WO2013054658A1 - Wavelength conversion element and method for manufacturing same, light-emitting device and method for manufacturing same, and liquid mixture - Google Patents

Wavelength conversion element and method for manufacturing same, light-emitting device and method for manufacturing same, and liquid mixture Download PDF

Info

Publication number
WO2013054658A1
WO2013054658A1 PCT/JP2012/074824 JP2012074824W WO2013054658A1 WO 2013054658 A1 WO2013054658 A1 WO 2013054658A1 JP 2012074824 W JP2012074824 W JP 2012074824W WO 2013054658 A1 WO2013054658 A1 WO 2013054658A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting device
wavelength conversion
light emitting
particles
mixed solution
Prior art date
Application number
PCT/JP2012/074824
Other languages
French (fr)
Japanese (ja)
Inventor
禄人 田口
Original Assignee
コニカミノルタアドバンストレイヤー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタアドバンストレイヤー株式会社 filed Critical コニカミノルタアドバンストレイヤー株式会社
Priority to JP2013538490A priority Critical patent/JP5747994B2/en
Publication of WO2013054658A1 publication Critical patent/WO2013054658A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the present invention relates to a light emitting device having a light emitting element and a wavelength conversion unit that converts the wavelength of light emitted from the light emitting element.
  • phosphors such as YAG (yttrium, aluminum, garnet) phosphors are arranged in the vicinity of gallium nitride (GaN) blue LED (Light Emitting Diode) chips, and blue light emitted from the blue LED chips.
  • GaN gallium nitride
  • a technique for obtaining a white light emitting device by color mixture of yellow light emitted when the phosphor receives blue light and emits secondary light is widely used.
  • a technique for obtaining a white light emitting device by mixing blue light emitted from a blue LED chip and red light and green light emitted by each phosphor receiving blue light and secondary light emission is also used. Yes.
  • Such white light emitting devices have various uses, for example, there is a demand as an alternative to fluorescent lamps and incandescent lamps. In addition, it is also being used for lighting devices such as automobile headlights that require extremely high luminance. Since the headlight is required to have high visibility with respect to an object such as a distant sign, high performance is also required in terms of the color of the white light emitting device and the color uniformity of the irradiation range.
  • a method of sealing an LED chip or a mounting portion using a transparent resin in which a phosphor is dispersed is generally used.
  • the specific gravity of the phosphor particles is larger than that of the transparent resin.
  • Patent Document 1 discloses a light-emitting device that attempts to suppress sedimentation and segregation of a phosphor by using a silicone resin having a viscosity of 100 to 10,000 mPa ⁇ s when cured as a sealing body.
  • Patent Document 2 discloses a light-emitting device in which a liquid translucent sealing material is added with a lipophilic compound obtained by adding an organic cation to a layered compound mainly composed of a viscous mineral as an anti-settling material for a phosphor, and the light emitting device A manufacturing method is disclosed.
  • Patent Document 3 discloses a configuration in which a light-emitting element is covered with an adhesive transparent material and a phosphor layer is attached to the outside thereof.
  • Patent Document 3 there is no problem that the phosphor settles because the phosphor layer is attached to the outside of the transparent material.
  • the transparent material is a resin, it is excited by the heat of the LED itself or the light of the LED.
  • problems such as color unevenness and surface scattering due to deformation of the resin may occur due to deterioration and coloration of the resin due to heat generated by the emitted light from the phosphor.
  • Patent Document 4 As a technique for improving the heat resistance of a white light emitting device, for example, in Patent Document 4, phosphor particles are dispersed in a solution containing a metal alkoxide or a ceramic precursor composition, and this is applied to an LED and heated. Thus, a technique of sealing with a ceramic (glass) containing a phosphor has been proposed. Patent Document 4 also discloses that inorganic particles are added to the phosphor dispersion solution as an anti-settling material for the phosphor.
  • An object of the present invention is to reduce the occurrence of color unevenness to such an extent that it can be sufficiently used in applications that require a high level of color uniformity, such as automobile headlights, and has excellent durability. It is an object of the present invention to provide a conversion element manufacturing method, a wavelength conversion element thereof, a light emitting device manufacturing method, a light emitting device, and a mixed solution.
  • the present invention provides a step of applying a first liquid mixture containing a phosphor, first swellable particles, inorganic particles, and a first solvent on a light emitting element, and a light transmitting property thereon. And applying a second mixed liquid containing a ceramic material, second swellable particles, and a second solvent and heating.
  • the second mixed liquid may contain water and / or inorganic particles.
  • the content of the second swellable particles in the second liquid mixture is 0.1 wt% or more and 60 wt% or less.
  • the content of the second swellable particles in the second mixed liquid is 0.5 wt% or more and 30 wt% or less.
  • the first and / or second swellable particles are preferably swellable clay minerals.
  • the translucent ceramic material is an organometallic compound.
  • the light-emitting device of the present invention is manufactured by any one of the above-described methods for manufacturing a light-emitting device.
  • the second mixed liquid may contain water and / or inorganic particles.
  • the content of the second swellable particles in the second liquid mixture is 0.1 wt% or more and 60 wt% or less.
  • the content of the second swellable particles in the second mixed solution is 0.5 wt% or more and 30 wt% or less.
  • the swellable particle is preferably a swellable clay mineral.
  • the translucent ceramic material is an organometallic compound.
  • the wavelength conversion element of the present invention is manufactured by the above-described method for manufacturing a wavelength conversion element.
  • the method for manufacturing a light emitting device of the present invention is obtained by adding a step of installing the wavelength converting element on the light emitting surface side of the light emitting element in the above method for manufacturing a wavelength converting element.
  • the light-emitting device of the present invention is manufactured by the above-described light-emitting device manufacturing method.
  • the mixed solution used for manufacturing the light emitting device of the present invention is a mixed solution containing a translucent ceramic material, swellable particles, and a solvent.
  • water and / or inorganic particles may be contained.
  • the content of the swellable particles is preferably 0.1% by weight or more and 60% by weight or less.
  • the content of the swellable particles is more preferably 0.5 wt% or more and 30 wt% or less.
  • the swellable particle is preferably a swellable clay mineral.
  • the translucent ceramic material is preferably an organometallic compound.
  • the present invention it is possible to reduce the occurrence of color unevenness to the extent that it can be sufficiently used in a light-emitting device that is required to have a high level of color uniformity, such as an automobile headlight, and is excellent in durability. Can be realized.
  • a ceramic layer that does not easily generate cracks can be formed as a thick film.
  • FIG. 5 is a diagram showing the blending ratio of solid components of mixed liquids and dispersions of Comparative Examples 1 to 4.
  • FIG. 4 is a diagram showing the viscosity, chromaticity, chromaticity standard deviation, average chromaticity standard deviation, and chromaticity evaluation of the first mixed liquid in Examples 1 to 10.
  • FIG. 7 is a diagram showing the viscosity, chromaticity, chromaticity standard deviation, average chromaticity standard deviation, and chromaticity evaluation of the first mixed solution in Examples 11 to 21.
  • FIG. 5 is a diagram showing the viscosity, chromaticity, chromaticity standard deviation, average chromaticity standard deviation, and chromaticity evaluation of mixed liquids in Comparative Examples 1 to 4. This is the maximum film thickness at which cracks do not occur in the second mixed solutions of Examples 1 to 11. It is the maximum film thickness at which cracks do not occur in the second mixed liquids of Examples 12 to 18 and the dispersion liquids of Comparative Examples 1 to 4.
  • FIG. 1 is a schematic cross-sectional view of a light emitting device according to a first embodiment of the present invention.
  • a metal part 2 is provided at the bottom of an LED substrate 1 having a concave cross section, and an LED element 3 is disposed on the metal part 2 as a light emitting element.
  • the LED element 3 is provided with a protruding electrode 4 on a surface facing the metal part 2, and the metal part 2 and the LED element 3 are connected via the protruding electrode 4 (flip chip type).
  • a blue LED element is used as the LED element 3.
  • a blue LED element is formed by laminating an n-GaN-based cladding layer, an InGaN light-emitting layer, a p-GaN-based cladding layer, and a transparent electrode on a sapphire substrate.
  • the wavelength conversion part 6 is provided in the recessed part of the LED board 1 so that the LED element 3 may be covered.
  • the wavelength conversion unit 6 includes a wavelength conversion layer 7 that covers the LED element 3 and a ceramic layer 8 that is formed on the wavelength conversion layer 7.
  • the wavelength conversion layer 7 is a part that converts light having a predetermined wavelength emitted from the LED element 3 into light having a different wavelength, and is excited by the wavelength from the LED element 3 to emit fluorescence having a wavelength different from the excitation wavelength. Contains the body.
  • the ceramic layer 8 is a layer for sealing and protecting the wavelength conversion layer 7, and has translucency that transmits at least the light of the LED element 3 and the fluorescence of the wavelength conversion layer 7.
  • the wavelength conversion layer 7 is applied with a mixed liquid (first mixed liquid) containing at least a phosphor, swellable particles (first swellable particles), inorganic particles (inorganic fine particles), and a solvent (first solvent), and heated. It is a layer obtained by (drying).
  • the ceramic layer 8 is applied with a mixed liquid (second mixed liquid) containing at least a translucent ceramic material, swellable particles (second swellable particles), and a solvent (second solvent), and heated (fired). It is a transparent ceramic layer (glass body) obtained.
  • the second mixed solution may contain water and / or inorganic particles. (Phosphor)
  • the phosphor is excited by the wavelength of the light emitted from the LED element 3 (excitation wavelength) and emits fluorescence having a wavelength different from the excitation wavelength.
  • a YAG (yttrium, aluminum, garnet) phosphor that converts blue light (wavelength 420 nm to 485 nm) emitted from the blue LED element into yellow light (wavelength 550 nm to 650 nm) is used.
  • Such phosphors use oxides of Y, Gd, Ce, Sm, Al, La, and Ga, or compounds that easily become oxides at high temperatures, and are mixed well in a stoichiometric ratio.
  • a mixed raw material is obtained.
  • a coprecipitated oxide obtained by calcining a solution obtained by coprecipitation of a solution obtained by dissolving a rare earth element of Y, Gd, Ce, or Sm in an acid with a stoichiometric ratio with oxalic acid, and aluminum oxide or gallium oxide.
  • an appropriate amount of fluoride such as ammonium fluoride is mixed with the obtained mixed raw material as a flux and pressed to obtain a molded body.
  • the obtained molded body is packed in a crucible and fired in air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a sintered body having the phosphor emission characteristics.
  • the YAG phosphor is used.
  • the type of the phosphor is not limited to this, and other phosphors such as a non-garnet phosphor containing no Ce are used. You can also.
  • the larger the particle size of the phosphor the higher the light emission efficiency (wavelength conversion efficiency), but the gap formed at the interface with the swellable particles becomes larger, and the film strength of the formed wavelength conversion layer 7 decreases. Therefore, in consideration of the size of the gap generated at the interface between the luminous efficiency and the swellable particles, it is preferable to use a volume average particle size of 1 ⁇ m to 50 ⁇ m, which is smaller than the thickness of the wavelength conversion layer 7 after heating. Is used.
  • the volume average particle diameter of the phosphor can be measured by, for example, a Coulter counter method or a laser diffraction / scattering particle diameter measuring apparatus. (Swellable particles)
  • swellable particles fluoride particles such as magnesium fluoride, aluminum fluoride, and calcium fluoride, layered silicate minerals, imogolite, and allophane can be used.
  • layered silicate mineral a swellable clay mineral having a structure such as a mica structure, a kaolinite structure, or a smectite structure is preferable, and a smectite structure rich in swelling properties is more preferable. Since the layered silicate mineral has a card house structure in the mixed solution, it has an effect of greatly increasing the viscosity of the mixed solution in a small amount. Further, since the layered silicate mineral has a flat plate shape, there is an effect of improving the film strength of the wavelength conversion layer 7.
  • the mineral is a solid substance having a certain chemical composition and crystal structure, which is a natural or synthetic inorganic substance.
  • layered silicate minerals include natural or synthetic hectrite, saponite, stevensite, hydelite, montmorillonite, nontrinite, bentonite, and other smectite clay minerals; Examples thereof include swellable mica genus clay minerals such as silicic fluorine mica, Na-type fluorine teniolite, Li-type fluorine teniolite, vermiculite and kaolinite, and mixtures thereof.
  • the content of the swellable particles in the first or second mixed solution is less than 0.1% by weight, the ratio of solid components such as phosphors, fine particles, and metal alkoxide in the first or second mixed solution is high. And their dispersibility deteriorates.
  • the content of the swellable particles exceeds 60% by weight, the scattering of excitation light by the swellable particles is often generated, the emission luminance of the wavelength conversion layer 7 is lowered, and the translucency of the ceramic layer 8 is lowered.
  • the content of the swellable particles in the first and second mixed liquids is preferably 0.1% by weight to 60% by weight, and more preferably 0.5% by weight to 30% by weight.
  • the swelling particles have a thickening effect, but if the ratio in the wavelength conversion layer 7 or the ceramic layer 8 is high, the viscosity of the liquid mixture does not increase.
  • the viscosity of the liquid mixture is not limited to other solvents, phosphors, etc. Determined by the ratio with the ingredients.
  • the surface of the swellable particles modified with an ammonium salt or the like can be used as appropriate. (solvent)
  • water As the solvent, water, an organic solvent, or a mixed solvent of water and an organic solvent can be used.
  • Water has a role of swelling hydrophilic swellable particles.
  • the addition of water to the fluoride particles increases the viscosity of the liquid mixture, so that sedimentation of the phosphor can be suppressed.
  • swelling since there exists a possibility that swelling may be inhibited when the impurity is contained in water, it is necessary to use the pure water which does not contain an impurity as the water to add.
  • the organic solvent is used for improving the wettability of the mixed solution and adjusting the viscosity.
  • the addition of an organic solvent to the fluoride particles increases the viscosity of the liquid mixture, so that sedimentation of the phosphor can be suppressed.
  • alcohols such as methanol, ethanol, propanol, and butanol having excellent compatibility with water as the organic solvent.
  • lipophilic swellable particles water does not act on the swelling of the swellable particles, but the viscosity increases by adding water, so an organic solvent having excellent compatibility with water should be used. preferable.
  • the inorganic particles have a filling effect that fills gaps formed at the interface between the phosphor and the swellable particles, and a thickening effect that increases the viscosity of the mixed solution before heating.
  • the inorganic particles used in the present invention include fine oxide particles such as silicon oxide, titanium oxide, zinc oxide, aluminum oxide, and zirconium oxide. In consideration of compatibility with ceramic materials and solvents, inorganic particles whose surfaces are treated with a silane coupling agent or a titanium coupling agent can be used as appropriate.
  • the content of the inorganic particles in the wavelength conversion layer 7 is less than 0.5% by weight, the ratio of solid components such as phosphors in the first mixed solution increases, and the dispersibility thereof deteriorates to reduce the content during coating. Handling becomes difficult, and it becomes difficult to apply with uniform chromaticity.
  • the content of the inorganic particles exceeds 70% by weight, the scattering of excitation light by the inorganic particles occurs frequently, and the light emission luminance of the wavelength conversion layer 7 decreases. Therefore, the content of the inorganic particles in the first mixed solution is preferably 0.5% by weight to 70% by weight, more preferably 0.5% by weight to 65% by weight, and more preferably 1% by weight to 60% by weight. The following is more preferable.
  • the inorganic particles have a thickening effect, but if the ratio in the wavelength conversion layer 7 is high, the viscosity of the liquid mixture does not increase.
  • the viscosity of the liquid mixture is a ratio with other components such as a solvent and a phosphor. Determined.
  • the particle size distribution of the inorganic particles is not particularly limited, and may be distributed over a wide range or may be distributed over a relatively narrow range.
  • the central particle size of the primary particle size is 0.001 ⁇ m or more and 50 ⁇ m or less, preferably smaller than the phosphor, and smaller than the thickness of the wavelength conversion layer 7 after heating.
  • the average particle diameter of the inorganic particles can be measured, for example, by a Coulter counter method. (Translucent ceramic material)
  • the translucent ceramic material is a ceramic precursor, and an inorganic or organic metal compound can be used.
  • the metal compound include metal alkoxides, metal acetylacetonates, metal carboxylates, metal nitrates, metal oxides, and the like, and metal alkoxides that are easily gelled by hydrolysis and polymerization reaction are preferable.
  • the metal alkoxide may be a single molecule such as tetraethoxysilane, or may be a polysiloxane in which an organic siloxane compound is linked in a chain or a ring, but a polysiloxane that increases the viscosity of the mixed solution is preferable.
  • a translucent glass body can be formed, but it is preferable to contain a silicon
  • a phosphor, swellable particles (first swellable particles), inorganic particles (inorganic fine particles), and a solvent (first solvent) may be mixed.
  • the preferred viscosity of the first mixed liquid is 10 to 1000 mPa ⁇ s, more preferred viscosity is 12 to 800 mPa ⁇ s, and most preferred viscosity is 20 to 600 mPa ⁇ s.
  • second swellable particles As a procedure for preparing the second mixed liquid, swellable particles (second swellable particles) are added to a solution in which a translucent ceramic material is dispersed in a solvent (second solvent), and water and / or inorganic particles are added as necessary. What is necessary is just to mix.
  • second solvent a solvent
  • a light-transmitting ceramic layer that does not easily generate cracks even when thickly applied can be formed.
  • the sol-like precursor solution may be heated to a gel state, and further fired to form a transparent ceramic layer by a so-called sol-gel method, or may be gelled by firing.
  • the transparent ceramic layer may be formed directly without doing so.
  • a metal alkoxide for example, a metal alkoxide, water for hydrolysis, a solvent, a catalyst, and the like.
  • the catalyst hydrochloric acid, sulfuric acid, nitric acid, acetic acid, hydrofluoric acid, ammonia and the like can be used.
  • the heating temperature of the gel is preferably 120 to 250 ° C., and preferably 120 to 200 ° C. from the viewpoint of further suppressing the deterioration of the LED element 3.
  • the heating temperature after coating is preferably 120 to 500 ° C., and from the viewpoint of further suppressing the deterioration of the LED element 3, 120 to 350 ° C. is preferable.
  • the coating device 10 mainly includes a movable table 20 that can move up and down, left and right, and back and forth, and a spray device 30 that can spray the first mixed liquid.
  • the spray device 30 is disposed above the movable table 20.
  • the spray device 30 has a nozzle 32 into which air is sent, and an air compressor (not shown) for sending air is connected to the nozzle 32.
  • the hole diameter at the tip of the nozzle 32 is 20 ⁇ m to 2 mm, preferably 0.1 to 0.3 mm.
  • the nozzle 32 can move up and down, left and right, and back and forth, like the moving table 20.
  • the spray gun W-101-142BPG manufactured by Anest Iwata is used as the nozzle 32, and the OFP-071C manufactured by Anest Iwata is used as the compressor.
  • the angle of the nozzle 32 can be adjusted, and the nozzle 32 can be tilted with respect to the movable table 20 (or the LED substrate 1 installed on the moving table 20).
  • the angle of the nozzle 32 with respect to the injection target (LED substrate 1) is preferably in the range of 0 to 60 ° when the vertical direction from the injection target is 0 °.
  • a tank 36 is connected to the nozzle 32 via a connecting pipe 34.
  • a first mixed solution 40 is stored in the tank 36.
  • the tank 36 contains a stirring bar, and the first mixed solution 40 is constantly stirred. If the 1st liquid mixture 40 is stirred, sedimentation of the fluorescent substance with large specific gravity can be suppressed, and the state which the fluorescent substance dispersed in the 1st liquid mixture 40 can be hold
  • Anest Iwata PC-51 is used as the tank.
  • a plurality of LED substrates 1 (on which the LED elements 3 are mounted in advance) are installed on the moving table 20, and the positional relationship between the LED substrate 1 and the nozzle 32 of the spray device 30. Is adjusted (position adjustment step).
  • the LED substrate 1 is installed on the moving table 20, and the LED substrate 1 and the tip of the nozzle 32 are arranged to face each other.
  • the first mixed solution 40 can be uniformly applied as the distance between the LED substrate 1 and the nozzle 32 increases, but the film strength also tends to decrease. It is suitable to keep the distance in the range of 3 to 30 cm.
  • the first mixed solution 40 is sprayed from the nozzle 32 and the first mixed solution 40 is applied to the LED substrate 1 while the LED substrate 1 and the nozzle 32 are moved relative to each other (spraying / coating step).
  • the moving base 20 and the nozzle 32 are moved to move the LED substrate 1 and the nozzle 32 back and forth and right and left.
  • Either one of the moving table 20 and the nozzle 32 may be fixed, and the other may be moved back and forth and left and right.
  • a method of applying a plurality of LED elements 3 in a direction orthogonal to the moving direction of the moving table 20 and moving the nozzle 32 in a direction orthogonal to the moving direction of the moving table 20 is also preferably used.
  • the first mixed solution 40 is sprayed from the tip of the nozzle 32 toward the LED substrate 1.
  • the distance between the LED substrate 1 and the nozzle 32 can be adjusted in the above range in consideration of the pressure of the air compressor.
  • the pressure of the compressor is adjusted so that the pressure (spray pressure) at the inlet (tip) of the nozzle 32 is 0.14 MPa.
  • the first mixed liquid 40 can be applied onto the LED element 3.
  • a nozzle that can control the dropping amount of the coating liquid and that does not cause nozzle clogging such as a phosphor is used.
  • a non-contact jet dispenser manufactured by Musashi Engineering Co., Ltd. or its dispenser can be used.
  • an ink jet apparatus a nozzle that can control the discharge amount of the coating liquid and does not cause clogging of nozzles such as phosphors is used.
  • an ink jet apparatus manufactured by Konica Minolta IJ can be used.
  • the wavelength conversion layer 7 having a uniform thickness (uniform phosphor distribution) is formed on the LED element 3 by heating (drying) the first mixed solution thus applied.
  • a predetermined amount of the second mixed liquid is sprayed on the wavelength conversion layer 7 by a spray coating method.
  • the coating apparatus 10 can also be used here. Part of the applied second mixed solution penetrates into the gaps between the phosphor particles and the swellable particles.
  • the ceramic layer 8 is formed by heating (baking) this.
  • the ceramic acts as a binder on the phosphor particles, the swellable particles, and the glass substrate 5. Moreover, since the 2nd liquid mixture contains swellable particle
  • the thickness of the wavelength conversion layer 7 is preferably 5 ⁇ m or more and 500 ⁇ m or less.
  • FIG. 3 is a schematic sectional view of a light emitting device according to a second embodiment of the present invention.
  • a metal part 2 is provided on a flat LED substrate 1, and the LED element 3 is disposed on the metal part 2 as a light emitting element.
  • the LED element 3 is provided with a protruding electrode 4 on a surface facing the metal part 2, and the metal part 2 and the LED element 3 are connected via the protruding electrode 4 (flip chip type).
  • the wavelength conversion element 9 includes a glass substrate 5 and a wavelength conversion unit 6 formed on the upper surface of the glass substrate 5.
  • the shape of the glass substrate 5 is not particularly limited, and a flat plate shape, a lens shape, or the like can be adopted.
  • the wavelength conversion unit 6 may be formed on the lower surface of the glass substrate 5.
  • the wavelength conversion unit 6 includes a wavelength conversion layer 7 formed on the glass substrate 5 and a ceramic layer 8 formed on the wavelength conversion layer 7.
  • a predetermined amount of the first mixed liquid is applied to one side of the glass substrate 5, and heated to form the wavelength conversion layer 7 having a predetermined thickness.
  • a predetermined amount of the second liquid mixture is applied to the upper surface of the wavelength conversion layer 7. Part of the applied second mixed solution penetrates into the gaps between the phosphor particles and the swellable particles.
  • the ceramic layer 8 is formed by baking the glass substrate 5 with which the 2nd liquid mixture was apply
  • the coating method of the first and second mixed liquids is not particularly limited, and various conventionally known methods such as a bar coating method, a spin coating method, and a spray coating method can be used.
  • the light-emitting device 100 can be manufactured by cut
  • size for example, 2x2 mm
  • the glass substrate 5 is used in the said embodiment, if it is a board
  • FIG. 4 is a schematic cross-sectional view of a light emitting device according to a third embodiment of the present invention.
  • the metal part 2 is provided at the bottom of the LED substrate 1 having a concave cross section
  • the LED element 3 is disposed on the metal part 2
  • a lid is provided on the concave part of the LED substrate 1.
  • a wavelength conversion element 9 is provided. Since the configuration of other parts including the wavelength conversion element 9 is the same as that of the second embodiment, the description thereof is omitted.
  • the LED element 3 is disposed in the concave portion of the LED substrate 1, and the wavelength conversion element 9 used in the second embodiment is bonded to the upper end of the side wall of the LED substrate 1 so as to cover the concave portion. Can be manufactured.
  • light emitted from the side surface of the LED element 3 is also efficiently converted into fluorescence as compared with the second embodiment.
  • the shape and size of the concave portion of the LED substrate 1 can be appropriately designed according to the specifications of the light emitting device 102.
  • the side surface of the recess may be tapered.
  • a configuration in which the light emission efficiency of the light emitting device 102 is increased by using the inner surface of the recess as a reflection surface may be employed.
  • the present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. Embodiments are also included in the technical scope of the present invention.
  • a light emitting device that emits white light by using a blue LED and a phosphor together has been described as an example.
  • a green LED or a red LED and a phosphor are used in combination.
  • Examples 1 to 18 are examples of the light emitting device 100 of the first embodiment
  • Examples 19 to 21 are examples of the light emitting device 101 of the second embodiment
  • Comparative Examples 1 to 4 are light emitting devices of the first embodiment. 4 is an example of a light emitting device having the same shape as the device 100.
  • FIG. 1 since the light-emitting device 102 of 3rd Embodiment uses the same wavelength conversion element 9 as 2nd Embodiment, it abbreviate
  • the obtained fired product was pulverized, washed, separated, and dried to obtain yellow phosphor particles having a volume average particle diameter of about 1 ⁇ m.
  • the emission wavelength of excitation light with a wavelength of 465 nm was measured, it had a peak wavelength at a wavelength of approximately 570 nm.
  • the glass substrate used in each example and comparative example was a rectangular parallelepiped having a width of 50 mm, a length of 20 mm, and a thickness of 1 mm, and a thin plate.
  • a first mixed liquid was prepared by mixing 0.05 g of silylated silica (manufactured by Nippon Aerosil Co., Ltd.) and 1.5 g of propylene glycol as a solvent. This first mixed solution is sprayed onto the concave portion of the LED substrate 1 and the surface of the LED element 3 at a spray pressure of 0.2 MPa and a moving speed of 100 mm / s using the coating apparatus 10 and heated at 50 ° C. for 1 hour.
  • the wavelength conversion layer 7 was produced by drying. Next, 1 g of a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) and 0.05 g of synthetic mica (MK-100, manufactured by Corp Chemical Co.), which is the second swellable particle, were mixed. A second mixture was prepared.
  • the wavelength conversion layer 7 is formed by spraying the second mixed liquid on the wavelength conversion layer 7 using the coating apparatus 10 so as to have a maximum film thickness that does not cause cracks after baking, and heating and baking at 150 ° C. for 1 hour.
  • the phosphor was fixed and the ceramic layer 8 was produced, whereby the light emitting device 100 was obtained.
  • a spray pressure and the moving speed of the moving stand 20 are adjusted suitably.
  • a first mixed liquid was prepared by mixing 0.05 g of silylated silica (manufactured by Nippon Aerosil Co., Ltd.) and 1.5 g of propylene glycol as a solvent.
  • a wavelength conversion layer 7 was produced under the same conditions as in Example 1 using this first mixed solution.
  • a first mixed solution was prepared.
  • a wavelength conversion layer 7 was produced under the same conditions as in Example 1 using this first mixed solution.
  • 1 g of the polysiloxane dispersion and 0.05 g of SWN as the second swellable particles were mixed to prepare a second mixed solution.
  • a ceramic layer 8 was produced under the same conditions as in Example 1, and a light emitting device 100 was obtained.
  • a first mixed solution was prepared.
  • a wavelength conversion layer 7 was produced under the same conditions as in Example 1 using this first mixed solution.
  • 1 g of polysiloxane dispersion, 0.05 g of SWN as the second swellable particles, and 0.05 g of RX300 were mixed to prepare a second mixed solution.
  • a ceramic layer 8 was produced under the same conditions as in Example 1, and a light emitting device 100 was obtained.
  • a first mixed solution was prepared.
  • a wavelength conversion layer 7 was produced under the same conditions as in Example 1 using this first mixed solution.
  • 1 g of polysiloxane dispersion, 0.2 g of SWN as second swellable particles, and 0.05 g of RX300 were mixed to prepare a second mixed solution.
  • a ceramic layer 8 was produced under the same conditions as in Example 1, and a light emitting device 100 was obtained.
  • a first mixed solution was prepared.
  • a wavelength conversion layer 7 was produced under the same conditions as in Example 1 using this first mixed solution.
  • 1 g of polysiloxane dispersion, 0.05 g of SWN as the second swellable particles, and 0.5 g of pure water were mixed to prepare a second mixed solution.
  • a ceramic layer 8 was produced under the same conditions as in Example 1, and a light emitting device 100 was obtained.
  • a first mixed solution was prepared.
  • a wavelength conversion layer 7 was produced under the same conditions as in Example 1 using this first mixed solution.
  • 1 g of a polysiloxane dispersion, 0.05 g of SWN as second swellable particles, 0.05 g of RX300, and 0.5 g of pure water were mixed to prepare a second mixed solution.
  • a ceramic layer 8 was produced under the same conditions as in Example 1, and a light emitting device 100 was obtained.
  • a first mixed solution was prepared.
  • a wavelength conversion layer 7 was produced under the same conditions as in Example 1 using this first mixed solution.
  • 1 g of polysiloxane dispersion, 0.1 g of SWN as second swellable particles, 0.2 g of RX300, and 0.5 g of pure water were mixed to prepare a second mixed solution.
  • a ceramic layer 8 was produced under the same conditions as in Example 1, and a light emitting device 100 was obtained.
  • a first mixed solution was prepared.
  • a wavelength conversion layer 7 was produced under the same conditions as in Example 1 using this first mixed solution.
  • 1 g of a polysiloxane dispersion, 0.2 g of SWN as second swellable particles, 0.15 g of RX300, and 0.5 g of pure water were mixed to prepare a second mixed solution.
  • a ceramic layer 8 was produced under the same conditions as in Example 1, and a light emitting device 100 was obtained.
  • a first mixed solution was prepared.
  • a wavelength conversion layer 7 was produced under the same conditions as in Example 1 using this first mixed solution.
  • 1 g of polysiloxane dispersion, 0.05 g of SWN as second swellable particles, and VM-2270 as inorganic particles (silylated silica having an average primary particle size of 25 nm; manufactured by Toray Dow Corning) 0.05g was mixed and the 2nd liquid mixture was prepared.
  • a ceramic layer 8 was produced under the same conditions as in Example 1, and a light emitting device 100 was obtained.
  • a first mixed solution was prepared.
  • a wavelength conversion layer 7 was produced under the same conditions as in Example 1 using this first mixed solution.
  • 1 g of polysiloxane dispersion, 0.05 g of SWN which is the second swellable particle, 0.05 g of VM-2270 which is the inorganic particle, and 0.5 g of pure water are mixed to obtain the second mixed solution.
  • a ceramic layer 8 was produced under the same conditions as in Example 1, and a light emitting device 100 was obtained.
  • a first mixed solution was prepared by mixing 1 g of diol.
  • a wavelength conversion layer 7 was produced under the same conditions as in Example 1 using this first mixed solution.
  • 1 g of polysiloxane dispersion, 0.05 g of SWN which is the second swellable particle, 0.05 g of VM-2270 which is the inorganic particle, and 0.5 g of pure water are mixed to obtain the second mixed solution.
  • a ceramic layer 8 was produced under the same conditions as in Example 1, and a light emitting device 100 was obtained.
  • a wavelength conversion layer 7 was produced under the same conditions as in Example 1 using this first mixed solution.
  • 1 g of polysiloxane dispersion, 0.05 g of SWN as the second swellable particles, 0.05 g of RX300 as the inorganic particles, and 0.5 g of pure water were mixed to prepare a second mixed solution. .
  • a ceramic layer 8 was produced under the same conditions as in Example 1, and a light emitting device 100 was obtained.
  • a first mixed solution was prepared.
  • a wavelength conversion layer 7 was produced under the same conditions as in Example 1 using this first mixed solution.
  • 1 g of polysiloxane dispersion, 0.01 g of SWN as second swellable particles, and 0.05 g of RX300 as inorganic particles were mixed to prepare a second mixed solution.
  • a ceramic layer 8 was produced under the same conditions as in Example 1, and a light emitting device 100 was obtained.
  • a first mixed solution similar to that in Example 3 was prepared.
  • the first mixed liquid is sprayed onto the glass substrate using the coating apparatus 10 at a spray pressure of 0.2 MPa and a moving speed of the moving table 20 of 100 mm / s, and heated at 50 ° C. for 1 hour to dry the wavelength.
  • the conversion layer 7 was produced.
  • the 2nd liquid mixture similar to Example 3 was prepared.
  • the wavelength conversion layer 7 is formed by spraying the second mixed liquid on the wavelength conversion layer 7 using the coating apparatus 10 so as to have a maximum film thickness that does not cause cracks after baking, and heating and baking at 150 ° C. for 1 hour.
  • a phosphor layer was fixed and a ceramic layer 8 was produced to obtain a wavelength conversion element 9.
  • Example 8 A first mixed solution similar to that in Example 8 was prepared. Using this first mixed solution, a wavelength conversion layer 7 was produced under the same conditions as in Example 19. Next, the 2nd liquid mixture similar to Example 8 was prepared. Using this second mixed solution, a ceramic layer 8 was produced under the same conditions as in Example 19, and a wavelength conversion element 9 was obtained. And this wavelength conversion element 9 was cut
  • a first mixed solution similar to Example 14 was prepared. Using this first mixed solution, a wavelength conversion layer 7 was produced under the same conditions as in Example 19. Next, the 2nd liquid mixture similar to Example 14 was prepared. Using this second mixed solution, a ceramic layer 8 was produced under the same conditions as in Example 19, and a wavelength conversion element 9 was obtained. And this wavelength conversion element 9 was cut
  • FIG. 5 is a graph showing the mixing ratio of the solid components of the first and second mixed liquids of Examples 1 to 9, and FIG. 6 is the mixing ratio of the solid components of the first and second mixed liquids of Examples 10 to 18.
  • FIG. 7 is a diagram showing the blending ratio of the solid components of the mixed liquids and dispersions of Comparative Examples 1 to 4.
  • FIG. 8 is a diagram showing the viscosity, chromaticity, chromaticity standard deviation, average chromaticity standard deviation, and chromaticity evaluation of the first mixed solution in Examples 1 to 10, and FIG. 9 shows Examples 11 to 21.
  • FIG. 10 is a diagram showing the viscosity, chromaticity, standard deviation of chromaticity, average standard deviation of chromaticity, and chromaticity evaluation of the first mixed solution in FIG. 10, and FIG. 10 shows the viscosity and chromaticity of the mixed solution in Comparative Examples 1 to 4.
  • FIG. 4 is a diagram showing chromaticity standard deviation, average chromaticity standard deviation, and chromaticity evaluation. Chromaticity evaluation is a comparison / evaluation of chromaticity uniformity.
  • the standard deviation is 0.02 or less, it is determined that the chromaticity variation is practically acceptable, and the average value of the standard deviation is 0.01. The following were designated as “ ⁇ ”, those greater than 0.01 and 0.02 or less as “ ⁇ ”, and those greater than 0.02 as “x”.
  • the chromaticity of white light is (0.33, 0.33). The closer the chromaticity is to this value, the closer to white light.
  • the five chromaticities in FIGS. 8 to 10 are the chromaticities of the five samples.
  • FIG. 11 shows the maximum film thickness at which cracks do not occur in the second mixed liquids of Examples 1 to 11
  • FIG. 12 shows the occurrence of cracks in the second mixed liquids of Examples 12 to 18 and the dispersions of Comparative Examples 1 to 4. Not the maximum film thickness.
  • Samples with various thicknesses are prepared by applying the second mixed liquid or dispersion on the glass substrate using the coating apparatus 10, and heating and baking at 150 ° C. for 1 hour, so that the film does not crack. The sample with the maximum film thickness was extracted.
  • Comparative Examples 1, 2, and 4 When the evaluation results of Examples and Comparative Examples were examined, in Comparative Examples 1, 2, and 4, the viscosity of the mixed solution was low, so that the phosphor was likely to precipitate, and the chromaticity variation of the light emitting device was large. Furthermore, since the ceramic layer is thin, the barrier property against the outside air is low and the durability is inferior. In Comparative Example 3, since the liquid mixture has a high viscosity, the chromaticity variation of the light emitting device is small. However, since the ceramic layer is thin, the barrier property against the outside air is small and the durability is poor.
  • the swellable particles are contained in the first mixed solution, the strength of the wavelength conversion layer formed by applying and drying the first mixed solution is improved, and the wavelength conversion layer Can be prevented, and as a result, the occurrence of chromaticity variation in the manufactured light-emitting device can be suppressed.
  • the ceramic layer formed by applying and baking the second mixed solution is thick, and coloring due to heat generation of the light emitting element does not occur. Excellent durability and long-term use.
  • the first mixed solution can be applied in a uniformly dispersed state due to the thickening effect of the swellable particles and inorganic particles, and the phosphor can be applied uniformly and can be stably applied over time.
  • the phosphor since the phosphor is dried in a uniformly dispersed state, the occurrence of color unevenness can be suppressed.
  • LED board 3 LED element (light emitting element) 5 Glass substrate (translucent substrate) 6 Wavelength conversion unit 7 Wavelength conversion layer 8 Ceramic layer 9 Wavelength conversion element 100, 101, 102 Light emitting device

