JP2002314136A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JP2002314136A
JP2002314136A JP2001110694A JP2001110694A JP2002314136A JP 2002314136 A JP2002314136 A JP 2002314136A JP 2001110694 A JP2001110694 A JP 2001110694A JP 2001110694 A JP2001110694 A JP 2001110694A JP 2002314136 A JP2002314136 A JP 2002314136A
Authority
JP
Japan
Prior art keywords
light emitting
semiconductor light
emitting device
fluorescent
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001110694A
Other languages
Japanese (ja)
Inventor
Takemasa Yasukawa
武正 安川
Takeshi Sano
武志 佐野
Nobuo Kobayashi
信夫 小林
Yasuhiro Maruo
泰弘 丸尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Toyoda Gosei Co Ltd
Original Assignee
Sanken Electric Co Ltd
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd, Toyoda Gosei Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2001110694A priority Critical patent/JP2002314136A/en
Publication of JP2002314136A publication Critical patent/JP2002314136A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/27Retrofit light sources for lighting devices with two fittings for each light source, e.g. for substitution of fluorescent tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2103/00Elongate light sources, e.g. fluorescent tubes
    • F21Y2103/10Elongate light sources, e.g. fluorescent tubes comprising a linear array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Abstract

PROBLEM TO BE SOLVED: To actuate a semiconductor light emitting device, without using any special booster circuit, etc. SOLUTION: The semiconductor light emitting device comprises a tubular fluorescent member (1), a semiconductor light emitting element (3) disposed in the member (1) and a plurality of outer leads (4, 5) which are fixed to both ends of the member (1) and electrically connected to the light emitting element (3). The outer leads (4, 5) comprise leading parts (4a, 5a) extending out of the member (1) and terminals (4b, 5b) which are disposed in the member (1) and electrically connected to the element (3). The member (1) has a light transmission to a light emitted from the element (3) and comprises a fluorescent substance for absorbing the light emitted from the element (3) to convert to other light emitting wavelengths. This actuates the light emitting element (3) to light at a low voltage, without needing a booster circuit generating high frequency noise.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体発光装置、
特に蛍光部材内に配置された半導体発光素子から照射さ
れる光を波長変換して外部に放出する半導体発光装置に
関する。
The present invention relates to a semiconductor light emitting device,
In particular, the present invention relates to a semiconductor light emitting device that converts the wavelength of light emitted from a semiconductor light emitting element disposed in a fluorescent member and emits the light to the outside.

【0002】[0002]

【従来の技術】図28に示すように、従来の冷陰極蛍光
管を構成するガラス管(11)の内面には蛍光物質を含む蛍
光体層(12)が塗布され、管状のガラス管(11)の内部は真
空にされ且つ少量の水銀とアルゴン、ネオン等の不活性
ガスが注入され、ガラス管(11)の両端が封止される。ガ
ラス管(11)の一端と他端とにそれぞれ設けられた一対の
外部リード(4, 5)はガラス管(11)内部の一対の放電電極
(51, 52)に電気的に接続される。
2. Description of the Related Art As shown in FIG. 28, a phosphor layer (12) containing a fluorescent substance is applied on the inner surface of a glass tube (11) constituting a conventional cold cathode fluorescent tube, and a tubular glass tube (11) is formed. The inside of) is evacuated and a small amount of mercury and an inert gas such as argon or neon are injected, and both ends of the glass tube (11) are sealed. A pair of external leads (4, 5) provided at one end and the other end of the glass tube (11) are a pair of discharge electrodes inside the glass tube (11).
(51, 52).

【0003】一対の外部リード(4, 5)間に電圧を印加す
ると、放電電極(51, 52)間に放電が発生し、水銀は電気
エネルギを受けて励起されて紫外線を発生し、ガラス管
(11)の内面の蛍光体層(12)に紫外線が照射されると、紫
外線で励起された蛍光体層(12)は、蛍光体(2)の種類に
より定められる波長の可視光を発し、ガラス管(11)を通
して可視光は外部に放出される。赤色光、緑色光、青色
光の三原色光を発する三種の蛍光体(2)を適当な比率で
混合して蛍光体層(12)に用いると、三種の蛍光体(2)の
発光が混色され、光三原色成分を持つ白色光を冷陰極蛍
光管から発光して三波長冷陰極蛍光管を構成することが
できる。三波長冷陰極蛍光管は、透過型カラー液晶表示
装置の白色バックライト光源としてノートパソコン等に
多用されている。
When a voltage is applied between a pair of external leads (4, 5), a discharge occurs between the discharge electrodes (51, 52), and the mercury is excited by receiving electric energy to generate ultraviolet rays, and a glass tube is produced.
When ultraviolet light is applied to the phosphor layer (12) on the inner surface of (11), the phosphor layer (12) excited by ultraviolet light emits visible light having a wavelength determined by the type of the phosphor (2), Visible light is emitted outside through the glass tube (11). When three kinds of phosphors (2) emitting three primary colors of red light, green light and blue light are mixed in an appropriate ratio and used for the phosphor layer (12), the emission of the three kinds of phosphors (2) is mixed. In addition, a three-wavelength cold cathode fluorescent tube can be formed by emitting white light having three primary color components from the cold cathode fluorescent tube. A three-wavelength cold cathode fluorescent tube is frequently used in a notebook computer or the like as a white backlight light source of a transmission type color liquid crystal display device.

【0004】[0004]

【発明が解決しようとする課題】従来の冷陰極蛍光管に
は種々の問題がある。第1に、放電可能な高電圧を発生
する昇圧型インバータ等の特殊な昇圧回路を必要とす
る。第2に、インバータのスイッチング動作によって発
生する高周波ノイズにより、冷陰極蛍光管を組み込む装
置に内蔵されたマイクロコンピュータ等に誤動作を誘引
しやすい。第3に、発生する熱量が比較的大きいので、
放熱機能を向上する必要がある。第4に、周囲温度によ
って点灯条件が影響を受け、低温環境では安定動作領域
まで時間がかかる。第5に、蛍光管を細径化して小型化
すると、放電しにくくなる。第6に、放電管内に充填さ
れる有害物質の水銀を廃棄すると、環境汚染の原因とな
る。
The conventional cold cathode fluorescent lamps have various problems. First, a special boosting circuit such as a boosting inverter that generates a dischargeable high voltage is required. Secondly, high frequency noise generated by the switching operation of the inverter easily induces a microcomputer or the like built in a device incorporating the cold cathode fluorescent tube to malfunction. Third, because the amount of heat generated is relatively large,
It is necessary to improve the heat dissipation function. Fourth, the lighting conditions are affected by the ambient temperature, and it takes a long time to reach a stable operation region in a low-temperature environment. Fifth, when the fluorescent tube is reduced in diameter to make it smaller, discharge becomes difficult. Sixth, discarding mercury, which is a harmful substance filled in the discharge tube, causes environmental pollution.

【0005】本発明は、特殊な昇圧回路等の必要がない
半導体発光装置を提供することを目的とする。本発明
は、高周波ノイズを発生しない半導体発光装置を提供す
ることを目的とする。本発明は、発熱の少ない半導体発
光装置を提供することを目的とする。本発明は、使用す
る環境条件に点灯条件が影響されない半導体発光装置を
提供することを目的とする。本発明は、細径化できる半
導体発光装置を提供することを目的とする。本発明は、
環境汚染を発生する水銀を使用しない細長い半導体発光
装置を提供することを目的とする。即ち、本発明の目的
は、冷陰極蛍光管に発生する種々の欠点のない代替発光
装置を提供することにある。
An object of the present invention is to provide a semiconductor light emitting device which does not require a special booster circuit or the like. An object of the present invention is to provide a semiconductor light emitting device that does not generate high frequency noise. An object of the present invention is to provide a semiconductor light emitting device that generates less heat. An object of the present invention is to provide a semiconductor light emitting device in which lighting conditions are not affected by environmental conditions used. An object of the present invention is to provide a semiconductor light emitting device that can be reduced in diameter. The present invention
It is an object of the present invention to provide an elongated semiconductor light emitting device that does not use mercury that generates environmental pollution. That is, an object of the present invention is to provide an alternative light emitting device which does not have various disadvantages generated in a cold cathode fluorescent tube.

【0006】[0006]

【課題を解決するための手段】本発明による半導体発光
装置は、管状の蛍光部材(1)と、蛍光部材(1)内に配置さ
れた半導体発光素子(3)と、蛍光部材(1)の両端に固定さ
れ且つ半導体発光素子(3)に電気的に接続された複数の
外部リード(4, 5)とを備えている。外部リード(4,5)の
各々は、蛍光部材(1)の外部に延出する導出部(4a, 5a)
と、蛍光部材(1)の内部に配置され且つ半導体発光素子
(3)に電気的に接続された端子部(4b, 5b)とを備えてい
る。蛍光部材(1)は、半導体発光素子(3)から照射される
光に対して光透過性を有し且つ半導体発光素子(3)から
照射される光を吸収して他の発光波長に変換する蛍光物
質を具備する。従来の冷陰極蛍光管とは異なり、高周波
ノイズを発生する昇圧回路を必要とせず、低電圧で半導
体発光素子(3)を点灯することができる。
A semiconductor light emitting device according to the present invention comprises a tubular fluorescent member (1), a semiconductor light emitting element (3) disposed in the fluorescent member (1), and a fluorescent member (1). A plurality of external leads (4, 5) fixed to both ends and electrically connected to the semiconductor light emitting element (3) are provided. Each of the external leads (4, 5) has a lead portion (4a, 5a) extending outside the fluorescent member (1).
And a semiconductor light emitting element disposed inside the fluorescent member (1)
And (3) a terminal portion (4b, 5b) electrically connected to (3). The fluorescent member (1) has a light transmitting property with respect to light emitted from the semiconductor light emitting element (3), and absorbs light emitted from the semiconductor light emitting element (3) and converts the light to another emission wavelength. It has a fluorescent material. Unlike conventional cold-cathode fluorescent tubes, a booster circuit that generates high-frequency noise is not required, and the semiconductor light-emitting element (3) can be turned on at a low voltage.

【0007】本発明の実施の形態では、半導体発光素子
(3)は、窒化ガリウム系化合物半導体より成る発光層を
有し且つ発光波長のピークが420nm〜490nmの窒化
ガリウム系LEDチップである。蛍光物質は、例えば、
化学式(Y1−x,Gd)(Al1−y,Ga)
12:Ce(但し、0≦x≦0.5、0≦y≦0.5、0.001
≦z≦0.5)で表される。発光波長のピークが420nm
〜490nmの青色LEDチップを半導体発光素子(3)と
して使用し、YAG:Ce系蛍光体(2)と組み合わせれ
ば、半導体発光素子(3)の青色光とYAG:Ce系蛍光
体(2)の発光である幅の広いスペクトルを持つ黄色光と
が混色されるため、半導体発光装置から外部に放出され
る光を幅の広いスペクトルを持った白色光とすることが
できる。
In an embodiment of the present invention, a semiconductor light emitting device
(3) is a gallium nitride-based LED chip having a light-emitting layer made of a gallium nitride-based compound semiconductor and having an emission wavelength peak of 420 nm to 490 nm. The fluorescent substance is, for example,
Formula (Y 1-x, Gd x ) 3 (Al 1-y, Ga y) 5 O
12 : Ce z (however, 0 ≦ x ≦ 0.5, 0 ≦ y ≦ 0.5, 0.001
≦ z ≦ 0.5). 420nm emission wavelength peak
If a blue LED chip of 4490 nm is used as the semiconductor light emitting device (3) and combined with the YAG: Ce based phosphor (2), the blue light of the semiconductor light emitting device (3) and the YAG: Ce based phosphor (2) The light emitted from the semiconductor light emitting device is mixed with the yellow light having a wide spectrum, which is a light emission of the semiconductor light emitting device, so that white light having a wide spectrum can be obtained.

【0008】半導体発光素子(3)は、窒化ガリウム系化
合物半導体より成る発光層を有し且つ発光波長のピーク
が365nm〜420nmの窒化ガリウム系化合物半導体よ
り成る発光層を有し且つ発光波長のピークが365nm〜
420nmの窒化ガリウム系LEDチップであり、蛍光物
質は、420nm〜490nmに発光ピークを有する青色蛍
光物質と、520nm〜570nmに発光ピークを有する緑
色蛍光物質と、590nm〜700nmに発光ピークを有す
る赤色蛍光物質とから成り、半導体発光素子(3)から照
射される波長の光を反射し且つ蛍光体から照射される波
長の光を透過する干渉フィルタ(13)を蛍光部材(1)の外
面又は内面に形成した半導体発光装置を使用すれば、蛍
光体の青色光、緑色光、赤色光の三原色成分を持ち且つ
混色による白色光を半導体発光装置の外部に放出するこ
とができる。
The semiconductor light-emitting device (3) has a light-emitting layer made of a gallium nitride-based compound semiconductor, has a light-emitting layer made of a gallium nitride-based compound semiconductor having a peak emission wavelength of 365 to 420 nm, and has a light-emitting wavelength peak. Is 365 nm
A 420 nm gallium nitride LED chip, wherein the fluorescent materials are a blue fluorescent material having an emission peak at 420 nm to 490 nm, a green fluorescent material having an emission peak at 520 nm to 570 nm, and a red fluorescent material having an emission peak at 590 nm to 700 nm. An interference filter (13) made of a material and reflecting light of a wavelength emitted from the semiconductor light emitting element (3) and transmitting light of a wavelength emitted from the phosphor is provided on the outer surface or inner surface of the fluorescent member (1). If the formed semiconductor light emitting device is used, it is possible to emit white light due to color mixture having three primary color components of blue, green, and red light of the phosphor to the outside of the semiconductor light emitting device.

【0009】蛍光部材(1)は、管状に形成された第1の
透光性部材(11)と、第1の透光性部材(11)の内面に蛍光
物質が塗布される蛍光体層(12)とを備えている。蛍光体
層(12)を別途形成する代わりに、蛍光物質を内部に包含
し且つ管状に形成された第1の透光性部材(11)を使用す
ることもできる。
The fluorescent member (1) includes a first light-transmitting member (11) formed in a tubular shape, and a phosphor layer (10) on which an inner surface of the first light-transmitting member (11) is coated with a fluorescent substance. 12). Instead of separately forming the phosphor layer (12), a first light-transmissive member (11) containing a fluorescent substance therein and formed in a tubular shape may be used.

