構造(hermetic-sea
ling;気密封止構造)を形成した発光装置がある。しか
し、樹脂封止体の特性劣化を生じないハーメチックシー
ル構造は、高価な材料を必要とする上、その製造工程も
比較的複雑なため、最終製品が高価と成る難点がある。
また、窒化ガリウム系化合物半導体の屈折率と大きく相
違する屈折率を有する不活性気体を外囲容器内に充填す
るため、窒化ガリウム系化合物半導体と不活性気体との
界面に反射面が形成される。従って、半導体発光素子か
ら放射される光は、窒化ガリウム系化合物半導体と不活
性気体との界面で反復して反射する間に減衰して、発光
効率が低下する欠点があった。
As described above, since the resin sealing body is deteriorated in a short time due to the ultraviolet light and the luminous efficiency is reduced, the semiconductor light emitting element is sealed by the outer container and completely shut off from the external atmosphere. Filling the inside with an inert or stable sealing gas such as nitrogen, a hermetic-sealing structure (hermetic-sea
(Ling; hermetic sealing structure). However, the hermetic seal structure that does not cause deterioration of the characteristics of the resin sealing body requires expensive materials and its manufacturing process is relatively complicated, so that the final product is expensive.
In addition, a reflective surface is formed at the interface between the gallium nitride-based compound semiconductor and the inert gas because the envelope is filled with an inert gas having a refractive index significantly different from that of the gallium nitride-based compound semiconductor. . Therefore, the light emitted from the semiconductor light emitting element is attenuated during repeated reflection at the interface between the gallium nitride-based compound semiconductor and the inert gas, and thus has a disadvantage that the light emission efficiency is reduced.

【0008】また、蛍光物質(13)を含有する保護樹脂
(7)で発光ダイオードチップ(2)を包囲し、更に全体を被
覆体(18)で包囲する従来の発光ダイオード装置(1)で
は、次のような問題がある。
Also, a protective resin containing a fluorescent substance (13)
The conventional light-emitting diode device (1) in which the light-emitting diode chip (2) is surrounded by (7) and the whole is further surrounded by the covering (18) has the following problems.

【0009】第一に、保護樹脂(7)及び被覆体(18)の耐
環境性が必ずしも十分でないとき、保護樹脂(7)に配合
できる蛍光体が特定の種類に限定される。即ち、一般に
樹脂は水分を透過し、高湿度の雰囲気中に放置される
と、時間の経過と共に樹脂の内部に水分が浸透する。こ
の場合、侵入する水分によって分解又は変質して光波長
変換機能が低下し又は消失する耐湿性の悪い蛍光体もあ
る。例えば、水分によって加水分解する公知の代表的な
硫化カルシウム系の蛍光物質(13)は従来の発光ダイオー
ド装置(1)に使用できない。
First, when the environmental resistance of the protective resin (7) and the cover (18) is not always sufficient, the phosphors that can be blended in the protective resin (7) are limited to specific types. That is, generally, the resin transmits moisture, and when left in an atmosphere of high humidity, the moisture permeates into the resin over time. In this case, there is a phosphor having poor moisture resistance, which is decomposed or deteriorated by the invading moisture to reduce or eliminate the light wavelength conversion function. For example, a known typical calcium sulfide-based fluorescent substance (13) hydrolyzed by moisture cannot be used in the conventional light emitting diode device (1).

【0010】また、水分のみならずナトリウム又は塩素
等の不純物イオンも樹脂を透過し、発光ダイオードチッ
プに有害な影響を与える。従って、清浄な環境で製造さ
れた発光ダイオード装置(1)でも、不純物イオンを含む
雰囲気中に放置すると、不純物イオンが樹脂の内部に次
第に浸透して発光ダイオードチップ(2)の電気的特性が
劣化する難点がある。特に、重大な問題は、有害不純物
イオンが遊離する化学的に不安定な有機蛍光体も少なく
ない点である。従って、従来の発光ダイオード装置(1)
では、この種の有機蛍光体を使用することができない。
In addition, not only moisture but also impurity ions such as sodium or chlorine permeate the resin and have a harmful effect on the light emitting diode chip. Therefore, even in a light-emitting diode device (1) manufactured in a clean environment, when left in an atmosphere containing impurity ions, the impurity ions gradually penetrate into the resin and the electrical characteristics of the light-emitting diode chip (2) deteriorate. There are difficulties to do. In particular, a serious problem is that there are many chemically unstable organic phosphors from which harmful impurity ions are released. Therefore, the conventional light emitting diode device (1)
Cannot use this kind of organic phosphor.

【0011】第二に、発光ダイオードチップ(2)から発
生する短波長の光成分によって被覆樹脂蛍光体が劣化す
る問題がある。一般に、炭素、水素、酸素、窒素等の元
素が網目状に結合した有機高分子化合物によって構成さ
れる保護樹脂(7)及び被覆体(18)は、紫外線が照射され
ると、有機高分子の繋ぎ目が切断され、各種の光学的特
性及び化学的特性が劣化することが知られている。例え
ばGaN(窒化ガリウム)系の発光ダイオードチップは、
可視光成分以外にも波長380nm以下の紫外波長域にも
発光成分を持つものがあるため、被覆樹脂は光強度の強
い発光ダイオードチップの周囲から次第に黄変し、着色
現象が発生する。このため、発光ダイオードチップが発
した光は着色部で吸収され減衰する。更に、被覆樹脂の
劣化に伴って耐湿性が低下すると共にイオン透過性が増
大するため、発光ダイオードチップ(2)自体も劣化する
結果、発光ダイオード装置(1)の発光強度は相乗的に低
減する。
Second, there is a problem that the coated resin phosphor is deteriorated by a short wavelength light component generated from the light emitting diode chip (2). In general, the protective resin (7) and the coating (18), which are composed of an organic polymer compound in which elements such as carbon, hydrogen, oxygen, and nitrogen are bonded in a network, are exposed to ultraviolet rays when the organic polymer It is known that seams are cut and various optical and chemical properties deteriorate. For example, a GaN (gallium nitride) based light emitting diode chip
In addition to the visible light component, there is a component having a light-emitting component also in the ultraviolet wavelength range of 380 nm or less, so that the coating resin gradually turns yellow around the light-emitting diode chip having a high light intensity, and a coloring phenomenon occurs. Therefore, the light emitted from the light emitting diode chip is absorbed and attenuated by the colored portion. Furthermore, since the moisture resistance decreases and the ion permeability increases with the deterioration of the coating resin, the light emitting diode chip (2) itself also deteriorates, so that the light emitting intensity of the light emitting diode device (1) decreases synergistically. .

【0012】更に、被覆樹脂の劣化等の問題から、紫外
線を発する発光ダイオードチップを使用できないため、
蛍光体の材料選択と発光ダイオード装置の発光特性が大
きな制限を受けることが第三の問題である。蛍光ランプ
又は水銀ランプ等に使用する紫外線で励起される紫外線
用の蛍光体は、古くから開発・改良が行われた結果、現
在では様々な発光波長分布を持つ安価で光変換効率の高
い数多くの蛍光体が実用化されている。紫外線を発光ダ
イオードチップと紫外線で励起される蛍光体を組み合わ
せると、一層明るく且つ変化に富む色調の発光ダイオー
ド装置が得られると予想される。しかしながら、紫外線
により樹脂が劣化する従来の発光ダイオード装置では、
紫外線発光ダイオードチップを使用できず、光変換効率
に優れた蛍光体を利用できない。
Further, since a light emitting diode chip that emits ultraviolet light cannot be used due to a problem such as deterioration of the coating resin,
The third problem is that the selection of the phosphor material and the emission characteristics of the light emitting diode device are greatly restricted. Ultraviolet phosphors excited by ultraviolet light used in fluorescent lamps or mercury lamps have been developed and improved for a long time. Phosphors have been put to practical use. Combining a light emitting diode chip with ultraviolet light and a phosphor excited by ultraviolet light is expected to provide a light emitting diode device with a brighter and more varied color tone. However, in a conventional light emitting diode device in which the resin is deteriorated by ultraviolet light,
The ultraviolet light emitting diode chip cannot be used, and a phosphor excellent in light conversion efficiency cannot be used.

【0013】最後の問題は、耐熱性が低い被覆樹脂が黄
変・着色するため、発光ダイオードチップから照射され
た光が被覆樹脂を通過する際に減衰する点にある。例え
ば順方向電圧が高いGaN(窒化ガリウム)の青色発光ダ
イオードチップは、比較的低い順方向電流でも電力損失
が大きく、作動時にチップ温度はかなり上昇する。一般
に、樹脂は高温に加熱されると次第に劣化して黄変・着
色を起こすことが知られている。従ってGaNの発光ダイ
オードチップを従来の発光ダイオード装置に用いると、
高温の発光ダイオードチップと接する部分から樹脂が次
第に黄変・着色するため、発光ダイオード装置の外観品
質と発光強度は次第に低下する。このように、従来の発
光ダイオード装置では、蛍光体を樹脂中に配合すると前
記問題が生じ、このため選択する材料種類の減少、信頼
性の低下、光変換機能の不完全性、製品価格の上昇を招
来する原因となる。
The last problem is that since the coating resin having low heat resistance is yellowed and colored, the light emitted from the light emitting diode chip is attenuated when passing through the coating resin. For example, a GaN (gallium nitride) blue light emitting diode chip having a high forward voltage has a large power loss even at a relatively low forward current, and the chip temperature increases considerably during operation. In general, it is known that when heated to a high temperature, the resin gradually deteriorates and causes yellowing and coloring. Therefore, when a GaN light emitting diode chip is used in a conventional light emitting diode device,
Since the resin gradually turns yellow and is colored from the part in contact with the high-temperature light emitting diode chip, the appearance quality and the light emission intensity of the light emitting diode device gradually decrease. As described above, in the conventional light emitting diode device, when the phosphor is mixed in the resin, the above-described problem occurs. Therefore, the selection of the material type is reduced, the reliability is reduced, the light conversion function is incomplete, and the product price is increased. May cause inconvenience.

【0014】本発明は、発光量が低下せず且つ封止樹脂
が劣化しない半導体発光装置を提供することを目的とす
る。また、本発明は耐環境性及び耐紫外線性を有する半
導体発光装置を提供することを目的とする。
An object of the present invention is to provide a semiconductor light emitting device in which the light emission amount does not decrease and the sealing resin does not deteriorate. Another object of the present invention is to provide a semiconductor light emitting device having environmental resistance and ultraviolet light resistance.