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

In order to address the problems of reducing occurrences of color unevenness to a sufficiently usable degree, and providing excellent durability to a light-emitting device for applications requiring a high level of color uniformity, such as for automobile headlights, this light-emitting device is manufactured according to a manufacturing method comprising: a step in which a first liquid mixture, which contains phosphors, first swellable particles, inorganic particles and a first solvent, is applied on a light-emitting element; and a step in which a second liquid mixture, which contains a light-transmitting ceramic material, second swellable particles and a second solvent, is applied on top of the first liquid mixture, and heated.

Description

波長変換素子及びその製造方法、発光装置及びその製造方法、混合液Wavelength conversion element and manufacturing method thereof, light emitting device and manufacturing method thereof, mixed liquid
 本発明は発光素子と、発光素子から出射される光の波長を変換する波長変換部とを有する発光装置に関する。 The present invention relates to a light emitting device having a light emitting element and a wavelength conversion unit that converts the wavelength of light emitted from the light emitting element.
 近年、窒化ガリウム(GaN)系の青色LED(Light Emitting Diode:発光ダイオード)チップの近傍にYAG(イットリウム・アルミニウム・ガーネット)蛍光体等の蛍光体を配置し、青色LEDチップから出射される青色光と、蛍光体が青色光を受けて二次発光することにより出射される黄色光との混色により白色発光装置を得る技術が広く用いられている。また、青色LEDチップから出射される青色光と、各蛍光体が青色光を受けて二次発光することにより出射される赤色光及び緑色光との混色により白色発光装置を得る技術も用いられている。 In recent years, phosphors such as YAG (yttrium, aluminum, garnet) phosphors are arranged in the vicinity of gallium nitride (GaN) blue LED (Light Emitting Diode) chips, and blue light emitted from the blue LED chips. In addition, a technique for obtaining a white light emitting device by color mixture of yellow light emitted when the phosphor receives blue light and emits secondary light is widely used. In addition, a technique for obtaining a white light emitting device by mixing blue light emitted from a blue LED chip and red light and green light emitted by each phosphor receiving blue light and secondary light emission is also used. Yes.
 このような白色発光装置には様々な用途があり、例えば、蛍光灯や白熱電灯の代替品としての需要がある。また、自動車のヘッドライト等の非常に高い輝度が求められる照明装置へも使われつつある。ヘッドライトには、遠方の標識等の対象物に対する高い視認性が求められるため、白色発光装置の色味や照射範囲の色の均一性においても高い性能が求められる。 Such white light emitting devices have various uses, for example, there is a demand as an alternative to fluorescent lamps and incandescent lamps. In addition, it is also being used for lighting devices such as automobile headlights that require extremely high luminance. Since the headlight is required to have high visibility with respect to an object such as a distant sign, high performance is also required in terms of the color of the white light emitting device and the color uniformity of the irradiation range.
 このような白色発光装置では、蛍光体を分散させた透明樹脂を用いてLEDチップや実装部を封止する方法が一般的である。しかしながら、上記のような高レベルの色の均一性が求められる用途において、蛍光体を単に透明樹脂中に分散させてLEDチップを封止する構成では、蛍光体粒子の比重が透明樹脂より大きいため、透明樹脂が硬化する前に蛍光体が沈降し、発光時に色むら等を生じるという問題がある。 In such a white light emitting device, a method of sealing an LED chip or a mounting portion using a transparent resin in which a phosphor is dispersed is generally used. However, in applications where a high level of color uniformity is required as described above, in the configuration in which the phosphor is simply dispersed in the transparent resin and the LED chip is sealed, the specific gravity of the phosphor particles is larger than that of the transparent resin. There is a problem in that the phosphor settles before the transparent resin is cured, and color unevenness occurs during light emission.
 そこで、蛍光体の沈降を抑制して色むら等の発生を防止する技術が種々提案されている。例えば特許文献1には、樹脂硬化時の粘度が100~10000mPa・sのシリコーン樹脂を封止体として用いることにより、蛍光体の沈降や偏析を抑制しようとする発光装置が開示されている。 Therefore, various techniques for preventing the occurrence of uneven color by suppressing the sedimentation of the phosphor have been proposed. For example, Patent Document 1 discloses a light-emitting device that attempts to suppress sedimentation and segregation of a phosphor by using a silicone resin having a viscosity of 100 to 10,000 mPa · s when cured as a sealing body.
 また特許文献2には、液状の透光性封止材料に、蛍光体の沈降防止材として粘度鉱物を主とする層状化合物に有機カチオンを添加してなる親油性化合物を加えた発光装置及びその製造方法が開示されている。 Patent Document 2 discloses a light-emitting device in which a liquid translucent sealing material is added with a lipophilic compound obtained by adding an organic cation to a layered compound mainly composed of a viscous mineral as an anti-settling material for a phosphor, and the light emitting device A manufacturing method is disclosed.
 また特許文献3には、発光素子を粘着性の透明材料で覆い、その外側に蛍光体層を付着させる構成が開示されている。 Patent Document 3 discloses a configuration in which a light-emitting element is covered with an adhesive transparent material and a phosphor layer is attached to the outside thereof.
 特許文献1、2の技術によれば、蛍光体の沈降による色むらの問題については、ある程度改善される。しかしながら、何れの文献でも蛍光体を樹脂内に分散させているため、上記のような高輝度の照明装置に用いる場合、LED自身の発熱やLEDの光により励起された蛍光体からの発光による熱により、樹脂が劣化して着色することで透過率が低下したり、樹脂の変形による色むらや表面散乱といった問題が生じるおそれがある。また、高輝度なLEDではなくても長期間の使用に伴って同様の問題が生じるおそれがある。 According to the techniques of Patent Documents 1 and 2, the problem of uneven color due to sedimentation of the phosphor is improved to some extent. However, since phosphors are dispersed in a resin in any document, when used in a high-luminance lighting device as described above, the heat generated by the LED itself or the heat generated by the phosphor excited by the LED light is used. As a result, the resin is deteriorated and colored, whereby the transmittance may be reduced, and problems such as uneven color and surface scattering due to deformation of the resin may occur. Moreover, even if it is not a high-intensity LED, there exists a possibility that the same problem may arise with long-term use.
 また特許文献3の技術では、透明材料の外側に蛍光体層を付着させているので蛍光体が沈降するという問題はないが、透明材料が樹脂であるためLED自身の発熱やLEDの光により励起された蛍光体からの発光による熱により、樹脂が劣化して着色することで透過率が低下したり、樹脂の変形による色むらや表面散乱といった問題は生じるおそれがある。 In the technique of Patent Document 3, there is no problem that the phosphor settles because the phosphor layer is attached to the outside of the transparent material. However, since the transparent material is a resin, it is excited by the heat of the LED itself or the light of the LED. There is a possibility that problems such as color unevenness and surface scattering due to deformation of the resin may occur due to deterioration and coloration of the resin due to heat generated by the emitted light from the phosphor.
 そこで、白色発光装置の耐熱性を高める技術として、例えば特許文献4に、蛍光体粒子を金属アルコキシドやセラミック前駆体組成物を含有した溶液中に分散させ、これをLEDに塗布して加熱することで、蛍光体を含有したセラミック(ガラス)で封止する技術が提案されている。特許文献4には、蛍光体の沈降防止材として無機粒子を蛍光体分散溶液中に添加することも開示されている。 Therefore, as a technique for improving the heat resistance of a white light emitting device, for example, in Patent Document 4, phosphor particles are dispersed in a solution containing a metal alkoxide or a ceramic precursor composition, and this is applied to an LED and heated. Thus, a technique of sealing with a ceramic (glass) containing a phosphor has been proposed. Patent Document 4 also discloses that inorganic particles are added to the phosphor dispersion solution as an anti-settling material for the phosphor.
特開2002-314142号公報JP 2002-314142 A 特開2004-153109公報JP 2004-153109 A 米国特許第7157745号明細書US Pat. No. 7,157,745 特許第3307316号公報Japanese Patent No. 3307316
 しかしながら、特許文献4のように無機粒子を蛍光体分散溶液中に添加しても、上記のような高レベルの色の均一性が求められる用途において使用できる程度まで色むらを低減することは困難である。なぜなら、本発明者らが検証したところ、蛍光体の沈降を抑制するために無機粒子を大量に添加した場合、無機粒子による散乱等により透過率が低下したり、蛍光体を含有する層の表面の平滑性が損なわれて散乱を起こしたりすることが判明した。一方、無機粒子の添加量を少なくした場合は、蛍光体の沈降を十分に抑制できず、色むらを十分に解消できなかった。 However, even if inorganic particles are added to the phosphor dispersion solution as in Patent Document 4, it is difficult to reduce color unevenness to such an extent that it can be used in applications where high level color uniformity is required. It is. This is because, when the present inventors have verified, when a large amount of inorganic particles are added to suppress the sedimentation of the phosphor, the transmittance decreases due to scattering by the inorganic particles, or the surface of the layer containing the phosphor It has been found that the smoothness of the glass is impaired and scattering occurs. On the other hand, when the addition amount of the inorganic particles was reduced, the sedimentation of the phosphor could not be sufficiently suppressed, and the color unevenness could not be sufficiently eliminated.
 さらに、本発明者らは特許文献4に記載されている耐熱性を高める技術に、特許文献1、2に記載されている蛍光体の沈降を抑制する技術を適用することを試みた。まず、特許文献1の技術は粘度の高い樹脂を用いることを特徴としているので、樹脂を用いない特許文献4の技術に特許文献1の技術を組み合わせることはできない。 Furthermore, the present inventors tried to apply the technology for suppressing the sedimentation of the phosphor described in Patent Documents 1 and 2 to the technology for improving the heat resistance described in Patent Document 4. First, since the technique of patent document 1 is characterized by using a resin with high viscosity, the technique of patent document 1 cannot be combined with the technique of patent document 4 which does not use resin.
 次に、特許文献4の金属アルコキシドやセラミック前駆体組成物と蛍光体との分散溶液に、蛍光体の沈降防止材として特許文献2の層状化合物を添加する組み合わせによれば、蛍光体の分散状態がある程度安定し、色むらの発生をある程度低減できたが、封止材料と沈降防止材との混合液の粘度を十分に高めることはできず、封止材料が硬化する前に蛍光体が沈降してしまい、蛍光体の均一性が損なわれるので、色むらの発生を十分に抑制するには至らなかった。 Next, according to the combination in which the layered compound of Patent Document 2 is added to the dispersion solution of the metal alkoxide or ceramic precursor composition of Patent Document 4 and the phosphor as an anti-settling material for the phosphor, the dispersed state of the phosphor However, the viscosity of the mixed liquid of the sealing material and the anti-settling material cannot be sufficiently increased, and the phosphor settles before the sealing material is cured. As a result, the uniformity of the phosphor is impaired, and the occurrence of color unevenness has not been sufficiently suppressed.
 本発明は、自動車のヘッドライトのように高レベルの色の均一性が求められる用途において十分使用可能な程度に色むらの発生を低減すること、耐久性に優れていることを課題とし、波長変換素子の製造方法、その波長変換素子、発光装置の製造方法、その発光装置、混合液をそれぞれ提供することを目的とする。 An object of the present invention is to reduce the occurrence of color unevenness to such an extent that it can be sufficiently used in applications that require a high level of color uniformity, such as automobile headlights, and has excellent durability. It is an object of the present invention to provide a conversion element manufacturing method, a wavelength conversion element thereof, a light emitting device manufacturing method, a light emitting device, and a mixed solution.
 上記目的を達成するために本発明は、蛍光体、第1膨潤性粒子、無機粒子、及び第1溶媒を含む第1混合液を発光素子上に塗布する工程と、その上に、透光性セラミック材料、第2膨潤性粒子、及び第2溶媒を含む第2混合液を塗布して加熱する工程と、を有する発光装置の製造方法とする。 In order to achieve the above object, the present invention provides a step of applying a first liquid mixture containing a phosphor, first swellable particles, inorganic particles, and a first solvent on a light emitting element, and a light transmitting property thereon. And applying a second mixed liquid containing a ceramic material, second swellable particles, and a second solvent and heating.
 上記の発光装置の製造方法において、前記第2混合液が水及び/又は無機粒子を含んでいてもよい。 In the method for manufacturing a light emitting device, the second mixed liquid may contain water and / or inorganic particles.
 また上記の発光装置の製造方法において、前記第2混合液中の前記第2膨潤性粒子の含有量が0.1重量%以上60重量%以下であることが好ましい。 In the above method for manufacturing a light emitting device, it is preferable that the content of the second swellable particles in the second liquid mixture is 0.1 wt% or more and 60 wt% or less.
 また上記の発光装置の製造方法において、前記第2混合液中の前記第2膨潤性粒子の含有量が0.5重量%以上30重量%以下であることがより好ましい。 In the above method for manufacturing a light emitting device, it is more preferable that the content of the second swellable particles in the second mixed liquid is 0.5 wt% or more and 30 wt% or less.
 また上記の発光装置の製造方法において、前記第1及び/又は第2膨潤性粒子が膨潤性粘土鉱物であることが好ましい。 In the above method for manufacturing a light emitting device, the first and / or second swellable particles are preferably swellable clay minerals.
 また上記の発光装置の製造方法において、前記透光性セラミック材料が有機金属化合物であることが好ましい。 In the above method for manufacturing a light emitting device, it is preferable that the translucent ceramic material is an organometallic compound.
 また本発明の発光装置は、上記の発光装置の製造方法の何れかによって製造されたものである。 The light-emitting device of the present invention is manufactured by any one of the above-described methods for manufacturing a light-emitting device.
 また本発明は、蛍光体、第1膨潤性粒子、無機粒子、及び第1溶媒を含む第1混合液を透光性基板の少なくとも片面に塗布する工程と、その上に、透光性セラミック材料、第2膨潤性粒子、及び第2溶媒を含む第2混合液を塗布して加熱する工程と、を有する波長変換素子の製造方法とする。 According to another aspect of the present invention, there is provided a step of applying a first mixed solution containing a phosphor, first swellable particles, inorganic particles, and a first solvent to at least one surface of a translucent substrate, and a translucent ceramic material thereon. And a step of applying and heating the second mixed liquid containing the second swellable particles and the second solvent.
 上記の波長変換素子の製造方法において、前記第2混合液が水及び/又は無機粒子を含んでいてもよい。 In the above wavelength conversion element manufacturing method, the second mixed liquid may contain water and / or inorganic particles.
 また上記の波長変換素子の製造方法において、前記第2混合液中の前記第2膨潤性粒子の含有量が0.1重量%以上60重量%以下であることが好ましい。 In the above-described method for manufacturing a wavelength conversion element, it is preferable that the content of the second swellable particles in the second liquid mixture is 0.1 wt% or more and 60 wt% or less.
 また上記の波長変換素子の製造方法において、前記第2混合液中の前記第2膨潤性粒子の含有量が0.5重量%以上30重量%以下であることがより好ましい。 In the above-described method for manufacturing a wavelength conversion element, it is more preferable that the content of the second swellable particles in the second mixed solution is 0.5 wt% or more and 30 wt% or less.
 また上記の波長変換素子の製造方法において、前記膨潤性粒子が膨潤性粘土鉱物であることが好ましい。 In the above-described method for manufacturing a wavelength conversion element, the swellable particle is preferably a swellable clay mineral.
 また上記の波長変換素子の製造方法において、前記透光性セラミック材料が有機金属化合物であることが好ましい。 In the above-described method for manufacturing a wavelength conversion element, it is preferable that the translucent ceramic material is an organometallic compound.
 また本発明の波長変換素子は、上記の波長変換素子の製造方法によって製造されたものである。 The wavelength conversion element of the present invention is manufactured by the above-described method for manufacturing a wavelength conversion element.
 また本発明の発光装置の製造方法は、上記の波長変換素子の製造方法において波長変換素子を発光素子の発光面側に設置する工程を加えたものである。 Further, the method for manufacturing a light emitting device of the present invention is obtained by adding a step of installing the wavelength converting element on the light emitting surface side of the light emitting element in the above method for manufacturing a wavelength converting element.
 また本発明の発光装置は、上記の発光装置の製造方法によって製造されたものである。 The light-emitting device of the present invention is manufactured by the above-described light-emitting device manufacturing method.
 また本発明の発光装置の製造に用いる混合液は、透光性セラミック材料、膨潤性粒子、及び溶媒を含む混合液とする。 The mixed solution used for manufacturing the light emitting device of the present invention is a mixed solution containing a translucent ceramic material, swellable particles, and a solvent.
 上記の混合液において、水及び/又は無機粒子を含んでいてもよい。 In the above mixed solution, water and / or inorganic particles may be contained.
 また上記の混合液において、前記膨潤性粒子の含有量が0.1重量%以上60重量%以下であることが好ましい。 In the above mixed solution, the content of the swellable particles is preferably 0.1% by weight or more and 60% by weight or less.
 また上記の混合液において、前記膨潤性粒子の含有量が0.5重量%以上30重量%以下であることがより好ましい。 In the above mixed solution, the content of the swellable particles is more preferably 0.5 wt% or more and 30 wt% or less.
 また上記の混合液において、前記膨潤性粒子が膨潤性粘土鉱物であることが好ましい。 In the above mixed solution, the swellable particle is preferably a swellable clay mineral.
 また上記の混合液において、前記透光性セラミック材料が有機金属化合物であることが好ましい。 In the above mixed solution, the translucent ceramic material is preferably an organometallic compound.
 本発明によると、自動車のヘッドライトのように高レベルの色の均一性が求められる用途の発光装置において、十分使用可能な程度に色むらの発生を低減すること、耐久性に優れていることを実現することができる。また、厚膜としてもクラックの発生しにくいセラミック層を形成することができる。 According to the present invention, it is possible to reduce the occurrence of color unevenness to the extent that it can be sufficiently used in a light-emitting device that is required to have a high level of color uniformity, such as an automobile headlight, and is excellent in durability. Can be realized. In addition, a ceramic layer that does not easily generate cracks can be formed as a thick film.
本発明の第1実施形態の発光装置の概略断面図である。It is a schematic sectional drawing of the light-emitting device of 1st Embodiment of this invention. スプレーコート法を用いた塗布装置及び製造方法を概略的に説明するための模式図である。It is a schematic diagram for demonstrating schematically the coating device using a spray coat method, and a manufacturing method. 本発明の第2実施形態の発光装置の概略断面図である。It is a schematic sectional drawing of the light-emitting device of 2nd Embodiment of this invention. 本発明の第3実施形態の発光装置の概略断面図である。It is a schematic sectional drawing of the light-emitting device of 3rd Embodiment of this invention. 実施例1~9の第1及び第2混合液の固形成分の配合割合を示す図である。It is a figure which shows the mixture ratio of the solid component of the 1st and 2nd liquid mixture of Examples 1-9. 実施例10~18の第1及び第2混合液の固形成分の配合割合を示す図である。It is a figure which shows the mixture ratio of the solid component of the 1st and 2nd liquid mixture of Examples 10-18. 比較例1~4の混合液及び分散液の固形成分の配合割合を示す図である。FIG. 5 is a diagram showing the blending ratio of solid components of mixed liquids and dispersions of Comparative Examples 1 to 4. 実施例1~10における第1混合液の粘度、色度、色度の標準偏差、色度の標準偏差の平均、色度評価を示す図である。FIG. 4 is a diagram showing the viscosity, chromaticity, chromaticity standard deviation, average chromaticity standard deviation, and chromaticity evaluation of the first mixed liquid in Examples 1 to 10. 実施例11~21における第1混合液の粘度、色度、色度の標準偏差、色度の標準偏差の平均、色度評価を示す図である。FIG. 7 is a diagram showing the viscosity, chromaticity, chromaticity standard deviation, average chromaticity standard deviation, and chromaticity evaluation of the first mixed solution in Examples 11 to 21. 比較例1~4における混合液の粘度、色度、色度の標準偏差、色度の標準偏差の平均、色度評価を示す図である。FIG. 5 is a diagram showing the viscosity, chromaticity, chromaticity standard deviation, average chromaticity standard deviation, and chromaticity evaluation of mixed liquids in Comparative Examples 1 to 4. 実施例1~11の第2混合液のクラックの発生しない最大膜厚である。This is the maximum film thickness at which cracks do not occur in the second mixed solutions of Examples 1 to 11. 実施例12~18の第2混合液及び比較例1~4の分散液のクラックの発生しない最大膜厚である。It is the maximum film thickness at which cracks do not occur in the second mixed liquids of Examples 12 to 18 and the dispersion liquids of Comparative Examples 1 to 4.