【0010】管状に形成された第1の透光性部材(11)
と、第1の透光性部材(11)の内部に充填される第2の透
光性部材(14)とにより蛍光部材(1)を構成するとき、第
1の透光性部材(11)に蛍光物質を塗布又は含有させるこ
とができる。光透過性を有するガラス又は樹脂により管
状に形成された第1の透光性部材(11)と、第1の透光性
部材(11)の内部に充填され且つ光透過性を有する樹脂に
より形成された第2の透光性部材(14)とにより蛍光部材
(1)を構成し、第2の透光性部材(14)に蛍光物質を配合
してもよい。
A first light-transmitting member (11) formed in a tubular shape
When the fluorescent member (1) is constituted by the first light transmitting member (11) and the second light transmitting member (14) filled in the first light transmitting member (11), the first light transmitting member (11) Can be coated or contained with a fluorescent substance. A first light-transmissive member (11) formed in a tubular shape from light-transmitting glass or resin; and a resin filled in the first light-transmitting member (11) and having light-transmitting property. A fluorescent member with the second translucent member (14)
The constitution (1) may be adopted, and a fluorescent substance may be blended in the second translucent member (14).

【0011】半導体発光素子(3)から照射される波長の
光を反射し且つ蛍光物質から照射される波長の光を透過
する干渉フィルタ(13)を管状蛍光部材(1)の外面又は内
面に形成してもよい。発光波長のピークが365nm〜4
20nmの近紫外LEDチップを半導体発光素子(3)と
し、蛍光物質を青色、緑色、赤色の混合蛍光体とする場
合、半導体発光素子(3)から照射される波長の光を反射
し且つ蛍光体から照射される波長の光を透過する干渉フ
ィルタ(13)を蛍光部材(1)の外面又は内面に形成すれ
ば、蛍光体(2)の粒子間隙を透過して波長変換されない
LEDチップの近紫外光が反射され再び蛍光物質側に戻
って波長変換される一方、蛍光体で波長変換された可視
光が外部に放出されるため、近紫外光の外部への漏出を
防ぐと共に、可視光の光出力を増大させることができ
る。
An interference filter (13) that reflects light of the wavelength emitted from the semiconductor light emitting element (3) and transmits light of the wavelength emitted from the fluorescent substance is formed on the outer surface or the inner surface of the tubular fluorescent member (1). May be. Peak emission wavelength is 365nm ~ 4
When a 20 nm near-ultraviolet LED chip is used as the semiconductor light emitting element (3) and the fluorescent substance is a mixed phosphor of blue, green and red, the light of the wavelength emitted from the semiconductor light emitting element (3) is reflected and the fluorescent substance is used. If an interference filter (13) that transmits light of a wavelength emitted from the fluorescent member (1) is formed on the outer surface or the inner surface of the fluorescent member (1), the near-ultraviolet of the LED chip that passes through the particle gap of the phosphor (2) and is not converted in wavelength While the light is reflected and returned to the fluorescent material side to be wavelength-converted again, the visible light whose wavelength has been converted by the fluorescent material is emitted to the outside, so that leakage of near-ultraviolet light to the outside is prevented, and visible light The output can be increased.

【0012】また、蛍光部材(1)の外面の一部に光反射
部を形成してもよい。例えば、蛍光部材(1)を円筒状と
し、外面の片側半分(一方の外面)のみアルミニウム等
の金属蒸着膜を設ければ、蛍光部材(1)内で生じた光
は、一方の外面で反射され他方の外面に集中するので、
蛍光部材(1)の他方の外面から取り出す光を増大させる
ことができる。
Further, a light reflecting portion may be formed on a part of the outer surface of the fluorescent member (1). For example, if the fluorescent member (1) has a cylindrical shape and only one half (one outer surface) of the outer surface is provided with a metal-deposited film of aluminum or the like, light generated in the fluorescent member (1) is reflected on one outer surface. And concentrate on the other exterior,
Light extracted from the other outer surface of the fluorescent member (1) can be increased.

【0013】半導体発光素子(3)の光と周囲の外部光と
を検出し、外部光の増減に従って半導体発光素子(3)の
発光量を調節し、常に一定の明るさを保つ自動調光回路
(33)又は半導体発光素子(3)の温度が予め設定された限
界値に達したときに、半導体発光素子(3)の点灯電流を
自動的に遮断する過熱保護回路(32)を備えてもよい。蛍
光部材(1)の内部に設けられる半導体発光素子(3)は、単
一又は複数でもよい。また、第一の透光性部材の内面に
沿って半導体発光素子(3)を配置してもよく、蛍光部材
(1)の一方の端部と他方の端部との間で長さ方向に配置
してもよい。
An automatic dimming circuit that detects light from the semiconductor light emitting element (3) and surrounding external light, adjusts the amount of light emitted from the semiconductor light emitting element (3) in accordance with increase or decrease in external light, and always maintains a constant brightness.
(33) or an overheat protection circuit (32) that automatically shuts off the lighting current of the semiconductor light emitting element (3) when the temperature of the semiconductor light emitting element (3) reaches a preset limit value. Good. The semiconductor light emitting element (3) provided inside the fluorescent member (1) may be single or plural. Further, the semiconductor light emitting element (3) may be arranged along the inner surface of the first light transmitting member, and the fluorescent member
(1) may be arranged in the length direction between one end and the other end.

【0014】[0014]

【発明の実施の形態】以下、本発明による半導体発光装
置の実施の形態を図1〜図27について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a semiconductor light emitting device according to the present invention will be described below with reference to FIGS.

【0015】図1〜図3は、本発明による管状の半導体
発光装置の第1の本実施の形態を示す。この半導体発光
装置は、管状の蛍光部材(1)と、蛍光部材(1)の内部に配
置された配線基板(2)と、配線基板(2)上の所定の位置に
接着剤(図示せず)で固定された複数の半導体発光素子
(3)と、蛍光部材(1)の各端部に固着され且つ半導体発光
素子(3)に電気的に接続された一対の外部リード(4, 5)
とを備えている。
1 to 3 show a first embodiment of a tubular semiconductor light emitting device according to the present invention. This semiconductor light emitting device includes a tubular fluorescent member (1), a wiring board (2) disposed inside the fluorescent member (1), and an adhesive (not shown) at a predetermined position on the wiring board (2). Multiple semiconductor light-emitting devices fixed by
(3) and a pair of external leads (4, 5) fixed to each end of the fluorescent member (1) and electrically connected to the semiconductor light emitting element (3)
And

【0016】長さ58.0mm、幅0.4mm、厚さ0.2mm
の外形寸法を有する配線基板(2)は、紙フェノール、紙
エポキシ、ガラスエポキシ、ポリイミド等の樹脂板又は
アルミナ、フォルステライト等のセラミック板により形
成される。配線基板(2)上の導体パターン(7)は、導電性
接着剤、ハンダ付け、溶接等の接着手段により端子部(4
b, 5b)に電気的に接続される。
[0016] Length 58.0mm, width 0.4mm, thickness 0.2mm
The wiring board (2) having the following external dimensions is formed of a resin plate of paper phenol, paper epoxy, glass epoxy, polyimide, or the like, or a ceramic plate of alumina, forsterite, or the like. The conductor pattern (7) on the wiring board (2) is connected to the terminal portion (4) by an adhesive means such as a conductive adhesive, soldering, welding or the like.
b, 5b).

【0017】蛍光部材(1)の各端部には封止栓(6)が固定
され、外部リード(4, 5)は封止栓(6)の略中心に設けら
れた貫通孔(6a)内に固定又は埋設される。外部リード
(4, 5)は封止栓(6)から突出する導出部(4a, 5a)と、蛍
光部材(1)の内部に配置される端子部(4b, 5b)とを形成
する。導出部(4a, 5a)は電力を供給する図示しない外部
導体に接続され、端子部(4b, 5b)は蛍光部材(1)内で配
線基板(2)上に配置された導体パターン(7)に電気的に接
続される。導体パターン(7)はボンディングワイヤ(8)を
介して隣合う半導体発光素子(3)の電極に接続され、各
半導体発光素子(3)の各電極間は順次ボンディングワイ
ヤ(9)を介して電気的に直列に相互に接続される。
A sealing plug (6) is fixed to each end of the fluorescent member (1), and an external lead (4, 5) is provided with a through hole (6a) provided substantially at the center of the sealing plug (6). Fixed or buried inside. External lead
(4, 5) forms a lead portion (4a, 5a) protruding from the sealing plug (6) and a terminal portion (4b, 5b) arranged inside the fluorescent member (1). The lead portions (4a, 5a) are connected to an external conductor (not shown) for supplying power, and the terminal portions (4b, 5b) are conductor patterns (7) arranged on the wiring board (2) in the fluorescent member (1). Is electrically connected to The conductor pattern (7) is connected to the electrodes of the adjacent semiconductor light emitting elements (3) via bonding wires (8), and the electrodes of each semiconductor light emitting element (3) are electrically connected via bonding wires (9) sequentially. Are serially connected to each other.

【0018】半導体発光素子(3)は、窒化ガリウム系化
合物半導体より成る発光層を有し、且つ発光波長のピー
クが420nm〜490nmの窒化ガリウム系青色LEDチ
ップである。配線基板(2)上の所定の位置に接着剤(図
示せず)で固定される青色LEDチップは、幅0.34m
m、高さ0.1mmの外形寸法を有し、必要な明るさを得る
個数、例えば5個〜7個が用いられる。
The semiconductor light-emitting element (3) is a gallium nitride-based blue LED chip having a light-emitting layer made of a gallium nitride-based compound semiconductor and having an emission wavelength peak of 420 nm to 490 nm. The blue LED chip fixed at a predetermined position on the wiring board (2) with an adhesive (not shown) has a width of 0.34 m.
It has an outer dimension of 0.1 m and a height of 0.1 mm, and is used in a number to obtain a required brightness, for example, 5 to 7 pieces.

【0019】蛍光部材(1)は、長さ60mm、外径1.8m
m、内径1.4mmのシリカガラスを材質として形成される
透光性で円筒状のガラス管(11)と、ガラス管(11)の内面
に形成された蛍光体層(12)とから成る。半導体発光素子
(3)から照射される光に対して光透過性を有し且つ半導
体発光素子(3)から照射される光を吸収して他の発光波
長に変換する蛍光体層(12)は、例えば、化学式(Y
1−x,Gd)(Al1− ,Ga)12:C
(但し、0≦x≦0.5、0≦y≦0.5、0.001≦z≦0.
5)で表されるYAG:Ce系蛍光体から成る蛍光物質
を含む。蛍光体層(12)は、液状の樹脂又は金属アルコキ
シド系コーティング剤より成るコーティング部材にYA
G:Ce系蛍光粉末を混合し、所定の長さに切断したガ
ラス管(11)の内面に吸引、噴霧などの方法によって約
0.1〜0.2mmの厚さで塗布した後、乾燥・加熱硬化し
て形成される。
The fluorescent member (1) has a length of 60 mm and an outer diameter of 1.8 m.
It comprises a light-transmitting cylindrical glass tube (11) formed of silica glass having an inner diameter of 1.4 mm and a phosphor layer (12) formed on the inner surface of the glass tube (11). Semiconductor light emitting device
Phosphor layer (12) that has light transmissivity to light emitted from (3) and absorbs light emitted from semiconductor light emitting element (3) and converts it to another emission wavelength, for example, Chemical formula (Y
1-x, Gd x) 3 (Al 1- y, Ga y) 5 O 12: C
e z (where, 0 ≦ x ≦ 0.5,0 ≦ y ≦ 0.5,0.001 ≦ z ≦ 0.
The fluorescent material includes a YAG: Ce-based fluorescent material represented by 5). The phosphor layer (12) is formed by coating a coating member made of a liquid resin or a metal alkoxide-based coating agent with YA.
G: Mix Ce-based fluorescent powder, apply to the inner surface of glass tube (11) cut to a predetermined length by suction, spraying, etc. to a thickness of about 0.1 to 0.2 mm, and then dry. It is formed by heat curing.

【0020】半導体発光装置を組み立てる際に、配線基
板(2)に半導体発光素子(3)を固定した後、半導体発光素
子(3)の各電極間及び導体パターン(7)とを0.15mm程
度のループ高さでボンディングワイヤ(8, 9)で接続し、
導体パターン(7)に外部リード(4, 5)を接続して配線基
板組立体を形成する。半導体発光素子(3)及びボンディ
ングワイヤ(8, 9)の保護と光取り出し効率向上のため、
半導体発光素子(3)の表面及びボンディングワイヤ(8,
9)にシリコーン樹脂等の保護部材(図示せず)を0.2m
m程度の塗布厚さで塗布してもよい。
When assembling the semiconductor light emitting device, after fixing the semiconductor light emitting element (3) to the wiring board (2), the gap between each electrode of the semiconductor light emitting element (3) and the conductor pattern (7) is about 0.15 mm. Connect with bonding wires (8, 9) at the loop height of
External leads (4, 5) are connected to the conductor pattern (7) to form a wiring board assembly. To protect the semiconductor light emitting element (3) and bonding wires (8, 9) and improve light extraction efficiency,
The surface of the semiconductor light emitting device (3) and the bonding wires (8,
9) Put a protective member (not shown) such as silicone resin on 0.2m
It may be applied with a coating thickness of about m.

【0021】続いて、配線基板(2)の裏面に接着剤(図
示せず)を塗布した配線基板組立体をガラス管(11)内に
挿入しガラス管(11)に固定する。配線基板(2)の厚さは
0.2mm、青色半導体発光素子(3)の高さは0.1mm、ボ
ンディングワイヤ(8, 9)のループ高さは0.15mm、保
護部材の塗布の厚さは0.2mmであり、配線基板(2)の下
面から保護部材の上面までの間隔は0.4mmであるか
ら、蛍光体膜(12)の厚みを考慮しても、十分にサイズ的
な余裕をもって配線基板組立体を内径1.4mmの円筒状
ガラス管(11)内に挿入することができる。ガラス管(11)
及び配線基板(2)の一方の端部と他方の端部とを接着剤
(図示せず)を用いてセラミック製又は樹脂製の封止栓
(6)で固定する。
Subsequently, the wiring board assembly having the adhesive (not shown) applied to the back surface of the wiring board (2) is inserted into the glass tube (11) and fixed to the glass tube (11). The thickness of the wiring board (2) is 0.2 mm, the height of the blue semiconductor light emitting element (3) is 0.1 mm, the loop height of the bonding wires (8, 9) is 0.15 mm, and the thickness of the coating of the protective member. Is 0.2 mm, and the distance from the lower surface of the wiring board (2) to the upper surface of the protective member is 0.4 mm. Therefore, even if the thickness of the phosphor film (12) is considered, the size is sufficiently large. The wiring board assembly can be inserted with a margin into the cylindrical glass tube (11) having an inner diameter of 1.4 mm. Glass tube (11)
And a sealing plug made of ceramic or resin using an adhesive (not shown) to connect one end and the other end of the wiring board (2).
Secure with (6).