【0015】[0015]

【課題を解決するための手段】本発明による半導体発光
装置は、基体(3, 4, 11)と、基体(3, 4, 11)に固着され
た半導体発光素子(2)と、半導体発光素子(2)を被覆する
コーティング材(10)とを備え、コーティング材(10)は、
金属アルコキシド又はセラミック前駆体ポリマー等によ
り形成されたポリメタロキサン又はセラミックである。
有機樹脂と異なり、紫外線等どの波長の短い光が照射さ
れても、ポリメタロキサン又はセラミックより成るコー
ティング材(10)は劣化しない。
A semiconductor light emitting device according to the present invention comprises a substrate (3, 4, 11), a semiconductor light emitting element (2) fixed to the substrate (3, 4, 11), and a semiconductor light emitting element. And a coating material (10) for covering (2), wherein the coating material (10) is
Polymetalloxane or ceramic formed by metal alkoxide or ceramic precursor polymer.
Unlike an organic resin, the coating material (10) made of polymetalloxane or ceramic does not deteriorate even when irradiated with light of any wavelength such as ultraviolet light.

【0016】本発明の実施の形態では、コーティング材
(10)は高純度のガラス状であるため、硼素や酸化鉛等を
含む低融点ガラスなどに比べて極めて不純物が少なく、
半導体発光素子(2)の特性に悪影響を及ぼさない。ま
た、コーティング材(10)は耐熱性の高いガラス状である
ため、黄変等による光透過性の低下を生じない。
In an embodiment of the present invention, the coating material
Because (10) is a high-purity glass, it has very few impurities compared to low-melting glass containing boron or lead oxide, etc.
It does not adversely affect the characteristics of the semiconductor light emitting device (2). Further, since the coating material (10) is a glass having high heat resistance, a decrease in light transmittance due to yellowing or the like does not occur.

【0017】基体(3, 4, 11)に半導体発光素子(2)を固
着し、金属アルコキシドより得られたポリメタロキサン
・ゾル又はセラミック前駆体ポリマーを塗布した後、乾
燥及び熱処理を施してコーティング材(10)を形成する。
コーティング材(10)は、金属アルコキシドのゾル・ゲル
法又はセラミック前駆体ポリマーにより形成されるの
で、低温でガラス化して透明な非晶質金属酸化物を得る
ことができる。
A semiconductor light emitting device (2) is fixed to a substrate (3, 4, 11), and a polymetalloxane sol or a ceramic precursor polymer obtained from a metal alkoxide is applied, followed by drying and heat treatment for coating. A material (10) is formed.
Since the coating material (10) is formed by a sol-gel method of a metal alkoxide or a ceramic precursor polymer, it can be vitrified at a low temperature to obtain a transparent amorphous metal oxide.

【0018】ゾル・ゲル法では、有機金属化合物の一種
である金属アルコキシドを出発物質とし、その溶液を加
水分解、縮重合させゾルを形成させた後、空気中の水分
等によって更に反応を進めてゲル化させ、固体の金属酸
化物が得られる。例えば、シリカガラス膜の形成過程で
は、珪素の金属アルコキシドであるテトラエトキシシラ
ン(Si(OC2H5)4)を用いる場合、テトラエトキシシランを
アルコール等の溶媒に溶解し、酸等の触媒と少量の水を
加えて十分に混合することにより下記の反応式に従い液
状のポリシロキサン・ゾルが形成される。 加水分解反応: Si(OC2H5)4+4H2O→Si(OH)4+4C2H5OH 脱水縮合反応: nSi(OH)4→[SiO2]n+2nH2O
In the sol-gel method, a metal alkoxide, which is a kind of an organometallic compound, is used as a starting material, and the solution is hydrolyzed and polycondensed to form a sol. It is gelled to obtain a solid metal oxide. For example, in the process of forming a silica glass film, when tetraethoxysilane (Si (OC 2 H 5 ) 4 ), which is a metal alkoxide of silicon, is used, tetraethoxysilane is dissolved in a solvent such as an alcohol, and a catalyst such as an acid is used. By adding a small amount of water and mixing well, a liquid polysiloxane sol is formed according to the following reaction formula. Hydrolysis reaction: Si (OC 2 H 5 ) 4 + 4H 2 O → Si (OH) 4 + 4C 2 H 5 OH Dehydration condensation reaction: nSi (OH) 4 → [SiO 2 ] n + 2nH 2 O

【0019】ポリシロキサン・ゾルは、上記の反応によ
って生成されたSiO2(シリカ)が何重にも結合してポリ
マーを構成し、この微粒子がアルコール溶液中に分散す
る状態となる。ポリシロキサン・ゾルを基体(3, 4, 11)
に塗布して乾燥させると、溶媒や反応によって生じたエ
チルアルコール(C2H5OH)と水の蒸発に伴いゾルの体積
が収縮し、その結果、隣り合うポリマー末端の残留OH基
同士が脱水縮合反応を起こして結合し、塗膜はゲル(固
化体)となる。更に、得られたゲル被膜を焼成して、ポ
リシロキサン粒子同士の結合を強化すると高強度のゲル
被膜を得ることができる。
In the polysiloxane sol, SiO 2 (silica) generated by the above reaction is combined in multiple layers to form a polymer, and the fine particles are in a state of being dispersed in an alcohol solution. Polysiloxane sol as substrate (3, 4, 11)
When coated and dried, the volume of the sol shrinks due to the evaporation of water and ethyl alcohol (C 2 H 5 OH) generated by the solvent and the reaction, and as a result, the residual OH groups at the ends of adjacent polymers are dehydrated. A condensation reaction takes place and bonds, and the coating film becomes a gel (solidified body). Further, by sintering the obtained gel coating to strengthen the bonding between the polysiloxane particles, a high-strength gel coating can be obtained.

【0020】コーティング材(10)は、半導体発光素子
(2)から照射された光の少なくとも一部を受光して波長
変換を行う蛍光物質(13)を含む。半導体発光素子(2)の
発光をコーティング材(10)中の蛍光物質(13)によって所
望の発光波長に変換し、半導体発光素子(2)を包囲する
コーティング材(10)を通して外部に放出させることがで
きる。コーティング材(10)の外部には、半導体発光素子
(2)から照射された光と蛍光物質(13)により波長変換さ
れた光とが混合されて放出される。コーティング材(10)
は、光散乱材が混入された樹脂により形成される被覆体
(18)により被覆される。半導体発光素子(2)から照射さ
れた光は、コーティング材(10)を透過して被覆体(18)の
外部に放出される。被覆体(18)は凹部(3a)に嵌合し、コ
ーティング材(10)は凹部(3a)の底面(3b)と被覆体(18)の
間に形成される。基体(11)を構成する絶縁性基板(11)の
一方の主面に凹部(3a)が形成され、凹部(3a)の底面(3b)
に半導体発光素子(2)が固着され、半導体発光素子(2)の
一対の電極(2f, 2g)が絶縁性基板(11)の一方の主面に形
成された一対の外部端子(3, 4)に電気的に接続される。
基体(11)を構成するリードフレームは、一対の外部端子
(3, 4)を有し、外部端子(3, 4)の一方には凹部(3a)が形
成され、凹部(3a)の底面(3b)に半導体発光素子(2)が固
着され、半導体発光素子(2)の一対の電極(2f, 2g)が一
対の外部端子(3,4)に電気的に接続される。
The coating material (10) is a semiconductor light emitting device
A fluorescent substance (13) that receives at least a part of the light irradiated from (2) and performs wavelength conversion. The light emission of the semiconductor light emitting device (2) is converted into a desired emission wavelength by the fluorescent substance (13) in the coating material (10), and emitted to the outside through the coating material (10) surrounding the semiconductor light emitting device (2). Can be. Outside the coating material (10), a semiconductor light emitting device
The light emitted from (2) and the light whose wavelength has been converted by the fluorescent substance (13) are mixed and emitted. Coating material (10)
Is a coated body formed of a resin mixed with a light scattering material.
Coated with (18). Light emitted from the semiconductor light emitting device (2) is transmitted through the coating material (10) and emitted to the outside of the cover (18). The cover (18) fits into the recess (3a), and the coating material (10) is formed between the bottom surface (3b) of the recess (3a) and the cover (18). A concave portion (3a) is formed on one main surface of the insulating substrate (11) constituting the base (11), and a bottom surface (3b) of the concave portion (3a) is formed.
A semiconductor light emitting element (2) is fixed to the semiconductor light emitting element (2), and a pair of electrodes (2f, 2g) of the semiconductor light emitting element (2) are formed on one main surface of the insulating substrate (11). ) Is electrically connected.
The lead frame constituting the base (11) has a pair of external terminals.
(3, 4), a concave portion (3a) is formed in one of the external terminals (3, 4), and a semiconductor light emitting element (2) is fixed to a bottom surface (3b) of the concave portion (3a). The pair of electrodes (2f, 2g) of the element (2) are electrically connected to the pair of external terminals (3, 4).

【0021】[0021]

【発明の実施の形態】窒化ガリウム系化合物から成る発
光ダイオード装置に適用した本発明による半導体発光装
置の実施の形態を図1〜図3について以下説明する。図
1〜図3に示す実施の形態では、図4に示す箇所と同一
の部分には同一の符号を付し、説明を省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a semiconductor light emitting device according to the present invention applied to a light emitting diode device made of a gallium nitride compound will be described below with reference to FIGS. In the embodiment shown in FIGS. 1 to 3, the same parts as those shown in FIG. 4 are denoted by the same reference numerals, and description thereof will be omitted.