 以下、本発明の波長変換素子及びそれを備えた発光装置の実施形態を、図面を参照しながら説明する。図1は、本発明の第1実施形態の発光装置の概略断面図である。図1に示すように、発光装置100は、断面凹状のLED基板1の底部にメタル部2が設けられ、メタル部2上に発光素子としてLED素子3を配置している。LED素子3は、メタル部2に対向する面に、突起電極4が設けられており、メタル部2とLED素子3とを突起電極4を介して接続している(フリップチップ型)。 Hereinafter, embodiments of a wavelength conversion element of the present invention and a light emitting device including the same will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view of a light emitting device according to a first embodiment of the present invention. As shown in FIG. 1, in the light emitting device 100, a metal part 2 is provided at the bottom of an LED substrate 1 having a concave cross section, and an LED element 3 is disposed on the metal part 2 as a light emitting element. The LED element 3 is provided with a protruding electrode 4 on a surface facing the metal part 2, and the metal part 2 and the LED element 3 are connected via the protruding electrode 4 (flip chip type).
 本実施形態では、LED素子3として青色LED素子を用いている。青色LED素子は、例えばサファイア基板上にn-GaN系クラッド層、InGaN発光層、p-GaN系クラッド層、及び透明電極を積層してなる。 In the present embodiment, a blue LED element is used as the LED element 3. For example, a blue LED element is formed by laminating an n-GaN-based cladding layer, an InGaN light-emitting layer, a p-GaN-based cladding layer, and a transparent electrode on a sapphire substrate.
 また、LED素子3を覆うようにLED基板1の凹部に波長変換部6が設けられている。波長変換部6は、LED素子3を覆う波長変換層7と、波長変換層7上に形成されたセラミック層8とを有している。波長変換層7は、LED素子3から出射される所定波長の光を異なる波長の光に変換する部分であり、LED素子3からの波長により励起されて、励起波長と異なる波長の蛍光を出す蛍光体が含まれている。セラミック層8は、波長変換層7を封止して保護するための層であり、少なくともLED素子3の光及び波長変換層7の蛍光を透過する透光性を有する。 Moreover, the wavelength conversion part 6 is provided in the recessed part of the LED board 1 so that the LED element 3 may be covered. The wavelength conversion unit 6 includes a wavelength conversion layer 7 that covers the LED element 3 and a ceramic layer 8 that is formed on the wavelength conversion layer 7. The wavelength conversion layer 7 is a part that converts light having a predetermined wavelength emitted from the LED element 3 into light having a different wavelength, and is excited by the wavelength from the LED element 3 to emit fluorescence having a wavelength different from the excitation wavelength. Contains the body. The ceramic layer 8 is a layer for sealing and protecting the wavelength conversion layer 7, and has translucency that transmits at least the light of the LED element 3 and the fluorescence of the wavelength conversion layer 7.
 次に、波長変換部6(波長変換層7及びセラミック層8)の構成及び形成方法と、発光装置100の製造方法とについて詳述する。波長変換層7は、少なくとも蛍光体、膨潤性粒子(第1膨潤性粒子)、無機粒子(無機微粒子)、及び溶媒(第1溶媒)を含む混合液(第1混合液)を塗布し、加熱(乾燥)して得られる層である。セラミック層8は、少なくとも透光性セラミック材料、膨潤性粒子(第2膨潤性粒子)、及び溶媒(第2溶媒)を含む混合液(第2混合液)を塗布し、加熱(焼成)して得られる透明セラミック層(ガラス体)である。なお、第2混合液は水及び/又は無機粒子を含んでいてもよい。
(蛍光体)
Next, the configuration and formation method of the wavelength conversion unit 6 (the wavelength conversion layer 7 and the ceramic layer 8) and the manufacturing method of the light emitting device 100 will be described in detail. The wavelength conversion layer 7 is applied with a mixed liquid (first mixed liquid) containing at least a phosphor, swellable particles (first swellable particles), inorganic particles (inorganic fine particles), and a solvent (first solvent), and heated. It is a layer obtained by (drying). The ceramic layer 8 is applied with a mixed liquid (second mixed liquid) containing at least a translucent ceramic material, swellable particles (second swellable particles), and a solvent (second solvent), and heated (fired). It is a transparent ceramic layer (glass body) obtained. Note that the second mixed solution may contain water and / or inorganic particles.
(Phosphor)
 蛍光体は、LED素子3からの出射光の波長(励起波長)により励起されて、励起波長と異なる波長の蛍光を出射するものである。本実施形態では、青色LED素子から出射される青色光(波長420nm~485nm)を黄色光(波長550nm~650nm)に変換するYAG(イットリウム・アルミニウム・ガーネット)蛍光体を使用している。 The phosphor is excited by the wavelength of the light emitted from the LED element 3 (excitation wavelength) and emits fluorescence having a wavelength different from the excitation wavelength. In this embodiment, a YAG (yttrium, aluminum, garnet) phosphor that converts blue light (wavelength 420 nm to 485 nm) emitted from the blue LED element into yellow light (wavelength 550 nm to 650 nm) is used.
 このような蛍光体は、Y、Gd、Ce、Sm、Al、La、Gaの酸化物、または高温で容易に酸化物となる化合物を使用し、それらを化学量論比で十分に混合して混合原料を得る。或いは、Y、Gd、Ce、Smの希土類元素を化学量論比で酸に溶解した溶液をシュウ酸で共沈したものを焼成して得られる共沈酸化物と、酸化アルミニウム、酸化ガリウムとを混合して混合原料を得る。そして、得られた混合原料にフラックスとしてフッ化アンモニウム等のフッ化物を適量混合して加圧し、成形体を得る。得られた成形体を坩堝に詰め、空気中1350~1450℃の温度範囲で2~5時間焼成し、蛍光体の発光特性をもつ焼結体を得る。 Such phosphors use oxides of Y, Gd, Ce, Sm, Al, La, and Ga, or compounds that easily become oxides at high temperatures, and are mixed well in a stoichiometric ratio. A mixed raw material is obtained. Alternatively, a coprecipitated oxide obtained by calcining a solution obtained by coprecipitation of a solution obtained by dissolving a rare earth element of Y, Gd, Ce, or Sm in an acid with a stoichiometric ratio with oxalic acid, and aluminum oxide or gallium oxide. Mix to obtain a mixed raw material. Then, an appropriate amount of fluoride such as ammonium fluoride is mixed with the obtained mixed raw material as a flux and pressed to obtain a molded body. The obtained molded body is packed in a crucible and fired in air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a sintered body having the phosphor emission characteristics.
 なお、本実施形態ではYAG蛍光体を使用しているが、蛍光体の種類はこれに限定されるものではなく、例えばCeを含まない非ガーネット系蛍光体等の他の蛍光体を使用することもできる。また、蛍光体の粒径が大きいほど発光効率(波長変換効率)は高くなる反面、膨潤性粒子との界面に生じる隙間が大きくなって形成された波長変換層7の膜強度が低下する。従って、発光効率と膨潤性粒子との界面に生じる隙間の大きさを考慮し、体積平均粒径が1μm以上50μm以下のものを用いることが好ましく、加熱後の波長変換層7の厚さより小さいものを用いる。蛍光体の体積平均粒径は、例えばコールターカウンター法やレーザー回折・散乱式粒径測定装置によって測定することができる。
(膨潤性粒子)
In this embodiment, the YAG phosphor is used. However, the type of the phosphor is not limited to this, and other phosphors such as a non-garnet phosphor containing no Ce are used. You can also. In addition, the larger the particle size of the phosphor, the higher the light emission efficiency (wavelength conversion efficiency), but the gap formed at the interface with the swellable particles becomes larger, and the film strength of the formed wavelength conversion layer 7 decreases. Therefore, in consideration of the size of the gap generated at the interface between the luminous efficiency and the swellable particles, it is preferable to use a volume average particle size of 1 μm to 50 μm, which is smaller than the thickness of the wavelength conversion layer 7 after heating. Is used. The volume average particle diameter of the phosphor can be measured by, for example, a Coulter counter method or a laser diffraction / scattering particle diameter measuring apparatus.
(Swellable particles)
 膨潤性粒子としては、フッ化マグネシウム、フッ化アルミニウム、フッ化カルシウム等のフッ化物粒子、層状ケイ酸塩鉱物、イモゴライト、アロフェンなどを用いることができる。層状ケイ酸塩鉱物としては、雲母構造、カオリナイト構造、スメクタイト構造等の構造を有する膨潤性粘土鉱物が好ましく、膨潤性に富むスメクタイト構造がより好ましい。層状ケイ酸塩鉱物は、混合液中においてカードハウス構造をとるため、少量で混合液の粘度を大幅に増加させる効果がある。また、層状ケイ酸塩鉱物は平板状を呈するため、波長変換層7の膜強度を向上させる効果もある。 As the swellable particles, fluoride particles such as magnesium fluoride, aluminum fluoride, and calcium fluoride, layered silicate minerals, imogolite, and allophane can be used. As the layered silicate mineral, a swellable clay mineral having a structure such as a mica structure, a kaolinite structure, or a smectite structure is preferable, and a smectite structure rich in swelling properties is more preferable. Since the layered silicate mineral has a card house structure in the mixed solution, it has an effect of greatly increasing the viscosity of the mixed solution in a small amount. Further, since the layered silicate mineral has a flat plate shape, there is an effect of improving the film strength of the wavelength conversion layer 7.
 ここでの鉱物とは、天然又は合成の無機質で一定の化学組成と結晶構造を有する固体物質であるとする。このような層状ケイ酸塩鉱物としては、天然または合成の、ヘクトライト、サポナイト、スチブンサイト、ハイデライト、モンモリロナイト、ノントライト、ベントナイト等のスメクタイト属粘土鉱物や、Na型テトラシリシックフッ素雲母、Li型テトラシリシックフッ素雲母、Na型フッ素テニオライト、Li型フッ素テニオライト等の膨潤性雲母属粘土鉱物およびバーミキュラライトやカオリナイトまたはこれらの混合物が挙げられる。 Here, it is assumed that the mineral is a solid substance having a certain chemical composition and crystal structure, which is a natural or synthetic inorganic substance. Such layered silicate minerals include natural or synthetic hectrite, saponite, stevensite, hydelite, montmorillonite, nontrinite, bentonite, and other smectite clay minerals; Examples thereof include swellable mica genus clay minerals such as silicic fluorine mica, Na-type fluorine teniolite, Li-type fluorine teniolite, vermiculite and kaolinite, and mixtures thereof.
 また、第1又は第2混合液中における膨潤性粒子の含有量が0.1重量%未満になると第1又は第2混合液中の蛍光体や微粒子、金属アルコキシドなどの固形成分の割合が高くなり、それらの分散性が悪化する。一方、膨潤性粒子の含有量が60重量%を超えると膨潤性粒子による励起光の散乱が多く発生し、波長変換層7では発光輝度が低下し、セラミック層8では透光性が低下する。従って、第1及び第2混合液において膨潤性粒子の含有量は0.1重量%以上60重量%以下とすることが好ましく、0.5重量%以上30重量%以下がより好ましい。 In addition, when the content of the swellable particles in the first or second mixed solution is less than 0.1% by weight, the ratio of solid components such as phosphors, fine particles, and metal alkoxide in the first or second mixed solution is high. And their dispersibility deteriorates. On the other hand, when the content of the swellable particles exceeds 60% by weight, the scattering of excitation light by the swellable particles is often generated, the emission luminance of the wavelength conversion layer 7 is lowered, and the translucency of the ceramic layer 8 is lowered. Accordingly, the content of the swellable particles in the first and second mixed liquids is preferably 0.1% by weight to 60% by weight, and more preferably 0.5% by weight to 30% by weight.
 膨潤性粒子には増粘効果があるが、波長変換層7やセラミック層8中での割合が高ければ混合液の粘度が高くなるわけではなく、混合液の粘度は溶媒、蛍光体など他の成分との比率で決まる。なお、溶媒との相溶性を考慮して、膨潤性粒子の表面をアンモニウム塩等で修飾(表面処理)したものを適宜用いることもできる。
(溶媒)
The swelling particles have a thickening effect, but if the ratio in the wavelength conversion layer 7 or the ceramic layer 8 is high, the viscosity of the liquid mixture does not increase. The viscosity of the liquid mixture is not limited to other solvents, phosphors, etc. Determined by the ratio with the ingredients. In addition, in consideration of compatibility with the solvent, the surface of the swellable particles modified with an ammonium salt or the like (surface treatment) can be used as appropriate.
(solvent)
 溶媒としては、水、有機溶媒、又は水と有機溶媒の混合溶媒を用いることができる。水は親水性の膨潤性粒子を膨潤させる役割がある。例えば、フッ化物粒子に水を添加することにより混合液の粘性が増加するため、蛍光体の沈降を抑制することができる。なお、水に不純物が含まれていると膨潤を阻害するおそれがあるため、添加する水は不純物を含まない純水を用いる必要がある。 As the solvent, water, an organic solvent, or a mixed solvent of water and an organic solvent can be used. Water has a role of swelling hydrophilic swellable particles. For example, the addition of water to the fluoride particles increases the viscosity of the liquid mixture, so that sedimentation of the phosphor can be suppressed. In addition, since there exists a possibility that swelling may be inhibited when the impurity is contained in water, it is necessary to use the pure water which does not contain an impurity as the water to add.
 有機溶媒は、混合液のぬれ性向上、粘度調整のために用いられる。例えば、フッ化物粒子に有機溶媒を添加することにより混合液の粘性が増加するため、蛍光体の沈降を抑制することができる。親水性の膨潤性粒子に水を添加して膨潤させる場合には、有機溶媒として、水との相溶性に優れたメタノール、エタノール、プロパノール、ブタノール等のアルコール類を用いることが好ましい。一方、親油性の膨潤性粒子を用いる場合は、膨潤性粒子の膨潤に水は作用しないが、水を加えることにより粘度が増加するため、水との相溶性に優れた有機溶媒を用いることが好ましい。また、エチレングリコールやプロピレングリコールなどの高沸点の有機溶媒を用いることにより、混合液のポットライフが短くならず、またスプレー塗布時にはノズルの詰まりを防ぎ、取り扱い性に優れる。
(無機粒子)
The organic solvent is used for improving the wettability of the mixed solution and adjusting the viscosity. For example, the addition of an organic solvent to the fluoride particles increases the viscosity of the liquid mixture, so that sedimentation of the phosphor can be suppressed. In the case where water is added to the hydrophilic swellable particles to swell, it is preferable to use alcohols such as methanol, ethanol, propanol, and butanol having excellent compatibility with water as the organic solvent. On the other hand, when lipophilic swellable particles are used, water does not act on the swelling of the swellable particles, but the viscosity increases by adding water, so an organic solvent having excellent compatibility with water should be used. preferable. Moreover, by using an organic solvent having a high boiling point such as ethylene glycol or propylene glycol, the pot life of the mixed solution is not shortened, and the nozzle is prevented from being clogged at the time of spray coating, and the handling property is excellent.
(Inorganic particles)
 無機粒子は、蛍光体と膨潤性粒子との界面に生じる隙間を埋める充填効果、加熱前の混合液の粘性を増加させる増粘効果を有する。本発明に用いられる無機粒子としては、酸化ケイ素、酸化チタン、酸化亜鉛、酸化アルミニウム、酸化ジルコニウム等の酸化物微粒子等が挙げられる。なお、セラミック材料や溶媒との相溶性を考慮して、無機粒子の表面をシランカップリング剤やチタンカップリング剤で処理したものを適宜用いることもできる。 The inorganic particles have a filling effect that fills gaps formed at the interface between the phosphor and the swellable particles, and a thickening effect that increases the viscosity of the mixed solution before heating. Examples of the inorganic particles used in the present invention include fine oxide particles such as silicon oxide, titanium oxide, zinc oxide, aluminum oxide, and zirconium oxide. In consideration of compatibility with ceramic materials and solvents, inorganic particles whose surfaces are treated with a silane coupling agent or a titanium coupling agent can be used as appropriate.
 また、波長変換層7における無機粒子の含有量が0.5重量%未満になると第1混合液中の蛍光体などの固形成分の割合が高くなり、それらの分散性が悪化して塗布時のハンドリングが悪化したり、均一な色度で塗布したりすることが困難になる。一方、無機粒子の含有量が70重量%を超えると無機粒子による励起光の散乱が多く発生し、波長変換層7の発光輝度が低下する。従って、第1混合液において無機粒子の含有量は0.5重量%以上70重量%以下とすることが好ましく、0.5重量%以上65重量%以下がより好ましく、1重量%以上60重量%以下がさらに好ましい。 In addition, when the content of the inorganic particles in the wavelength conversion layer 7 is less than 0.5% by weight, the ratio of solid components such as phosphors in the first mixed solution increases, and the dispersibility thereof deteriorates to reduce the content during coating. Handling becomes difficult, and it becomes difficult to apply with uniform chromaticity. On the other hand, if the content of the inorganic particles exceeds 70% by weight, the scattering of excitation light by the inorganic particles occurs frequently, and the light emission luminance of the wavelength conversion layer 7 decreases. Therefore, the content of the inorganic particles in the first mixed solution is preferably 0.5% by weight to 70% by weight, more preferably 0.5% by weight to 65% by weight, and more preferably 1% by weight to 60% by weight. The following is more preferable.
 無機粒子には増粘効果があるが、波長変換層7中での割合が高ければ混合液の粘度が高くなるわけではなく、混合液の粘度は溶媒、蛍光体など他の成分との比率で決まる。 The inorganic particles have a thickening effect, but if the ratio in the wavelength conversion layer 7 is high, the viscosity of the liquid mixture does not increase. The viscosity of the liquid mixture is a ratio with other components such as a solvent and a phosphor. Determined.
 無機粒子の粒径分布には特に制限はなく、広範囲に分布していてもよいし、比較的狭い範囲に分布していてもよい。なお、無機粒子の粒径としては、一次粒径の中心粒径が0.001μm以上50μm以下であり、蛍光体より小さいものが好ましく、加熱後の波長変換層7の厚さより小さいものを用いる。無機粒子の平均粒径は、例えばコールターカウンター法によって測定することができる。
(透光性セラミック材料)
The particle size distribution of the inorganic particles is not particularly limited, and may be distributed over a wide range or may be distributed over a relatively narrow range. As the particle size of the inorganic particles, the central particle size of the primary particle size is 0.001 μm or more and 50 μm or less, preferably smaller than the phosphor, and smaller than the thickness of the wavelength conversion layer 7 after heating. The average particle diameter of the inorganic particles can be measured, for example, by a Coulter counter method.
(Translucent ceramic material)
 透光性セラミック材料はセラミック前駆体であり、無機又は有機の金属化合物を用いることができる。金属化合物としては、金属アルコキシド、金属アセチルアセトネート、金属カルボキシレート、金属硝酸塩、金属酸化物等が挙げられるが、加水分解と重合反応によりゲル化し易い金属アルコキシドが好ましい。 The translucent ceramic material is a ceramic precursor, and an inorganic or organic metal compound can be used. Examples of the metal compound include metal alkoxides, metal acetylacetonates, metal carboxylates, metal nitrates, metal oxides, and the like, and metal alkoxides that are easily gelled by hydrolysis and polymerization reaction are preferable.
 金属アルコキシドは、テトラエトキシシランのような単分子のものでもよいし、有機シロキサン化合物が鎖状または環状に連なったポリシロキサンでもよいが、混合液の粘性が増加するポリシロキサンが好ましい。なお、透光性のガラス体を形成可能であれば金属の種類に制限はないが、形成されるガラス体の安定性や製造の容易性の観点から、ケイ素を含有していることが好ましい。また、複数種の金属を含有していてもよい。
(第1混合液の調整手順)
The metal alkoxide may be a single molecule such as tetraethoxysilane, or may be a polysiloxane in which an organic siloxane compound is linked in a chain or a ring, but a polysiloxane that increases the viscosity of the mixed solution is preferable. In addition, there is no restriction | limiting in the kind of metal if a translucent glass body can be formed, but it is preferable to contain a silicon | silicone from a viewpoint of the stability of the glass body formed and the ease of manufacture. Moreover, you may contain multiple types of metal.