【0022】半導体発光素子(3)から放出される光の一
部は、蛍光体層(12)中の蛍光物質を励起し、蛍光体層(1
2)は幅広いスペクトルを持つ黄色光を生ずる。従って、
半導体発光素子(3)の青色光と、蛍光体層(12)の黄色光
とが混色された光が半導体発光装置から外部に照射され
る。この場合、蛍光体層(12)を構成するコーティング部
材に対する蛍光物質の混合比と、ガラス管(11)の内面に
対するコーティング部材の塗布厚さとを適宜制御する
と、図25に示す幅広いスペクトルを持つ白色光が得ら
れる。本実施の形態では、管長60mm、管径1.8mmの
非常にコンパクトな形状を有し且つ高輝度の管状発光装
置となるので、PDA(次世代情報機器)等の小型モバ
イル機器の液晶表示装置に好適に使用することができ
る。
Part of the light emitted from the semiconductor light emitting device (3) excites the fluorescent substance in the phosphor layer (12), and the phosphor layer (1) is excited.
2) produces yellow light with a broad spectrum. Therefore,
Light in which blue light of the semiconductor light emitting element (3) and yellow light of the phosphor layer (12) are mixed is emitted from the semiconductor light emitting device to the outside. In this case, if the mixing ratio of the fluorescent substance to the coating member constituting the phosphor layer (12) and the coating thickness of the coating member to the inner surface of the glass tube (11) are appropriately controlled, the white color having a broad spectrum shown in FIG. Light is obtained. In this embodiment, since the tube light emitting device has a very compact shape and a high brightness with a tube length of 60 mm and a tube diameter of 1.8 mm, the liquid crystal display device of a small mobile device such as a PDA (next generation information device). Can be suitably used.

【0023】本発明による管状半導体発光装置の図4〜
図6に示す第2の実施の形態では、蛍光部材(1)は、蛍
光物質の粉末を内部に配合した透光性を有する円筒状の
アクリル樹脂管(11a)から成り、第1の実施の形態と同
一の半導体発光素子(3)及び蛍光物質を使用する。蛍光
物質の粉末をアクリル樹脂材料に混合し、射出成形法、
注型成形法等によって管状に成形した後、所定の長さに
切断して、蛍光部材(1)を製造する。第2の実施の形態
では、第1の実施の形態と同一の作用効果が得られる
が、アクリル樹脂材料に配合する蛍光物質の混合比と、
アクリル樹脂管の肉厚とを適宜制御すると、図25に示
す幅広いスペクトルを持つ白色光が得られる。
FIGS. 4 to 4 show a tubular semiconductor light emitting device according to the present invention.
In the second embodiment shown in FIG. 6, the fluorescent member (1) is made of a light-transmitting cylindrical acrylic resin tube (11a) in which a fluorescent substance powder is compounded, and the fluorescent member (1) is of the first embodiment. The same semiconductor light emitting device (3) and fluorescent substance as in the embodiment are used. A fluorescent substance powder is mixed with an acrylic resin material, injection molding method,
After being formed into a tube by a casting method or the like, it is cut into a predetermined length to produce the fluorescent member (1). In the second embodiment, the same operation and effect as those of the first embodiment can be obtained, but the mixing ratio of the fluorescent substance mixed with the acrylic resin material,
By appropriately controlling the thickness of the acrylic resin tube, white light having a broad spectrum shown in FIG. 25 can be obtained.

【0024】本発明による管状半導体発光装置の図7〜
図9に示す第3の実施の形態では、半導体発光素子(3)
は、窒化ガリウム系化合物半導体より成る発光層を有し
且つ発光波長のピークが365nm〜420nmの窒化ガリ
ウム系近紫外LEDチップである。また、蛍光物質は、
近紫外LEDチップの光によって励起され、赤色光(re
d)、緑色光(green)、青色光(blue)をそれぞれ発生
する3種類の蛍光物質を混合したもの(RGB蛍光体)
から成る。青色蛍光体は、化学式:Sr(PO)3C
l:Euで表され、445nmの発光ピーク波長を有す
る。緑色蛍光体は、化学式:3(Ba,Mg)O・8Al
:Eu,Mnで表され、514nmの発光ピーク波
長を有する。赤色蛍光体は、化学式:YS:Eu
で表され、624nmの発光ピーク波長を有する。
FIGS. 7 to 7 show a tubular semiconductor light emitting device according to the present invention.
In the third embodiment shown in FIG. 9, the semiconductor light emitting device (3)
Is a gallium nitride-based near ultraviolet LED chip having a light-emitting layer made of a gallium nitride-based compound semiconductor and having a peak emission wavelength of 365 nm to 420 nm. Also, the fluorescent substance
Excited by the light of the near-ultraviolet LED chip, the red light (re
d) A mixture of three kinds of fluorescent substances that respectively generate green light (green) and blue light (blue) (RGB phosphor)
Consists of The blue phosphor has the chemical formula: Sr 5 (PO 4 ) 3 C
1: represented by Eu and having an emission peak wavelength of 445 nm. The green phosphor has the chemical formula: 3 (Ba, Mg) O.8Al
2 O 3 : represented by Eu, Mn and having an emission peak wavelength of 514 nm. The red phosphor has the chemical formula: Y 2 O 2 S: Eu
And has an emission peak wavelength of 624 nm.

【0025】蛍光部材(1)は、第1の透光性部材である
円筒状のガラス管(11)と、ガラス管(11)の外面に設けら
れた干渉フィルタ(13)と、ガラス管(11)の内面に塗布さ
れたRGB蛍光体層(12)と、ガラス管(11)内に充填され
た第2の透光性部材であるシリコーン樹脂(14)とを備え
ている。干渉フィルタ(13)は、光の干渉を利用して特定
の波長帯域の光のみ反射させ、他の波長帯域の光を透過
する光学フィルタである。図10は、1/4波長多層膜
を用いた干渉フィルタ(13)の断面図を示す。1/4波長
多層膜を用いた干渉フィルタ(13)は、屈折率の低い光透
過膜と屈折率の高い光透過膜とを交互に配列した積層構
造を有し、各光透過膜の一層当たりの厚さは反射すべき
目的波長の約1/4に形成される。1/4波長多層膜の
層数が多くなるに従い、反射率が高くなると同時に、高
い反射率を示すスペクトル幅が広がるので、特定の帯域
のみ反射するフィルタとして使用することができる。
The fluorescent member (1) includes a cylindrical glass tube (11) as a first translucent member, an interference filter (13) provided on the outer surface of the glass tube (11), and a glass tube (11). An RGB phosphor layer (12) applied to the inner surface of (11) and a silicone resin (14) as a second translucent member filled in the glass tube (11) are provided. The interference filter (13) is an optical filter that reflects only light in a specific wavelength band using light interference and transmits light in other wavelength bands. FIG. 10 is a sectional view of an interference filter (13) using a quarter-wave multilayer film. The interference filter (13) using a quarter-wave multilayer film has a laminated structure in which light-transmitting films having a low refractive index and light-transmitting films having a high refractive index are alternately arranged. Is formed at about 1 / of the target wavelength to be reflected. As the number of layers of the quarter-wave multilayer film increases, the reflectance increases and at the same time the spectrum width showing the high reflectance increases, so that it can be used as a filter that reflects only a specific band.

【0026】干渉フィルタ(13)は、ガラス管(11)の外面
に複数の屈折率の異なる物質の薄膜を電子ビーム真空蒸
着法等により複数層重ねて形成することができる。干渉
フィルタ(13)の形成に使用できる物質は、例えば、アル
ミニウム、金、銀、白金、クロム、銅、ロジウム等の金
属又はシリカ、ジルコニア、チタニア、アルミナ、酸化
インジウム、フッ化マグネシウム等の無機化合物から選
択される。別法として、シリコン、アルミニウム、ジル
コニウム、チタン、亜鉛等の金属アルコキシドよりなる
液状のコーティング部材をディップコーティング法(浸
漬被覆法)等により複数層重ねて、干渉フィルタ(13)を
形成してもよい。
The interference filter (13) can be formed by stacking a plurality of thin films of a material having different refractive indexes on the outer surface of the glass tube (11) by an electron beam vacuum evaporation method or the like. Substances that can be used to form the interference filter (13) include, for example, metals such as aluminum, gold, silver, platinum, chromium, copper, and rhodium or silica, zirconia, titania, alumina, indium oxide, and inorganic compounds such as magnesium fluoride. Is selected from Alternatively, the interference filter (13) may be formed by stacking a plurality of liquid coating members made of a metal alkoxide such as silicon, aluminum, zirconium, titanium, and zinc by dip coating (dip coating) or the like. .

【0027】例えば、LEDチップの発光ピーク波長が
380nm、青色蛍光体、緑色蛍光体、赤色蛍光体の発光
ピーク波長がそれぞれ445nm、514nm、624nmの
場合、図24に示すように、1/4波長多層膜を用いた
干渉フィルタ(13)は、LEDチップの発光を反射する
が、各蛍光体(2)の発光を透過する反射スペクトル特性
を有する。蛍光体層(12)は、蛍光物質の粉末を液状の樹
脂又は金属アルコキシド系コーティング剤よりなるコー
ティング部材に混合し、所定の長さに切断したガラス管
(11)の内面に吸引、噴霧などの方法によって塗布した
後、乾燥・加熱硬化して、蛍光体層(12)をガラス管(11)
の内面に固定される。
For example, when the emission peak wavelength of the LED chip is 380 nm, and the emission peak wavelengths of the blue phosphor, green phosphor and red phosphor are 445 nm, 514 nm and 624 nm, respectively, as shown in FIG. The interference filter (13) using the multilayer film reflects light emitted from the LED chip, but has a reflection spectrum characteristic that transmits light emitted from each phosphor (2). A phosphor layer (12) is a glass tube obtained by mixing a powder of a fluorescent substance with a coating member made of a liquid resin or a metal alkoxide-based coating agent and cutting the mixture into a predetermined length.
After applying to the inner surface of (11) by a method such as suction, spraying, etc., drying and heating and curing, the phosphor layer (12) is glass tube (11)
It is fixed to the inner surface of.

【0028】第3の実施の形態による半導体発光装置を
組立てる際には、ガラス管(11)の他端から、第2の透光
性部材であるシリコーン樹脂をガラス管(11)の内部に注
入し固化させた後、ガラス管(11)と配線基板(2)の一方
の端部と他方の端部とを接着剤(図示せず)を用いて封
止栓(6)で固定する。
When assembling the semiconductor light emitting device according to the third embodiment, a silicone resin as a second translucent member is injected into the glass tube (11) from the other end of the glass tube (11). After solidification, one end and the other end of the glass tube (11) and the wiring board (2) are fixed with a sealing plug (6) using an adhesive (not shown).

【0029】第3の実施の形態による半導体発光装置か
ら外部に放出される光は、半導体発光素子(3)の近紫外
光によって励起されるRGB蛍光体による青色光、緑色
光、赤色光の混色光となるから、各蛍光体物質の配合比
を適宜制御することにより、図26に示す青色光、緑色
光、赤色光の3原色成分を持つ白色光となる。半導体発
光素子(3)の近紫外光のうちRGB蛍光体で波長変換さ
れた光は干渉フィルタ(13)で反射されずに外部に放出さ
れるのに対し、波長変換されずにガラス管(11)に到達し
た成分は、ガラス管(11)の外面に設けられた干渉フィル
タ(13)で内側に反射され、蛍光体層(12)で再び波長変換
される。従って、半導体発光素子(3)から照射される近
紫外光量の殆どを無駄に漏出させずにRGB蛍光体で高
効率に波長変換して明るい半導体発光装置とすることが
できる。
The light emitted from the semiconductor light emitting device according to the third embodiment to the outside is a mixed color of blue light, green light and red light by the RGB phosphor excited by the near ultraviolet light of the semiconductor light emitting element (3). Since the light becomes light, white light having three primary color components of blue light, green light, and red light shown in FIG. 26 is obtained by appropriately controlling the mixing ratio of each phosphor substance. Of the near-ultraviolet light of the semiconductor light-emitting element (3), the light whose wavelength has been converted by the RGB phosphor is emitted to the outside without being reflected by the interference filter (13), whereas the glass tube (11 ) Is reflected inside by an interference filter (13) provided on the outer surface of the glass tube (11), and the wavelength is converted again by the phosphor layer (12). Therefore, it is possible to obtain a bright semiconductor light emitting device by converting the wavelength of the near ultraviolet light emitted from the semiconductor light emitting element (3) with the RGB phosphor with high efficiency without wasting the light.

【0030】図11〜図16は、本発明による管状半導
体発光装置の第4の実施の形態を示す。第1〜第3の実
施の形態では、全て相互に分離した個別の半導体発光素
子(3)をボンディングワイヤ(9)で相互に接続した半導体
発光素子(3)を用いる構造を示すが、第4の実施の形態
では、複数の発光素子領域を持つ単一の半導体発光素子
(3)を有する。第4の実施の形態では、半導体発光素子
(3)以外の構成要素である蛍光部材(1)、蛍光物質など
は、第1〜第3の実施の形態と同一であり、説明を省略
する。
FIGS. 11 to 16 show a fourth embodiment of the tubular semiconductor light emitting device according to the present invention. In the first to third embodiments, a structure using a semiconductor light emitting element (3) in which individual semiconductor light emitting elements (3) all separated from each other are connected to each other by a bonding wire (9) is shown. In one embodiment, a single semiconductor light emitting device having a plurality of light emitting device regions
(3). In the fourth embodiment, a semiconductor light emitting device
The components other than (3), such as the fluorescent member (1) and the fluorescent substance, are the same as those in the first to third embodiments, and a description thereof will be omitted.

【0031】第4の実施の形態による半導体発光装置
は、放熱用金属板(15)と、導電性接着剤、ハンダ付け、
溶接などの方法により導体パターン(7)に接続された二
対の外部リード(4, 5)と、放熱用金属板(15)に固定され
且つ二対の外部リード(4, 5)の一方の端部に接続された
複数の発光素子領域を持つ単一の半導体発光素子(3)
と、放熱用金属板(15)、半導体発光素子(3)及び二対の
外部リード(4, 5)の一端を包囲する蛍光部材(1)とを備
えている。放熱用金属板(15)は、鉄、銅、アルミニウム
等熱伝導性の優れた金属よりなり、必要に応じてニッケ
ル、銀、金、クロム等の高耐食性金属のメッキを金属の
表面に施してもよい。二対の外部リード(4,5)の導出部
(4a, 5a)は蛍光部材(1)の外部に導出される。蛍光部材
(1)は半導体発光素子(3)から照射される光に対して光透
過性を有し、且つ半導体発光素子(3)から照射される光
を吸収して他の発光波長に変換する蛍光物質を具備す
る。
The semiconductor light emitting device according to the fourth embodiment comprises a heat dissipating metal plate (15), a conductive adhesive, soldering,
Two pairs of external leads (4, 5) connected to the conductor pattern (7) by a method such as welding, and one of the two pairs of external leads (4, 5) fixed to the heat dissipation metal plate (15). Single semiconductor light-emitting device with multiple light-emitting device regions connected at the end (3)
And a fluorescent member (1) surrounding one end of the metal plate for heat radiation (15), the semiconductor light emitting element (3) and the two pairs of external leads (4, 5). The heat-dissipating metal plate (15) is made of a metal with excellent thermal conductivity such as iron, copper, and aluminum, and is plated with a highly corrosion-resistant metal, such as nickel, silver, gold, or chromium, as necessary. Is also good. Outgoing part of two pairs of external leads (4,5)
(4a, 5a) are led out of the fluorescent member (1). Fluorescent material
(1) is a fluorescent substance having a light transmitting property to light emitted from the semiconductor light emitting element (3), and absorbing light emitted from the semiconductor light emitting element (3) and converting the light to another emission wavelength. Is provided.