【0022】図1に示すように、本実施の形態による発
光ダイオード装置(20)は、一方の主面に凹部(3a)が形成
された基体となる絶縁性基板(11)と、絶縁性基板(11)に
相互に離間して形成された第一の外部端子(3)及び第二
の外部端子(4)と、第一の外部端子(3)に接着されたカソ
ード電極(2g)及び第二の外部端子(4)に接着されたアノ
ード電極(2f)を有し且つ凹部(3a)内に配置された発光ダ
イオードチップ(2)と、凹部(3a)内に充填され発光ダイ
オードチップ(2)、アノード電極(2f)及びカソード電極
(2g)を被覆するコーティング材(10)と、絶縁性基板(11)
の一方の主面に形成され且つコーティング材(10)の外側
を被覆する台形状断面の被覆体(18)とを備えている。第
一の外部端子(3)及び第二の外部端子(4)の一方の端部
は、凹部(3a)内に配置される。第一の外部端子(3)及び
第二の外部端子(4)の各他方の端部は、絶縁性基板(11)
の側面及び他方の主面に延びて配置される。コーティン
グ材(10)は凹部(3a)の上端部(3d)から突出しない。凹部
(3a)の深さは、発光ダイオードチップ(2)の高さよりも
大きく、凹部(3a)の底面(3b)に固着された発光ダイオー
ドチップ(2)の上面は凹部(3a)の主面よりも内側に位置
する。このため、発光ダイオード装置(1)では、凹部(3
a)の内側に十分な量のコーティング材(10)を形成するこ
とができる。コーティング材(10)は更に被覆体(18)によ
り封止され、半導体発光素子(2)から照射される光は、
コーティング材(10)内を通過した後、被覆体(18)の外部
に放出される。
As shown in FIG. 1, a light emitting diode device (20) according to the present embodiment comprises an insulating substrate (11) serving as a base having a concave portion (3a) formed on one main surface; (11) a first external terminal (3) and a second external terminal (4) formed apart from each other, a cathode electrode (2g) bonded to the first external terminal (3) and a second external terminal (3). A light emitting diode chip (2) having an anode electrode (2f) adhered to the second external terminal (4) and disposed in the recess (3a); and a light emitting diode chip (2) filled in the recess (3a). ), Anode electrode (2f) and cathode electrode
(2 g) coating material (10) and insulating substrate (11)
And a trapezoidal-shaped cover (18) formed on one main surface of the cover member and covering the outside of the coating material (10). One end of the first external terminal (3) and the second external terminal (4) are arranged in the recess (3a). The other end of each of the first external terminal (3) and the second external terminal (4) is an insulating substrate (11).
And the other main surface. The coating material (10) does not protrude from the upper end (3d) of the recess (3a). Recess
The depth of (3a) is larger than the height of the light emitting diode chip (2), and the upper surface of the light emitting diode chip (2) fixed to the bottom surface (3b) of the concave portion (3a) is higher than the main surface of the concave portion (3a). Also located inside. For this reason, in the light emitting diode device (1), the concave portions (3
A sufficient amount of coating material (10) can be formed inside a). The coating material (10) is further sealed with a cover (18), and light emitted from the semiconductor light emitting device (2) is
After passing through the coating material (10), it is released to the outside of the coating (18).

【0023】発光ダイオードチップ(2)は、窒化ガリウ
ム系化合物半導体から成り、約440〜470nmの青色
光を発光する。窒化ガリウム系半導体は、周知のエピタ
キシャル成長方法等でサファイア等より成る光透過性の
基板となる半導体基体(2a)上に形成されたIn(1-X)GaXN
(但し、0<X≦1)で表される。図2に示す実施の形
態では、発光ダイオードチップ(2)は、例えば、周知の
エピタキシャル成長方法によって光透過性を有するサフ
ァイアの半導体基体(2a)上にGaNから成る窒化ガリウム
系半導体によってバッファ層(2b)が形成され、GaNから
成る窒化ガリウム系半導体によってバッファ層(2b)の上
にn形半導体領域(2c)が形成される。エピタキシャル成
長方法によってn形半導体領域(2c)上に、InGaNから成
る窒化ガリウム系半導体によって活性層(2d)が形成され
る。活性層(2d)上に形成される半導体基体(2e)は、GaN
から成るp形半導体領域を備えた窒化ガリウム系半導体
である。バッファ層(2b)、n形半導体領域(2c)、活性層
(2d)及び半導体基体(2e)は半導体層を構成する。半導体
基体(2e)上に形成されたアノード電極(外部電極)(2f)
は半導体基体(2e)の上面に露出するp形半導体領域に電
気的に接続される。p形半導体領域を備えた半導体基体
(2e)と活性層(2d)の一部には、n形半導体領域(2c)が露
出する切欠部(2h)が形成される。n形半導体領域(2c)上
に形成されたカソード電極(外部電極)(2g)は、n形半
導体領域(2c)に電気的に接続される。
The light emitting diode chip (2) is made of a gallium nitride compound semiconductor and emits blue light of about 440 to 470 nm. The gallium nitride-based semiconductor is formed of In (1-X) Ga X N formed on a semiconductor substrate (2a) serving as a light-transmitting substrate made of sapphire or the like by a known epitaxial growth method or the like.
(Where 0 <X ≦ 1). In the embodiment shown in FIG. 2, the light-emitting diode chip (2) has a buffer layer (2b) made of a GaN-based semiconductor made of GaN on a light-transmitting sapphire semiconductor substrate (2a) by a well-known epitaxial growth method. ) Is formed, and an n-type semiconductor region (2c) is formed on the buffer layer (2b) by a gallium nitride based semiconductor made of GaN. An active layer (2d) is formed on the n-type semiconductor region (2c) using a gallium nitride based semiconductor made of InGaN by an epitaxial growth method. The semiconductor substrate (2e) formed on the active layer (2d) is made of GaN
Is a gallium nitride-based semiconductor having a p-type semiconductor region composed of Buffer layer (2b), n-type semiconductor region (2c), active layer
(2d) and the semiconductor substrate (2e) constitute a semiconductor layer. Anode electrode (external electrode) formed on semiconductor substrate (2e) (2f)
Is electrically connected to the p-type semiconductor region exposed on the upper surface of the semiconductor substrate (2e). Semiconductor substrate having p-type semiconductor region
A notch (2h) is formed in (2e) and a part of the active layer (2d) to expose the n-type semiconductor region (2c). The cathode electrode (external electrode) (2g) formed on the n-type semiconductor region (2c) is electrically connected to the n-type semiconductor region (2c).

【0024】半導体発光素子(2)では、光透過性を有す
る半導体基体(2a)に活性層(2d)で発生した光を導いて、
半導体発光素子(2)の上面から光を取り出すことができ
る。半導体基体(2a)は光取出面を構成する一方の主面(2
i)と、半導体層が形成される他方の主面(2j)とを有し、
半導体層は絶縁性基板(11)に対向して配置されて一対の
外部電極(2g, 2f)に接続され、半導体基体(2a)の一方の
主面(2i)は絶縁性基板(11)に対向する側とは反対側に配
置される。半導体基体(2a)の光取出面には電極等が形成
されないので、図2の半導体発光素子(2)では良好な光
取出効率が得られる。
In the semiconductor light emitting device (2), the light generated in the active layer (2d) is guided to a light transmitting semiconductor substrate (2a).
Light can be extracted from the upper surface of the semiconductor light emitting element (2). The semiconductor substrate (2a) has one main surface (2
i) and the other main surface (2j) on which the semiconductor layer is formed,
The semiconductor layer is disposed to face the insulating substrate (11) and connected to the pair of external electrodes (2g, 2f), and one main surface (2i) of the semiconductor substrate (2a) is connected to the insulating substrate (11). It is arranged on the opposite side to the opposite side. Since no electrode or the like is formed on the light extraction surface of the semiconductor substrate (2a), good light extraction efficiency can be obtained with the semiconductor light emitting device (2) of FIG.

【0025】半導体発光素子(2)から放射された光成分
はコーティング材(10)に達し、その一部はコーティング
材(10)内で異なる波長に波長変換され、波長変換されな
い半導体発光素子(2)からの光成分と混合して被覆体(1
8)を通して外部に放出される。特定の発光波長を吸収す
る光吸収物質、半導体発光素子(2)の発光を散乱する光
散乱物質又はコーティング材(10)のクラックを防止する
結合材をコーティング材(10)内に配合してもよい。
The light component radiated from the semiconductor light emitting element (2) reaches the coating material (10), and a part of the light component is converted into a different wavelength in the coating material (10), and the wavelength of the semiconductor light emitting element (2) is not converted. ) And mixed with the light component from
Released outside through 8). Even if a light-absorbing substance that absorbs a specific emission wavelength, a light-scattering substance that scatters light emitted from the semiconductor light-emitting element (2) or a binder that prevents cracking of the coating material (10) is mixed in the coating material (10). Good.

【0026】絶縁性基板(11)を備えた半導体発光装置を
製造する際に、絶縁性基板(11)の一方の主面に凹部(3a)
を形成した後、絶縁性基板(11)の一方の主面に沿って互
いに反対方向に延びる一対の外部端子(3, 4)を形成し、
その後、凹部(3a)の底部(3b)にて一対の外部端子(3, 4)
のそれぞれに半導体発光素子(2)のアノード電極(2f)及
びカソード電極(2g)を電気的に接続して固着する。金属
アルコキシド又はセラミック前駆体から成る塗布型の出
発材料を凹部(3a)内に注入して、半導体発光素子(2)を
被覆する。出発材料は、半導体発光素子(2)から照射さ
れる光を吸収して他の発光波長に変換する蛍光物質(13)
を含む。その後、約150℃の温度で出発材料を焼成し
固化して絶縁物封止体としてコーティング材(10)を形成
する。コーティング材(10)の焼成温度は発光ダイオード
チップ(2)の融点よりも十分に低い。蛍光物質(13)を含
有するコーティング材(10)を更に透明な被覆体(18)によ
り封止する。コーティング材(10)は、半導体発光素子
(2)及び外部端子(3, 4)と強固に密着する。
When manufacturing a semiconductor light emitting device having an insulating substrate (11), a concave portion (3a) is formed on one main surface of the insulating substrate (11).
After forming, a pair of external terminals (3, 4) extending in opposite directions along one main surface of the insulating substrate (11) are formed,
Then, a pair of external terminals (3, 4) are formed at the bottom (3b) of the recess (3a).
The anode electrode (2f) and the cathode electrode (2g) of the semiconductor light emitting element (2) are electrically connected to each other and fixed. A coating type starting material composed of a metal alkoxide or a ceramic precursor is injected into the recess (3a) to cover the semiconductor light emitting device (2). Starting material is a fluorescent substance (13) that absorbs light emitted from the semiconductor light emitting element (2) and converts it to another emission wavelength
including. Thereafter, the starting material is fired and solidified at a temperature of about 150 ° C. to form a coating material (10) as an insulator sealing body. The firing temperature of the coating material (10) is sufficiently lower than the melting point of the light emitting diode chip (2). The coating material (10) containing the fluorescent substance (13) is further sealed with a transparent cover (18). Coating material (10) is a semiconductor light emitting device
Strongly adheres to (2) and external terminals (3, 4).