(Procedure for adjusting the first mixture)
 第1混合液の調製手順としては、単に蛍光体、膨潤性粒子(第1膨潤性粒子)、無機粒子(無機微粒子)、溶媒(第1溶媒)を混合すればよい。第1混合液の好ましい粘度は10~1000mPa・sであり、さらに好ましい粘度は12~800mPa・sであり、最も好ましい粘度は20~600mPa・sである。
(第2混合液の調整手順)
As a procedure for preparing the first mixed liquid, a phosphor, swellable particles (first swellable particles), inorganic particles (inorganic fine particles), and a solvent (first solvent) may be mixed. The preferred viscosity of the first mixed liquid is 10 to 1000 mPa · s, more preferred viscosity is 12 to 800 mPa · s, and most preferred viscosity is 20 to 600 mPa · s.
(Procedure for adjusting the second mixture)
 第2混合液の調製手順としては、透光性セラミック材料を溶媒(第2溶媒)に分散させた溶液に膨潤性粒子(第2膨潤性粒子)、必要に応じて水及び/又は無機粒子を混合すればよい。第2混合液に第2膨潤性粒子を添加することにより、厚塗りしてもクラックの発生しにくい透光性セラミック層ができる。 As a procedure for preparing the second mixed liquid, swellable particles (second swellable particles) are added to a solution in which a translucent ceramic material is dispersed in a solvent (second solvent), and water and / or inorganic particles are added as necessary. What is necessary is just to mix. By adding the second swellable particles to the second liquid mixture, a light-transmitting ceramic layer that does not easily generate cracks even when thickly applied can be formed.
 第2混合液としては、ゾル状の前駆体溶液を加熱によりゲル状態とし、さらに焼成する、いわゆるゾル・ゲル法により透明セラミック層を形成するものであってもよいし、焼成することによりゲル化することなく直接透明セラミック層を形成するものであってもよい。ゾル・ゲル法を用いる場合、例えば、金属アルコキシド、加水分解用の水、溶媒、触媒等を適宜混合することが好ましい。触媒としては、塩酸、硫酸、硝酸、酢酸、フッ酸、アンモニア等を用いることができる。金属アルコキシドとしてテトラエトキシシランを用いる場合、テトラエトキシシラン100質量部に対して、エチルアルコール138質量部、純水52質量部とすることが好ましい。この場合、ゲルの加熱温度は120~250℃が好ましく、LED素子3の劣化をより抑制する観点からは120~200℃が好ましい。また、金属アルコキシドとしてポリシロキサンを用いる場合、塗布後の加熱温度は120~500℃が好ましく、LED素子3の劣化をより抑制する観点からは120~350℃が好ましい。
(発光装置の製造方法)
As the second mixed liquid, the sol-like precursor solution may be heated to a gel state, and further fired to form a transparent ceramic layer by a so-called sol-gel method, or may be gelled by firing. The transparent ceramic layer may be formed directly without doing so. When using the sol-gel method, it is preferable to appropriately mix, for example, a metal alkoxide, water for hydrolysis, a solvent, a catalyst, and the like. As the catalyst, hydrochloric acid, sulfuric acid, nitric acid, acetic acid, hydrofluoric acid, ammonia and the like can be used. When tetraethoxysilane is used as the metal alkoxide, it is preferable to use 138 parts by mass of ethyl alcohol and 52 parts by mass of pure water with respect to 100 parts by mass of tetraethoxysilane. In this case, the heating temperature of the gel is preferably 120 to 250 ° C., and preferably 120 to 200 ° C. from the viewpoint of further suppressing the deterioration of the LED element 3. When polysiloxane is used as the metal alkoxide, the heating temperature after coating is preferably 120 to 500 ° C., and from the viewpoint of further suppressing the deterioration of the LED element 3, 120 to 350 ° C. is preferable.
(Method for manufacturing light emitting device)
 以上のようにして得られた第1混合溶液をLED素子3が搭載されたLED基板1上にスプレーコート法により所定量噴霧する。図2に、スプレーコート法を用いた塗布装置及び製造方法を概略的に説明するための模式図を示す。塗布装置10は、主に、上下、左右、前後に移動可能な移動台20と、第1混合液を噴射可能なスプレー装置30とを有している。 A predetermined amount of the first mixed solution obtained as described above is sprayed onto the LED substrate 1 on which the LED element 3 is mounted by a spray coating method. In FIG. 2, the schematic diagram for demonstrating schematically the coating device using a spray coat method, and a manufacturing method is shown. The coating device 10 mainly includes a movable table 20 that can move up and down, left and right, and back and forth, and a spray device 30 that can spray the first mixed liquid.
 スプレー装置30は移動台20の上方に配置されている。スプレー装置30はエアーが送り込まれるノズル32を有しており、ノズル32にはエアーを送り込むためのエアーコンプレッサー(図示略)が接続されている。ノズル32の先端部の孔径は20μm~2mmであり、好ましくは0.1~0.3mmである。ノズル32は移動台20と同様に、上下、左右、前後に移動可能となっている。 The spray device 30 is disposed above the movable table 20. The spray device 30 has a nozzle 32 into which air is sent, and an air compressor (not shown) for sending air is connected to the nozzle 32. The hole diameter at the tip of the nozzle 32 is 20 μm to 2 mm, preferably 0.1 to 0.3 mm. The nozzle 32 can move up and down, left and right, and back and forth, like the moving table 20.
 例えば、ノズル32としてはアネスト岩田社製スプレーガンW-101-142BPGが、コンプレッサーとしてはアネスト岩田社製OFP-071Cがそれぞれ使用される。ノズル32は角度調整も可能であり、移動台20(またはこれに設置されるLED基板1)に対し傾斜させることができるようになっている。被噴射物(LED基板1)に対するノズル32の角度は、当該被噴射物から垂直方向を0°とした場合、0~60°の範囲であることが好ましい。 For example, the spray gun W-101-142BPG manufactured by Anest Iwata is used as the nozzle 32, and the OFP-071C manufactured by Anest Iwata is used as the compressor. The angle of the nozzle 32 can be adjusted, and the nozzle 32 can be tilted with respect to the movable table 20 (or the LED substrate 1 installed on the moving table 20). The angle of the nozzle 32 with respect to the injection target (LED substrate 1) is preferably in the range of 0 to 60 ° when the vertical direction from the injection target is 0 °.
 ノズル32には連結管34を介してタンク36が接続されている。タンク36には第1混合液40が貯留されている。タンク36には撹拌子が入っており、第1混合液40が常に撹拌されている。第1混合液40を撹拌すれば、比重の大きい蛍光体の沈降を抑止することができ、蛍光体が第1混合液40中で分散した状態を保持することができる。例えば、タンクとしてはアネスト岩田社製PC-51が使用される。 A tank 36 is connected to the nozzle 32 via a connecting pipe 34. A first mixed solution 40 is stored in the tank 36. The tank 36 contains a stirring bar, and the first mixed solution 40 is constantly stirred. If the 1st liquid mixture 40 is stirred, sedimentation of the fluorescent substance with large specific gravity can be suppressed, and the state which the fluorescent substance dispersed in the 1st liquid mixture 40 can be hold | maintained. For example, Anest Iwata PC-51 is used as the tank.
 実際に第1混合液40を塗布する場合には、(LED素子3をあらかじめ実装した)複数のLED基板1を移動台20に設置し、LED基板1とスプレー装置30のノズル32との位置関係を調整する(位置調整工程)。 When actually applying the first mixed solution 40, a plurality of LED substrates 1 (on which the LED elements 3 are mounted in advance) are installed on the moving table 20, and the positional relationship between the LED substrate 1 and the nozzle 32 of the spray device 30. Is adjusted (position adjustment step).
 詳しくは、LED基板1を移動台20に設置し、LED基板1とノズル32の先端部とを対向配置する。LED基板1とノズル32との距離を離すほど第1混合液40を均一に塗布することが可能であるが、膜強度が低下する傾向もあるため、LED基板1とノズル32の先端部との距離は3~30cmの範囲に保持することが適している。 Specifically, the LED substrate 1 is installed on the moving table 20, and the LED substrate 1 and the tip of the nozzle 32 are arranged to face each other. The first mixed solution 40 can be uniformly applied as the distance between the LED substrate 1 and the nozzle 32 increases, but the film strength also tends to decrease. It is suitable to keep the distance in the range of 3 to 30 cm.
 その後、LED基板1とノズル32とを互いに相対移動させながら、ノズル32から第1混合液を噴射してLED基板1に第1混合液40を塗布する(噴射・塗布工程)。詳しくは、一方では、移動台20とノズル32とを移動させてLED基板1とノズル32とを前後左右に移動させる。移動台20とノズル32とのうちいずれか一方の位置を固定し、他方を前後左右に移動させてもよい。また、移動台20の移動方向と直交する方向にLED素子3を複数配置し、ノズル32を移動台20の移動方向と直交する方向に移動させながら塗布する方法も好ましく用いられる。 Then, the first mixed solution 40 is sprayed from the nozzle 32 and the first mixed solution 40 is applied to the LED substrate 1 while the LED substrate 1 and the nozzle 32 are moved relative to each other (spraying / coating step). Specifically, on the other hand, the moving base 20 and the nozzle 32 are moved to move the LED substrate 1 and the nozzle 32 back and forth and right and left. Either one of the moving table 20 and the nozzle 32 may be fixed, and the other may be moved back and forth and left and right. A method of applying a plurality of LED elements 3 in a direction orthogonal to the moving direction of the moving table 20 and moving the nozzle 32 in a direction orthogonal to the moving direction of the moving table 20 is also preferably used.
 他方では、ノズル32にエアーを送り込み、第1混合液40をノズル32の先端部からLED基板1に向けて噴射する。LED基板1とノズル32との距離についてはエアーコンプレッサーの圧力を考慮して上記の範囲で調整可能である。例えば、ノズル32の入り口部(先端部)の圧力(スプレー圧)が0.14MPaとなるようにコンプレッサーの圧力を調整する。以上の操作により、第1混合液40をLED素子3上に塗布することができる。 On the other hand, air is sent into the nozzle 32 and the first mixed solution 40 is sprayed from the tip of the nozzle 32 toward the LED substrate 1. The distance between the LED substrate 1 and the nozzle 32 can be adjusted in the above range in consideration of the pressure of the air compressor. For example, the pressure of the compressor is adjusted so that the pressure (spray pressure) at the inlet (tip) of the nozzle 32 is 0.14 MPa. With the above operation, the first mixed liquid 40 can be applied onto the LED element 3.
 なお、塗布装置10を用いるのに代えて、ディスペンサーやインクジェット装置を用いて第1及び第2混合液を塗布(滴下または吐出)するようにしてもよい。ディスペンサーを使用する場合は、塗布液の滴下量を制御可能で、蛍光体などのノズル詰まりが発生しないようなノズルを用いる。たとえば、武蔵エンジニアリング社製の非接触ジェットディスペンサーや同社のディスペンサーを用いることができる。インクジェット装置を使用する場合も、塗布液の吐出量を制御可能で、蛍光体などのノズル詰まりが発生しないようなノズルを用いる。たとえば、コニカミノルタIJ社製のインクジェット装置を用いることができる。 In addition, it may replace with using the coating device 10, and you may make it apply | coat (drop or discharge) a 1st and 2nd liquid mixture using a dispenser or an inkjet apparatus. In the case of using a dispenser, a nozzle that can control the dropping amount of the coating liquid and that does not cause nozzle clogging such as a phosphor is used. For example, a non-contact jet dispenser manufactured by Musashi Engineering Co., Ltd. or its dispenser can be used. Even when an ink jet apparatus is used, a nozzle that can control the discharge amount of the coating liquid and does not cause clogging of nozzles such as phosphors is used. For example, an ink jet apparatus manufactured by Konica Minolta IJ can be used.
 このようにして塗布した第1混合液を加熱(乾燥)することで、LED素子3上に均一な厚さ(均一な蛍光体分布)の波長変換層7が形成される。次に、波長変換層7の上に第2混合液をスプレーコート法により所定量噴霧する。ここでも塗布装置10を用いることができる。塗布された第2混合液の一部は蛍光体粒子や膨潤性粒子の隙間に浸透する。これを加熱(焼成)することでセラミック層8が形成される。 The wavelength conversion layer 7 having a uniform thickness (uniform phosphor distribution) is formed on the LED element 3 by heating (drying) the first mixed solution thus applied. Next, a predetermined amount of the second mixed liquid is sprayed on the wavelength conversion layer 7 by a spray coating method. The coating apparatus 10 can also be used here. Part of the applied second mixed solution penetrates into the gaps between the phosphor particles and the swellable particles. The ceramic layer 8 is formed by heating (baking) this.
 ここで、波長変換層7に浸透した第2混合液はセラミックに変化するため、セラミックは蛍光体粒子と膨潤性粒子とガラス基板5に対してバインダとして作用する。また、第2混合液は膨潤性粒子を含んでおり適度な粘度を有するため、波長変換層7上にセラミック層8が明確に形成され、波長変換層7を封止するという機能もある。 Here, since the second mixed liquid that has penetrated into the wavelength conversion layer 7 is changed to ceramic, the ceramic acts as a binder on the phosphor particles, the swellable particles, and the glass substrate 5. Moreover, since the 2nd liquid mixture contains swellable particle | grains and has moderate viscosity, the ceramic layer 8 is clearly formed on the wavelength conversion layer 7, and also has the function of sealing the wavelength conversion layer 7. FIG.
 なお、形成された波長変換部7の厚みが5μm未満である場合は波長変換効率が低下して十分な蛍光が得られず、波長変換層7の厚みが500μmを超える場合は膜強度が低下してクラック等が発生し易くなる。従って、波長変換層7の厚みは5μm以上500μm以下であることが好ましい。 In addition, when the thickness of the formed wavelength conversion part 7 is less than 5 micrometers, wavelength conversion efficiency falls and sufficient fluorescence is not obtained, and when the thickness of the wavelength conversion layer 7 exceeds 500 micrometers, film | membrane intensity | strength falls. Cracks and the like are likely to occur. Therefore, the thickness of the wavelength conversion layer 7 is preferably 5 μm or more and 500 μm or less.
 図3は、本発明の第2実施形態の発光装置の概略断面図である。図3に示すように、発光装置101は、平板状のLED基板1上にメタル部2を設け、メタル部2上に発光素子としてLED素子3を配置している。LED素子3は、メタル部2に対向する面に、突起電極4が設けられており、メタル部2とLED素子3とを突起電極4を介して接続している(フリップチップ型)。 FIG. 3 is a schematic sectional view of a light emitting device according to a second embodiment of the present invention. As shown in FIG. 3, in the light emitting device 101, a metal part 2 is provided on a flat LED substrate 1, and the LED element 3 is disposed on the metal part 2 as a light emitting element. The LED element 3 is provided with a protruding electrode 4 on a surface facing the metal part 2, and the metal part 2 and the LED element 3 are connected via the protruding electrode 4 (flip chip type).
 また、LED素子3の上面には波長変換素子9が設けられている。波長変換素子9は、ガラス基板5と、ガラス基板5の上面に形成された波長変換部6とを有している。ガラス基板5の形状には特に限定はなく、平板状、レンズ状等を採用できる。なお、波長変換部6はガラス基板5の下面に形成してもよい。波長変換部6は、ガラス基板5上に形成された波長変換層7と、波長変換層7上に形成されたセラミック層8とを有している。 Further, a wavelength conversion element 9 is provided on the upper surface of the LED element 3. The wavelength conversion element 9 includes a glass substrate 5 and a wavelength conversion unit 6 formed on the upper surface of the glass substrate 5. The shape of the glass substrate 5 is not particularly limited, and a flat plate shape, a lens shape, or the like can be adopted. The wavelength conversion unit 6 may be formed on the lower surface of the glass substrate 5. The wavelength conversion unit 6 includes a wavelength conversion layer 7 formed on the glass substrate 5 and a ceramic layer 8 formed on the wavelength conversion layer 7.
 発光装置101の製造方法としては、第1混合液をガラス基板5の片面に所定量塗布し、加熱して所定の膜厚の波長変換層7を形成する。次に、波長変換層7の上面に第2混合液を所定量塗布する。塗布された第2混合液の一部は蛍光体粒子や膨潤性粒子の隙間に浸透する。第2混合液が塗布されたガラス基板5を焼成することでセラミック層8が形成される。 As a method for manufacturing the light emitting device 101, a predetermined amount of the first mixed liquid is applied to one side of the glass substrate 5, and heated to form the wavelength conversion layer 7 having a predetermined thickness. Next, a predetermined amount of the second liquid mixture is applied to the upper surface of the wavelength conversion layer 7. Part of the applied second mixed solution penetrates into the gaps between the phosphor particles and the swellable particles. The ceramic layer 8 is formed by baking the glass substrate 5 with which the 2nd liquid mixture was apply | coated.
 なお、第1及び第2混合液の塗布方法は特に限定されるものではなく、バーコート法、スピンコート法、スプレーコート法等、従来公知の種々の方法を用いることができる。 In addition, the coating method of the first and second mixed liquids is not particularly limited, and various conventionally known methods such as a bar coating method, a spin coating method, and a spray coating method can be used.
 そして、波長変換部6が形成されたガラス基板5を所定の大きさ(例えば2×2mm)に切断してLED素子3上に配置することにより、発光装置100を製造することができる。 And the light-emitting device 100 can be manufactured by cut | disconnecting the glass substrate 5 in which the wavelength conversion part 6 was formed in predetermined magnitude | size (for example, 2x2 mm), and arrange | positioning on the LED element 3. FIG.
 なお、上記実施形態ではガラス基板5を使用しているが、ガラス基板に限らず、透光性の無機材料からなる基板であれば、例えば、単結晶サファイア等の結晶基板やセラミック基板を用いてもよい。 In addition, although the glass substrate 5 is used in the said embodiment, if it is a board | substrate which consists of not only a glass substrate but a translucent inorganic material, for example, crystal substrates, such as a single crystal sapphire, and a ceramic substrate will be used. Also good.
 図4は、本発明の第3実施形態の発光装置の概略断面図である。図4に示すように、発光装置102は、断面凹状のLED基板1の底部にメタル部2が設けられ、メタル部2上にLED素子3が配置されるとともに、LED基板1の凹部に蓋をするように波長変換素子9が設けられている。波長変換素子9を含む他の部分の構成は第2実施形態と同様であるため説明を省略する。 FIG. 4 is a schematic cross-sectional view of a light emitting device according to a third embodiment of the present invention. As shown in FIG. 4, in the light emitting device 102, the metal part 2 is provided at the bottom of the LED substrate 1 having a concave cross section, the LED element 3 is disposed on the metal part 2, and a lid is provided on the concave part of the LED substrate 1. Thus, a wavelength conversion element 9 is provided. Since the configuration of other parts including the wavelength conversion element 9 is the same as that of the second embodiment, the description thereof is omitted.
 本実施形態の発光装置102は、LED基板1の凹部にLED素子3を配置し、第2実施形態で用いた波長変換素子9をLED基板1の側壁の上端に凹部を覆うように接着して製造することができる。 In the light emitting device 102 of the present embodiment, the LED element 3 is disposed in the concave portion of the LED substrate 1, and the wavelength conversion element 9 used in the second embodiment is bonded to the upper end of the side wall of the LED substrate 1 so as to cover the concave portion. Can be manufactured.
 本実施形態の発光装置102は、第2実施形態に比べて、LED素子3の側面から出射される光も効率良く蛍光に変換される。 In the light emitting device 102 of the present embodiment, light emitted from the side surface of the LED element 3 is also efficiently converted into fluorescence as compared with the second embodiment.
 なお、LED基板1の凹部の形状や大きさは発光装置102の仕様に応じて適宜設計することができる。例えば、凹部の側面をテーパ状としてもよい。また、凹部の内面を反射面とすることにより、発光装置102の発光効率を高める構成としてもよい。 In addition, the shape and size of the concave portion of the LED substrate 1 can be appropriately designed according to the specifications of the light emitting device 102. For example, the side surface of the recess may be tapered. In addition, a configuration in which the light emission efficiency of the light emitting device 102 is increased by using the inner surface of the recess as a reflection surface may be employed.
 その他、本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態では青色LEDと蛍光体とを併用することで白色発光する発光装置を例に挙げて説明したが、緑色LEDや赤色LEDと蛍光体とを併用する場合にも同様に適用できるのはもちろんである。さらに言えば、蛍光体は1種類だけでなく、紫外光を吸収して赤色、緑色、青色の光をそれぞれ放射する3種類の蛍光体や、青色光を吸収して赤色、緑色の光をそれぞれ放射する2種類の蛍光体を併用してもよい。また、第1混合液を塗布する前に、ガラス基板5又はLED素子3の表面に、上述したセラミック層8のような透光性のセラミック層を形成しておいてもよい。 In addition, the present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. Embodiments are also included in the technical scope of the present invention. In each of the above embodiments, a light emitting device that emits white light by using a blue LED and a phosphor together has been described as an example. However, the same applies to a case where a green LED or a red LED and a phosphor are used in combination. Of course you can. Furthermore, not only one type of phosphor, but also three types of phosphors that absorb ultraviolet light and emit red, green, and blue light, respectively, and red and green light that absorb blue light, respectively. You may use together two types of fluorescent substance to radiate | emit. Moreover, you may form the translucent ceramic layer like the ceramic layer 8 mentioned above on the surface of the glass substrate 5 or the LED element 3 before apply | coating a 1st liquid mixture.