【0032】図14は、第4の実施の形態の模式平面図
を示す。半導体発光素子(3)は、窒化ガリウム系化合物
半導体より成る発光層を有し、且つ発光波長のピークが
365nm〜490nmの窒化ガリウム系LEDチップを組
み合わせたLEDチップアレー(16)により構成される。
LEDチップアレー(16)は、絶縁性のサファイア基板(1
7)と、サファイア基板(17)上に設けられ且つ平面方向に
複数に分割された導電性バッファ層(17a)と、導電性バ
ッファ層(17a)上に設けられ且つ平面方向に複数に分割
された発光層(17b)と、発光層(17b)の発する光を透過し
且つ隣接したバッファ層(17a)と発光層(17b)とを電気的
に接続する透明電極(17c)と、サファイア基板(17)の一
端の透明電極(17c)上に設けられた一方の接続用電極
(P電極)(18)と、サファイア基板(17)の他方の端部の
発光層(17b)上に設けられた他の接続用電極(N電極)
(19)とを備えている。特に図示しないが、LEDチップ
アレー(16)の各発光層のサファイア基板(17)側がN層、
透明電極側がP層である。隣接するバッファ層(17a)と
透明電極(17c)によって各発光層(17b)を電気的に接続す
るので、P電極(18)とN電極(19)間は複数の半導体発光
素子(3)を直列に接続する回路と電気的に等価である。
従って、LEDチップアレー(16)は、ボンディングワイ
ヤ(9)により多数の半導体発光素子(3)を相互に電気的に
接続する必要がなく、断線又は短絡に起因するボンディ
ングワイヤ(9)周りの故障を抑制できるため、信頼性及
び生産性の高い半導体発光装置を安価に製造できる。
FIG. 14 is a schematic plan view of the fourth embodiment. The semiconductor light-emitting element (3) has a light-emitting layer made of a gallium nitride-based compound semiconductor, and is constituted by an LED chip array (16) in which gallium nitride-based LED chips having an emission wavelength peak of 365 nm to 490 nm are combined.
The LED chip array (16) is made of an insulating sapphire substrate (1
7), a conductive buffer layer (17a) provided on the sapphire substrate (17) and divided into a plurality in the plane direction, and provided on the conductive buffer layer (17a) and divided into a plurality in the plane direction. Light emitting layer (17b), a transparent electrode (17c) that transmits light emitted from the light emitting layer (17b) and electrically connects the adjacent buffer layer (17a) and light emitting layer (17b), and a sapphire substrate ( One connection electrode (P electrode) (18) provided on the transparent electrode (17c) at one end of the sapphire substrate (17) and the light-emitting layer (17b) provided on the other end of the sapphire substrate (17). Other connection electrode (N electrode)
(19). Although not particularly shown, the sapphire substrate (17) side of each light emitting layer of the LED chip array (16) is an N layer,
The transparent electrode side is the P layer. Since each light emitting layer (17b) is electrically connected by the adjacent buffer layer (17a) and the transparent electrode (17c), a plurality of semiconductor light emitting elements (3) are provided between the P electrode (18) and the N electrode (19). It is electrically equivalent to a circuit connected in series.
Therefore, the LED chip array (16) does not need to electrically connect a large number of semiconductor light emitting elements (3) to each other by the bonding wire (9), and a failure around the bonding wire (9) due to disconnection or short circuit. Therefore, a semiconductor light emitting device having high reliability and high productivity can be manufactured at low cost.

【0033】第4の実施の形態では、第1〜第3の実施
の形態と同様の各種の方法で蛍光部材(1)を形成でき
る。放熱用金属板(15)の所定の位置に接着剤(図示せ
ず)でLEDチップアレー(16)を固定し、ワイヤボンデ
ィング等の方法によって放熱用金属板(15)の一端と他端
とに設けられた導体パターン(7)にLEDチップアレー
(16)のP電極(18)及びN電極(19)を接続することができ
る。
In the fourth embodiment, the fluorescent member (1) can be formed by various methods similar to those in the first to third embodiments. An LED chip array (16) is fixed to a predetermined position of the heat dissipating metal plate (15) with an adhesive (not shown), and is attached to one end and the other end of the heat dissipating metal plate (15) by a method such as wire bonding. LED chip array on the provided conductor pattern (7)
The P electrode (18) and the N electrode (19) of (16) can be connected.

【0034】第4の実施の形態による半導体発光装置を
組立てる際には、放熱用金属板(15)にLEDチップアレ
ー(16)を固定し、LEDチップアレー(16)のP電極(18)
及びN電極(19)と導体パターン(7)とをボンディングワ
イヤ(8)で接続した後、導体パターン(7)に外部リード
(4, 5)を接続する。LEDチップアレー(16)の表面は、
半導体発光素子(3)の保護と光取り出し効率向上のた
め、シリコーン樹脂等の保護部材(図示せず)を塗布し
てもよい。続いて、放熱用金属板(15)の裏面に接着剤
(図示せず)を塗布し、放熱用金属板(15)を第1の透光
性部材であるガラス管(11)内に挿入し固定する。ガラス
管(11)と放熱用金属板(15)の一端を接着剤(図示せず)
を用いて封止栓(6)で固定する。この場合、第2の透光
性部材であるシリコーン樹脂をガラス管(11)の他端から
内部に注入し固化させ、その後、ガラス管(11)と放熱用
金属板(15)の他方の端部とを接着剤(図示せず)を用い
て封止栓(6)で固定してもよい。勿論、シリコーン樹脂
を注入せず、ガラス管(11)の内部を空洞としてもよい。
また、1/4波長多層膜を用いた干渉フィルタ(13)を予
めガラス管(11)の内面又は外面に形成してもよい。
When assembling the semiconductor light emitting device according to the fourth embodiment, the LED chip array (16) is fixed to the metal plate (15) for heat radiation, and the P electrode (18) of the LED chip array (16) is fixed.
After connecting the N electrode (19) and the conductor pattern (7) with the bonding wire (8), the external lead is connected to the conductor pattern (7).
Connect (4, 5). The surface of the LED chip array (16)
A protective member (not shown) such as a silicone resin may be applied to protect the semiconductor light emitting element (3) and improve light extraction efficiency. Subsequently, an adhesive (not shown) is applied to the back surface of the metal plate for heat radiation (15), and the metal plate for heat radiation (15) is inserted into a glass tube (11) which is a first translucent member. Fix it. Adhesive (not shown) to one end of glass tube (11) and metal plate (15) for heat dissipation
And fix with a sealing stopper (6). In this case, a silicone resin as a second light-transmissive member is injected into the inside from the other end of the glass tube (11) and solidified, and then the other end of the glass tube (11) and the metal plate for heat dissipation (15) are formed. The part may be fixed with a sealing plug (6) using an adhesive (not shown). Of course, the interior of the glass tube (11) may be hollowed without injecting the silicone resin.
Further, an interference filter (13) using a quarter-wave multilayer film may be formed in advance on the inner surface or the outer surface of the glass tube (11).

【0035】図17は、第4の実施の形態による半導体
発光装置の点灯回路を示す。図17に示す点灯回路(20)
は、直流電源電圧(VCC)を印加する電源ライン(21)
と、電流制限回路(22)を介して電源ライン(21)とグラン
ドとの間に接続されたLEDチップアレー(16)とで構成
される。点灯時の発光領域1個当たりの順電圧を
(V)、LEDチップアレー(16)の片側の発光領域数を
(n)、電流制限回路(22)の駆動電圧を(V)とすると、
直流電源電圧(VCC)は、VCC=V×n+Vで表
される。電源ライン(21)に接続された入力側を有する電
流制限回路(22)の出力側は、LEDチップアレー(16)の
P電極(18)に接続される。電流制限回路(22)は、半導体
発光装置に内蔵されるLEDチップアレー(16)に流れる
動作電流を所定値に制御する作用があり、例えば電界効
果トランジスタ又はバイポーラトランジスタを用いた定
電流回路が好適であるが、発光領域1個当たりの順電圧
(V)に片側の発光領域数(n)を乗じた電圧値よりも十
分に高く直流電源電圧(VCC)を設定できれば、電流制
限抵抗でも代用できる。図17に示す点灯回路(20)で
は、半導体発光装置に流れる点灯電流は、電源ライン(2
1)より電流制限回路(22)を経由して、半導体発光装置を
構成するLEDチップアレー(16)のP電極(18)に至り、
LEDチップアレー(16)内の半導体発光素子(3)を通り
LEDチップアレー(16)のN電極(19)からグランドに流
れる。
FIG. 17 shows a lighting circuit of the semiconductor light emitting device according to the fourth embodiment. Lighting circuit (20) shown in FIG.
Is a power supply line (21) for applying a DC power supply voltage (V CC ).
And an LED chip array (16) connected between the power supply line (21) and the ground via the current limiting circuit (22). The forward voltage per light emitting area at the time of lighting
(V F), the number of light-emitting region on one side of the LED chip array (16)
(n), assuming that the drive voltage of the current limiting circuit (22) is (V 0 ),
The DC power supply voltage (V CC ) is represented by V CC = V F × n + V 0 . The output side of the current limiting circuit (22) having the input side connected to the power supply line (21) is connected to the P electrode (18) of the LED chip array (16). The current limiting circuit (22) has an action of controlling the operating current flowing through the LED chip array (16) built in the semiconductor light emitting device to a predetermined value, and for example, a constant current circuit using a field effect transistor or a bipolar transistor is preferable. But the forward voltage per light emitting region
If the DC power supply voltage (V CC ) can be set sufficiently higher than the voltage value obtained by multiplying (V F ) by the number (n) of light emitting regions on one side, a current limiting resistor can be used instead. In the lighting circuit (20) shown in FIG. 17, the lighting current flowing through the semiconductor light emitting device is controlled by the power supply line (2
1) From the current limiting circuit (22), to the P electrode (18) of the LED chip array (16) constituting the semiconductor light emitting device,
It flows through the semiconductor light emitting element (3) in the LED chip array (16) to the ground from the N electrode (19) of the LED chip array (16).

【0036】図18〜図21に示す本発明による管状半
導体発光装置の第5の実施の形態でも、第4の実施の形
態と同様に複数の発光領域を持つ単一の半導体発光素子
(3)を有し、半導体発光素子(3)を除き、第1〜第3の実
施の形態と同一である蛍光部材(1)、蛍光物質の説明を
省略する。
In the fifth embodiment of the tubular semiconductor light emitting device according to the present invention shown in FIGS. 18 to 21, a single semiconductor light emitting element having a plurality of light emitting regions as in the fourth embodiment.
Except for the semiconductor light emitting device (3), the description of the fluorescent member (1) and the fluorescent substance which are the same as those of the first to third embodiments except for the semiconductor light emitting device (3) will be omitted.

【0037】第5の実施の形態による半導体発光装置
は、外部リード(4, 5)と、放熱用金属板(15)と、放熱用
金属板(15)に固定され且つ外部リード(4, 5)の一方の端
部に接続された複数の発光領域を持つ単一の半導体発光
素子(3)と、放熱用金属板(15)の一方の端部と他方の端
部とに固定された一対の配線基板(2)と、一対の配線基
板(2)の裏面に固定された複数のスペーサ(23)と、放熱
用金属板(15)の裏面に固定された制御用MIC(モノリ
シック集積回路)(24)と、一対の配線基板(2)の他方に
固定された光度モニタ(25)と、蛍光部材(1)とを備えて
いる。
The semiconductor light emitting device according to the fifth embodiment comprises an external lead (4, 5), a heat radiating metal plate (15), and fixed to the heat radiating metal plate (15) and connected to the external lead (4, 5). A single semiconductor light-emitting element (3) having a plurality of light-emitting regions connected to one end of a metal plate (15), and a pair fixed to one end and the other end of a metal plate (15) for heat radiation. Wiring board (2), a plurality of spacers (23) fixed to the back of a pair of wiring boards (2), and a control MIC (monolithic integrated circuit) fixed to the back of a metal plate for heat dissipation (15) (24), a light intensity monitor (25) fixed to the other of the pair of wiring boards (2), and a fluorescent member (1).

【0038】外部リード(4, 5)の一方の端部、放熱用金
属板(15)、半導体発光素子(3)、配線基板(2)、スペーサ
(23)、制御用MIC(24)、光度モニタ(25)は、蛍光部材
(1)の内部に配置され、外部リード(4, 5)の他端は蛍光
部材(1)の外部に導出される。蛍光部材(1)は半導体発光
素子(3)から照射される光に対して光透過性を有し且つ
半導体発光素子(3)から照射される光を吸収して他の発
光波長に変換する蛍光物質を具備する。
One end of external leads (4, 5), metal plate for heat radiation (15), semiconductor light emitting element (3), wiring board (2), spacer
(23), control MIC (24), luminous intensity monitor (25), fluorescent member
The other end of the external lead (4, 5) is disposed inside (1), and is led out of the fluorescent member (1). The fluorescent member (1) has a light transmitting property with respect to light emitted from the semiconductor light emitting element (3), and absorbs light emitted from the semiconductor light emitting element (3) and converts the light to another emission wavelength. Material.

【0039】第5の実施の形態では、半導体発光素子
(3)は、第4の実施の形態に用いる図14と同一の半導
体発光素子(3)が使用される。蛍光部材(1)は、第1〜第
3の実施の形態と同一の方法により形成される。LED
チップアレー(16)は、放熱用金属板(15)の所定の位置に
接着剤(図示せず)で固定され、LEDチップアレー(1
6)のP電極(18)及びN電極(19)は、放熱用金属板(15)の
一端と他端とに設けられた導体パターン(7)にボンディ
ングワイヤ(8)によって接続される。また、導電性接着
剤、ハンダ付け、溶接等の方法により、外部リード(4,
5)は導体パターン(7)に接続される。第5の実施の形態
による半導体発光装置の組立ては第4の実施の形態と同
様に行われる。
In the fifth embodiment, a semiconductor light emitting device
For (3), the same semiconductor light emitting device (3) as in FIG. 14 used in the fourth embodiment is used. The fluorescent member (1) is formed by the same method as in the first to third embodiments. LED
The chip array (16) is fixed to a predetermined position of the heat dissipating metal plate (15) with an adhesive (not shown), and the LED chip array (1) is fixed.
The P electrode (18) and the N electrode (19) of (6) are connected to the conductor patterns (7) provided at one end and the other end of the metal plate (15) for heat radiation by bonding wires (8). In addition, the external leads (4,
5) is connected to the conductor pattern (7). Assembling of the semiconductor light emitting device according to the fifth embodiment is performed in the same manner as in the fourth embodiment.