【0027】発光ダイオード装置(20)の外部端子(3, 4)
間に電圧を印加して発光ダイオードチップ(2)に通電し
て発光ダイオードチップ(2)を発光させると、コーティ
ング材(10)内の蛍光物質(13)によってその一部又は全部
がその発光波長と異なる他の波長に変換された後、被覆
体(18)から発光ダイオード装置(20)の外部に放出され
る。例えば、半導体発光素子には発光波長のピークが約
440nmから約470nmのGaN系の青色の発光ダイオー
ドチップ(2)を用い、蛍光物質(13)には付活剤としてCe
(セリウム)を添加したYAG(イットリウム・アルミニ
ウム・ガーネット、化学式Y3Al5O12、励起波長のピーク
約450nm、発光波長のピーク約540nmの黄緑色光)
を用いる。コーティング材(10)は、YAG蛍光物質(13)の
粉末状微細結晶粒を含有する出発材料を凹部(3a)内に凹
部(3a)の上端部(3d)から突出しない量で注入した後に焼
成して得られる。凹部(3a)の上端部(3d)より上方に突出
しないようにコーティング材(10)の充填量を調整すれ
ば、隣接して他の発光ダイオード装置(20)を設置しても
偽灯を発生しない。
External terminals (3, 4) of the light emitting diode device (20)
When a voltage is applied to the light emitting diode chip (2) to energize the light emitting diode chip (2) and cause the light emitting diode chip (2) to emit light, part or all of the light emitting wavelength is changed by the fluorescent substance (13) in the coating material (10). After being converted to another wavelength different from the above, the light is emitted from the coating body (18) to the outside of the light emitting diode device (20). For example, a semiconductor light-emitting element uses a GaN-based blue light-emitting diode chip (2) having an emission wavelength peak of about 440 nm to about 470 nm, and the fluorescent material (13) has Ce as an activator.
(Cerium) -added YAG (yttrium aluminum garnet, chemical formula Y 3 Al 5 O 12 , yellow-green light with an excitation wavelength peak of about 450 nm and an emission wavelength peak of about 540 nm)
Is used. The coating material (10) is fired after injecting a starting material containing powdery fine crystal grains of the YAG fluorescent substance (13) into the recess (3a) in an amount that does not protrude from the upper end (3d) of the recess (3a). Is obtained. By adjusting the filling amount of the coating material (10) so that it does not protrude above the upper end (3d) of the recess (3a), a false light will be generated even if another light emitting diode device (20) is installed adjacently. do not do.

【0028】コーティング材(10)は、発光ダイオードチ
ップ(2)から生ずる光が比較的長時間照射され温度上昇
が生じても、発光ダイオードチップ(2)からの発光を減
衰させる黄変・着色が発生しない。従来の発光ダイオー
ドの樹脂封止体(8)と同様に、被覆体(18)は耐紫外線特
性にあまり優れていないエポキシ系樹脂から成るが、発
光ダイオードチップ(2)と被覆体(18)との間に介在する
耐紫外線特性に優れたコーティング材(10)によって、短
波長の光による被覆体(18)の黄変・着色も良好に防止さ
れる。発光ダイオード装置(20)から外部に放出される光
の指向角を広げるため、必要に応じて粉末シリカ等の散
乱剤を被覆体(18)に混合させてもよい。
The coating material (10) has yellowing and coloring that attenuate the light emitted from the light emitting diode chip (2) even if the light generated from the light emitting diode chip (2) is irradiated for a relatively long time and the temperature rises. Does not occur. Like the resin sealing body (8) of the conventional light emitting diode, the covering (18) is made of an epoxy resin having not so good ultraviolet light resistance, but the light emitting diode chip (2) and the covering (18) Due to the coating material (10) having excellent ultraviolet light resistance property interposed therebetween, yellowing and coloring of the coating (18) due to short-wavelength light are also well prevented. If necessary, a scattering agent such as powdered silica may be mixed with the coating (18) in order to increase the directivity angle of light emitted from the light emitting diode device (20) to the outside.

【0029】コーティング材(10)を構成する塗布型出発
材料は、通常は液状であるが、空気中又は酸素雰囲気中
で加熱すると成分の分解又は酸素の吸収により金属酸化
物のメタロキサン(metaloxane)結合を主体とする透明
なコーティング材を生成する。これらの出発材料に蛍光
物質(13)の粉末を混合して半導体発光素子(2)の周囲に
塗布すれば、光変換作用を発揮する蛍光物質(13)を含有
するコーティング材(10)を形成することができる。本実
施の形態では、YAG蛍光物質(13)の波長変換効率の最大
値が比較的高く、発光ダイオードチップ(2)の発光波長
とYAG蛍光物質(13)の励起波長とが約450nmのピーク
でほぼ一致するため、実効波長変換効率の高い明るい発
光ダイオード装置(20)が得られる。また、YAG蛍光物質
(13)の結晶粒がコーティング材(10)中に分散しているの
で、発光ダイオード装置(20)から外部に放出される光
は、蛍光物質(13)で波長変換された光成分以外に蛍光物
質(13)の結晶粒を透過せず波長変換されない本来の発光
成分即ち発光ダイオードチップ(2)から照射された光成
分も含まれる。
The coating-type starting material constituting the coating material (10) is usually in a liquid state, but when heated in air or an oxygen atmosphere, the components are decomposed or oxygen is absorbed, so that the metal oxide is bonded to metaloxane. A transparent coating material mainly composed of If a powder of the fluorescent substance (13) is mixed with these starting materials and applied around the semiconductor light emitting device (2), a coating material (10) containing the fluorescent substance (13) exerting a light conversion effect is formed. can do. In the present embodiment, the maximum value of the wavelength conversion efficiency of the YAG fluorescent substance (13) is relatively high, and the emission wavelength of the light-emitting diode chip (2) and the excitation wavelength of the YAG fluorescent substance (13) peak at about 450 nm. Since they substantially match, a bright light emitting diode device (20) having high effective wavelength conversion efficiency can be obtained. Also, YAG fluorescent material
Since the crystal grains of (13) are dispersed in the coating material (10), light emitted from the light emitting diode device (20) to the outside emits fluorescent light in addition to the light component wavelength-converted by the fluorescent substance (13). It also includes an original light-emitting component that does not pass through the crystal grains of the substance (13) and is not wavelength-converted, that is, a light component emitted from the light-emitting diode chip (2).

【0030】従って、発光波長ピーク約440nm〜約4
70nmの青色光である発光ダイオードチップ(2)の発光
成分と、半値幅約130nmの幅広い波長分布を持つ発光
波長ピーク約540nmの黄緑色光であるYAG蛍光物質(1
3)の発光成分とが混合された白色光が発光ダイオード装
置(20)から外部に放出される。この場合、出発材料に混
合するYAG蛍光物質(13)の粉末量を調整し、コーティン
グ材(10)内の分布濃度を変更することにより発光ダイオ
ード装置(20)の発光色の色調を調整することができる。
また、YAG蛍光物質(13)の製造時に適当な添加物を適量
添加して結晶構造を一部変更して発光波長分布をシフト
すると、発光ダイオード装置(20)の発光色を更に異なる
色調に調整することができる。例えばGa(ガリウム)又
はLu(ルテチウム)を添加して短波長側にシフトし、Gd
(ガドリニウム)を添加して長波長側にシフトすること
ができる。
Therefore, the emission wavelength peak is about 440 nm to about 4 nm.
The light-emitting component of the light-emitting diode chip (2), which is blue light of 70 nm, and the YAG fluorescent material (1, 1), which is yellow-green light with an emission wavelength peak of about 540 nm having a broad wavelength distribution with a half width of about 130 nm
White light mixed with the light emitting component of 3) is emitted from the light emitting diode device (20) to the outside. In this case, adjusting the amount of powder of the YAG fluorescent substance (13) mixed with the starting material and adjusting the color tone of the light emitting color of the light emitting diode device (20) by changing the distribution concentration in the coating material (10). Can be.
In addition, when an appropriate amount of an appropriate additive is added during the production of the YAG fluorescent substance (13) and the crystal structure is partially changed to shift the emission wavelength distribution, the emission color of the light emitting diode device (20) is further adjusted to a different color tone. can do. For example, Ga (gallium) or Lu (lutetium) is added to shift to a shorter wavelength side, and Gd
(Gadolinium) can be added to shift to a longer wavelength side.

【0031】本発明では更に光学的特性や作業性を向上
するため、種々の改善も可能である。例えば、コーティ
ング材(10)内に散乱剤を混入して発光ダイオードチップ
(2)の光を散乱させ、蛍光物質(13)に当たる発光ダイオ
ードチップ(2)の光量が増加し、波長変換効率を向上す
ると共に、発光ダイオード装置(20)から外部に放出され
る光の指向角を広げることができる。コーティング材(1
0)のクラックを防止する結合材を配合する。塗布型ガラ
ス材料の粘度を高くする。塗布型ガラス材料の使用量を
減らす。このような場合は、塗布型ガラス材料に蛍光物
質(13)の粉末と共にシリカ、酸化チタン等のセラミック
粉末(10b)を目的に応じて適量混合すればよい。
In the present invention, various improvements can be made to further improve the optical characteristics and workability. For example, light-emitting diode chips mixed with a scattering agent in the coating material (10)
The light of (2) is scattered, the light amount of the light emitting diode chip (2) hitting the fluorescent substance (13) increases, the wavelength conversion efficiency is improved, and the light emitted from the light emitting diode device (20) is directed to the outside. The corner can be widened. Coating material (1
A binder for preventing the crack of 0) is blended. Increase the viscosity of the coating type glass material. Reduce the amount of coated glass material used. In such a case, an appropriate amount of ceramic powder (10b) such as silica or titanium oxide may be mixed with the powder of the fluorescent substance (13) in the coating type glass material according to the purpose.