 以下、本発明の発光装置について実施例及び比較例により更に具体的に説明する。実施例1~18は第1実施形態の発光装置100の例であり、実施例19~21は第2実施形態の発光装置101の例であり、比較例1~4は第1実施形態の発光装置100と同形状の発光装置の例である。なお、第3実施形態の発光装置102は第2実施形態と同じ波長変換素子9を用いているのでここでは省略する。
(蛍光体の調製例)
Hereinafter, the light emitting device of the present invention will be described more specifically with reference to Examples and Comparative Examples. Examples 1 to 18 are examples of the light emitting device 100 of the first embodiment, Examples 19 to 21 are examples of the light emitting device 101 of the second embodiment, and Comparative Examples 1 to 4 are light emitting devices of the first embodiment. 4 is an example of a light emitting device having the same shape as the device 100. FIG. In addition, since the light-emitting device 102 of 3rd Embodiment uses the same wavelength conversion element 9 as 2nd Embodiment, it abbreviate | omits here.
(Phosphor preparation example)
 各実施例及び比較例で用いる蛍光体は、蛍光体原料として、Y7.41g、Gd4.01g、CeO0.63g、Al7.77gを十分に混合し、これにフラックスとしてフッ化アンモニウムを適量混合したものをアルミニウム製の坩堝に充填し、水素含有窒素ガスを流通させた還元雰囲気中において、1350~1450℃の温度範囲で2~5時間焼成して焼成品((Y0.72Gd0.24Al12:Ce0.04)を得た。 Phosphor used in the Examples and Comparative Examples, mixing the phosphor material, Y 2 O 3 7.41g, Gd 2 O 3 4.01g, CeO 2 0.63g, the Al 2 O 3 7.77 g fully Then, an aluminum crucible mixed with an appropriate amount of ammonium fluoride as a flux is filled in an aluminum crucible and baked at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours in a reducing atmosphere in which hydrogen-containing nitrogen gas is circulated. In this way, a fired product ((Y 0.72 Gd 0.24 ) 3 Al 5 O 12 : Ce 0.04 ) was obtained.
 得られた焼成品を粉砕、洗浄、分離、乾燥して、体積平均粒径が1μm程度の黄色蛍光体粒子を得た。波長465nmの励起光における発光波長を測定したところ、おおよそ波長570nmにピーク波長を有していた。
(ガラス基板)
The obtained fired product was pulverized, washed, separated, and dried to obtain yellow phosphor particles having a volume average particle diameter of about 1 μm. When the emission wavelength of excitation light with a wavelength of 465 nm was measured, it had a peak wavelength at a wavelength of approximately 570 nm.
(Glass substrate)
 各実施例及び比較例で用いるガラス基板は、横50mm、縦20mm、厚さ1mmの直方体で薄板のものを用いた。 The glass substrate used in each example and comparative example was a rectangular parallelepiped having a width of 50 mm, a length of 20 mm, and a thickness of 1 mm, and a thin plate.
 上記調製例により調製した蛍光体1gと、第1膨潤性粒子である合成雲母(MK-100、コープケミカル社製)0.05gと、無機粒子であるRX300(1次粒子の平均粒径が7nmのシリル化処理無水ケイ酸;日本アエロジル社製)0.05gと、溶媒であるプロピレングリコール1.5gとを混合して第1混合液を調製した。この第1混合液を塗布装置10を用いてスプレー圧0.2MPa、移動台20の移動速度100mm/sにてLED基板1の凹部及びLED素子3表面に噴霧し、50℃で1時間加熱して乾燥させることで、波長変換層7を作製した。次に、ポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)1gと、第2膨潤性粒子である合成雲母(MK-100、コープケミカル社製)0.05gとを混合して第2混合液を調製した。この第2混合液を塗布装置10を用いて波長変換層7上に焼成後にクラックの発生しない最大膜厚となるよう噴霧し、150℃で1時間加熱して焼成させることで、波長変換層7の蛍光体を固着させるとともにセラミック層8を作製し、発光装置100を得た。なお、最大膜厚となるように噴霧するには、スプレー圧や移動台20の移動速度を適宜調整する。 1 g of the phosphor prepared according to the above preparation example, 0.05 g of synthetic mica (MK-100, manufactured by Corp Chemical Co.) as the first swellable particles, and RX300 (average particle size of the primary particles is 7 nm) as inorganic particles A first mixed liquid was prepared by mixing 0.05 g of silylated silica (manufactured by Nippon Aerosil Co., Ltd.) and 1.5 g of propylene glycol as a solvent. This first mixed solution is sprayed onto the concave portion of the LED substrate 1 and the surface of the LED element 3 at a spray pressure of 0.2 MPa and a moving speed of 100 mm / s using the coating apparatus 10 and heated at 50 ° C. for 1 hour. The wavelength conversion layer 7 was produced by drying. Next, 1 g of a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) and 0.05 g of synthetic mica (MK-100, manufactured by Corp Chemical Co.), which is the second swellable particle, were mixed. A second mixture was prepared. The wavelength conversion layer 7 is formed by spraying the second mixed liquid on the wavelength conversion layer 7 using the coating apparatus 10 so as to have a maximum film thickness that does not cause cracks after baking, and heating and baking at 150 ° C. for 1 hour. The phosphor was fixed and the ceramic layer 8 was produced, whereby the light emitting device 100 was obtained. In addition, in order to spray so that it may become the maximum film thickness, a spray pressure and the moving speed of the moving stand 20 are adjusted suitably.
 上記調製例により調製した蛍光体1gと、第1膨潤性粒子である合成雲母(MK-100、コープケミカル社製)0.05gと、無機粒子であるRX300(1次粒子の平均粒径が7nmのシリル化処理無水ケイ酸;日本アエロジル社製)0.05gと、溶媒であるプロピレングリコール1.5gとを混合して第1混合液を調製した。この第1混合液を用いて実施例1と同条件で波長変換層7を作製した。次に、ポリシロキサン分散液1gと、第2膨潤性粒子であるスメクタイト(ルーセンタイトSWN、コープケミカル社製、以下SWNと略す)0.05gと、RX300を0.05gとを混合して第2混合液を調製した。この第2混合液を用いて実施例1と同条件でセラミック層8を作製し、発光装置100を得た。 1 g of the phosphor prepared according to the above preparation example, 0.05 g of synthetic mica (MK-100, manufactured by Corp Chemical Co.) as the first swellable particles, and RX300 (average particle size of the primary particles is 7 nm) as inorganic particles A first mixed liquid was prepared by mixing 0.05 g of silylated silica (manufactured by Nippon Aerosil Co., Ltd.) and 1.5 g of propylene glycol as a solvent. A wavelength conversion layer 7 was produced under the same conditions as in Example 1 using this first mixed solution. Next, 1 g of polysiloxane dispersion, 0.05 g of smectite (Lucentite SWN, manufactured by Corp Chemical Co., hereinafter abbreviated as SWN) as the second swellable particle, and 0.05 g of RX300 were mixed to obtain a second. A mixture was prepared. Using this second mixed solution, a ceramic layer 8 was produced under the same conditions as in Example 1, and a light emitting device 100 was obtained.
 上記調製例により調製した蛍光体1gと、第1膨潤性粒子であるSWN0.05gと、無機粒子であるRX300を0.05gと、溶媒であるイソプロピルアルコール0.75g及びプロピレングリコール1gとを混合して第1混合液を調製した。この第1混合液を用いて実施例1と同条件で波長変換層7を作製した。次に、ポリシロキサン分散液1gと、第2膨潤性粒子であるSWN0.05gとを混合して第2混合液を調製した。この第2混合液を用いて実施例1と同条件でセラミック層8を作製し、発光装置100を得た。 1 g of the phosphor prepared according to the above preparation example, 0.05 g of SWN as the first swellable particles, 0.05 g of RX300 as the inorganic particles, 0.75 g of isopropyl alcohol as a solvent and 1 g of propylene glycol are mixed. Thus, a first mixed solution was prepared. A wavelength conversion layer 7 was produced under the same conditions as in Example 1 using this first mixed solution. Next, 1 g of the polysiloxane dispersion and 0.05 g of SWN as the second swellable particles were mixed to prepare a second mixed solution. Using this second mixed solution, a ceramic layer 8 was produced under the same conditions as in Example 1, and a light emitting device 100 was obtained.
 上記調製例により調製した蛍光体1gと、第1膨潤性粒子であるSWN0.05gと、無機粒子であるRX300を0.05gと、溶媒であるイソプロピルアルコール0.75g及びプロピレングリコール1gとを混合して第1混合液を調製した。この第1混合液を用いて実施例1と同条件で波長変換層7を作製した。次に、ポリシロキサン分散液1gと、第2膨潤性粒子であるMK-100を0.05gとを混合して第2混合液を調製した。この第2混合液を用いて実施例1と同条件でセラミック層8を作製し、発光装置100を得た。 1 g of the phosphor prepared according to the above preparation example, 0.05 g of SWN as the first swellable particles, 0.05 g of RX300 as the inorganic particles, 0.75 g of isopropyl alcohol as a solvent and 1 g of propylene glycol are mixed. Thus, a first mixed solution was prepared. A wavelength conversion layer 7 was produced under the same conditions as in Example 1 using this first mixed solution. Next, 1 g of the polysiloxane dispersion and 0.05 g of MK-100, which is the second swellable particle, were mixed to prepare a second mixed solution. Using this second mixed solution, a ceramic layer 8 was produced under the same conditions as in Example 1, and a light emitting device 100 was obtained.
 上記調製例により調製した蛍光体1gと、第1膨潤性粒子であるSWN0.05gと、無機粒子であるRX300を0.05gと、溶媒であるイソプロピルアルコール0.75g及びプロピレングリコール1gとを混合して第1混合液を調製した。この第1混合液を用いて実施例1と同条件で波長変換層7を作製した。次に、ポリシロキサン分散液1gと、第2膨潤性粒子であるSWN0.05gと、RX300を0.05gとを混合して第2混合液を調製した。この第2混合液を用いて実施例1と同条件でセラミック層8を作製し、発光装置100を得た。 1 g of the phosphor prepared according to the above preparation example, 0.05 g of SWN as the first swellable particles, 0.05 g of RX300 as the inorganic particles, 0.75 g of isopropyl alcohol as a solvent and 1 g of propylene glycol are mixed. Thus, a first mixed solution was prepared. A wavelength conversion layer 7 was produced under the same conditions as in Example 1 using this first mixed solution. Next, 1 g of polysiloxane dispersion, 0.05 g of SWN as the second swellable particles, and 0.05 g of RX300 were mixed to prepare a second mixed solution. Using this second mixed solution, a ceramic layer 8 was produced under the same conditions as in Example 1, and a light emitting device 100 was obtained.
 上記調製例により調製した蛍光体1gと、第1膨潤性粒子であるSWN0.05gと、無機粒子であるRX300を0.05gと、溶媒であるイソプロピルアルコール0.75g及びプロピレングリコール1gとを混合して第1混合液を調製した。この第1混合液を用いて実施例1と同条件で波長変換層7を作製した。次に、ポリシロキサン分散液1gと、第2膨潤性粒子であるSWN0.2gと、RX300を0.05gとを混合して第2混合液を調製した。この第2混合液を用いて実施例1と同条件でセラミック層8を作製し、発光装置100を得た。 1 g of the phosphor prepared according to the above preparation example, 0.05 g of SWN as the first swellable particles, 0.05 g of RX300 as the inorganic particles, 0.75 g of isopropyl alcohol as a solvent and 1 g of propylene glycol are mixed. Thus, a first mixed solution was prepared. A wavelength conversion layer 7 was produced under the same conditions as in Example 1 using this first mixed solution. Next, 1 g of polysiloxane dispersion, 0.2 g of SWN as second swellable particles, and 0.05 g of RX300 were mixed to prepare a second mixed solution. Using this second mixed solution, a ceramic layer 8 was produced under the same conditions as in Example 1, and a light emitting device 100 was obtained.
 上記調製例により調製した蛍光体1gと、第1膨潤性粒子であるSWN0.05gと、無機粒子であるRX300を0.05gと、溶媒であるイソプロピルアルコール0.75g及びプロピレングリコール1gとを混合して第1混合液を調製した。この第1混合液を用いて実施例1と同条件で波長変換層7を作製した。次に、ポリシロキサン分散液1gと、第2膨潤性粒子であるSWN0.05gと、純水0.5gとを混合して第2混合液を調製した。この第2混合液を用いて実施例1と同条件でセラミック層8を作製し、発光装置100を得た。 1 g of the phosphor prepared according to the above preparation example, 0.05 g of SWN as the first swellable particles, 0.05 g of RX300 as the inorganic particles, 0.75 g of isopropyl alcohol as a solvent and 1 g of propylene glycol are mixed. Thus, a first mixed solution was prepared. A wavelength conversion layer 7 was produced under the same conditions as in Example 1 using this first mixed solution. Next, 1 g of polysiloxane dispersion, 0.05 g of SWN as the second swellable particles, and 0.5 g of pure water were mixed to prepare a second mixed solution. Using this second mixed solution, a ceramic layer 8 was produced under the same conditions as in Example 1, and a light emitting device 100 was obtained.
 上記調製例により調製した蛍光体1gと、第1膨潤性粒子であるSWN0.05gと、無機粒子であるRX300を0.05gと、溶媒であるイソプロピルアルコール0.75g及びプロピレングリコール1gとを混合して第1混合液を調製した。この第1混合液を用いて実施例1と同条件で波長変換層7を作製した。次に、ポリシロキサン分散液1gと、第2膨潤性粒子であるSWN0.05gと、RX300を0.05gと、純水0.5gとを混合して第2混合液を調製した。この第2混合液を用いて実施例1と同条件でセラミック層8を作製し、発光装置100を得た。 1 g of the phosphor prepared according to the above preparation example, 0.05 g of SWN as the first swellable particles, 0.05 g of RX300 as the inorganic particles, 0.75 g of isopropyl alcohol as a solvent and 1 g of propylene glycol are mixed. Thus, a first mixed solution was prepared. A wavelength conversion layer 7 was produced under the same conditions as in Example 1 using this first mixed solution. Next, 1 g of a polysiloxane dispersion, 0.05 g of SWN as second swellable particles, 0.05 g of RX300, and 0.5 g of pure water were mixed to prepare a second mixed solution. Using this second mixed solution, a ceramic layer 8 was produced under the same conditions as in Example 1, and a light emitting device 100 was obtained.
 上記調製例により調製した蛍光体1gと、第1膨潤性粒子であるSWN0.05gと、無機粒子であるRX300を0.05gと、溶媒であるイソプロピルアルコール0.75g及びプロピレングリコール1gとを混合して第1混合液を調製した。この第1混合液を用いて実施例1と同条件で波長変換層7を作製した。次に、ポリシロキサン分散液1gと、第2膨潤性粒子であるSWN0.1gと、RX300を0.2gと、純水0.5gとを混合して第2混合液を調製した。この第2混合液を用いて実施例1と同条件でセラミック層8を作製し、発光装置100を得た。 1 g of the phosphor prepared according to the above preparation example, 0.05 g of SWN as the first swellable particles, 0.05 g of RX300 as the inorganic particles, 0.75 g of isopropyl alcohol as a solvent and 1 g of propylene glycol are mixed. Thus, a first mixed solution was prepared. A wavelength conversion layer 7 was produced under the same conditions as in Example 1 using this first mixed solution. Next, 1 g of polysiloxane dispersion, 0.1 g of SWN as second swellable particles, 0.2 g of RX300, and 0.5 g of pure water were mixed to prepare a second mixed solution. Using this second mixed solution, a ceramic layer 8 was produced under the same conditions as in Example 1, and a light emitting device 100 was obtained.
 上記調製例により調製した蛍光体1gと、第1膨潤性粒子であるSWN0.05gと、無機粒子であるRX300を0.05gと、溶媒であるイソプロピルアルコール0.75g及びプロピレングリコール1gとを混合して第1混合液を調製した。この第1混合液を用いて実施例1と同条件で波長変換層7を作製した。次に、ポリシロキサン分散液1gと、第2膨潤性粒子であるSWN0.2gと、RX300を0.15gと、純水0.5gとを混合して第2混合液を調製した。この第2混合液を用いて実施例1と同条件でセラミック層8を作製し、発光装置100を得た。 1 g of the phosphor prepared according to the above preparation example, 0.05 g of SWN as the first swellable particles, 0.05 g of RX300 as the inorganic particles, 0.75 g of isopropyl alcohol as a solvent and 1 g of propylene glycol are mixed. Thus, a first mixed solution was prepared. A wavelength conversion layer 7 was produced under the same conditions as in Example 1 using this first mixed solution. Next, 1 g of a polysiloxane dispersion, 0.2 g of SWN as second swellable particles, 0.15 g of RX300, and 0.5 g of pure water were mixed to prepare a second mixed solution. Using this second mixed solution, a ceramic layer 8 was produced under the same conditions as in Example 1, and a light emitting device 100 was obtained.
 上記調製例により調製した蛍光体1gと、第1膨潤性粒子であるSWN0.05gと、無機粒子であるRX300を0.05gと、溶媒であるイソプロピルアルコール0.75g及びプロピレングリコール1gとを混合して第1混合液を調製した。この第1混合液を用いて実施例1と同条件で波長変換層7を作製した。次に、ポリシロキサン分散液1gと、第2膨潤性粒子であるSWN0.05gと、無機粒子であるNanoTekシリカ(NanoTek Powder、メジアン径(D50)25nmの酸化ケイ素微粒子;CIKナノテック社製)0.05gとを混合して第2混合液を調製した。この第2混合液を用いて実施例1と同条件でセラミック層8を作製し、発光装置100を得た。 1 g of the phosphor prepared according to the above preparation example, 0.05 g of SWN as the first swellable particles, 0.05 g of RX300 as the inorganic particles, 0.75 g of isopropyl alcohol as a solvent and 1 g of propylene glycol are mixed. Thus, a first mixed solution was prepared. A wavelength conversion layer 7 was produced under the same conditions as in Example 1 using this first mixed solution. Next, 1 g of polysiloxane dispersion, 0.05 g of SWN as second swellable particles, NanoTek silica as inorganic particles (NanoTek Powder, silicon oxide fine particles having a median diameter (D50) of 25 nm; manufactured by CIK Nanotech) 05g was mixed and the 2nd liquid mixture was prepared. Using this second mixed solution, a ceramic layer 8 was produced under the same conditions as in Example 1, and a light emitting device 100 was obtained.
 上記調製例により調製した蛍光体1gと、第1膨潤性粒子であるSWN0.05gと、無機粒子であるRX300を0.05gと、溶媒であるイソプロピルアルコール0.75g及びプロピレングリコール1gとを混合して第1混合液を調製した。この第1混合液を用いて実施例1と同条件で波長変換層7を作製した。次に、ポリシロキサン分散液1gと、第2膨潤性粒子であるSWN0.05gと、無機粒子であるVM-2270(1次粒子の平均粒径が25nmのシリル化シリカ;東レダウコーニング社製)0.05gとを混合して第2混合液を調製した。この第2混合液を用いて実施例1と同条件でセラミック層8を作製し、発光装置100を得た。 1 g of the phosphor prepared according to the above preparation example, 0.05 g of SWN as the first swellable particles, 0.05 g of RX300 as the inorganic particles, 0.75 g of isopropyl alcohol as a solvent and 1 g of propylene glycol are mixed. Thus, a first mixed solution was prepared. A wavelength conversion layer 7 was produced under the same conditions as in Example 1 using this first mixed solution. Next, 1 g of polysiloxane dispersion, 0.05 g of SWN as second swellable particles, and VM-2270 as inorganic particles (silylated silica having an average primary particle size of 25 nm; manufactured by Toray Dow Corning) 0.05g was mixed and the 2nd liquid mixture was prepared. Using this second mixed solution, a ceramic layer 8 was produced under the same conditions as in Example 1, and a light emitting device 100 was obtained.
 上記調製例により調製した蛍光体1gと、第1膨潤性粒子であるSWN0.05gと、無機粒子であるRX300を0.05gと、溶媒であるイソプロピルアルコール0.75g及びプロピレングリコール1gとを混合して第1混合液を調製した。この第1混合液を用いて実施例1と同条件で波長変換層7を作製した。次に、ポリシロキサン分散液1gと、第2膨潤性粒子であるSWN0.05gと、無機粒子であるVM-2270を0.05gと、純水0.5gとを混合して第2混合液を調製した。この第2混合液を用いて実施例1と同条件でセラミック層8を作製し、発光装置100を得た。 1 g of the phosphor prepared according to the above preparation example, 0.05 g of SWN as the first swellable particles, 0.05 g of RX300 as the inorganic particles, 0.75 g of isopropyl alcohol as a solvent and 1 g of propylene glycol are mixed. Thus, a first mixed solution was prepared. A wavelength conversion layer 7 was produced under the same conditions as in Example 1 using this first mixed solution. Next, 1 g of polysiloxane dispersion, 0.05 g of SWN which is the second swellable particle, 0.05 g of VM-2270 which is the inorganic particle, and 0.5 g of pure water are mixed to obtain the second mixed solution. Prepared. Using this second mixed solution, a ceramic layer 8 was produced under the same conditions as in Example 1, and a light emitting device 100 was obtained.
 上記調製例により調製した蛍光体1gと、第1膨潤性粒子であるSWN0.05gと、無機粒子であるVM-2270を0.05gと、溶媒であるイソプロピルアルコール0.75g及び1,3-ブタンジオール1gとを混合して第1混合液を調製した。この第1混合液を用いて実施例1と同条件で波長変換層7を作製した。次に、ポリシロキサン分散液1gと、第2膨潤性粒子であるSWN0.05gと、無機粒子であるVM-2270を0.05gと、純水0.5gとを混合して第2混合液を調製した。この第2混合液を用いて実施例1と同条件でセラミック層8を作製し、発光装置100を得た。 1 g of the phosphor prepared by the above preparation example, 0.05 g of SWN as the first swellable particles, 0.05 g of VM-2270 as the inorganic particles, 0.75 g of isopropyl alcohol as the solvent and 1,3-butane A first mixed solution was prepared by mixing 1 g of diol. A wavelength conversion layer 7 was produced under the same conditions as in Example 1 using this first mixed solution. Next, 1 g of polysiloxane dispersion, 0.05 g of SWN which is the second swellable particle, 0.05 g of VM-2270 which is the inorganic particle, and 0.5 g of pure water are mixed to obtain the second mixed solution. Prepared. Using this second mixed solution, a ceramic layer 8 was produced under the same conditions as in Example 1, and a light emitting device 100 was obtained.