【0040】第5の実施の形態では、LEDチップアレ
ー(16)の点灯電流を自動的に制御する点灯回路が内蔵さ
れる。点灯回路は、周囲温度及び電源ライン(21)の直流
電源電圧VCCの変動等により誘引される点灯電流の異
常な増大と、それに伴う半導体発光素子(3)の過熱等に
対し自動的に保護する第1の機能及び周囲の明るさの変
化に対して自動的に発光量を調整する第2の機能を持つ
点に特徴がある。以下、制御用MIC(24)の内部回路と
動作を説明する。
In the fifth embodiment, a lighting circuit for automatically controlling the lighting current of the LED chip array (16) is incorporated. The lighting circuit automatically protects against an abnormal increase in the lighting current induced by fluctuations in the ambient temperature and the DC power supply voltage VCC of the power supply line (21), and the resulting overheating of the semiconductor light emitting element (3). It is characterized in that it has a first function and a second function of automatically adjusting the amount of light emission in response to a change in ambient brightness. Hereinafter, the internal circuit and operation of the control MIC (24) will be described.

【0041】図21は、制御用MIC(24)の回路図を示
し、図22は、制御用MIC(24)の端子配置図を示し、
図23は、制御用MIC(24)のタイミングチャートを示
す。
FIG. 21 is a circuit diagram of the control MIC (24), and FIG. 22 is a terminal arrangement diagram of the control MIC (24).
FIG. 23 shows a timing chart of the control MIC (24).

【0042】図21に示す制御用MIC(24)の内部回路
(30)は、電源ライン(21)に接続された定電圧回路(31)
と、加熱保護(TSD:Thermal Shut Down)回路(32)
と、自動調光回路(33)と、駆動回路(34)とを備えてい
る。定電圧回路(31)は直流電源電圧(VCC)の変動や負
荷電流の変動、周囲温度の変動等に対し常に一定の出力
電圧を供給する機能を持つ。過熱保護回路(32)は、過電
流等によってLEDチップアレー(16)の発熱量が設定温
度以上に達した場合、LEDチップアレー(16)の点灯電
流を遮断させ、熱暴走による破壊を防止する働きを持
ち、分圧抵抗(35, 36)、温度検出用ダイオード(37)、比
較器(38)により構成される。温度検出用ダイオード(37)
は、順方向電圧Vの温度特性を利用して温度変化を電
圧変化に変換する働きを持つ。自動調光回路(33)は、変
動する周囲の明るさに対し一定の明るさを自動的に与え
る回路であり、光度(Iv)を電流(I)に変換する光度電
流変換部(40)と、電流(I)を電圧(V)に変換する電流電
圧変換部(41)と、光度基準値電源(42)、差動増幅器(4
3)、NPNトランジスタ(44)により構成される。光度電
流変換部(40)は、ホトダイオード(45)、温度補正回路(4
6)、PNPトランジスタ(48,49)から成るカレントミラ
ー回路(47)により構成される。電流電圧変換部(41)は、
PNPトランジスタ(48)のコレクタ電流(I)を抵抗(5
0)によって検出電圧(V)に変換する。光度基準値電源(4
2)は、制御すべき光量の基準値を与える安定化電源であ
る。差動増幅器(43)及びNPNトランジスタ(44)は、光
度基準値電源(42)の基準電圧と抵抗(50)での検出電圧
(V)とを比較し、常に光度(I)が一定になるようLE
Dチップアレー(16)の点灯電流(I, I)を制御する
働きを持つ。LEDチップアレー(16)を駆動する駆動回
路(34)は、LEDチップアレー(16)に点灯電流を供給す
る働きを持ち、NPNトランジスタ(52, 53)から成るカ
レントミラ−回路(51)及びPNPトランジスタ(55, 56,
57)から成るカレントミラ−回路(54)より構成される。
The internal circuit of the control MIC (24) shown in FIG.
(30) is a constant voltage circuit (31) connected to the power supply line (21)
And heat protection (TSD: Thermal Shut Down) circuit (32)
And an automatic light control circuit (33) and a drive circuit (34). The constant voltage circuit (31) has a function of constantly supplying a constant output voltage to fluctuations in the DC power supply voltage (V CC ), fluctuations in the load current, fluctuations in the ambient temperature, and the like. The overheat protection circuit (32) shuts off the lighting current of the LED chip array (16) when the amount of heat generated by the LED chip array (16) reaches a set temperature or more due to overcurrent or the like, thereby preventing damage due to thermal runaway. It has a function and is composed of a voltage dividing resistor (35, 36), a temperature detecting diode (37), and a comparator (38). Temperature detection diode (37)
Has a function of converting a temperature change into a voltage change by utilizing the temperature characteristic of the forward voltage V F. The automatic dimming circuit (33) is a circuit that automatically gives a constant brightness to fluctuating ambient brightness, and includes a luminous intensity current conversion unit (40) that converts luminous intensity (Iv) to current (I). , A current-voltage converter (41) for converting the current (I) into a voltage (V), a luminous intensity reference value power supply (42), and a differential amplifier (4).
3), composed of an NPN transistor (44). The luminous intensity current converter (40) includes a photodiode (45) and a temperature correction circuit (4
6), a current mirror circuit (47) including PNP transistors (48, 49). The current-voltage converter (41)
The collector current (I 1 ) of the PNP transistor (48) is changed by a resistor (5
0) to a detection voltage (V). Luminous intensity reference power supply (4
2) is a stabilized power supply for giving a reference value of the light quantity to be controlled. The differential amplifier (43) and the NPN transistor (44) are connected to the reference voltage of the luminous intensity reference power supply (42) and the detection voltage of the resistor (50).
(V) and LE so that the luminous intensity (I v ) is always constant.
It has a function of controlling the lighting current (I 5 , I 6 ) of the D chip array (16). A driving circuit (34) for driving the LED chip array (16) has a function of supplying a lighting current to the LED chip array (16), and a current mirror circuit (51) comprising NPN transistors (52, 53) and a PNP Transistor (55, 56,
57) and a current mirror circuit (54).

【0043】直流電源電圧(VCC)の電源ライン(21)に
入力側が接続された定電圧回路(31)の出力側は、分圧抵
抗(35)と、PNPトランジスタ(48)のエミッタを介して
抵抗(50)と、PNPトランジスタ(49)のエミッタ及び温
度補正回路(46)を介してホトダイオード(45)のカソード
側と、抵抗(58)を介してNPNトランジスタ(44, 52)の
コレクタとにそれぞれ接続される。また、電源ライン(2
1)にはカレントミラー回路(54)のPNPトランジスタ(5
5, 56, 57)のエミッタが接続され、PNPトランジスタ
(55)のコレクタはNPNトランジスタ(53)のコレクタに
接続され、また、PNPトランジスタ(56, 57)のコレク
タは、制御用MIC(24)の出力端子(24a, 24b)を介して
LEDチップアレー(16)にそれぞれ接続される。また、
定電圧回路(31)の出力電圧は、分圧抵抗(35, 36)により
分圧され、比較器(38)の反転入力端子に接続される。比
較器(38)の非反転入力端子は順方向の温度検出用ダイオ
ード(37)を介して接地される。比較器(38)の出力端子
は、NPNトランジスタ(44,52)のコレクタに接続さ
れ、NPNトランジスタ(44)のコレクタは、カレントミ
ラー回路(51)を構成するNPNトランジスタ(52)のコレ
クタに接続される。カレントミラー回路(51)のNPNト
ランジスタ(53)のコレクタはカレントミラー回路(54)の
コレクタに接続される。
The output side of the constant voltage circuit (31) whose input side is connected to the power supply line (21) of the DC power supply voltage (V CC ) is connected via a voltage dividing resistor (35) and the emitter of a PNP transistor (48). A resistor (50), an emitter of a PNP transistor (49) and a cathode side of a photodiode (45) via a temperature correction circuit (46), and a collector of an NPN transistor (44, 52) via a resistor (58). Connected to each other. The power line (2
The PNP transistor (5) of the current mirror circuit (54) is
5, 56, 57) are connected, and a PNP transistor
The collector of (55) is connected to the collector of the NPN transistor (53), and the collector of the PNP transistor (56, 57) is connected to the LED chip array via the output terminal (24a, 24b) of the control MIC (24). (16). Also,
The output voltage of the constant voltage circuit (31) is divided by the voltage dividing resistors (35, 36) and connected to the inverting input terminal of the comparator (38). The non-inverting input terminal of the comparator (38) is grounded via a forward temperature detecting diode (37). The output terminal of the comparator (38) is connected to the collector of the NPN transistor (44, 52), and the collector of the NPN transistor (44) is connected to the collector of the NPN transistor (52) constituting the current mirror circuit (51). Is done. The collector of the NPN transistor (53) of the current mirror circuit (51) is connected to the collector of the current mirror circuit (54).

【0044】制御用MIC(24)により過電流保護を行う
際に、定電圧回路(31)の出力電圧を分圧する分圧抵抗(3
5, 36)の接続点Aの電圧(V)は、温度検出用ダイオー
ド(37)の順方向電圧(V)より低く設定されるため、定
常状態では比較器(38)は、高レベルの出力を発生し、抵
抗(58)に流れる電流(I)は、NPNトランジスタ(44,
52)のコレクタ電流の和に相当する。また、カレントミ
ラー回路(51)の特性上、NPNトランジスタ(52, 53)の
各コレクタ電流(I)は等しく、またコレクタ電流(I
)はカレントミラー回路(54)のPNPトランジスタ(5
5)のコレクタ電流でもあるから、同様にPNPトランジ
スタ(55, 55, 57)の各コレクタ電流I=I=I
ある。ところで、抵抗(58)の抵抗値(R58)と、NPN
トランジスタ(44, 52)の内部インピーダンス(R44
52)との和で定電圧回路(31)の出力電圧(V)を除
した値が抵抗(58)を通る電流(I)である。 I=V/(R58+R44+R52)
When overcurrent protection is performed by the control MIC (24), a voltage dividing resistor (3) for dividing the output voltage of the constant voltage circuit (31) is used.
5, 36 voltage (V A) at the connection point A) of the order to be set lower than the forward voltage of the temperature detecting diode (37) (V F), the comparator in the steady state (38), a high level And an electric current (I 3 ) flowing through the resistor (58) is generated by the NPN transistor (44,
This corresponds to the sum of the collector current of 52). Also, due to the characteristics of the current mirror circuit (51), the collector currents (I 4 ) of the NPN transistors (52, 53) are equal and the collector currents (I 4 ) are equal.
4 ) is a PNP transistor (5) of the current mirror circuit (54).
Since it is also the collector current of 5), similarly, each collector current I 4 = I 5 = I 6 of the PNP transistor (55, 55, 57). By the way, the resistance value (R 58 ) of the resistor ( 58 ) and the NPN
The internal impedance of the transistors (44, 52) ( R44 +
The value obtained by dividing the output voltage (V R ) of the constant voltage circuit (31) by the sum with R 52 ) is the current (I 3 ) passing through the resistor (58). I 3 = V R / (R 58 + R 44 + R 52)

【0045】NPNトランジスタ(44)の内部インピーダ
ンス(R44)及び差動増幅器(43)の出力電流が変化しな
ければ、抵抗(58)を通る電流(I)は定電流となり、L
EDチップアレー(16)に流れる点灯電流(I, I)も
定電流となる。LEDチップアレー(16)に過電流が流れ
て異常発熱が発生すると、その発熱は放熱用金属板(15)
を介して制御用MIC(24)に伝わり温度検出用ダイオー
ド(37)の温度を上昇させる。温度上昇に伴い温度検出用
ダイオード(37)の順電圧(V)がA点の電圧(V)以下
に低下すると、比較器(38)の出力電圧が低レベルとな
り、NPNトランジスタ(44, 52)のコレクタ電圧はゼロ
になり、NPNトランジスタ(53)も非導通状態となるか
ら、PNPトランジスタ(55, 55, 57)の各電流(I,
, I )は全てゼロになり、LEDチップアレー(1
6)は過電流から保護される。
Internal impedance of NPN transistor (44)
(R44) And the output current of the differential amplifier (43) do not change.
If present, the current (I3) Is a constant current and L
The lighting current (I) flowing through the ED chip array (16)5, I6)Also
It becomes a constant current. Overcurrent flows in the LED chip array (16)
When abnormal heat is generated, the heat is generated
Transmitted to the control MIC (24) via the
The temperature of the node (37) is increased. For temperature detection as temperature rises
Diode (37) forward voltage (VF) Is the voltage at point A (VA)Less than
The output voltage of the comparator (38) becomes low.
The collector voltage of the NPN transistors (44, 52) is zero.
And the NPN transistor (53) also becomes non-conductive
The current (I) of the PNP transistor (55, 55, 57)4,
I5, I 6) Are all zero and the LED chip array (1
6) is protected from overcurrent.