【0032】形成されたコーティング材(10)は、光変換
作用のみならず、下記の優れた特性を備えている。 [1] 半導体発光素子(2)の上部から効率よく光を取り
出すことができ、且つこの光がリード細線に妨げられ
ず、半導体発光素子(2)から十分な量の光が外部に放出
される。 [2] コーティング材(10)により被覆体(18)の黄変・着
色を防止できる。 [3] 比較的安価な材料を使用してポッティング法やト
ランスファモールド法により樹脂封止が可能となり、製
造コストの低減を実現できる。 [4] ハーメチックシール構造の発光装置に比較して、
安価な短波長の半導体発光装置を実現できる。 [5] 十分実用に適する短波長の半導体発光装置を実現
できる。 [6] コーティング材(10)による光減衰は比較的小さ
い。 [7] 発光ダイオードチップ(2)とコーティング材(10)
との屈折率の差は比較的小さいのでハーメチックシール
構造を採用した場合に比べて発光ダイオードチップ(2)
の界面での反射を減少できる。 [8] 発光ダイオードチップ(2)から放射される光の発
光効率を向上できる。 [9] 耐湿性に優れ、内部に水分を浸透させず、半導体
発光素子(2)及び蛍光物質(13)を劣化させない。 [10] 有害イオンの浸透を防ぐイオンバリア効果が高
いため、半導体発光装置(20)の外部や蛍光物質(13)から
の有害イオンで半導体発光素子(2)を劣化させない。 [11] コーティング材(10)と被覆体(18)によって発光
ダイオードチップ(2)を二重に被覆するので、発光ダイ
オード装置(1)の耐環境性が向上する。 [12] 紫外線耐性に優れ、高温環境下又は紫外線発光
下でも黄変・着色を起こさず、半導体発光素子(2)の発
光を減衰させない。
The formed coating material (10) has not only a light conversion effect but also the following excellent characteristics. [1] Light can be efficiently extracted from the upper part of the semiconductor light emitting element (2), and this light is not hindered by the thin lead wires, and a sufficient amount of light is emitted from the semiconductor light emitting element (2) to the outside. . [2] The coating material (10) can prevent the coating (18) from yellowing and coloring. [3] Resin sealing can be performed using a relatively inexpensive material by a potting method or a transfer molding method, and a reduction in manufacturing cost can be realized. [4] Compared to the light emitting device with hermetic seal structure,
An inexpensive short wavelength semiconductor light emitting device can be realized. [5] A sufficiently short-wavelength semiconductor light emitting device suitable for practical use can be realized. [6] The light attenuation by the coating material (10) is relatively small. [7] light emitting diode chip (2) and coating material (10)
Light emitting diode chip (2) compared to the case using a hermetic seal
Reflection at the interface can be reduced. [8] The luminous efficiency of light emitted from the light emitting diode chip (2) can be improved. [9] It has excellent moisture resistance, does not penetrate moisture inside, and does not deteriorate the semiconductor light emitting element (2) and the fluorescent substance (13). [10] The semiconductor light-emitting element (2) is not deteriorated by harmful ions from the outside of the semiconductor light-emitting device (20) or the fluorescent substance (13) because the ion-barrier effect for preventing the penetration of harmful ions is high. [11] Since the light emitting diode chip (2) is doubly covered with the coating material (10) and the cover (18), the environmental resistance of the light emitting diode device (1) is improved. [12] It has excellent resistance to ultraviolet light, does not cause yellowing or coloring even in a high-temperature environment or under ultraviolet light emission, and does not attenuate the light emission of the semiconductor light emitting element (2).

【0033】このように、コーティング材(10)を使用す
ることにより従来の半導体発光装置の種々の弱点を克服
でき、安価で信頼性の高い、蛍光物質(13)による波長変
換機能を有する半導体発光装置(20)を得ることができ
る。特に、半導体発光素子(2)の上面から光を取り出す
ように構成された場合には、半導体発光素子(2)からの
光が強くコーティング材に照射されるので、本発明の効
果が顕著に得られる。
As described above, by using the coating material (10), various weaknesses of the conventional semiconductor light emitting device can be overcome, and the semiconductor light emitting device having the wavelength conversion function by the fluorescent material (13) which is inexpensive and highly reliable. An apparatus (20) can be obtained. In particular, in the case where the light is extracted from the upper surface of the semiconductor light emitting element (2), the light from the semiconductor light emitting element (2) is strongly irradiated to the coating material, so that the effect of the present invention is remarkably obtained. Can be

【0034】また、金属アルコキシドから成る出発材料
又はセラミック前駆体から成る出発材料は、凹部(3a)内
に注入して、発光ダイオードチップ(2)の融点よりも低
い150℃前後の温度で焼成可能であり、低温領域での
光透過性コーティング材の形成が可能である。従って、
コーティング材(10)は、液状の出発材料を発光ダイオー
ドチップ(2)の固着された凹部(3a)に滴下等により供給
した後、焼成等の熱処理を施すことによりコーティング
材(10)を容易に形成することができる。コーティング材
(10)の焼成温度は発光ダイオードチップ(2)の融点より
も十分に低い。コーティング材(10)中の金属原子が金属
又はセラミックの表面酸化物層の酸素原子と強固に結合
するので、コーティング材(10)は発光ダイオードチップ
(2)、第一の外部端子(3)及び第二の外部端子(4)との密
着性がよい。
A starting material composed of a metal alkoxide or a starting material composed of a ceramic precursor can be injected into the recess (3a) and fired at a temperature of about 150 ° C. lower than the melting point of the light emitting diode chip (2). Thus, a light-transmitting coating material can be formed in a low-temperature region. Therefore,
The coating material (10) is prepared by supplying a liquid starting material to the concave portion (3a) to which the light emitting diode chip (2) is fixed by dropping or the like, and then subjecting the coating material (10) to heat treatment such as baking. Can be formed. Coating material
The firing temperature of (10) is sufficiently lower than the melting point of the light emitting diode chip (2). Since the metal atoms in the coating material (10) are strongly bonded to the oxygen atoms in the metal or ceramic surface oxide layer, the coating material (10) is used for the light emitting diode chip.
(2) Good adhesion to the first external terminal (3) and the second external terminal (4).

【0035】被覆体(18)は、エポキシ系樹脂などから成
る光透過性を有する樹脂封止体であり、周知のポッティ
ング法やトランスファモールド方法等によって容易に形
成することができる。被覆体(18)は発光ダイオードチッ
プ(2)から発生する短波長の光によって黄変・着色の生
じる虞のあるエポキシ系樹脂等から成るが、発光ダイオ
ードチップ(2)との界面には短波長の光によって黄変・
着色が生じ難いコーティング材(10)が介在するため、被
覆体(18)の黄変・着色は実質的に生じない。従って、コ
ーティング材(10)を介して発せられた光を被覆体(18)を
通じてさほど減衰させずに被覆体(18)の外部に導出させ
ることができる。
The cover (18) is a light-transmitting resin sealing body made of an epoxy resin or the like, and can be easily formed by a well-known potting method, a transfer molding method, or the like. The coating (18) is made of an epoxy resin or the like that may be yellowed or colored by short-wavelength light generated from the light-emitting diode chip (2). Yellowing by the light of
Since the coating material (10), which is unlikely to be colored, is present, the coating (18) is not substantially yellowed or colored. Therefore, the light emitted through the coating material (10) can be guided to the outside of the coating (18) without being greatly attenuated through the coating (18).

【0036】発光ダイオードチップ(2)と蛍光物質(13)
の前記組合わせは例示に過ぎず、発光ダイオードチップ
(2)の発光波長に適合する励起波長分布を持ち且つ波長
変換効率が高ければ、いかなる蛍光物質(13)でも使用で
きる。例えばハロ燐酸カルシウム系、燐酸カルシウム
系、珪酸塩系、アルミン酸塩系、タングステン酸塩系等
の蛍光物質(13)から所望の特性を持つ蛍光物質(13)を選
択することができる。
Light emitting diode chip (2) and fluorescent substance (13)
The above combination is only an example, and the light emitting diode chip
Any fluorescent substance (13) can be used as long as it has an excitation wavelength distribution suitable for the emission wavelength of (2) and has high wavelength conversion efficiency. For example, a fluorescent substance (13) having desired characteristics can be selected from fluorescent substances (13) such as calcium halophosphate, calcium phosphate, silicate, aluminate, and tungstate.

【0037】本発明の前記実施の形態は変更が可能であ
る。コーティング材中に蛍光物質を含有しない近紫外線
等を発光する半導体発光装置とすることもできる。ま
た、図3に示すように、基体としてリードフレームを使
用する構造とすることもできる。
The above embodiment of the present invention can be modified. A semiconductor light emitting device that emits near-ultraviolet light or the like that does not contain a fluorescent substance in the coating material can also be provided. Further, as shown in FIG. 3, a structure using a lead frame as a base may be adopted.

【0038】[0038]

【発明の効果】前記のように、本発明では、耐紫外線特
性・耐熱特性に優れるコーティング材により半導体発光
素子を被覆するので、有害物質の浸透を防ぎ、紫外線耐
性に優れ且つ安価で信頼性の高い半導体発光装置が得ら
れる。また、半導体発光素子の底部に形成された一対の
電極は、基体に形成された一対の外部端子にそれぞれ電
気的に接続されるので、半導体発光素子の上部から光を
効率よく取り出すことができ、この光をリード細線に妨
げられたり、コーティング材によって減衰されたりする
ことなく、半導体発光素子から十分な量の光が外部に放
出される。従って、湿度、温度又は紫外線等によって被
覆体及びコーティング材並びに半導体発光素子に対する
劣化が抑制され、半導体発光装置の耐環境性が向上す
る。また、蛍光物質による発光波長変換機能を有しつつ
も信頼性が高く安価な半導体発光装置を得ることができ
る。
As described above, in the present invention, since the semiconductor light emitting device is covered with a coating material having excellent ultraviolet light resistance and heat resistance, harmful substances are prevented from penetrating, and ultraviolet light resistance is excellent, and inexpensive and reliable. A high semiconductor light emitting device can be obtained. Further, since the pair of electrodes formed on the bottom of the semiconductor light emitting element are electrically connected to the pair of external terminals formed on the base, light can be efficiently extracted from the top of the semiconductor light emitting element. A sufficient amount of light is emitted from the semiconductor light emitting element to the outside without being hindered by the thin lead wires or attenuated by the coating material. Therefore, the deterioration of the covering, the coating material, and the semiconductor light emitting element due to humidity, temperature, ultraviolet light, or the like is suppressed, and the environmental resistance of the semiconductor light emitting device is improved. In addition, a highly reliable and inexpensive semiconductor light emitting device having a light emission wavelength conversion function using a fluorescent substance can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 チップ型発光ダイオード装置に適用した本発
明による半導体発光装置の断面図
FIG. 1 is a sectional view of a semiconductor light emitting device according to the present invention applied to a chip type light emitting diode device.

【図2】 半導体発光素子の断面図FIG. 2 is a cross-sectional view of a semiconductor light emitting device.