 上記調製例により調製した蛍光体1gと、第1膨潤性粒子であるSWN0.05gと、無機粒子であるRX300を0.05gと、溶媒であるイソプロピルアルコール0.75g及び1,3-ブタンジオール1gとを混合して第1混合液を調製した。この第1混合液を用いて実施例1と同条件で波長変換層7を作製した。次に、ポリシロキサン分散液1gと、第2膨潤性粒子であるSWN0.05gと、無機粒子であるRX300を0.05gと、純水0.5gとを混合して第2混合液を調製した。この第2混合液を用いて実施例1と同条件でセラミック層8を作製し、発光装置100を得た。 1 g of the phosphor prepared by the above preparation example, 0.05 g of SWN as the first swellable particles, 0.05 g of RX300 as the inorganic particles, 0.75 g of isopropyl alcohol as the solvent and 1 g of 1,3-butanediol Were mixed to prepare a first mixed solution. A wavelength conversion layer 7 was produced under the same conditions as in Example 1 using this first mixed solution. Next, 1 g of polysiloxane dispersion, 0.05 g of SWN as the second swellable particles, 0.05 g of RX300 as the inorganic particles, and 0.5 g of pure water were mixed to prepare a second mixed solution. . Using this second mixed solution, a ceramic layer 8 was produced under the same conditions as in Example 1, and a light emitting device 100 was obtained.
 上記調製例により調製した蛍光体1gと、第1膨潤性粒子であるSWN0.05gと、無機粒子であるNanoTekシリカ0.05gと、溶媒であるイソプロピルアルコール0.75g及びプロピレングリコール1gとを混合して第1混合液を調製した。この第1混合液を用いて実施例1と同条件で波長変換層7を作製した。次に、ポリシロキサン分散液1gと、第2膨潤性粒子であるSWN0.05gと、無機粒子であるNanoTekシリカ0.05gと、純水0.5gとを混合して第2混合液を調製した。この第2混合液を用いて実施例1と同条件でセラミック層8を作製し、発光装置100を得た。 1 g of the phosphor prepared according to the above preparation example, 0.05 g of SWN as the first swellable particles, 0.05 g of NanoTek silica as the inorganic particles, 0.75 g of isopropyl alcohol as the solvent and 1 g of propylene glycol are mixed. Thus, a first mixed solution was prepared. A wavelength conversion layer 7 was produced under the same conditions as in Example 1 using this first mixed solution. Next, 1 g of polysiloxane dispersion, 0.05 g of SWN as second swellable particles, 0.05 g of NanoTek silica as inorganic particles, and 0.5 g of pure water were mixed to prepare a second mixed solution. . Using this second mixed solution, a ceramic layer 8 was produced under the same conditions as in Example 1, and a light emitting device 100 was obtained.
 上記調製例により調製した蛍光体1gと、第1膨潤性粒子であるSWN0.05gと、無機粒子であるRX300を0.05gと、溶媒であるイソプロピルアルコール0.75g及びエチレングリコール1gとを混合して第1混合液を調製した。この第1混合液を用いて実施例1と同条件で波長変換層7を作製した。次に、ポリシロキサン分散液1gと、第2膨潤性粒子であるSWN0.05gと、無機粒子であるRX300を0.05gと、純水0.5gとを混合して第2混合液を調製した。この第2混合液を用いて実施例1と同条件でセラミック層8を作製し、発光装置100を得た。 1 g of the phosphor prepared by the above preparation example, 0.05 g of SWN as the first swellable particles, 0.05 g of RX300 as the inorganic particles, 0.75 g of isopropyl alcohol as the solvent and 1 g of ethylene glycol are mixed. Thus, a first mixed solution was prepared. A wavelength conversion layer 7 was produced under the same conditions as in Example 1 using this first mixed solution. Next, 1 g of polysiloxane dispersion, 0.05 g of SWN as the second swellable particles, 0.05 g of RX300 as the inorganic particles, and 0.5 g of pure water were mixed to prepare a second mixed solution. . Using this second mixed solution, a ceramic layer 8 was produced under the same conditions as in Example 1, and a light emitting device 100 was obtained.
 上記調製例により調製した蛍光体1gと、第1膨潤性粒子であるSWN0.05gと、無機粒子であるRX300を0.05gと、溶媒であるイソプロピルアルコール0.75g及びプロピレングリコール1gとを混合して第1混合液を調製した。この第1混合液を用いて実施例1と同条件で波長変換層7を作製した。次に、ポリシロキサン分散液1gと、第2膨潤性粒子であるSWN0.01gと、無機粒子であるRX300を0.05gとを混合して第2混合液を調製した。この第2混合液を用いて実施例1と同条件でセラミック層8を作製し、発光装置100を得た。 1 g of the phosphor prepared according to the above preparation example, 0.05 g of SWN as the first swellable particles, 0.05 g of RX300 as the inorganic particles, 0.75 g of isopropyl alcohol as a solvent and 1 g of propylene glycol are mixed. Thus, a first mixed solution was prepared. A wavelength conversion layer 7 was produced under the same conditions as in Example 1 using this first mixed solution. Next, 1 g of polysiloxane dispersion, 0.01 g of SWN as second swellable particles, and 0.05 g of RX300 as inorganic particles were mixed to prepare a second mixed solution. Using this second mixed solution, a ceramic layer 8 was produced under the same conditions as in Example 1, and a light emitting device 100 was obtained.
 実施例3と同様の第1混合液を調製した。この第1混合液を塗布装置10を用いてスプレー圧0.2MPa、移動台20の移動速度100mm/sにてガラス基板上に噴霧し、50℃で1時間加熱して乾燥させることで、波長変換層7を作製した。次に、実施例3と同様の第2混合液を調製した。この第2混合液を塗布装置10を用いて波長変換層7上に焼成後にクラックの発生しない最大膜厚となるよう噴霧し、150℃で1時間加熱して焼成させることで、波長変換層7の蛍光体を固着させるとともにセラミック層8を作製し、波長変換素子9を得た。そして、この波長変換素子9を1mm角に切断し、LED素子3上に貼着することにより、発光装置101を得た。なお、最大膜厚となるように噴霧するには、スプレー圧や移動台20の移動速度を適宜調整する。 A first mixed solution similar to that in Example 3 was prepared. The first mixed liquid is sprayed onto the glass substrate using the coating apparatus 10 at a spray pressure of 0.2 MPa and a moving speed of the moving table 20 of 100 mm / s, and heated at 50 ° C. for 1 hour to dry the wavelength. The conversion layer 7 was produced. Next, the 2nd liquid mixture similar to Example 3 was prepared. The wavelength conversion layer 7 is formed by spraying the second mixed liquid on the wavelength conversion layer 7 using the coating apparatus 10 so as to have a maximum film thickness that does not cause cracks after baking, and heating and baking at 150 ° C. for 1 hour. A phosphor layer was fixed and a ceramic layer 8 was produced to obtain a wavelength conversion element 9. And this wavelength conversion element 9 was cut | disconnected to 1 mm square, and the light-emitting device 101 was obtained by sticking on the LED element 3. FIG. In addition, in order to spray so that it may become the maximum film thickness, a spray pressure and the moving speed of the moving stand 20 are adjusted suitably.
 実施例8と同様の第1混合液を調製した。この第1混合液を用いて実施例19と同条件で波長変換層7を作製した。次に、実施例8と同様の第2混合液を調製した。この第2混合液を用いて実施例19と同条件でセラミック層8を作製し、波長変換素子9を得た。そして、この波長変換素子9を1mm角に切断し、LED素子3上に貼着することにより、発光装置101を得た。 A first mixed solution similar to that in Example 8 was prepared. Using this first mixed solution, a wavelength conversion layer 7 was produced under the same conditions as in Example 19. Next, the 2nd liquid mixture similar to Example 8 was prepared. Using this second mixed solution, a ceramic layer 8 was produced under the same conditions as in Example 19, and a wavelength conversion element 9 was obtained. And this wavelength conversion element 9 was cut | disconnected to 1 mm square, and the light-emitting device 101 was obtained by sticking on the LED element 3. FIG.
 実施例14と同様の第1混合液を調製した。この第1混合液を用いて実施例19と同条件で波長変換層7を作製した。次に、実施例14と同様の第2混合液を調製した。この第2混合液を用いて実施例19と同条件でセラミック層8を作製し、波長変換素子9を得た。そして、この波長変換素子9を1mm角に切断し、LED素子3上に貼着することにより、発光装置101を得た。 A first mixed solution similar to Example 14 was prepared. Using this first mixed solution, a wavelength conversion layer 7 was produced under the same conditions as in Example 19. Next, the 2nd liquid mixture similar to Example 14 was prepared. Using this second mixed solution, a ceramic layer 8 was produced under the same conditions as in Example 19, and a wavelength conversion element 9 was obtained. And this wavelength conversion element 9 was cut | disconnected to 1 mm square, and the light-emitting device 101 was obtained by sticking on the LED element 3. FIG.
比較例1Comparative Example 1
 上記調製例により調製した蛍光体1gと、溶媒であるイソプロピルアルコール1gとを混合して混合液を調製した。この混合液を用いて実施例1と同条件で波長変換層を作製した。次に、ポリシロキサン分散液1gを用いて実施例1と同条件でセラミック層を作製し、発光装置を得た。 1 g of the phosphor prepared in the above preparation example and 1 g of isopropyl alcohol as a solvent were mixed to prepare a mixed solution. Using this mixed solution, a wavelength conversion layer was produced under the same conditions as in Example 1. Next, a ceramic layer was produced using 1 g of the polysiloxane dispersion under the same conditions as in Example 1 to obtain a light emitting device.
比較例2Comparative Example 2
 上記調製例により調製した蛍光体1gと、無機粒子であるNanoTekシリカ0.08gと、溶媒であるプロピレングリコール1.5gとを混合して混合液を調製した。この混合液を用いて実施例1と同条件で波長変換層を作製した。次に、ポリシロキサン分散液1gを用いて実施例1と同条件でセラミック層を作製し、発光装置を得た。 1 g of the phosphor prepared according to the above preparation example, 0.08 g of NanoTek silica as inorganic particles, and 1.5 g of propylene glycol as a solvent were mixed to prepare a mixed solution. Using this mixed solution, a wavelength conversion layer was produced under the same conditions as in Example 1. Next, a ceramic layer was produced using 1 g of the polysiloxane dispersion under the same conditions as in Example 1 to obtain a light emitting device.
比較例3Comparative Example 3
 上記調製例により調製した蛍光体1gと、膨潤性粒子であるSWN0.05gと、無機粒子であるNanoTekシリカ0.05gと、溶媒であるイソプロピルアルコール0.75g及びプロピレングリコール1gとを混合して混合液を調製した。この混合液を用いて実施例1と同条件で波長変換層を作製した。次に、ポリシロキサン分散液1gを用いて実施例1と同条件でセラミック層を作製し、発光装置を得た。 1 g of the phosphor prepared according to the above preparation example, 0.05 g of SWN which is a swellable particle, 0.05 g of NanoTek silica which is an inorganic particle, 0.75 g of isopropyl alcohol which is a solvent and 1 g of propylene glycol are mixed and mixed. A liquid was prepared. Using this mixed solution, a wavelength conversion layer was produced under the same conditions as in Example 1. Next, a ceramic layer was produced using 1 g of the polysiloxane dispersion under the same conditions as in Example 1 to obtain a light emitting device.
比較例4Comparative Example 4
 上記調製例により調製した蛍光体1gと、膨潤性粒子であるSWN0.05gと、溶媒であるイソプロピルアルコール0.75g及びプロピレングリコール1gとを混合して混合液を調製した。この混合液を用いて実施例1と同条件で波長変換層を作製した。次に、ポリシロキサン分散液1gを用いて実施例1と同条件でセラミック層を作製し、発光装置を得た。
(評価、検討)
1 g of the phosphor prepared by the above preparation example, 0.05 g of SWN as swelling particles, 0.75 g of isopropyl alcohol as a solvent and 1 g of propylene glycol were mixed to prepare a mixed solution. Using this mixed solution, a wavelength conversion layer was produced under the same conditions as in Example 1. Next, a ceramic layer was produced using 1 g of the polysiloxane dispersion under the same conditions as in Example 1 to obtain a light emitting device.
(Evaluation, examination)
 各実施例及び比較例のサンプルは各々5つずつ作製した。そして、混合液の粘度を振動式粘度計(VM-10A-L、CBC社製)を用いて測定した。また、発光の色度を分光放射輝度計(CS-1000A、コニカミノルタセンシング社製)を用いて測定した。 5 samples were prepared for each of the examples and comparative examples. The viscosity of the mixed solution was measured using a vibration viscometer (VM-10A-L, manufactured by CBC). In addition, the chromaticity of light emission was measured using a spectral radiance meter (CS-1000A, manufactured by Konica Minolta Sensing).
 図5は実施例1~9の第1及び第2混合液の固形成分の配合割合を示す図であり、図6は実施例10~18の第1及び第2混合液の固形成分の配合割合を示す図、図7は比較例1~4の混合液及び分散液の固形成分の配合割合を示す図である。 FIG. 5 is a graph showing the mixing ratio of the solid components of the first and second mixed liquids of Examples 1 to 9, and FIG. 6 is the mixing ratio of the solid components of the first and second mixed liquids of Examples 10 to 18. FIG. 7 is a diagram showing the blending ratio of the solid components of the mixed liquids and dispersions of Comparative Examples 1 to 4.
 図8は実施例1~10における第1混合液の粘度、色度、色度の標準偏差、色度の標準偏差の平均、色度評価を示す図であり、図9は実施例11~21における第1混合液の粘度、色度、色度の標準偏差、色度の標準偏差の平均、色度評価を示す図であり、図10は比較例1~4における混合液の粘度、色度、色度の標準偏差、色度の標準偏差の平均、色度評価を示す図である。色度評価は色度の均一性を比較・評価したものであり、標準偏差が0.02以下であれば色度のばらつきが実用上問題ないと判断し、標準偏差の平均値が0.01以下であるものを「◎」、0.01より大きく0.02以下であるものを「○」、0.02より大きいものを「×」とした。 FIG. 8 is a diagram showing the viscosity, chromaticity, chromaticity standard deviation, average chromaticity standard deviation, and chromaticity evaluation of the first mixed solution in Examples 1 to 10, and FIG. 9 shows Examples 11 to 21. FIG. 10 is a diagram showing the viscosity, chromaticity, standard deviation of chromaticity, average standard deviation of chromaticity, and chromaticity evaluation of the first mixed solution in FIG. 10, and FIG. 10 shows the viscosity and chromaticity of the mixed solution in Comparative Examples 1 to 4. FIG. 4 is a diagram showing chromaticity standard deviation, average chromaticity standard deviation, and chromaticity evaluation. Chromaticity evaluation is a comparison / evaluation of chromaticity uniformity. If the standard deviation is 0.02 or less, it is determined that the chromaticity variation is practically acceptable, and the average value of the standard deviation is 0.01. The following were designated as “◎”, those greater than 0.01 and 0.02 or less as “◯”, and those greater than 0.02 as “x”.
 色度は、色空間をXYZ座標系で表したCIE-XYZ表色系で、ある点と原点を結ぶ直線が平面x+y+z=1と交わる点で定義される。色度は(x、y)座標で表し、x+y+z=1の関係から得られるz座標は省略する。白色光の色度は(0.33,0.33)であり、色度がこの値に近いほど白色光に近くなる。x座標の値が小さくなると青色がかった白色になり、x座標の値が大きくなると黄色がかった白色になる。図8~図10中の5つの色度は5つのサンプルそれぞれの色度である。 The chromaticity is defined by a point where a straight line connecting a point and the origin intersects the plane x + y + z = 1 in the CIE-XYZ color system in which the color space is expressed in the XYZ coordinate system. The chromaticity is represented by (x, y) coordinates, and the z coordinate obtained from the relationship of x + y + z = 1 is omitted. The chromaticity of white light is (0.33, 0.33). The closer the chromaticity is to this value, the closer to white light. When the x coordinate value decreases, the color becomes blueish white, and when the x coordinate value increases, the color becomes yellowish white. The five chromaticities in FIGS. 8 to 10 are the chromaticities of the five samples.
 図11は実施例1~11の第2混合液のクラックの発生しない最大膜厚であり、図12は実施例12~18の第2混合液及び比較例1~4の分散液のクラックの発生しない最大膜厚である。塗布装置10を用いてガラス基板上に第2混合液又は分散液を塗布し、150℃で1時間加熱して焼成させることで様々な膜厚のサンプルを作製し、膜にクラックが発生しないサンプルのうち最大の膜厚のサンプルを抽出した。 FIG. 11 shows the maximum film thickness at which cracks do not occur in the second mixed liquids of Examples 1 to 11, and FIG. 12 shows the occurrence of cracks in the second mixed liquids of Examples 12 to 18 and the dispersions of Comparative Examples 1 to 4. Not the maximum film thickness. Samples with various thicknesses are prepared by applying the second mixed liquid or dispersion on the glass substrate using the coating apparatus 10, and heating and baking at 150 ° C. for 1 hour, so that the film does not crack. The sample with the maximum film thickness was extracted.
 実施例及び比較例の評価結果を検討したところ、比較例1、2、4は、混合液の粘度が低いため蛍光体が沈殿しやすく、発光装置の色度のばらつきが大きい。さらに、セラミック層が薄いので外気に対するバリア性が低く耐久性も劣る。比較例3は、混合液の粘度が高いため、発光装置の色度のばらつきは小さいが、セラミック層が薄いので外気に対するバリア性が小さく耐久性に劣る。 When the evaluation results of Examples and Comparative Examples were examined, in Comparative Examples 1, 2, and 4, the viscosity of the mixed solution was low, so that the phosphor was likely to precipitate, and the chromaticity variation of the light emitting device was large. Furthermore, since the ceramic layer is thin, the barrier property against the outside air is low and the durability is inferior. In Comparative Example 3, since the liquid mixture has a high viscosity, the chromaticity variation of the light emitting device is small. However, since the ceramic layer is thin, the barrier property against the outside air is small and the durability is poor.
 実施例1~18は、第1混合液の粘度が高いため蛍光体が沈降しにくく、発光装置100の色度のばらつきが小さい。したがって、色むらが少ない。さらに、セラミック層8が厚いので外気に対するバリア性が高く耐久性に優れる。また、実施例19~21のように、波長変換部6をガラス基板5上に形成しても、同様の効果が得られることがわかった。また、図4のような発光装置102においても同様の効果が得られる。 In Examples 1 to 18, because the viscosity of the first mixed liquid is high, the phosphor is difficult to settle, and the chromaticity variation of the light emitting device 100 is small. Therefore, there is little color unevenness. Further, since the ceramic layer 8 is thick, the barrier property against the outside air is high and the durability is excellent. Further, it has been found that the same effect can be obtained even if the wavelength converting portion 6 is formed on the glass substrate 5 as in Examples 19-21. Further, the same effect can be obtained in the light emitting device 102 as shown in FIG.
 このように、本発明によれば、第1混合液中に膨潤性粒子が含有されているから、第1混合液を塗布・乾燥させて形成した波長変換層の強度が向上し、波長変換層の剥離を防止することができ、ひいては製造後の発光装置において色度のばらつきの発生を抑制することができる。また、第2混合液中に膨潤性粒子が含有されているから、第2混合液を塗布・焼成させて形成したセラミック層の膜厚が厚く、発光素子の発熱などによる着色等が発生せず、耐久性にも優れ、長期間の使用が可能となる。また、第1混合液は膨潤性粒子及び無機粒子の増粘効果により、塗布液内で蛍光体が沈降しにくく、一様に分散された状態で塗布でき、経時でも安定した塗布ができる。また、蛍光体が均一に分散された状態で乾燥されるので、色むらの発生を抑制することができる。 Thus, according to the present invention, since the swellable particles are contained in the first mixed solution, the strength of the wavelength conversion layer formed by applying and drying the first mixed solution is improved, and the wavelength conversion layer Can be prevented, and as a result, the occurrence of chromaticity variation in the manufactured light-emitting device can be suppressed. In addition, since the swellable particles are contained in the second mixed solution, the ceramic layer formed by applying and baking the second mixed solution is thick, and coloring due to heat generation of the light emitting element does not occur. Excellent durability and long-term use. In addition, the first mixed solution can be applied in a uniformly dispersed state due to the thickening effect of the swellable particles and inorganic particles, and the phosphor can be applied uniformly and can be stably applied over time. In addition, since the phosphor is dried in a uniformly dispersed state, the occurrence of color unevenness can be suppressed.
   1 LED基板
   3 LED素子(発光素子)
   5 ガラス基板(透光性基板)
   6 波長変換部
   7 波長変換層
   8 セラミック層
   9 波長変換素子
   100、101、102 発光装置
1 LED board 3 LED element (light emitting element)
5 Glass substrate (translucent substrate)
6 Wavelength conversion unit 7 Wavelength conversion layer 8 Ceramic layer 9 Wavelength conversion element 100, 101, 102 Light emitting device