【0046】制御MIC(24)が自動調光を行う際に、抵
抗(58)の抵抗値によってLEDチップアレー(16)の点灯
電流(I, I)の大きさを決めると共に、常に一定電
流値に制御される。周囲環境の明るさを自動調光回路(3
3)のホトダイオード(45)により検出して省エネルギを図
ることができる。即ち、LEDチップアレー(16)からの
光と周囲環境からの光は、ホトダイオード(45)に入射
し、ホトダイオード(45)の内部抵抗の変化による電流
(I)の変化として検知される。従って、周囲が明るい
日中ではホトダイオード(45)の内部抵抗が増加してLE
Dチップアレー(16)の照度を落とし、周囲が暗い夜間で
はホトダイオード(45)の内部抵抗が減少して照度を上げ
る。また、温度変化によるホトダイオード(45)の内部抵
抗が変化して電流特性の変化を温度補正回路(46)で補正
することができる。温度補正回路(46)は、ツェナーダイ
オード、ダイオード、抵抗などを組み合わせ、ホトダイ
オード(45)の温度変化をキャンセルして明るさの変化に
よってのみホトダイオード(45)を流れる電流Iを変化
させるように調整する機能がある。カレントミラー回路
(47)を構成するPNPトランジスタ(48, 49)のコレクタ
電流(I, I)は、I =Iであるから、コレクタ
電流(I)の変化は(I)の変化となり、変化する電圧
(I×R)は差動増幅器(43)の非反転入力端子に印加
される。差動増幅器(43)の反転入力端子には光度基準値
電源(42)の基準電圧(E)が印加されるので、Eと(I×
)の差に比例する出力電流が差動増幅器(43)から発
生し、差動増幅器(43)の出力電流はNPNトランジスタ
(44)のベースに流れるので、NPNトランジスタ(44)の
コレクタ電流が変化する。NPNトランジスタ(44, 52)
のコレクタ電流をI44、I52とすると、I=I44
+I52であり、またNPNトランジスタ(52)のコレク
タ電流=I=I=Iであるから、ホトダイオード
(45)の入光量の変化はLEDチップアレー(16)の点灯電
流の変化に反映され、自動的に光量調整が行われる。図
23は制御用MIC(24)のタイミングチャートを示す。
自動調光回路(33)が働いても過熱保護回路(TSD)(3
2)の遮断動作が優先される。
When the control MIC (24) performs automatic dimming,
Lighting of LED chip array (16) by resistance value of anti (58)
Current (I5, I6) And always
It is controlled to the flow value. Automatic brightness control circuit (3
Energy saving by detecting with the photodiode (45) of 3)
Can be That is, from the LED chip array (16)
Light and light from the surrounding environment enter the photodiode (45)
Current due to the change in the internal resistance of the photodiode (45).
(I2) Is detected as a change. Therefore, the surroundings are bright
During the day, the internal resistance of the photodiode (45) increases and LE
Reduce the illuminance of the D chip array (16)
Decreases the internal resistance of the photodiode (45) and raises the illuminance.
You. Also, the internal resistance of the photodiode (45) due to temperature changes
The resistance changes and the change in current characteristics is corrected by the temperature correction circuit (46).
can do. The temperature compensation circuit (46) is a Zener die
Combine an diode, a diode, a resistor, etc.
Cancel the temperature change of Aether (45) and change the brightness
Therefore, the current I flowing through the photodiode (45) only2Change
There is a function to make adjustments. Current mirror circuit
Collector of PNP transistors (48, 49) constituting (47)
Current (I1, I2) Is I 1= I2Because the collector
Current (I2Changes in (I)1) And the voltage that changes
(I1× R3) Is applied to the non-inverting input terminal of the differential amplifier (43)
Is done. Luminous intensity reference value at the inverting input terminal of the differential amplifier (43)
Since the reference voltage (E) of the power supply (42) is applied, E and (I1×
R3) Is output from the differential amplifier (43).
The output current of the differential amplifier (43) is
Since the current flows to the base of (44), the NPN transistor (44)
The collector current changes. NPN transistor (44, 52)
The collector current of I44, I52Then I3= I44
+ I52And the collector of the NPN transistor (52).
Data current = I4= I5= I6Therefore, the photodiode
The change in the amount of incident light of (45) is the lighting power of the LED chip array (16).
The light amount is automatically adjusted by reflecting the change in the flow. Figure
23 shows a timing chart of the control MIC (24).
Even if the automatic light control circuit (33) works, the overheat protection circuit (TSD) (3
The interruption operation of 2) is prioritized.

【0047】青色蛍光体(2)は、化学式Sr5(PO4)3
Cl:Eu、緑色蛍光体(2)は化学式3(Ba,Mg)O・8
Al23:Eu,Mn、赤色蛍光体(2)は化学式Y22S:
Euを例示したが、この他にも(Ba,Ca,Mg)10(P
4)6Cl2:Eu(発光ピーク波長483nm)、(Sr,
Ca,Ba)10Cl2:Eu(445nm〜452nm)、2
SrO・0.84P25・0.16B23:Eu(480n
m)、BaMg2Al162 7:Eu(450nm)を青色蛍
光体(2)に使用でき、Y2SiO5:Ce,Tb(545n
m)を緑色蛍光体(2)に使用でき、3.5MgO・0.5M
gF2・GeO2:Mn(650nm)を赤色蛍光体(2)に使
用できる。
The blue phosphor (2) has the chemical formula Sr 5 (PO 4 ) 3
Cl: Eu, green phosphor (2) has the chemical formula 3 (Ba, Mg) O · 8
Al 2 O 3 : Eu, Mn, red phosphor (2) has a chemical formula of Y 2 O 2 S:
Eu was exemplified, but (Ba, Ca, Mg) 10 (P
O 4 ) 6Cl 2 : Eu (emission peak wavelength 483 nm), (Sr,
Ca, Ba) 10Cl 2 : Eu (445 nm-452 nm), 2
SrO · 0.84P 2 O 5 · 0.16B 2 O 3 : Eu (480n
m), BaMg 2 Al 16 O 2 7: Eu a (450 nm) can be used in a blue phosphor (2), Y 2 SiO 5 : Ce, Tb (545n
m) can be used for green phosphor (2), 3.5MgO.0.5M
gF 2 .GeO 2 : Mn (650 nm) can be used for the red phosphor (2).

【0048】半導体発光素子(3)は、直列接続ではなく
図27に示すように並列接続でもよい。並列接続の場
合、1素子が断線しても半導体発光装置全体が消灯する
問題を回避できる。図27では、半導体発光素子(3)の
アノード側に接続された電流制限抵抗(60)をカソード側
に接続してもよい。また、電流制限抵抗(60)の代わりに
定電流回路を用いてもよい。また、ツェナーダイオー
ド、セラミックバリスタ、コンデンサと抵抗の組み合わ
せを含むサージ保護素子を半導体発光素子(3)と並列に
接続して、サージ、外来サージ又は静電気による半導体
発光素子(3)の破壊を防ぐことができ半導体発光装置の
信頼性を向上できる。
The semiconductor light emitting elements (3) may be connected in parallel as shown in FIG. 27 instead of being connected in series. In the case of parallel connection, it is possible to avoid the problem that the entire semiconductor light emitting device is turned off even if one element is disconnected. In FIG. 27, the current limiting resistor (60) connected to the anode side of the semiconductor light emitting device (3) may be connected to the cathode side. Further, a constant current circuit may be used instead of the current limiting resistor (60). Also, connect a surge protection device including a Zener diode, ceramic varistor, and a combination of a capacitor and a resistor in parallel with the semiconductor light emitting device (3) to prevent damage to the semiconductor light emitting device (3) due to surge, external surge or static electricity. Thus, the reliability of the semiconductor light emitting device can be improved.

【0049】また、第1の透光性部材(11)の形状は、管
状であれば円筒状に限定されず、用途に応じて三角形、
四角形又は多角形等の適切な断面形状に形成することが
可能である。
The shape of the first translucent member (11) is not limited to a cylindrical shape as long as it is tubular.
It can be formed in a suitable cross-sectional shape such as a quadrangle or a polygon.

【0050】本発明の実施の形態では、下記の作用効果
が得られる。 [1] 半導体発光素子(3)一素子当たり3.5V〜4V
程度の低電圧で作動することができる。 [2] インバータ等の昇圧回路が不要となり、構造を
簡素化できる。 [3] 直流で動作するから、昇圧回路による高周波ノ
イズの発生がなく回路誤動作の恐れがない。 [4] 発熱が少なく熱設計が容易である。 [5] 周囲温度の影響を受けにくく、電源印加直後か
ら安定に動作させることができる。 [6] 半導体発光素子(3)等の部材寸法を極力小径化
して、小型化を図ることができる。 [7] 水銀等の有害物質を含まず環境を汚染しない。 従って、本発明による半導体発光装置を用いれば、冷陰
極蛍光管の持つ数々の欠点を解決した優れた固体化光源
とすることができる。
In the embodiment of the present invention, the following operation and effect can be obtained. [1] 3.5 V to 4 V per semiconductor light emitting device (3)
It can operate at as low a voltage. [2] A booster circuit such as an inverter is not required, and the structure can be simplified. [3] Since it operates with direct current, there is no occurrence of high frequency noise due to the booster circuit and there is no risk of circuit malfunction. [4] Low heat generation and easy thermal design. [5] It is hardly affected by the ambient temperature and can operate stably immediately after power is applied. [6] The dimensions of the members of the semiconductor light emitting element (3) and the like can be reduced as much as possible, and the size can be reduced. [7] Contains no harmful substances such as mercury and does not pollute the environment. Therefore, by using the semiconductor light emitting device according to the present invention, it is possible to provide an excellent solid-state light source that solves many disadvantages of the cold cathode fluorescent tube.

【0051】[0051]

【発明の効果】前記のように、本発明による半導体発光
装置は、高周波ノイズを発生する昇圧回路を使用せず、
放熱の少ない半導体発光装置を実現することができる。
また、本発明による半導体発光装置は、使用する環境条
件に点灯条件が影響されず、細径化でき、且つ環境汚染
を発生する水銀を使用しない半導体発光装置を実現する
ことができる。
As described above, the semiconductor light emitting device according to the present invention does not use a booster circuit that generates high-frequency noise.
A semiconductor light emitting device with less heat dissipation can be realized.
Further, the semiconductor light emitting device according to the present invention can realize a semiconductor light emitting device which can be reduced in diameter without affecting lighting conditions depending on environmental conditions to be used and which does not use mercury which generates environmental pollution.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明による半導体発光装置の第1の実施の
形態を示す平面図
FIG. 1 is a plan view showing a first embodiment of a semiconductor light emitting device according to the present invention.

【図2】 図1の長さ方向に沿う断面図FIG. 2 is a cross-sectional view along the length direction of FIG.

【図3】 図1の径方向に沿う断面図FIG. 3 is a sectional view along the radial direction of FIG. 1;

【図4】 本発明による半導体発光装置の第2の実施の
形態を示す平面図
FIG. 4 is a plan view showing a second embodiment of the semiconductor light emitting device according to the present invention.

【図5】 図4の長さ方向に沿う断面図FIG. 5 is a sectional view along the length direction of FIG. 4;

【図6】 図4の径方向に沿う断面図6 is a sectional view taken along the radial direction of FIG.

【図7】 本発明による半導体発光装置の第3の実施の
形態を示す平面図
FIG. 7 is a plan view showing a third embodiment of the semiconductor light emitting device according to the present invention.

【図8】 図7の長さ方向に沿う断面図FIG. 8 is a sectional view along the length direction of FIG. 7;

【図9】 図7の径方向に沿う断面図9 is a sectional view taken along the radial direction of FIG. 7;

【図10】 干渉フィルタの断面図FIG. 10 is a sectional view of an interference filter.

【図11】 本発明による半導体発光装置の第4の実施
の形態を示す平面図
FIG. 11 is a plan view showing a fourth embodiment of the semiconductor light emitting device according to the present invention.

【図12】 図11の長さ方向に沿う断面図FIG. 12 is a cross-sectional view along the length direction of FIG. 11;

【図13】 図11の径方向に沿う断面図FIG. 13 is a sectional view taken along the radial direction of FIG. 11;

【図14】 図11に示す半導体発光素子の側面図FIG. 14 is a side view of the semiconductor light emitting device shown in FIG. 11;

【図15】 図11に示す半導体発光素子の平面図FIG. 15 is a plan view of the semiconductor light emitting device shown in FIG. 11;

【図16】 図15に示す半導体発光素子の回路構成図16 is a circuit configuration diagram of the semiconductor light emitting device shown in FIG.

【図17】 第4の実施の形態による半導体発光装置の
点灯回路図
FIG. 17 is a lighting circuit diagram of the semiconductor light emitting device according to the fourth embodiment.

【図18】 本発明による半導体発光装置の第5の実施
の形態を示す平面図
FIG. 18 is a plan view showing a fifth embodiment of the semiconductor light emitting device according to the present invention.

【図19】 図18の側面図19 is a side view of FIG.

【図20】 図18の底面図20 is a bottom view of FIG.

【図21】 制御用MICの回路図FIG. 21 is a circuit diagram of a control MIC.

【図22】 制御用MICの端子配置図FIG. 22 is a terminal arrangement diagram of a control MIC.

【図23】 制御用MICのタイミングチャートFIG. 23 is a timing chart of a control MIC.

【図24】 干渉フィルタの反射スペクトルの一例FIG. 24 shows an example of a reflection spectrum of an interference filter.

【図25】 本発明による半導体発光装置の第1〜第2
の実施の形態の発光スペクトル
FIG. 25 shows first and second semiconductor light emitting devices according to the present invention.
Emission spectrum of the embodiment

【図26】 本発明による半導体発光装置の第3の実施
の形態の発光スペクトル
FIG. 26 shows an emission spectrum of the semiconductor light emitting device according to the third embodiment of the present invention.

【図27】 半導体発光素子の並列接続の模式図FIG. 27 is a schematic view of parallel connection of semiconductor light emitting elements.

【図28】 従来の冷陰極蛍光管の模式断面図FIG. 28 is a schematic sectional view of a conventional cold cathode fluorescent tube.

【符号の説明】[Explanation of symbols]

(1)・・蛍光部材、 (3)・・半導体発光素子、 (4, 5)
・・外部リード、 (4a, 5a)・・導出部、 (4b, 5b)・
・端子部、 (11)・・第1の透光性部材(ガラス管)、
(12)・・蛍光体層、 (13)・・干渉フィルタ、 (14)
・・第2の透光性部材、 (32)・・過熱保護回路、 (3
3)・・自動調光回路、
(1) ・ ・ Fluorescent material, (3) ・ ・ Semiconductor light emitting device, (4, 5)
..External leads, (4a, 5a)
・ Terminal part, (11) ・ ・ First translucent member (glass tube),
(12) ... Phosphor layer, (13) ... Interference filter, (14)
..Second translucent member, (32)
3) ・ ・ Automatic dimming circuit,

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F21S 2/00 F21V 9/16 8/04 H05B 37/02 D F21V 9/16 F21S 1/02 G H05B 37/02 1/00 D (72)発明者 佐野 武志 埼玉県新座市北野3丁目6番3号 サンケ ン電気株式会社内 (72)発明者 小林 信夫 埼玉県新座市北野3丁目6番3号 サンケ ン電気株式会社内 (72)発明者 丸尾 泰弘 埼玉県新座市北野3丁目6番3号 サンケ ン電気株式会社内 Fターム(参考) 3K073 AA67 AA83 BA28 BA31 CF13 CG42 CJ17 CJ22 4H001 CA01 XA07 XA08 XA13 XA31 XA39 XA64 YA58 5F041 BB10 BB13 BB22 BB26 CA40 DA07 DA13 DA75 DA83 DB09 EE22 EE25 FF11 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F21S 2/00 F21V 9/16 8/04 H05B 37/02 D F21V 9/16 F21S 1/02 G H05B 37 / 02 1/00 D (72) Inventor Takeshi Sano 3-6-3 Kitano, Niiza City, Saitama Prefecture Within Sanken Electric Co., Ltd. (72) Inventor Nobuo Kobayashi 3-6-3 Kitano, Niiza City, Saitama Prefecture Sanken Within Electric Co., Ltd. (72) Inventor Yasuhiro Maruo 3-6-3 Kitano, Niiza-shi, Saitama F-term (reference) within Sanken Electric Co., Ltd. 3K073 AA67 AA83 BA28 BA31 CF13 CG42 CJ17 CJ22 4H001 CA01 XA07 XA08 XA13 XA31 XA39 XA64 YA58 5F041 BB10 BB13 BB22 BB26 CA40 DA07 DA13 DA75 DA83 DB09 EE22 EE25 FF11