【図3】 リードフレームを基体として使用する本発明
による実施の形態を示す断面図
FIG. 3 is a sectional view showing an embodiment according to the present invention using a lead frame as a base.

【図4】 従来の発光ダイオード装置の断面図FIG. 4 is a cross-sectional view of a conventional light emitting diode device.

【符号の説明】[Explanation of symbols]

(2)・・半導体発光素子(発光ダイオードチップ)、
(2a)・・絶縁性基板、(2b)・・バッファ層、 (2c)・・
n形半導体領域、 (2d)・・活性層、 (2e)・・半導体
基体、 (2f, 2g)・・電極、 (3)・・第一の外部端子、
(3a)・・凹部、 (3b)・・底部、 (3c)・・側壁、
(3d)・・上端部、 (4)・・第二の外部端子、 (8)・・
被覆体(封止樹脂)、 (10)・・コーティング材、 (11)
・・絶縁性基板、 (20)・・発光ダイオード装置(発光
半導体装置)、
(2) ・ ・ Semiconductor light emitting device (light emitting diode chip),
(2a) ・ ・ Insulating substrate, (2b) ・ buffer layer, (2c) ・ ・
n-type semiconductor region, (2d) active layer, (2e) semiconductor substrate, (2f, 2g) electrode, (3) first external terminal,
(3a) ・ ・ Recess, (3b) ・ ・ Bottom, (3c) ・ ・ Side wall,
(3d) ... top end, (4) ... second external terminal, (8) ...
Coating (encapsulation resin), (10) Coating material, (11)
..Insulating substrates, (20) .. Light emitting diode devices (light emitting semiconductor devices),

フロントページの続き (72)発明者 佐野 武志 埼玉県新座市北野3丁目6番3号 サンケ ン電気株式会社内 Fターム(参考) 5F041 AA09 CA40 DA04 DA16 DA20 DA25 DA43 DA46 DA55 Continued on the front page (72) Inventor Takeshi Sano 3-6-3 Kitano, Niiza-shi, Saitama F-term (reference) in Sanken Electric Co., Ltd. 5F041 AA09 CA40 DA04 DA16 DA20 DA25 DA43 DA46 DA55

Claims (26)

【特許請求の範囲】[Claims] 【請求項1】 基体と、該基体に固着された半導体発光
素子と、該半導体発光素子を被覆するコーティング材と
を備えた半導体発光装置において、 前記コーティング材は、光透過性を有するポリメタロキ
サン又はセラミックであり、 前記半導体発光素子の底部に形成された一対の電極は、
前記基体に形成された一対の外部端子にそれぞれ電気的
に接続されることを特徴とする半導体発光装置。
1. A semiconductor light-emitting device comprising: a base; a semiconductor light-emitting element fixed to the base; and a coating material for covering the semiconductor light-emitting element, wherein the coating material is a light-transmitting polymetalloxane. Or ceramic, a pair of electrodes formed at the bottom of the semiconductor light emitting element,
A semiconductor light emitting device, wherein the semiconductor light emitting device is electrically connected to a pair of external terminals formed on the base.
【請求項2】 前記コーティング材は、メタロキサン
(metaloxane)結合を主体とするガラスである請求項1
に記載の半導体発光装置。
2. The coating material according to claim 1, wherein the coating material is a glass mainly composed of metaloxane bonds.
The semiconductor light emitting device according to claim 1.
【請求項3】 前記コーティング材は、ゲル状のシロキ
サン(siloxane)結合を主体とする請求項1又は2のい
ずれかに記載の半導体発光装置。
3. The semiconductor light emitting device according to claim 1, wherein the coating material mainly has a gel-like siloxane bond.
【請求項4】 前記コーティング材は、金属アルコキシ
ドから形成されたポリメタロキサンから成る請求項1〜
3のいずれか1項に記載の半導体発光装置。
4. The coating material according to claim 1, wherein the coating material comprises a polymetalloxane formed from a metal alkoxide.
4. The semiconductor light emitting device according to claim 3.
【請求項5】 前記コーティング材は、金属アルコキシ
ドからゾル−ゲル法を施して形成されたポリメタロキサ
ンから成る請求項1〜3のいずれか1項に記載の半導体
発光装置。
5. The semiconductor light emitting device according to claim 1, wherein said coating material is made of a polymetalloxane formed from a metal alkoxide by a sol-gel method.
【請求項6】 前記コーティング材は、金属アルコキシ
ド又は金属アルコキシドを含有する溶液をゾル−ゲル法
により加水分解重合して形成されたポリメタロキサンか
ら成る請求項1〜5のいずれか1項に記載の半導体発光
装置。
6. The coating material according to claim 1, wherein the coating material comprises a metal alkoxide or a polymetalloxane formed by hydrolytic polymerization of a solution containing the metal alkoxide by a sol-gel method. Semiconductor light emitting device.
【請求項7】 前記金属アルコキシドはSi(OCH3)4、Si
(OC2H5)4、Si(i-OC3H7)4、Si(t-OC4H9)4等のシリコンテ
トラアルコキシド、ZrSi(OCH3)4、Zr(OC2H5)4、Zr(OC3H
7)4、Si(OC4H9)4、Al(OCH3)3、Al(OC2H5)3、Al(iso-OC3
H7)3、Al(OC4H9)3、Ti(OCH3)4、Ti(OC2H5)4、Ti(iso-OC
3H7)4、Ti(OC4H9)4等の単一金属アルコキシド又はLa[Al
(iso-OC3H7)4]3、Mg[Al(iso-OC3H7)4]2、Mg[Al(sec-OC4
H9)4]2、Ni[Al(iso-OC3H7)4]2、Ba[Zr2(C2H5)9]2、(OC3
H7)2Zr[Al(OC3H7)4]2等の二金属アルコキシド又は多金
属アルコキシドから選択される請求項5又は6に記載の
半導体発光装置。
7. The method according to claim 7, wherein the metal alkoxide is Si (OCH 3 ) 4 , Si
Silicon tetraalkoxides such as (OC 2 H 5 ) 4 , Si (i-OC 3 H 7 ) 4 , Si (t-OC 4 H 9 ) 4 , ZrSi (OCH 3 ) 4 , Zr (OC 2 H 5 ) 4 , Zr (OC 3 H
7) 4, Si (OC 4 H 9) 4, Al (OCH 3) 3, Al (OC 2 H 5) 3, Al (iso-OC 3
H 7) 3, Al (OC 4 H 9) 3, Ti (OCH 3) 4, Ti (OC 2 H 5) 4, Ti (iso-OC
3 H 7) 4, Ti ( OC 4 H 9) 4 and the like single metal alkoxide or La of [Al
(iso-OC 3 H 7 ) 4 ] 3 , Mg [Al (iso-OC 3 H 7 ) 4 ] 2 , Mg [Al (sec-OC 4
H 9) 4] 2, Ni [Al (iso-OC 3 H 7) 4] 2, Ba [Zr 2 (C 2 H 5) 9] 2, (OC 3
H 7) 2 Zr [Al ( OC 3 H 7) 4] The semiconductor light emitting device according to claim 5 or 6 is selected from the bimetallic alkoxide or multi-metal alkoxide 2.
【請求項8】 前記コーティング材は、セラミック前駆
体から形成されたセラミックから成る請求項1〜3のい
ずれか1項に記載の半導体発光装置。
8. The semiconductor light emitting device according to claim 1, wherein the coating material is made of a ceramic formed from a ceramic precursor.
【請求項9】 前記セラミック前駆体は、ポリシラザン
である請求項8に記載の半導体発光装置。
9. The semiconductor light emitting device according to claim 8, wherein said ceramic precursor is polysilazane.
【請求項10】 前記コーティング材は、セラミック前
駆体に熱処理を施して形成されたセラミックから成る請
求項1〜3、8又は9のいずれか1項に記載の半導体発
光装置。
10. The semiconductor light emitting device according to claim 1, wherein said coating material is made of a ceramic formed by subjecting a ceramic precursor to heat treatment.
【請求項11】 前記コーティング材は、前記半導体発
光素子の少なくとも上面を被覆する請求項1〜3のいず
れか1項に記載の半導体発光装置。
11. The semiconductor light emitting device according to claim 1, wherein the coating material covers at least an upper surface of the semiconductor light emitting element.
【請求項12】 前記コーティング材は、前記半導体発
光素子の下面を含む全面を被覆するように形成された請
求項11に記載の半導体発光装置。
12. The semiconductor light emitting device according to claim 11, wherein the coating material is formed so as to cover an entire surface including a lower surface of the semiconductor light emitting element.
【請求項13】 前記基体は、前記コーティング材が充
填された凹部を有する請求項1に記載の半導体発光装
置。
13. The semiconductor light emitting device according to claim 1, wherein the base has a concave portion filled with the coating material.
【請求項14】 前記基体は絶縁性基板である請求項1
に記載の半導体発光装置。
14. The substrate according to claim 1, wherein the substrate is an insulating substrate.
The semiconductor light emitting device according to claim 1.
【請求項15】 前記基体はリードフレームである請求
項1に記載の半導体発光装置。
15. The semiconductor light emitting device according to claim 1, wherein the base is a lead frame.
【請求項16】 前記半導体発光素子は、365nm〜5
50nmの光波長で発光する請求項1〜15のいずれか1
項に記載の半導体発光装置。
16. The semiconductor light emitting device according to claim 3, wherein
The light according to any one of claims 1 to 15, which emits light at a light wavelength of 50 nm.
13. The semiconductor light emitting device according to item 9.
【請求項17】 前記半導体発光素子は、光透過性を有
する半導体基体と、窒化ガリウム系化合物半導体から成
る半導体層とから構成され、前記半導体基体は光取出面
を構成する一方の主面と、前記半導体層が形成される他
方の主面とを有し、前記半導体層は前記絶縁性基板に対
向して配置されて前記一対の外部電極に接続され、前記
半導体基体の一方の主面は前記絶縁性基板に対向する側
とは反対側に配置された請求項16に記載の半導体発光
装置。
17. The semiconductor light emitting device comprises: a semiconductor substrate having a light transmitting property; and a semiconductor layer made of a gallium nitride-based compound semiconductor, wherein the semiconductor substrate has one main surface constituting a light extraction surface; And the other main surface on which the semiconductor layer is formed, wherein the semiconductor layer is arranged to face the insulating substrate and connected to the pair of external electrodes, and one main surface of the semiconductor base is 17. The semiconductor light emitting device according to claim 16, wherein the semiconductor light emitting device is arranged on a side opposite to a side facing the insulating substrate.
【請求項18】 前記コーティング材は、前記半導体発
光素子から照射された光の少なくとも一部を受光して波
長変換を行う蛍光物質を含む請求項1〜17のいずれか
1項に記載の半導体発光装置。
18. The semiconductor light emitting device according to claim 1, wherein the coating material includes a fluorescent substance that receives at least a part of light emitted from the semiconductor light emitting element and performs wavelength conversion. apparatus.
【請求項19】 前記蛍光物質は、前記半導体発光素子
から照射された光の少なくとも一部を吸収し、これより
も長い波長の光を放出する請求項18に記載の半導体発
光装置。
19. The semiconductor light emitting device according to claim 18, wherein the fluorescent substance absorbs at least a part of light emitted from the semiconductor light emitting element and emits light having a longer wavelength.
【請求項20】 前記コーティング材の外部には、前記
半導体発光素子から照射された光と前記蛍光物質により
波長変換された光とが混合されて放出される請求項18
又は19に記載の半導体発光装置。
20. The light emitted from the semiconductor light emitting device and the light wavelength-converted by the fluorescent substance are mixed and emitted to the outside of the coating material.
Or a semiconductor light emitting device according to item 19.
【請求項21】 前記コーティング材は、被覆体により
被覆された請求項1〜20のいずれか1項に記載の半導
体発光装置。
21. The semiconductor light emitting device according to claim 1, wherein the coating material is covered with a cover.
【請求項22】 前記被覆体は、光散乱材が混入された
樹脂により形成された請求項21に記載の半導体発光装
置。
22. The semiconductor light emitting device according to claim 21, wherein the cover is formed of a resin mixed with a light scattering material.
【請求項23】 前記半導体発光素子から照射された光
は、前記コーティング材を透過して前記被覆体の外部に
放出される請求項22に記載の半導体発光装置。
23. The semiconductor light emitting device according to claim 22, wherein the light emitted from the semiconductor light emitting element passes through the coating material and is emitted outside the cover.
【請求項24】 前記被覆体は前記凹部に嵌合し、前記
コーティング材は前記凹部の底面と前記被覆体の間に形
成された請求項21〜23のいずれか1項に記載の半導
体発光装置。
24. The semiconductor light emitting device according to claim 21, wherein the cover is fitted in the recess, and the coating material is formed between a bottom surface of the recess and the cover. .
【請求項25】 前記基体を構成する絶縁性基板の一方
の主面に凹部が形成され、該凹部の底面に前記半導体発
光素子が固着され、前記半導体発光素子の一対の電極が
前記絶縁性基板の一方の主面に形成された一対の外部端
子に電気的に接続された請求項1に記載の半導体発光装
置。
25. A concave portion is formed in one main surface of an insulating substrate constituting the base, the semiconductor light emitting element is fixed to a bottom surface of the concave portion, and a pair of electrodes of the semiconductor light emitting element is connected to the insulating substrate. 2. The semiconductor light emitting device according to claim 1, wherein the semiconductor light emitting device is electrically connected to a pair of external terminals formed on one main surface of the semiconductor light emitting device.
【請求項26】 前記基体を構成するリードフレーム
は、一対の外部端子を有し、該外部端子の一方には凹部
が形成され、該凹部の底面に前記半導体発光素子が固着
され、前記半導体発光素子の一対の電極が前記一対の外
部端子に電気的に接続された請求項1に記載の半導体発
光装置。
26. A lead frame constituting the base has a pair of external terminals, a recess is formed in one of the external terminals, and the semiconductor light emitting element is fixed to a bottom surface of the recess, and 2. The semiconductor light emitting device according to claim 1, wherein a pair of electrodes of the element are electrically connected to the pair of external terminals.
JP16158599A 1999-06-08 1999-06-08 Semiconductor light emitting device Expired - Fee Related JP3412152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16158599A JP3412152B2 (en) 1999-06-08 1999-06-08 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16158599A JP3412152B2 (en) 1999-06-08 1999-06-08 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2000349347A true JP2000349347A (en) 2000-12-15
JP3412152B2 JP3412152B2 (en) 2003-06-03