Claims (22)

  1.  蛍光体、第1膨潤性粒子、無機粒子、及び第1溶媒を含む第1混合液を発光素子上に塗布する工程と、
     その上に、透光性セラミック材料、第2膨潤性粒子、及び第2溶媒を含む第2混合液を塗布して加熱する工程と、を有する発光装置の製造方法。
    Applying a first mixed liquid containing phosphor, first swellable particles, inorganic particles, and a first solvent on the light emitting element;
    And a step of applying and heating a second liquid mixture containing the translucent ceramic material, the second swellable particles, and the second solvent.
  2.  前記第2混合液が水及び/又は無機粒子を含むことを特徴とする請求項1記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to claim 1, wherein the second mixed liquid contains water and / or inorganic particles.
  3.  前記第2混合液中の前記第2膨潤性粒子の含有量が0.1重量%以上60重量%以下であることを特徴とする請求項1又は2記載の発光装置の製造方法。 3. The method for manufacturing a light emitting device according to claim 1, wherein the content of the second swellable particles in the second mixed liquid is 0.1 wt% or more and 60 wt% or less.
  4.  前記第2混合液中の前記第2膨潤性粒子の含有量が0.5重量%以上30重量%以下であることを特徴とする請求項1又は2記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to claim 1 or 2, wherein the content of the second swellable particles in the second mixed liquid is 0.5 wt% or more and 30 wt% or less.
  5.  前記第1及び/又は第2膨潤性粒子が膨潤性粘土鉱物であることを特徴とする請求項1~4の何れかに記載の発光装置の製造方法。 The method for manufacturing a light-emitting device according to any one of claims 1 to 4, wherein the first and / or second swellable particles are swellable clay minerals.
  6.  前記透光性セラミック材料が有機金属化合物であることを特徴とする請求項1~5の何れかに記載の発光装置の製造方法。 6. The method for manufacturing a light emitting device according to claim 1, wherein the translucent ceramic material is an organometallic compound.
  7.  請求項1~6の何れかに記載の発光装置の製造方法によって製造された発光装置。 A light emitting device manufactured by the method for manufacturing a light emitting device according to any one of claims 1 to 6.
  8.  蛍光体、第1膨潤性粒子、無機粒子、及び第1溶媒を含む第1混合液を透光性基板の少なくとも片面に塗布する工程と、
     その上に、透光性セラミック材料、第2膨潤性粒子、及び第2溶媒を含む第2混合液を塗布して加熱する工程と、を有する波長変換素子の製造方法。
    Applying a first mixed liquid containing phosphor, first swellable particles, inorganic particles, and a first solvent to at least one surface of the translucent substrate;
    And a step of applying and heating a second liquid mixture containing the translucent ceramic material, the second swellable particles, and the second solvent.
  9.  前記第2混合液が水及び/又は無機粒子を含むことを特徴とする請求項8記載の波長変換素子の製造方法。 The method for manufacturing a wavelength conversion element according to claim 8, wherein the second mixed liquid contains water and / or inorganic particles.
  10.  前記第2混合液中の前記第2膨潤性粒子の含有量が0.1重量%以上60重量%以下であることを特徴とする請求項8又は9記載の波長変換素子の製造方法。 The method for manufacturing a wavelength conversion element according to claim 8 or 9, wherein the content of the second swellable particles in the second liquid mixture is 0.1 wt% or more and 60 wt% or less.
  11.  前記第2混合液中の前記第2膨潤性粒子の含有量が0.5重量%以上30重量%以下であることを特徴とする請求項8又は9記載の波長変換素子の製造方法。 The method for producing a wavelength conversion element according to claim 8 or 9, wherein the content of the second swellable particles in the second liquid mixture is 0.5 wt% or more and 30 wt% or less.
  12.  前記膨潤性粒子が膨潤性粘土鉱物であることを特徴とする請求項8~11の何れかに記載の波長変換素子の製造方法。 The method for producing a wavelength conversion element according to any one of claims 8 to 11, wherein the swellable particles are swellable clay minerals.
  13.  前記透光性セラミック材料が有機金属化合物であることを特徴とする請求項8~12の何れかに記載の波長変換素子の製造方法。 The method for manufacturing a wavelength conversion element according to any one of claims 8 to 12, wherein the translucent ceramic material is an organometallic compound.
  14.  請求項8~13の何れかに記載の波長変換素子の製造方法によって製造された波長変換素子。 A wavelength conversion element manufactured by the method for manufacturing a wavelength conversion element according to any one of claims 8 to 13.
  15.  請求項8~13の何れかに記載の波長変換素子の製造方法に、前記波長変換素子を発光素子の発光面側に設置する工程を加えた発光装置の製造方法。 14. A method for manufacturing a light emitting device, comprising: adding the wavelength converting element to the light emitting surface side of the light emitting element in addition to the method for manufacturing a wavelength converting element according to claim 8.
  16.  請求項15に記載の発光装置の製造方法によって製造された発光装置。 A light emitting device manufactured by the method for manufacturing a light emitting device according to claim 15.
  17.  発光装置の製造に用いる混合液であって、
     透光性セラミック材料、膨潤性粒子、及び溶媒を含む混合液。
    A liquid mixture used for manufacturing a light emitting device,
    A liquid mixture comprising a translucent ceramic material, swellable particles, and a solvent.
  18.  水及び/又は無機粒子を含むことを特徴とする請求項17記載の混合液。 18. The liquid mixture according to claim 17, comprising water and / or inorganic particles.
  19.  前記膨潤性粒子の含有量が0.1重量%以上60重量%以下であることを特徴とする請求項17又は18記載の混合液。 The liquid mixture according to claim 17 or 18, wherein the content of the swellable particles is 0.1 wt% or more and 60 wt% or less.
  20.  前記膨潤性粒子の含有量が0.5重量%以上30重量%以下であることを特徴とする請求項17又は18記載の混合液。 The liquid mixture according to claim 17 or 18, wherein the content of the swellable particles is 0.5 wt% or more and 30 wt% or less.
  21.  前記膨潤性粒子が膨潤性粘土鉱物であることを特徴とする請求項17~20の何れかに記載の混合液。 21. The mixed solution according to claim 17, wherein the swellable particles are swellable clay minerals.
  22.  前記透光性セラミック材料が有機金属化合物であることを特徴とする請求項17~21の何れかに記載の混合液。 The mixed liquid according to any one of claims 17 to 21, wherein the translucent ceramic material is an organometallic compound.
PCT/JP2012/074824 2011-10-12 2012-09-27 Wavelength conversion element and method for manufacturing same, light-emitting device and method for manufacturing same, and liquid mixture WO2013054658A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013538490A JP5747994B2 (en) 2011-10-12 2012-09-27 Wavelength conversion element and method for manufacturing the same, light emitting device and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011224492 2011-10-12
JP2011-224492 2011-10-12