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 管状の蛍光部材(1)と、該蛍光部材(1)内
に配置された半導体発光素子(3)と、蛍光部材(1)の両端
に固定され且つ前記半導体発光素子(3)に電気的に接続
された複数の外部リード(4, 5)とを備え、 前記外部リード(4, 5)の各々は、前記蛍光部材(1)の外
部に延出する導出部(4a, 5a)と、前記蛍光部材(1)の内
部に配置され且つ前記半導体発光素子(3)に電気的に接
続された端子部(4b, 5b)とを備え、 前記蛍光部材(1)は、前記半導体発光素子(3)から照射さ
れる光に対して光透過性を有し且つ前記半導体発光素子
(3)から照射される光を吸収して他の発光波長に変換す
る蛍光物質を具備することを特徴とする半導体発光装
置。
A tubular fluorescent member (1), a semiconductor light emitting element (3) disposed in the fluorescent member (1), and the semiconductor light emitting element (3) fixed to both ends of the fluorescent member (1). ) And a plurality of external leads (4, 5) electrically connected to each other, and each of the external leads (4, 5) is a lead-out portion (4a, 4) extending outside the fluorescent member (1). 5a), and a terminal portion (4b, 5b) disposed inside the fluorescent member (1) and electrically connected to the semiconductor light emitting element (3), wherein the fluorescent member (1) is The semiconductor light emitting device has a light transmitting property to light emitted from the semiconductor light emitting device (3) and the semiconductor light emitting device
(3) A semiconductor light-emitting device comprising a fluorescent substance that absorbs light emitted from (3) and converts the light into another emission wavelength.
【請求項2】 前記半導体発光素子(3)は、窒化ガリウ
ム系化合物半導体より成る発光層を有し且つ発光波長の
ピークが420nm〜490nmの窒化ガリウム系LEDチ
ップである請求項1に記載の半導体発光装置。
2. The semiconductor according to claim 1, wherein the semiconductor light-emitting element is a gallium nitride-based LED chip having a light-emitting layer made of a gallium nitride-based compound semiconductor and having a peak emission wavelength of 420 nm to 490 nm. Light emitting device.
【請求項3】 前記蛍光物質は、化学式(Y1−x,G
)(Al1−y,Ga)12:Ce(但
し、0≦x≦0.5、0≦y≦0.5、0.001≦z≦0.5)で表さ
れる請求項1又は2に記載の半導体発光装置。
3. The fluorescent substance has a chemical formula (Y 1-x , G
d x) 3 (Al 1- y, Ga y) 5 O 12: Ce z ( where in claim 1 or 2 represented by 0 ≦ x ≦ 0.5,0 ≦ y ≦ 0.5,0.001 ≦ z ≦ 0.5) 14. The semiconductor light emitting device according to claim 1.
【請求項4】 前記半導体発光素子(3)は、窒化ガリウ
ム系化合物半導体より成る発光層を有し且つ発光波長の
ピークが365nm〜420nmの窒化ガリウム系LEDチ
ップであり、 前記蛍光物質は、420nm〜490nmに発光ピークを有
する青色蛍光物質と、520nm〜570nmに発光ピーク
を有する緑色蛍光物質と、590nm〜700nmに発光ピ
ークを有する赤色蛍光物質とから成り、 前記半導体発光素子(3)から照射される波長の光を反射
し且つ蛍光体から照射される波長の光を透過する干渉フ
ィルタ(13)を前記蛍光部材(1)の外面又は内面に形成し
た請求項1に記載の半導体発光装置。
4. The semiconductor light-emitting device (3) is a gallium nitride-based LED chip having a light-emitting layer made of a gallium nitride-based compound semiconductor and having a peak emission wavelength of 365 nm to 420 nm; A blue fluorescent substance having an emission peak at 490 nm to 490 nm, a green fluorescent substance having an emission peak at 520 nm to 570 nm, and a red fluorescent substance having an emission peak at 590 nm to 700 nm, and emitted from the semiconductor light emitting element (3). The semiconductor light emitting device according to claim 1, wherein an interference filter (13) that reflects light of a certain wavelength and transmits light of a wavelength emitted from the phosphor is formed on an outer surface or an inner surface of the fluorescent member (1).
【請求項5】 前記蛍光部材(1)は、管状に形成された
第1の透光性部材(11)と、該第1の透光性部材(11)の内
面に前記蛍光物質が塗布される蛍光体層(12)とを備えた
請求項1〜4の何れか1項に記載の半導体発光装置。
5. The fluorescent member (1) includes a first light-transmitting member (11) formed in a tubular shape, and an inner surface of the first light-transmitting member (11) coated with the fluorescent material. 5. The semiconductor light emitting device according to claim 1, further comprising: a phosphor layer.
【請求項6】 前記蛍光部材(1)は、前記蛍光物質を内
部に包含し且つ管状に形成された第1の透光性部材(11)
を備えた請求項1〜4の何れか1項に記載の半導体発光
装置。
6. The first light-transmissive member (11), wherein the first fluorescent member (1) includes the fluorescent substance therein and is formed in a tubular shape.
The semiconductor light emitting device according to claim 1, further comprising:
【請求項7】 前記蛍光部材(1)は、管状に形成された
第1の透光性部材(11)と、前記第1の透光性部材(11)の
内部に充填される第2の透光性部材(14)とを有し、前記
第1の透光性部材(11)に前記蛍光物質が塗布又は含有さ
れる請求項1〜4の何れか1項に記載の半導体発光装
置。
7. The fluorescent member (1) includes a first light-transmitting member (11) formed in a tubular shape, and a second light-transmitting member (11) filled inside the first light-transmitting member (11). The semiconductor light emitting device according to any one of claims 1 to 4, further comprising a light transmitting member (14), wherein the fluorescent material is applied or contained on the first light transmitting member (11).
【請求項8】 前記蛍光部材(1)は、管状に形成された
第1の透光性部材(11)と、前記第1の透光性部材(11)の
内部に充填された第2の透光性部材(14)とから成り、前
記第2の透光性部材(14)に前記蛍光物質を配合した請求
項1〜4の何れか1項に記載の半導体発光装置。
8. The fluorescent member (1) includes a first translucent member (11) formed in a tubular shape, and a second translucent member (11) filled in the first translucent member (11). The semiconductor light emitting device according to any one of claims 1 to 4, comprising a light-transmitting member (14), wherein the fluorescent material is blended in the second light-transmitting member (14).
【請求項9】 前記第1の透光性部材(11)は、光透過性
を有するガラス又は樹脂により形成される請求項1〜8
の何れか1項に記載の半導体発光装置。
9. The first light-transmissive member (11) is made of glass or resin having light transmissivity.
The semiconductor light emitting device according to claim 1.
【請求項10】 前記第2の透光性部材(14)は、光透過
性を有する樹脂である請求項7又は8に記載の半導体発
光装置。
10. The semiconductor light emitting device according to claim 7, wherein the second light transmitting member is a resin having light transmitting property.
【請求項11】 前記半導体発光素子(3)から照射され
る波長の光を反射し且つ前記蛍光物質から照射される波
長の光を透過する干渉フィルタ(13)を前記管状蛍光部材
(1)の外面又は内面に形成した請求項1〜10の何れか
1項に記載の半導体発光装置。
11. An interference filter (13) that reflects light of a wavelength radiated from the semiconductor light emitting element (3) and transmits light of a wavelength radiated from the fluorescent substance is provided on the tubular fluorescent member.
The semiconductor light emitting device according to claim 1, wherein the semiconductor light emitting device is formed on an outer surface or an inner surface of (1).
【請求項12】 前記蛍光部材(1)の外面の一部に光反
射部を形成した請求項1〜11の何れか1項に記載の半
導体発光装置。
12. The semiconductor light emitting device according to claim 1, wherein a light reflecting portion is formed on a part of an outer surface of said fluorescent member.
【請求項13】 前記半導体発光素子(3)は、前記第1
の透光性部材(11)の内面の長さ方向に沿って配置される
請求項1〜12の何れか1項に記載の半導体発光装置。
13. The semiconductor light emitting device (3), wherein:
The semiconductor light emitting device according to claim 1, wherein the semiconductor light emitting device is arranged along a length direction of an inner surface of the light transmitting member.
【請求項14】 前記半導体発光素子(3)は、前記蛍光
部材(1)の一方の端部と他方の端部との間で長さ方向に
配置される請求項1〜13の何れか1項に記載の半導体
発光装置。
14. The semiconductor light emitting device according to claim 1, wherein the semiconductor light emitting element is disposed in a length direction between one end and the other end of the fluorescent member. 13. The semiconductor light emitting device according to item 9.
【請求項15】 前記半導体発光素子(3)の光と周囲の
外部光とを検出し、前記外部光の増減に従って前記半導
体発光素子(3)の発光量を調節し、常に一定の明るさを
保つ自動調光回路(33)を備えた請求項1〜14の何れか
1項に記載の半導体発光装置。
15. Detecting light from the semiconductor light emitting element (3) and surrounding external light, adjusting the amount of light emitted from the semiconductor light emitting element (3) in accordance with increase or decrease of the external light, so as to always maintain a constant brightness. The semiconductor light emitting device according to any one of claims 1 to 14, further comprising an automatic dimming circuit (33) for keeping.
【請求項16】 前記半導体発光素子(3)の温度が予め
設定された限界値に達したときに、前記半導体発光素子
(3)の点灯電流を自動的に遮断する過熱保護回路(32)を
備えた請求項1〜15の何れか1項に記載の半導体発光
装置。
16. When the temperature of the semiconductor light emitting device (3) reaches a preset limit value, the semiconductor light emitting device (3)
The semiconductor light emitting device according to any one of claims 1 to 15, further comprising an overheat protection circuit (32) that automatically shuts off the lighting current of (3).
JP2001110694A 2001-04-09 2001-04-09 Semiconductor light emitting device Pending JP2002314136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001110694A JP2002314136A (en) 2001-04-09 2001-04-09 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001110694A JP2002314136A (en) 2001-04-09 2001-04-09 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JP2002314136A true JP2002314136A (en) 2002-10-25

Family

ID=18962417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001110694A Pending JP2002314136A (en) 2001-04-09 2001-04-09 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2002314136A (en)

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359404A (en) * 2001-05-31 2002-12-13 Nichia Chem Ind Ltd Light-emitting device using phosphor
JP2004253364A (en) * 2003-01-27 2004-09-09 Matsushita Electric Ind Co Ltd Lighting system
JP2004311822A (en) * 2003-04-09 2004-11-04 Solidlite Corp Purplish red light emitting diode
JP2007149668A (en) * 2005-11-24 2007-06-14 Lg Innotek Co Ltd Lighting system
JP2007317575A (en) * 2006-05-26 2007-12-06 Toki Corporation Kk Lighting fixture and lighting device
JPWO2006006537A1 (en) * 2004-07-12 2008-07-31 ソニー株式会社 Driving device for backlight unit and driving method thereof
JP2008533688A (en) * 2005-03-21 2008-08-21 ヘシャン リデ エレクトロニック エンタープライズ カンパニー リミテッド Flexible tube light with flow flashing effect
JP2008262937A (en) * 2008-08-08 2008-10-30 Koito Mfg Co Ltd Light source module and lighting fixture for vehicle
JP2008277561A (en) * 2007-04-27 2008-11-13 Toshiba Lighting & Technology Corp Luminaire
JP2009501443A (en) * 2005-07-14 2009-01-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Color point control system
JP2009516358A (en) * 2005-11-18 2009-04-16 クリー インコーポレイテッド Solid lighting panel tiles
JP2009529154A (en) * 2006-03-08 2009-08-13 インテマティックス・コーポレーション Light emitting sign and its display surface
KR100925655B1 (en) * 2008-01-29 2009-11-09 서울반도체 주식회사 Led lamp
JP2009272088A (en) * 2008-05-02 2009-11-19 Rohm Co Ltd Led lamp mountable on fluorescent luminaire for general use
WO2010004661A1 (en) * 2008-07-09 2010-01-14 株式会社カネヒロデンシ Led lamp
JP2010040496A (en) * 2008-08-07 2010-02-18 Msm Tech Co Ltd Fluorescent lamp type led lamp with temperature control function
JP2010199140A (en) * 2009-02-23 2010-09-09 Ushio Inc Phosphor film and method of manufacturing same
JP2010199144A (en) * 2009-02-23 2010-09-09 Ushio Inc Light source equipment
JP2010199145A (en) * 2009-02-23 2010-09-09 Ushio Inc Light source equipment
JP2011044270A (en) * 2009-08-19 2011-03-03 Sharp Corp Light source module and lighting device
JP2011077231A (en) * 2009-09-30 2011-04-14 Ssec Kk Radiator, and light emitting diode lamp
JP2011124608A (en) * 2011-02-16 2011-06-23 Toshiba Lighting & Technology Corp Lighting device
JP2011138681A (en) * 2009-12-28 2011-07-14 Panasonic Corp Led lamp
WO2011136166A1 (en) * 2010-04-27 2011-11-03 東芝ライテック株式会社 Fluorescent lamp type light emitting element lamp, and illuminating apparatus
JP2011233358A (en) * 2010-04-27 2011-11-17 Toshiba Lighting & Technology Corp Lighting fixture
JP2011233359A (en) * 2010-04-27 2011-11-17 Toshiba Lighting & Technology Corp Fluorescent lamp type light-emitting element lamp, and lighting fixture
WO2012001927A1 (en) * 2010-06-28 2012-01-05 株式会社 東芝 Led bulb
JP2012009451A (en) * 2011-09-15 2012-01-12 Panasonic Corp Led lamp and lighting fixture
JP2012069297A (en) * 2010-09-21 2012-04-05 Panasonic Corp Lamp and lighting system
JP2012146626A (en) * 2011-01-07 2012-08-02 Wellypower Optronics Corp Light-emitting diode light tube for illumination
JP2013500560A (en) * 2009-07-30 2013-01-07 オスラム アクチエンゲゼルシャフト lamp
JP2013536569A (en) * 2010-07-01 2013-09-19 コーニンクレッカ フィリップス エヌ ヴェ TL retrofit LED module in sealed glass tube
JP2014030051A (en) * 2006-04-21 2014-02-13 Philips Lumileds Lightng Co Llc Semiconductor light emitting device with integrated electronic components
WO2014045489A1 (en) * 2012-09-21 2014-03-27 パナソニック株式会社 Illumination light source and illumination device
JP2014064004A (en) * 2012-09-21 2014-04-10 Advanced Optoelectronic Technology Inc Light-emitting diode package and method for manufacturing the same
JP2014146598A (en) * 2014-03-03 2014-08-14 Panasonic Corp LED lamp
WO2014174691A1 (en) * 2013-04-26 2014-10-30 ジーデザイン株式会社 Heat sinkless led lamp
JP2015506546A (en) * 2011-12-27 2015-03-02 コーニンクレッカ フィリップス エヌ ヴェ Illumination device with reflector device
JP2015056666A (en) * 2013-09-11 2015-03-23 廣▲ジャー▼光電股▲ふん▼有限公司 Light emitting module and illuminating device relating to the same
EP2876354A1 (en) * 2013-11-26 2015-05-27 Sagatek Co., Ltd. Tubular light source device
WO2015074934A1 (en) * 2013-11-25 2015-05-28 Koninklijke Philips N.V. Lighting arrangement with improved illumination uniformity
JP2016001637A (en) * 2014-06-11 2016-01-07 有限会社日本ホスピック Illumination system
EP2587115A4 (en) * 2010-06-28 2016-06-01 Panasonic Corp Straight tube led lamp, lamp socket set, and illumination equipment
JP2016524809A (en) * 2013-04-26 2016-08-18 フォセオン テクノロジー, インコーポレイテッドPhoseon Technology, Inc. Method and system for detecting temperature gradient of light source array
WO2016134882A1 (en) * 2015-02-23 2016-09-01 Osram Gmbh Lamp having a light-permeable bulb tube
JP2016170981A (en) * 2015-03-12 2016-09-23 パナソニックIpマネジメント株式会社 Luminaire
JP2016219366A (en) * 2015-05-26 2016-12-22 王▲喩▼楠Wang, Yu−Nan Light strip and luminaire to which light strip is applied
JP2017092023A (en) * 2015-11-16 2017-05-25 昆淵 江 Wide light distribution type straight pipe led lamp
JPWO2016098846A1 (en) * 2014-12-18 2017-10-05 三菱電機株式会社 Lamp, wavelength discrimination cover for lamp, lighting device, and method of manufacturing lamp
CN109244215A (en) * 2018-09-12 2019-01-18 苏州星烁纳米科技有限公司 Light emitting device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5584804U (en) * 1978-12-05 1980-06-11
JPH02303942A (en) * 1989-05-18 1990-12-17 Matsushita Electric Ind Co Ltd Illumination device in car room
JPH0438281U (en) * 1990-07-31 1992-03-31
JPH0660830U (en) * 1993-01-29 1994-08-23 株式会社小糸製作所 Liquid crystal display
JPH07192520A (en) * 1993-12-27 1995-07-28 Kiyoshi Kiyotani Cover for illumination
JPH1049738A (en) * 1996-08-05 1998-02-20 Sanyo Electric Co Ltd Integrated display for automatic vending machine
JPH1187778A (en) * 1997-09-02 1999-03-30 Toshiba Corp Semiconductor light emitting element, semiconductor light emitting device and manufacture thereof
JPH1187770A (en) * 1997-09-01 1999-03-30 Toshiba Electron Eng Corp Lighting appliance, reader, projector, purifier and display device
JP2000349346A (en) * 1999-06-07 2000-12-15 Sanken Electric Co Ltd Semiconductor light emitting device
JP2000349347A (en) * 1999-06-08 2000-12-15 Sanken Electric Co Ltd Semiconductor light emitting element
JP3075996U (en) * 2000-08-30 2001-03-16 舶用電球株式会社 Tube type LED lamp
JP2001085734A (en) * 1999-07-12 2001-03-30 Tokyo Gas Co Ltd Device using diamond ultraviolet light-emitting element

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5584804U (en) * 1978-12-05 1980-06-11
JPH02303942A (en) * 1989-05-18 1990-12-17 Matsushita Electric Ind Co Ltd Illumination device in car room
JPH0438281U (en) * 1990-07-31 1992-03-31
JPH0660830U (en) * 1993-01-29 1994-08-23 株式会社小糸製作所 Liquid crystal display
JPH07192520A (en) * 1993-12-27 1995-07-28 Kiyoshi Kiyotani Cover for illumination
JPH1049738A (en) * 1996-08-05 1998-02-20 Sanyo Electric Co Ltd Integrated display for automatic vending machine
JPH1187770A (en) * 1997-09-01 1999-03-30 Toshiba Electron Eng Corp Lighting appliance, reader, projector, purifier and display device
JPH1187778A (en) * 1997-09-02 1999-03-30 Toshiba Corp Semiconductor light emitting element, semiconductor light emitting device and manufacture thereof
JP2000349346A (en) * 1999-06-07 2000-12-15 Sanken Electric Co Ltd Semiconductor light emitting device
JP2000349347A (en) * 1999-06-08 2000-12-15 Sanken Electric Co Ltd Semiconductor light emitting element
JP2001085734A (en) * 1999-07-12 2001-03-30 Tokyo Gas Co Ltd Device using diamond ultraviolet light-emitting element
JP3075996U (en) * 2000-08-30 2001-03-16 舶用電球株式会社 Tube type LED lamp

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359404A (en) * 2001-05-31 2002-12-13 Nichia Chem Ind Ltd Light-emitting device using phosphor
JP2004253364A (en) * 2003-01-27 2004-09-09 Matsushita Electric Ind Co Ltd Lighting system
JP2004311822A (en) * 2003-04-09 2004-11-04 Solidlite Corp Purplish red light emitting diode
JP4992423B2 (en) * 2004-07-12 2012-08-08 ソニー株式会社 Backlight unit driving apparatus and driving method thereof
US8111020B2 (en) 2004-07-12 2012-02-07 Sony Corporation Apparatus and method for driving backlight unit
JPWO2006006537A1 (en) * 2004-07-12 2008-07-31 ソニー株式会社 Driving device for backlight unit and driving method thereof
JP2008533688A (en) * 2005-03-21 2008-08-21 ヘシャン リデ エレクトロニック エンタープライズ カンパニー リミテッド Flexible tube light with flow flashing effect
KR101303367B1 (en) 2005-07-14 2013-09-03 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Colour point control system
JP2009501443A (en) * 2005-07-14 2009-01-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Color point control system
US7993021B2 (en) 2005-11-18 2011-08-09 Cree, Inc. Multiple color lighting element cluster tiles for solid state lighting panels
JP2009516358A (en) * 2005-11-18 2009-04-16 クリー インコーポレイテッド Solid lighting panel tiles
JP4914900B2 (en) * 2005-11-18 2012-04-11 クリー インコーポレイテッド Solid lighting panel tiles
JP2007149668A (en) * 2005-11-24 2007-06-14 Lg Innotek Co Ltd Lighting system
JP2009529154A (en) * 2006-03-08 2009-08-13 インテマティックス・コーポレーション Light emitting sign and its display surface
JP2014030051A (en) * 2006-04-21 2014-02-13 Philips Lumileds Lightng Co Llc Semiconductor light emitting device with integrated electronic components
JP4698485B2 (en) * 2006-05-26 2011-06-08 トキコーポレーション株式会社 Lamp and lighting device
JP2007317575A (en) * 2006-05-26 2007-12-06 Toki Corporation Kk Lighting fixture and lighting device
JP2008277561A (en) * 2007-04-27 2008-11-13 Toshiba Lighting & Technology Corp Luminaire
KR100925655B1 (en) * 2008-01-29 2009-11-09 서울반도체 주식회사 Led lamp
JP2009272088A (en) * 2008-05-02 2009-11-19 Rohm Co Ltd Led lamp mountable on fluorescent luminaire for general use
JP2010020962A (en) * 2008-07-09 2010-01-28 Kanehirodenshi Corp Led lamp
WO2010004661A1 (en) * 2008-07-09 2010-01-14 株式会社カネヒロデンシ Led lamp
JP2010040496A (en) * 2008-08-07 2010-02-18 Msm Tech Co Ltd Fluorescent lamp type led lamp with temperature control function
JP2008262937A (en) * 2008-08-08 2008-10-30 Koito Mfg Co Ltd Light source module and lighting fixture for vehicle
JP4523055B2 (en) * 2008-08-08 2010-08-11 株式会社小糸製作所 Light source module and vehicle lamp
JP2010199145A (en) * 2009-02-23 2010-09-09 Ushio Inc Light source equipment
JP2010199144A (en) * 2009-02-23 2010-09-09 Ushio Inc Light source equipment
JP2010199140A (en) * 2009-02-23 2010-09-09 Ushio Inc Phosphor film and method of manufacturing same
JP2013500560A (en) * 2009-07-30 2013-01-07 オスラム アクチエンゲゼルシャフト lamp
JP2011044270A (en) * 2009-08-19 2011-03-03 Sharp Corp Light source module and lighting device
JP2011077231A (en) * 2009-09-30 2011-04-14 Ssec Kk Radiator, and light emitting diode lamp
JP2011138681A (en) * 2009-12-28 2011-07-14 Panasonic Corp Led lamp
CN102483203A (en) * 2010-04-27 2012-05-30 东芝照明技术株式会社 Fluorescent lamp type light emitting element lamp, and illuminating apparatus
JP2011233359A (en) * 2010-04-27 2011-11-17 Toshiba Lighting & Technology Corp Fluorescent lamp type light-emitting element lamp, and lighting fixture
JP2011233358A (en) * 2010-04-27 2011-11-17 Toshiba Lighting & Technology Corp Lighting fixture
US20130033858A1 (en) * 2010-04-27 2013-02-07 Toshiba Lighting & Technology Corporation Fluorescent Lamp Type Light-Emitting Device Lamp and Lighting Apparatus
WO2011136166A1 (en) * 2010-04-27 2011-11-03 東芝ライテック株式会社 Fluorescent lamp type light emitting element lamp, and illuminating apparatus
WO2012001927A1 (en) * 2010-06-28 2012-01-05 株式会社 東芝 Led bulb
EP2587115A4 (en) * 2010-06-28 2016-06-01 Panasonic Corp Straight tube led lamp, lamp socket set, and illumination equipment
US9706608B2 (en) 2010-06-28 2017-07-11 Panasonic Corporation Straight tube LED lamp, lamp socket set, and lighting fixture
US8955996B2 (en) 2010-06-28 2015-02-17 Kabushiki Kaisha Toshiba LED light bulb
JP2013536569A (en) * 2010-07-01 2013-09-19 コーニンクレッカ フィリップス エヌ ヴェ TL retrofit LED module in sealed glass tube
JP2012069297A (en) * 2010-09-21 2012-04-05 Panasonic Corp Lamp and lighting system
JP2012146626A (en) * 2011-01-07 2012-08-02 Wellypower Optronics Corp Light-emitting diode light tube for illumination
JP2011124608A (en) * 2011-02-16 2011-06-23 Toshiba Lighting & Technology Corp Lighting device
JP2012009451A (en) * 2011-09-15 2012-01-12 Panasonic Corp Led lamp and lighting fixture
JP2015506546A (en) * 2011-12-27 2015-03-02 コーニンクレッカ フィリップス エヌ ヴェ Illumination device with reflector device
WO2014045489A1 (en) * 2012-09-21 2014-03-27 パナソニック株式会社 Illumination light source and illumination device
JP2014064004A (en) * 2012-09-21 2014-04-10 Advanced Optoelectronic Technology Inc Light-emitting diode package and method for manufacturing the same
JP2016524809A (en) * 2013-04-26 2016-08-18 フォセオン テクノロジー, インコーポレイテッドPhoseon Technology, Inc. Method and system for detecting temperature gradient of light source array
WO2014174691A1 (en) * 2013-04-26 2014-10-30 ジーデザイン株式会社 Heat sinkless led lamp
JP2015056666A (en) * 2013-09-11 2015-03-23 廣▲ジャー▼光電股▲ふん▼有限公司 Light emitting module and illuminating device relating to the same
US9612001B2 (en) 2013-11-25 2017-04-04 Philips Lighting Holding B.V. Lighting arrangement with improved illumination uniformity
WO2015074934A1 (en) * 2013-11-25 2015-05-28 Koninklijke Philips N.V. Lighting arrangement with improved illumination uniformity
EP2876354A1 (en) * 2013-11-26 2015-05-27 Sagatek Co., Ltd. Tubular light source device
JP2014146598A (en) * 2014-03-03 2014-08-14 Panasonic Corp LED lamp
JP2016001637A (en) * 2014-06-11 2016-01-07 有限会社日本ホスピック Illumination system
JPWO2016098846A1 (en) * 2014-12-18 2017-10-05 三菱電機株式会社 Lamp, wavelength discrimination cover for lamp, lighting device, and method of manufacturing lamp
WO2016134882A1 (en) * 2015-02-23 2016-09-01 Osram Gmbh Lamp having a light-permeable bulb tube
JP2016170981A (en) * 2015-03-12 2016-09-23 パナソニックIpマネジメント株式会社 Luminaire
JP2016219366A (en) * 2015-05-26 2016-12-22 王▲喩▼楠Wang, Yu−Nan Light strip and luminaire to which light strip is applied
JP2017092023A (en) * 2015-11-16 2017-05-25 昆淵 江 Wide light distribution type straight pipe led lamp
CN109244215A (en) * 2018-09-12 2019-01-18 苏州星烁纳米科技有限公司 Light emitting device
CN109244215B (en) * 2018-09-12 2024-01-30 苏州星烁纳米科技有限公司 Light emitting device

Similar Documents

Publication Publication Date Title
JP2002314136A (en) Semiconductor light emitting device
CN102157506B (en) Light emitting device
KR100851183B1 (en) Semiconductor light emitting device package
KR100775574B1 (en) LED package with high efficiency
EP1803164B1 (en) Luminescent light source, method for manufacturing the same, and light-emitting apparatus
JP4001893B2 (en) Semiconductor light emitting device
JP2006005290A (en) Light emitting diode
WO2004032251A1 (en) White light emitting device
KR20080037734A (en) Light-emitting device, backlight using same, and liquid crystal display
JP2009140835A (en) Light emitting device, plane light unit, and display device
KR20100072163A (en) Semiconductor light-emitting device as well as light source device and lighting system including the same
JP2013046071A (en) Light emitting element package and lighting unit including the same
JP2002171000A (en) Semiconductor light emitting device and light emitting display comprising it
KR20080080171A (en) Solid-state light source and method of producing light of a desired color point
KR100580765B1 (en) Light emitting diode package and method for manufacturing light emitting diode package
US10412808B2 (en) Light emitting module and lighting device having same
JP2008218998A (en) Light emitting device
EP2720266B1 (en) Luminescence device
JP2007067000A (en) Light-emitting diode module
JP5406691B2 (en) Semiconductor light emitting device
US20160230943A1 (en) Light emitting module and light unit having the same
JP2008010791A (en) Light-emitting device
KR101901890B1 (en) Luminescence device
JP2007173733A (en) Light emitting device
JP5113329B2 (en) Light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070104