Family

ID=15737934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16158599A Expired - Fee Related JP3412152B2 (en) 1999-06-08 1999-06-08 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3412152B2 (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203989A (en) * 2000-12-21 2002-07-19 Lumileds Lighting Us Llc Light emitting device and its manufacturing method
JP2002314136A (en) * 2001-04-09 2002-10-25 Toyoda Gosei Co Ltd Semiconductor light emitting device
WO2003001612A1 (en) * 2001-06-20 2003-01-03 Nichia Corporation Semiconductor device and its fabriction method
JP2005235847A (en) * 2004-02-17 2005-09-02 Toyoda Gosei Co Ltd Light emitting device
JP2006128700A (en) * 2004-10-29 2006-05-18 Ledengin Inc Light-emitting device having material adaptive to heat insulation and refractive index
JP2006519481A (en) * 2003-02-28 2006-08-24 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Illumination module and method of manufacturing the illumination module
US7670872B2 (en) 2004-10-29 2010-03-02 LED Engin, Inc. (Cayman) Method of manufacturing ceramic LED packages
US7772609B2 (en) 2004-10-29 2010-08-10 Ledengin, Inc. (Cayman) LED package with structure and materials for high heat dissipation
US7963817B2 (en) 2007-09-18 2011-06-21 Nichia Corporation Phosphor-containing molded member, method of manufacturing the same, and light emitting device having the same
US7985000B2 (en) 2009-04-08 2011-07-26 Ledengin, Inc. Lighting apparatus having multiple light-emitting diodes with individual light-conversion layers
JP2011238778A (en) * 2010-05-11 2011-11-24 Konica Minolta Opto Inc Method for manufacturing wavelength conversion element, wavelength conversion element and light emitting device
US8075165B2 (en) 2008-10-14 2011-12-13 Ledengin, Inc. Total internal reflection lens and mechanical retention and locating device
JP2012060173A (en) * 2003-07-31 2012-03-22 Philips Lumileds Lightng Co Llc Mount for semiconductor light-emitting device
WO2012090999A1 (en) * 2010-12-28 2012-07-05 コニカミノルタオプト株式会社 Method for manufacturing light emitting device
KR101181112B1 (en) * 2005-10-27 2012-09-14 엘지이노텍 주식회사 Light-emitting diode, manufacturing method for the light-emitting diode and light-emitting diode module
WO2012124426A1 (en) 2011-03-11 2012-09-20 コニカミノルタオプト株式会社 Method for manufacturing light emitting device and mixed phosphor solution
US8294357B2 (en) 2010-05-12 2012-10-23 Konica Minolta Opto, Inc. Wavelength conversion element and light emitting device
US8303141B2 (en) 2009-12-17 2012-11-06 Ledengin, Inc. Total internal reflection lens with integrated lamp cover
US8324641B2 (en) 2007-06-29 2012-12-04 Ledengin, Inc. Matrix material including an embedded dispersion of beads for a light-emitting device
US8384097B2 (en) 2009-04-08 2013-02-26 Ledengin, Inc. Package for multiple light emitting diodes
WO2013054658A1 (en) * 2011-10-12 2013-04-18 コニカミノルタアドバンストレイヤー株式会社 Wavelength conversion element and method for manufacturing same, light-emitting device and method for manufacturing same, and liquid mixture
US8507300B2 (en) 2008-12-24 2013-08-13 Ledengin, Inc. Light-emitting diode with light-conversion layer
WO2013121903A1 (en) * 2012-02-13 2013-08-22 コニカミノルタ株式会社 Wavelength conversion element and method for manufacturing same, and light-emitting device and method for manufacturing same
US8598793B2 (en) 2011-05-12 2013-12-03 Ledengin, Inc. Tuning of emitter with multiple LEDs to a single color bin
US8643051B2 (en) 2009-12-25 2014-02-04 Konica Minolta Advanced Layers, Inc. Light emission device
US8816369B2 (en) 2004-10-29 2014-08-26 Led Engin, Inc. LED packages with mushroom shaped lenses and methods of manufacturing LED light-emitting devices
US8858022B2 (en) 2011-05-05 2014-10-14 Ledengin, Inc. Spot TIR lens system for small high-power emitter
US8912023B2 (en) 2009-04-08 2014-12-16 Ledengin, Inc. Method and system for forming LED light emitters
JP2015015485A (en) * 2008-11-28 2015-01-22 株式会社小糸製作所 Light emitting module, and lighting fixture unit
JPWO2013051281A1 (en) * 2011-10-07 2015-03-30 コニカミノルタ株式会社 Manufacturing method of LED device and phosphor dispersion used therefor
US9080729B2 (en) 2010-04-08 2015-07-14 Ledengin, Inc. Multiple-LED emitter for A-19 lamps
US9234801B2 (en) 2013-03-15 2016-01-12 Ledengin, Inc. Manufacturing method for LED emitter with high color consistency
US9345095B2 (en) 2010-04-08 2016-05-17 Ledengin, Inc. Tunable multi-LED emitter module
US9406654B2 (en) 2014-01-27 2016-08-02 Ledengin, Inc. Package for high-power LED devices
US9528665B2 (en) 2011-05-12 2016-12-27 Ledengin, Inc. Phosphors for warm white emitters
US9530943B2 (en) 2015-02-27 2016-12-27 Ledengin, Inc. LED emitter packages with high CRI
US9642206B2 (en) 2014-11-26 2017-05-02 Ledengin, Inc. Compact emitter for warm dimming and color tunable lamp
US9897284B2 (en) 2012-03-28 2018-02-20 Ledengin, Inc. LED-based MR16 replacement lamp
US10219345B2 (en) 2016-11-10 2019-02-26 Ledengin, Inc. Tunable LED emitter with continuous spectrum
DE10325951B4 (en) * 2002-06-13 2019-07-11 Lumileds Holding B.V. Light-emitting diode with associated contact scheme
US10575374B2 (en) 2018-03-09 2020-02-25 Ledengin, Inc. Package for flip-chip LEDs with close spacing of LED chips
US11032884B2 (en) 2012-03-02 2021-06-08 Ledengin, Inc. Method for making tunable multi-led emitter module