Publications (1)

Publication Number Publication Date
WO2013054658A1 true WO2013054658A1 (en) 2013-04-18

Family

ID=48081715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074824 WO2013054658A1 (en) 2011-10-12 2012-09-27 Wavelength conversion element and method for manufacturing same, light-emitting device and method for manufacturing same, and liquid mixture

Country Status (2)

Country Link
JP (1) JP5747994B2 (en)
WO (1) WO2013054658A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015049865A1 (en) * 2013-10-01 2015-04-09 コニカミノルタ株式会社 Sealing agent for light emitting elements and led device
JP2015154007A (en) * 2014-02-18 2015-08-24 日亜化学工業株式会社 Method of manufacturing light-emitting device and light-emitting device
US9461214B2 (en) 2013-11-29 2016-10-04 Nichia Corporation Light emitting device with phosphor layer
JP2017515310A (en) * 2014-04-30 2017-06-08 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH LIGHTING DEVICE AND METHOD FOR MANUFACTURING LIGHTING DEVICE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349347A (en) * 1999-06-08 2000-12-15 Sanken Electric Co Ltd Semiconductor light emitting element
JP2004088013A (en) * 2002-08-29 2004-03-18 Nichia Chem Ind Ltd Light-emitting device and manufacturing method thereof
JP2004342782A (en) * 2003-05-14 2004-12-02 Nichia Chem Ind Ltd Light emitting device and its manufacturing method
WO2011065322A1 (en) * 2009-11-30 2011-06-03 コニカミノルタオプト株式会社 Method for manufacturing light emitting diode unit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005086239A1 (en) * 2004-03-05 2005-09-15 Konica Minolta Holdings, Inc. White light emitting diode (led) and process for producing white led

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349347A (en) * 1999-06-08 2000-12-15 Sanken Electric Co Ltd Semiconductor light emitting element
JP2004088013A (en) * 2002-08-29 2004-03-18 Nichia Chem Ind Ltd Light-emitting device and manufacturing method thereof
JP2004342782A (en) * 2003-05-14 2004-12-02 Nichia Chem Ind Ltd Light emitting device and its manufacturing method
WO2011065322A1 (en) * 2009-11-30 2011-06-03 コニカミノルタオプト株式会社 Method for manufacturing light emitting diode unit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015049865A1 (en) * 2013-10-01 2015-04-09 コニカミノルタ株式会社 Sealing agent for light emitting elements and led device
US9461214B2 (en) 2013-11-29 2016-10-04 Nichia Corporation Light emitting device with phosphor layer
US9978914B2 (en) 2013-11-29 2018-05-22 Nichia Corporation Light emitting device with phosphor layer
US10128416B2 (en) 2013-11-29 2018-11-13 Nichia Corporation Method for manufacturing light emitting device with phosphor layer
US10381525B2 (en) 2013-11-29 2019-08-13 Nichia Corporation Method for manufacturing light emitting device with phosphor layer
JP2015154007A (en) * 2014-02-18 2015-08-24 日亜化学工業株式会社 Method of manufacturing light-emitting device and light-emitting device
JP2017515310A (en) * 2014-04-30 2017-06-08 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH LIGHTING DEVICE AND METHOD FOR MANUFACTURING LIGHTING DEVICE
US10374196B2 (en) 2014-04-30 2019-08-06 Osram Opto Semiconductors Gmbh Lighting device with color scattering layer and method for producing a lighting device

Also Published As

Publication number Publication date
JPWO2013054658A1 (en) 2015-03-30
JP5747994B2 (en) 2015-07-15

Similar Documents

Publication Publication Date Title
JP5742839B2 (en) Light emitting device and manufacturing method thereof
WO2013051281A1 (en) Led device manufacturing method and fluorescent material-dispersed solution used in same
US9708492B2 (en) LED device and coating liquid used for production of same
WO2013121903A1 (en) Wavelength conversion element and method for manufacturing same, and light-emitting device and method for manufacturing same
US9184352B2 (en) Phosphor dispersion liquid, and production method for LED device using same
US20150333233A1 (en) Light emitting device
JP5999223B2 (en) Method for manufacturing light emitting device and phosphor mixture
JP2011238811A (en) Wavelength conversion element and light-emitting device
JP2011238778A (en) Method for manufacturing wavelength conversion element, wavelength conversion element and light emitting device
JP5768816B2 (en) Wavelength conversion element and method for manufacturing the same, light emitting device and method for manufacturing the same
JP5747994B2 (en) Wavelength conversion element and method for manufacturing the same, light emitting device and method for manufacturing the same
JP5803541B2 (en) LED device, manufacturing method thereof, and phosphor dispersion used therefor
JP2014138081A (en) Light emitting device, wavelength conversion-light diffusion element, method for manufacturing the same, and composition for forming light diffusion ceramic layer
JP2014019844A (en) Phosphor dispersion and method for manufacturing led device
JP5803940B2 (en) Light emitting device and manufacturing method thereof
JP5874425B2 (en) Wavelength conversion element and method for manufacturing the same, light emitting device and method for manufacturing the same
WO2013046662A1 (en) Led device
JP5729327B2 (en) Manufacturing method of LED device
JP2014003065A (en) Led device and method for manufacturing the same
WO2013046674A1 (en) Led device manufacturing method
JP2013258339A (en) Light-emitting device and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12840632

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013538490

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12840632

Country of ref document: EP

Kind code of ref document: A1