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203989A (en) * 2000-12-21 2002-07-19 Lumileds Lighting Us Llc Light emitting device and its manufacturing method
JP2002314136A (en) * 2001-04-09 2002-10-25 Toyoda Gosei Co Ltd Semiconductor light emitting device
WO2003001612A1 (en) * 2001-06-20 2003-01-03 Nichia Corporation Semiconductor device and its fabriction method
DE10325951B4 (en) * 2002-06-13 2019-07-11 Lumileds Holding B.V. Light-emitting diode with associated contact scheme
JP4791951B2 (en) * 2003-02-28 2011-10-12 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Illumination module and method of manufacturing the illumination module
JP2006519481A (en) * 2003-02-28 2006-08-24 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Illumination module and method of manufacturing the illumination module
JP2012060173A (en) * 2003-07-31 2012-03-22 Philips Lumileds Lightng Co Llc Mount for semiconductor light-emitting device
JP2005235847A (en) * 2004-02-17 2005-09-02 Toyoda Gosei Co Ltd Light emitting device
JP4534513B2 (en) * 2004-02-17 2010-09-01 豊田合成株式会社 Light emitting device
US8134292B2 (en) 2004-10-29 2012-03-13 Ledengin, Inc. Light emitting device with a thermal insulating and refractive index matching material
US7772609B2 (en) 2004-10-29 2010-08-10 Ledengin, Inc. (Cayman) LED package with structure and materials for high heat dissipation
JP2006128700A (en) * 2004-10-29 2006-05-18 Ledengin Inc Light-emitting device having material adaptive to heat insulation and refractive index
US7670872B2 (en) 2004-10-29 2010-03-02 LED Engin, Inc. (Cayman) Method of manufacturing ceramic LED packages
US8816369B2 (en) 2004-10-29 2014-08-26 Led Engin, Inc. LED packages with mushroom shaped lenses and methods of manufacturing LED light-emitting devices
KR101181112B1 (en) * 2005-10-27 2012-09-14 엘지이노텍 주식회사 Light-emitting diode, manufacturing method for the light-emitting diode and light-emitting diode module
US8343784B2 (en) 2005-10-27 2013-01-01 Lg Innotek Co., Ltd. Light emitting diode device, manufacturing method of the light emitting diode device and mounting structure of the light emitting diode device
US8324641B2 (en) 2007-06-29 2012-12-04 Ledengin, Inc. Matrix material including an embedded dispersion of beads for a light-emitting device
US7963817B2 (en) 2007-09-18 2011-06-21 Nichia Corporation Phosphor-containing molded member, method of manufacturing the same, and light emitting device having the same
US8075165B2 (en) 2008-10-14 2011-12-13 Ledengin, Inc. Total internal reflection lens and mechanical retention and locating device
US8246216B2 (en) 2008-10-14 2012-08-21 Ledengin, Inc. Total internal reflection lens with pedestals for LED emitter
US8430537B2 (en) 2008-10-14 2013-04-30 Ledengin, Inc. Total internal reflection lens for color mixing
JP2015015485A (en) * 2008-11-28 2015-01-22 株式会社小糸製作所 Light emitting module, and lighting fixture unit
US8507300B2 (en) 2008-12-24 2013-08-13 Ledengin, Inc. Light-emitting diode with light-conversion layer
US9222630B2 (en) 2009-04-08 2015-12-29 Ledengin, Inc. Method and system for forming LED light emitters
US8384097B2 (en) 2009-04-08 2013-02-26 Ledengin, Inc. Package for multiple light emitting diodes
US7985000B2 (en) 2009-04-08 2011-07-26 Ledengin, Inc. Lighting apparatus having multiple light-emitting diodes with individual light-conversion layers
US9416928B2 (en) 2009-04-08 2016-08-16 Ledengin, Inc. Method and system for forming LED light emitters
US8912023B2 (en) 2009-04-08 2014-12-16 Ledengin, Inc. Method and system for forming LED light emitters
US9554457B2 (en) 2009-04-08 2017-01-24 Ledengin, Inc. Package for multiple light emitting diodes
US8716725B2 (en) 2009-04-08 2014-05-06 Ledengin, Inc. Package for multiple light emitting diodes
US8303141B2 (en) 2009-12-17 2012-11-06 Ledengin, Inc. Total internal reflection lens with integrated lamp cover
US8643051B2 (en) 2009-12-25 2014-02-04 Konica Minolta Advanced Layers, Inc. Light emission device
US10149363B2 (en) 2010-04-08 2018-12-04 Ledengin, Inc. Method for making tunable multi-LED emitter module
US9345095B2 (en) 2010-04-08 2016-05-17 Ledengin, Inc. Tunable multi-LED emitter module
US9482407B2 (en) 2010-04-08 2016-11-01 Ledengin, Inc. Spot TIR lens system for small high-power emitter
US9080729B2 (en) 2010-04-08 2015-07-14 Ledengin, Inc. Multiple-LED emitter for A-19 lamps
JP2011238778A (en) * 2010-05-11 2011-11-24 Konica Minolta Opto Inc Method for manufacturing wavelength conversion element, wavelength conversion element and light emitting device
US8294357B2 (en) 2010-05-12 2012-10-23 Konica Minolta Opto, Inc. Wavelength conversion element and light emitting device
JP5803941B2 (en) * 2010-12-28 2015-11-04 コニカミノルタ株式会社 Method for manufacturing light emitting device
WO2012090999A1 (en) * 2010-12-28 2012-07-05 コニカミノルタオプト株式会社 Method for manufacturing light emitting device
JPWO2012090999A1 (en) * 2010-12-28 2014-06-05 コニカミノルタ株式会社 Method for manufacturing light emitting device
JP5761330B2 (en) * 2011-03-11 2015-08-12 コニカミノルタ株式会社 Method for manufacturing light emitting device and phosphor mixture
US9260654B2 (en) 2011-03-11 2016-02-16 Konica Minolta, Inc. Manufacturing method for light emitting device and phosphor mixture
WO2012124426A1 (en) 2011-03-11 2012-09-20 コニカミノルタオプト株式会社 Method for manufacturing light emitting device and mixed phosphor solution
US8858022B2 (en) 2011-05-05 2014-10-14 Ledengin, Inc. Spot TIR lens system for small high-power emitter
US9024529B2 (en) 2011-05-12 2015-05-05 Ledengin, Inc. Tuning of emitter with multiple LEDs to a single color bin
US8773024B2 (en) 2011-05-12 2014-07-08 Ledengin, Inc. Tuning of emitter with multiple LEDs to a single color bin
US9528665B2 (en) 2011-05-12 2016-12-27 Ledengin, Inc. Phosphors for warm white emitters
US9816691B2 (en) 2011-05-12 2017-11-14 Ledengin, Inc. Method and system for forming LED light emitters
US8598793B2 (en) 2011-05-12 2013-12-03 Ledengin, Inc. Tuning of emitter with multiple LEDs to a single color bin
JPWO2013051281A1 (en) * 2011-10-07 2015-03-30 コニカミノルタ株式会社 Manufacturing method of LED device and phosphor dispersion used therefor
US9318646B2 (en) 2011-10-07 2016-04-19 Konica Minolta, Inc. LED device manufacturing method and fluorescent material-dispersed solution used in same
WO2013054658A1 (en) * 2011-10-12 2013-04-18 コニカミノルタアドバンストレイヤー株式会社 Wavelength conversion element and method for manufacturing same, light-emitting device and method for manufacturing same, and liquid mixture
WO2013121903A1 (en) * 2012-02-13 2013-08-22 コニカミノルタ株式会社 Wavelength conversion element and method for manufacturing same, and light-emitting device and method for manufacturing same
US11032884B2 (en) 2012-03-02 2021-06-08 Ledengin, Inc. Method for making tunable multi-led emitter module
US9897284B2 (en) 2012-03-28 2018-02-20 Ledengin, Inc. LED-based MR16 replacement lamp
US9234801B2 (en) 2013-03-15 2016-01-12 Ledengin, Inc. Manufacturing method for LED emitter with high color consistency
US9406654B2 (en) 2014-01-27 2016-08-02 Ledengin, Inc. Package for high-power LED devices
US9642206B2 (en) 2014-11-26 2017-05-02 Ledengin, Inc. Compact emitter for warm dimming and color tunable lamp
US10172206B2 (en) 2014-11-26 2019-01-01 Ledengin, Inc. Compact emitter for warm dimming and color tunable lamp
US9530943B2 (en) 2015-02-27 2016-12-27 Ledengin, Inc. LED emitter packages with high CRI
US10219345B2 (en) 2016-11-10 2019-02-26 Ledengin, Inc. Tunable LED emitter with continuous spectrum
US10575374B2 (en) 2018-03-09 2020-02-25 Ledengin, Inc. Package for flip-chip LEDs with close spacing of LED chips

Also Published As

Publication number Publication date
JP3412152B2 (en) 2003-06-03

Similar Documents

Publication Publication Date Title
JP3412152B2 (en) Semiconductor light emitting device
JP3503131B2 (en) Semiconductor light emitting device
JP3337000B2 (en) Semiconductor light emitting device
JP3307316B2 (en) Semiconductor light emitting device
JP2924961B1 (en) Semiconductor light emitting device and method of manufacturing the same
TW533604B (en) Light emitting device
US7301175B2 (en) Light emitting apparatus and method of manufacturing the same
US6924514B2 (en) Light-emitting device and process for producing thereof
JP4450547B2 (en) Method for manufacturing light emitting device
CN103918093B (en) Semiconductor light emitting device
US20080303044A1 (en) Semiconductor light-emitting device
JP4792751B2 (en) Light emitting device and manufacturing method thereof
JP5326182B2 (en) Light emitting device, phosphor for light emitting element, and method for manufacturing the same
JP4266234B2 (en) Manufacturing method of semiconductor light emitting device
JP4661032B2 (en) Light emitting device and manufacturing method thereof
WO2002089219A1 (en) Light-emitting apparatus
WO2004032251A1 (en) White light emitting device
JP2003046141A (en) Light emitting device and method of manufacturing the same
KR20150005767A (en) Wavelength-converted element, manufacturing method of the same and semiconductor light emitting apparatus having the same
JP2002173675A (en) Fluorescence particle having coated layer and method for producing the same
JP4418685B2 (en) Light emitting device
JP2003179270A (en) Semiconductor light emitting device
JP2001085747A (en) Semiconductor light-emitting device
JP3230518B2 (en) Semiconductor light emitting device
JP3275308B2 (en) Semiconductor light emitting device and manufacturing method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080328

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080328

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090328

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090328

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100328

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100328

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees