WO2011065322A1 - Method for manufacturing light emitting diode unit - Google Patents

Method for manufacturing light emitting diode unit Download PDF

Info

Publication number
WO2011065322A1
WO2011065322A1 PCT/JP2010/070786 JP2010070786W WO2011065322A1 WO 2011065322 A1 WO2011065322 A1 WO 2011065322A1 JP 2010070786 W JP2010070786 W JP 2010070786W WO 2011065322 A1 WO2011065322 A1 WO 2011065322A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
led chip
emitting diode
diode unit
glass
Prior art date
Application number
PCT/JP2010/070786
Other languages
French (fr)
Japanese (ja)
Inventor
卓史 波多野
修志 池永
禄人 田口
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Publication of WO2011065322A1 publication Critical patent/WO2011065322A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/508Wavelength conversion elements having a non-uniform spatial arrangement or non-uniform concentration, e.g. patterned wavelength conversion layer, wavelength conversion layer with a concentration gradient of the wavelength conversion material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/14Pressing laminated glass articles or glass with metal inserts or enclosures, e.g. wires, bubbles, coloured parts
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/61Positioning the glass to be pressed with respect to the press dies or press axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Definitions

  • the present invention relates to a method for manufacturing a light emitting diode unit, and more particularly to a method for manufacturing a light emitting diode unit in which a phosphor layer is sealed with a glass member.
  • White light-emitting diodes (hereinafter also referred to as white LEDs) have excellent features such as low power consumption, small size, light weight, low heat generation, mercury-free, easy adjustment of light quantity, etc., so incandescent bulbs, fluorescent lamps, It is expected as a next-generation energy-saving illumination light source that can replace high-pressure discharge lamps.
  • a method of emitting white light using an LED chip (1) a method of obtaining white light by combining three or more color LED chips (see Patent Document 1), or (2) blue light, blue-violet light, or near ultraviolet light A method of obtaining white light by combining an LED chip that emits light or the like and a phosphor (see Patent Documents 2 and 3) is known. Of these, the method (1) is difficult to balance the light emission intensity of each color LED chip, so the method of obtaining white light by combining the LED chip and the phosphor as in (2) is the focus. Has been.
  • gallium nitride-based substrates that are mainly used as LED chip materials that emit blue light and the like have a high refractive index. Therefore, if the surface of the LED chip is in contact with an air layer or the like, light extraction efficiency is achieved by total reflection. There is a problem that will be extremely lowered.
  • the LED chip Deterioration of the resin material that seals the surface is significant and becomes a problem.
  • the present invention has been made in view of the above technical problems, and an object of the present invention is a light-emitting diode unit that can be manufactured in a short time while suppressing deterioration and breakage of LED chips and phosphors. It is to provide a manufacturing method.
  • the present invention has the following features.
  • An LED chip that emits light of a predetermined wavelength from the surface; A phosphor for converting the wavelength of light emitted from the LED chip; A glass member for sealing the phosphor, and a manufacturing method of a light emitting diode unit comprising: Placing the LED chip on the lower mold; Supplying the phosphor to the surface of the LED chip; On the lower mold on which the LED chip supplied with the phosphor is mounted, a molten glass droplet having a temperature higher than that of the lower mold is dropped and solidified to seal the phosphor with a glass member. And a process for producing the light emitting diode unit.
  • the molten glass droplet dripped on the lower mold is solidified, the molten glass droplet is pressurized with an upper mold facing the lower mold, and the glass member is formed into a predetermined shape, The manufacturing method of the light emitting diode unit of said 1 which does.
  • An LED chip that emits light of a predetermined wavelength from the surface;
  • a glass member for sealing the phosphor, and a manufacturing method of a light emitting diode unit comprising: Temporarily fixing the upper surface of the LED chip with the surface facing downward; Supplying the phosphor to the surface of the LED chip; Dropping a molten glass droplet having a temperature higher than that of the lower mold on the lower mold facing the upper mold; Before the molten glass droplets dropped on the lower mold are solidified, pressurizing the molten glass drops with the upper mold on which the LED chip is temporarily fixed, and sealing the phosphor with a glass member;
  • a method for producing a light-emitting diode unit comprising:
  • the LED chip has an electrode part on the back side facing the surface, 4.
  • Step of electrically connecting the exposed portion of the electrode portion and the lead portion of the package substrate having a lead portion for supplying power to the LED chip through the electrode portion after the molten glass droplet is solidified.
  • the phosphor is supplied by applying a composition in which the phosphor is dispersed and heating to form a glass body containing the phosphor on the surface of the LED chip.
  • the manufacturing method of the light emitting diode unit of any one of 1-5.
  • the phosphor layer is sealed with the glass member by dripping and solidifying the molten glass droplet, it is not necessary to maintain the LED chip or the phosphor layer at a high temperature for a long time, Degradation due to temperature can be suppressed. Moreover, even when it is a case where a glass member is shape
  • the light emitting diode unit manufacturing method of this embodiment includes a step of placing an LED chip on the lower mold (LED chip placement step), and a step of supplying a phosphor layer on the surface of the LED chip (phosphor layer supply). Process) and a molten glass droplet having a temperature higher than that of the lower mold is dropped and solidified on the lower mold on which the LED chip supplied with the phosphor layer is placed, and the phosphor layer is sealed with a glass member. A process (sealing process).
  • FIG. 1 is a cross-sectional view schematically showing an LED chip placed on the lower die in the LED chip placing step
  • FIG. 2 is a state in which the phosphor layer is supplied to the surface of the LED chip in the phosphor layer supplying step.
  • FIG. 3 is a schematic view for explaining a sealing process.
  • 4 and 5 are cross-sectional views schematically showing a light emitting diode unit manufactured by the manufacturing method of the present embodiment.
  • FIG. 1A is a diagram illustrating an example of a state in which the LED chip 10 is placed on the lower mold 60.
  • the LED chip 10 is called a flip chip type having an electrode portion 11 on the back surface side, and emits light of a predetermined wavelength from the front surface 12.
  • a known LED chip such as one using a gallium nitride-based semiconductor (GaN, InGaN, AlInGaN, etc.) may be appropriately selected and used.
  • the emitted light may be blue light, blue-green light, near ultraviolet light, ultraviolet light, or the like.
  • the chip size is not limited, and may be 0.35 mm square (small chip) or 1 mm square (large chip).
  • the chip size is large, the amount of heat generation increases, but the phosphor layer and the like are sealed with a glass member having excellent heat resistance in the manufacturing method of this embodiment, so that even if a large 1 mm square chip is used, it is durable.
  • a light emitting diode unit having excellent properties can be manufactured.
  • a plurality of LED chips 10 are arranged and placed on one lower mold 60, and a light emitting diode unit in which the plurality of LED chips 10 are integrated with a glass member is manufactured. Is also preferable.
  • the light emitting diode unit having a configuration in which a plurality of LED chips 10 are integrated with a glass member is particularly suitable for applications requiring a high luminous flux.
  • the shape of the surface of the lower mold 60 on which the LED chip 10 is placed is not particularly limited, and may be a concave surface or a convex surface in addition to a flat surface. It is also preferable to provide an inclined surface 62 having a predetermined shape and use the surface formed on the glass member by the transfer of the inclined surface 62 as a positioning surface when the light emitting diode unit is fixed to the package substrate. It is also preferable to provide unevenness so that the LED chip 10 can be positioned at a predetermined position. If it is necessary to accurately position and place the LED chip, the LED chip may be temporarily fixed to the surface of the lower mold 60 using solder or the like.
  • the material of the lower mold 60 is preferably a material that has high heat resistance and hardly reacts with molten glass.
  • various heat-resistant alloys such as stainless steel
  • super hard materials mainly composed of tungsten carbide various ceramics (such as silicon carbide, silicon nitride, and aluminum nitride), composite materials containing carbon, and the like can be given.
  • various metals chromium, aluminum, titanium, etc.
  • nitrides chromium nitride, aluminum nitride, titanium nitride, boron nitride, etc.
  • oxides chromium oxide, aluminum oxide
  • FIG. 2A shows a state where the phosphor layer 30 is supplied to the surface 12 of the LED chip 10 of FIG. 1A
  • FIG. 2B shows the surface 12 of the three LED chips 10 of FIG. 1B. It is sectional drawing which shows typically the state to which the fluorescent substance layer 30 was supplied, respectively.
  • the phosphor used for the phosphor layer 30 to be supplied may be appropriately selected and used according to the application and type of the light emitting diode unit to be manufactured.
  • a blue LED chip + yellow is used by using a yellow phosphor that converts the wavelength of blue light into yellow light (excited by blue light and emits yellow light).
  • White light can be obtained by adopting a phosphor structure.
  • a configuration of blue LED chip + yellow phosphor + red phosphor or a configuration of blue LED chip + green phosphor + red phosphor can be used.
  • a configuration of near-ultraviolet LED chip + blue phosphor + yellow phosphor or a near-UV LED chip + blue phosphor + green phosphor + red phosphor With this configuration, white light can be obtained.
  • Suitable phosphors include YAG phosphors, silicate phosphors, nitride phosphors, oxynitride phosphors, sulfide phosphors, thiogallate phosphors, aluminate phosphors, and the like.
  • all the phosphors may be mixed and supplied, or may be supplied in layers for each type of phosphor.
  • loss due to so-called multistage excitation in which light emitted from the first phosphor excites another second phosphor, tends to be a problem. From the viewpoint of effectively reducing the loss due to such multi-stage excitation, it is preferable to supply the phosphors by dividing them into layers.
  • the phosphor layer 30 may be supplied to the surface 12 of the LED chip 10 by applying powder, or after being applied in a state of being dispersed in a liquid or gel binder, it is vaporized or thermally decomposed.
  • the binder may be removed.
  • a binder it is preferable to use a binder that can be removed at a low temperature from the viewpoint of suppressing deterioration of the phosphor layer 30 and the like.
  • organic solvents such as ethanol and acetone, and synthetic resins are suitable.
  • a glass body that is a phosphor layer 30 containing a phosphor on the surface 12 of the LED chip 10 by applying and heating a composition in which the phosphor is dispersed.
  • the composition may be applied by a known method such as spin coating, dip coating, or spray coating.
  • a bar coater according to the shape of the LED chip 10.
  • a dry oven or the like may be used to heat the applied composition.
  • the film thickness of the glass body formed after heating is preferably 10 ⁇ m to 80 ⁇ m.
  • the composition to be applied may be a gel (sol-gel solution) in which a transparent ceramic layer (glass body) is formed by further heating the gel after heating, and by volatilizing the solvent component.
  • the glass body may be formed directly without gelation.
  • sol-gel solution a solution containing a phosphor, a layered silicate mineral, and inorganic fine particles in a solution obtained by mixing an organometallic compound as a glass body component in an organic solvent can be used.
  • the organometallic compound serves as a binder for sealing the phosphor, the layered silicate mineral, and the inorganic fine particles.
  • organometallic compound used in the present invention include metal alcosides, metal acetylacetonates, metal carboxylates and the like, but metal alkoxides that are easily gelled by hydrolysis and polymerization reaction are preferable.
  • the metal alkoxide may be a single molecule such as tetraethoxysilane, or may be a polysiloxane in which an organic siloxane compound is linked in a chain or a ring, but a polysiloxane that increases the viscosity of the mixed solution is preferable.
  • a translucent glass body can be formed, but it is preferable to contain a silicon
  • the content of the organometallic compound in the glass body is less than 2% by mass, the organometallic compound as the binder is too small, and the strength of the glass body after heating and firing is lowered.
  • the content of the organometallic compound exceeds 50% by mass, the content of the layered silicate mineral is relatively decreased, so that the viscosity of the mixed solution before heating is decreased and the phosphor is easily precipitated. .
  • the content of the inorganic fine particles is relatively lowered, the strength of the glass body is also lowered. Therefore, the content of the organometallic compound in the glass body is preferably 2% by mass or more and 50 or less, and more preferably 2.5% by mass or more and 30% by mass or less.
  • the phosphor is excited by the wavelength (excitation wavelength) of light emitted from the LED chip 10 and emits fluorescence having a wavelength different from the excitation wavelength.
  • a YAG (yttrium, aluminum, garnet) phosphor that converts blue light (wavelength 420 nm to 485 nm) emitted from the blue LED element into yellow light (wavelength 550 nm to 650 nm) is used.
  • Such phosphors use oxides of Y, Gd, Ce, Sm, Al, La, and Ga, or compounds that easily become oxides at high temperatures, and are mixed well in a stoichiometric ratio.
  • a mixed raw material is obtained.
  • a coprecipitated oxide obtained by calcining a solution obtained by coprecipitation of a solution obtained by dissolving a rare earth element of Y, Gd, Ce, or Sm in an acid with a stoichiometric ratio with oxalic acid, and aluminum oxide or gallium oxide.
  • an appropriate amount of fluoride such as ammonium fluoride is mixed with the obtained mixed raw material as a flux and pressed to obtain a molded body.
  • the obtained molded body is packed in a crucible and fired in air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a sintered body having the light emission characteristics of a phosphor.
  • the YAG phosphor is used.
  • the type of the phosphor is not limited to this.
  • other phosphors such as non-garnet phosphors containing no Ce are used. You can also.
  • the larger the particle size of the phosphor the higher the light emission efficiency (wavelength conversion efficiency), but the gap generated at the interface with the organometallic compound becomes larger, and the film strength of the formed glass body decreases. Accordingly, in consideration of the size of the gap generated at the interface between the light emission efficiency and the organometallic compound, it is preferable to use one having an average particle diameter of 1 ⁇ m or more and 50 ⁇ m or less.
  • the average particle diameter of the phosphor can be measured, for example, by a Coulter counter method.
  • the layered silicate mineral is preferably a swellable clay mineral having a structure such as a mica structure, a kaolinite structure, or a smectite structure, and particularly preferably a smectite structure rich in swellability. This is because, as will be described later, by adding water to the mixed liquid, it takes a card house structure in which water enters and swells between the layers of the smectite structure, so the viscosity of the mixed liquid is greatly increased. It is.
  • the content of the layered silicate mineral in the glass body is less than 0.5% by mass, the effect of increasing the viscosity of the mixed solution cannot be obtained sufficiently.
  • the content of the layered silicate mineral exceeds 20% by mass, the strength of the glass body after heating is lowered. Therefore, the content of the layered silicate mineral is preferably 0.5% by mass or more and 20% by mass or less, and more preferably 0.5% by mass or more and 10% by mass or less.
  • a layered silicate mineral whose surface is modified (surface treatment) with an ammonium salt or the like can be used as appropriate.
  • Inorganic fine particles include a filling effect that fills gaps formed at the interface between the organometallic compound, the phosphor and the layered silicate mineral, a thickening effect that increases the viscosity of the mixed liquid before heating, and a glass body film after heating. It has a film strengthening effect that improves strength.
  • Examples of the inorganic fine particles used in the present invention include oxide fine particles such as silicon oxide, titanium oxide and zinc oxide, and fluoride fine particles such as magnesium fluoride.
  • silicon oxide fine particles such as silicon oxide, titanium oxide and zinc oxide
  • fluoride fine particles such as magnesium fluoride.
  • silicon oxide fine particles such as silicon oxide, titanium oxide and zinc oxide
  • fluoride fine particles such as magnesium fluoride.
  • silicon oxide fine particles such as silicon-containing organic compound such as polysiloxane
  • the content of the inorganic fine particles in the glass body is less than 0.5% by mass, the above-described effects cannot be sufficiently obtained.
  • the content of the inorganic fine particles exceeds 50% by mass, the strength of the glass body after heating is lowered. Therefore, the content of the inorganic fine particles in the glass body is preferably 0.5% by mass or more and 50% by mass or less, and more preferably 1% by mass or more and 40% by mass or less.
  • the average particle diameter of the inorganic fine particles is preferably 0.001 ⁇ m or more and 50 ⁇ m or less in consideration of the above-described effects.
  • the average particle diameter of the inorganic fine particles can be measured, for example, by a Coulter counter method. In consideration of compatibility with an organic metal compound or an organic solvent, a material obtained by treating the surface of inorganic fine particles with a silane coupling agent or a titanium coupling agent can be used as appropriate.
  • the precursor solution is a mixture of an organometallic compound in an organic solvent, and a translucent glass body can be obtained by heating the precursor solution.
  • a glass body is formed by heating a mixed solution in which the precursor solution is mixed with a phosphor, a layered silicate mineral, and inorganic fine particles.
  • water enters between the layers of the layered silicate mineral and the viscosity of the mixed solution increases, so that the phosphor can be prevented from settling.
  • the organic solvent alcohols such as methanol, ethanol, propanol and butanol having excellent compatibility with added water are preferable. Further, when the amount of the organic metal compound mixed with the organic solvent is less than 5% by mass, it becomes difficult to increase the viscosity of the mixed solution, and when the amount of the organic metal compound exceeds 50% by mass, the polymerization reaction is faster than necessary. Proceed. Therefore, the mixing amount of the organometallic compound with respect to the organic solvent is preferably 5% by mass or more and 50% by mass or less, and more preferably 8% by mass or more and 40% by mass or less.
  • the layered silicate mineral when using a surface-treated lipophilic layered silicate mineral, the layered silicate mineral is first added to a solution (precursor solution) in which an organometallic compound is mixed in an organic solvent. Premixing is performed, and then phosphor, inorganic fine particles, and water are mixed.
  • a hydrophilic layered silicate mineral that has not been surface-treated is used, first the layered silicate mineral and water are premixed, and then the phosphor, inorganic fine particles, and precursor solution are mixed. Thereby, a layered silicate mineral can be mixed uniformly and the thickening effect can be heightened more.
  • the preferred viscosity of the mixed solution is 0.025 to 0.8 Pa ⁇ s, and the most preferred viscosity is 0.03 to 0.5 Pa ⁇ s.
  • the ratio of water to the total amount of the solvent obtained by adding water to the organic solvent is less than 5% by mass, the above thickening effect cannot be sufficiently obtained, and when the ratio of water exceeds 60% by mass, the thickening effect is achieved.
  • the effect of reducing the viscosity due to excessive mixing of water is greater than that. Therefore, the ratio of water is preferably 5% by mass or more and 60% by mass or less, and more preferably 7% by mass or more and 55% by mass or less with respect to the total amount of solvent.
  • the most preferable composition of the mixed solution is that using polysiloxane as the organometallic compound.
  • composition range of each of the above components contained in the mixed solution is that the polysiloxane dispersion is 4 to 30% by mass, and the layered silica is used.
  • the acid salt mineral is 1 to 10% by mass
  • the inorganic fine particles are 1 to 40% by mass
  • the water is 10 to 50% by mass.
  • a predetermined amount of the mixed liquid obtained as described above is applied onto the surface 12 of the LED chip 10, and heated and baked to form a glass body having a predetermined film thickness.
  • the method for applying the mixed solution is not particularly limited, and various conventionally known methods such as spin coating, dip coating, spray coating, and bar coating can be used.
  • the heating temperature is less than 50 ° C., the polymerization reaction of the organometallic compound does not proceed.
  • the heating temperature exceeds 1000 ° C. the layered silicate mineral is thermally decomposed and the layered structure is destroyed. Therefore, the heating temperature of the mixed solution needs to be 50 ° C. or higher and 1000 ° C. or lower, and preferably 100 ° C. to 600 ° C. However, it is necessary to set the temperature at which the LED chip 10 does not deteriorate.
  • the thickness of the formed glass body is less than 5 ⁇ m, the wavelength conversion efficiency is lowered and sufficient fluorescence cannot be obtained, and when the thickness of the glass body exceeds 500 ⁇ m, the film strength is reduced and cracks and the like are generated. It tends to occur. Therefore, the thickness of the glass body is preferably 5 ⁇ m or more and 500 ⁇ m or less.
  • the particle size of the phosphor and inorganic fine particles contained in the glass body is larger than the thickness of the glass body to be formed, a part of the phosphor or inorganic fine particles protrudes from the surface of the glass body and the surface is smooth. Sex is lost. Therefore, phosphors and inorganic fine particles having a maximum particle size smaller than the thickness of the glass body are used.
  • the phosphor layer 30 is formed of a translucent glass body, heat resistance and light resistance can be improved as compared with the case where the phosphor layer 30 is formed of a resin material.
  • the phosphor is less likely to settle when the glass body is formed and the phosphor is uniformly dispersed in the glass body, the occurrence of color unevenness can be effectively reduced.
  • the film strength of the glass body is improved by adding inorganic fine particles.
  • examples of the latter in which a glass body is directly formed without being gelled by volatilizing a solvent component
  • examples of the latter include, for example, a composition containing an inorganic polymer and an organic solvent.
  • Polysilazane can be used as the inorganic polymer.
  • the polysilazane used in the present invention is represented by the following general formula (1).
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom or an alkyl group, an aryl group, a vinyl group or a cycloalkyl group, and at least one of R 1 , R 2 and R 3 Are hydrogen atoms, preferably all are hydrogen atoms, and n represents an integer of 1 to 60.
  • the molecular shape of polysilazane may be any shape, for example, linear or cyclic.
  • the polysilazane represented by the above formula (1) and a reaction accelerator as required are dissolved in an appropriate solvent and then cured by heating, excimer light treatment, UV light treatment, and excellent heat resistance and light resistance.
  • a ceramic film can be made.
  • the effect of preventing penetration of moisture can be further improved by heat curing after irradiation with UVU radiation (eg, excimer light) containing a wavelength component in the range of 170 to 230 nm.
  • reaction accelerator it is preferable to use an acid, a base or the like, but it is not necessary to use it.
  • reaction accelerators include triethylamine, diethylamine, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, hydrochloric acid, oxalic acid, fumaric acid, sulfonic acid, acetic acid, nickel, iron, palladium , Metal carboxylates including iridium, platinum, titanium, and aluminum, but are not limited thereto.
  • a metal carboxylate is particularly preferable, and the addition amount is preferably 0.01 to 5 mol% based on polysilazane.
  • aliphatic hydrocarbons aliphatic hydrocarbons, aromatic hydrocarbons, halogen hydrocarbons, ethers, and esters
  • Preferred are methyl ethyl ketone, tetrahydrofuran, benzene, toluene, xylene, dimethyl fluoride, chloroform, carbon tetrachloride, ethyl ether, isopropyl ether, dibutyl ether, and ethyl butyl ether.
  • the polysilazane concentration is high.
  • the polysilazane is preferably dissolved in the solvent at 5 to 50% by mass or less.
  • the heating temperature at the time of firing is preferably 100 ° C. to 350 ° C. from the viewpoint of suppressing deterioration of the material used for the substrate and the metal of the wiring. More preferably, the temperature is 150 ° C to 300 ° C.
  • the composition contains inorganic fine particles. Since the viscosity of the composition is increased by containing inorganic fine particles, the precipitation rate of the phosphor when the phosphor is dispersed in the composition is reduced, and it is easy to uniformly disperse the phosphor in the composition. Become.
  • inorganic fine particles of various oxides such as silica and inorganic fine particles of magnesium fluoride are suitable. From the viewpoint of stability with a glass body formed from polysilazane, it is preferable to contain inorganic fine particles of silica.
  • the inorganic fine particles preferably have a 50% particle diameter (median diameter) of 1 nm to 500 nm.
  • the shape of the inorganic fine particles is not particularly limited, but preferably spherical fine particles are used.
  • the particle size distribution is not particularly limited, but from the viewpoint of uniformly dispersing the phosphor, those having a relatively narrow distribution are preferably used rather than those having a wide distribution.
  • the shape and particle size distribution of the inorganic fine particles can be confirmed using SEM and TEM.
  • the content of the inorganic fine particles is preferably 0.1% by mass to 25% by mass with respect to the entire composition including the phosphor. In order to further uniformly disperse the phosphors of the inorganic fine particles, it is also preferable to apply ultrasonic waves to the composition in which the phosphors are mixed and disperse them.
  • the phosphor layer 30 may be supplied by placing the glass plate 31 having the phosphor layer 30 on the surface 12 of the LED chip 10.
  • FIG.2 (c) is a figure which shows the state which mounted the glass plate 31 which has the fluorescent substance layer 30 so that it might straddle the surface 12 of the three LED chips 10 of FIG.1 (b).
  • the phosphor layer 30 can be supplied more easily by placing one glass plate 31 across the surface of the arrayed LED chips 10. Can do.
  • the glass plate 31 having the phosphor layer 30 As the glass plate 31 having the phosphor layer 30, (A) a kneaded glass in which the phosphor is dispersed inside, or (B) a glass plate in which the phosphor layer 30 is coated on at least one surface is suitably used. Can be used.
  • the phosphor layer 30 may be applied and formed on the surface of the glass plate by the same method as that for applying the phosphor layer 30 to the surface 12 of the LED chip 10 described above.
  • the kneaded glass in which the phosphor is dispersed is preferably produced by pressure-molding a mixed material in which glass powder and phosphor powder are mixed.
  • a mixed material in which glass powder and phosphor powder are mixed.
  • a resin binder may be added, but in that case, a step of removing the resin binder after pressure molding is required. Therefore, it is preferable to perform pressure molding by mixing glass powder and phosphor powder without using a resin binder.
  • the glass powder to be mixed preferably has a maximum particle size of 160 ⁇ m or more and a median diameter d50 of 5 ⁇ m or more.
  • kneaded glass in which the phosphor is uniformly dispersed can be obtained without using a resin binder.
  • bubbles are more easily removed when the maximum particle size is 160 ⁇ m or more. If the maximum particle size is less than 160 ⁇ m, bubbles are difficult to escape.
  • the median diameter d50 is less than 5 ⁇ m, when the powder is put into the mold, dust rises and handling becomes difficult. In addition, the work environment may be harmed.
  • the upper limit of the maximum particle diameter should just be a range from which favorable scattered light is obtained, and can be suitably determined according to the combination of a LED chip and fluorescent substance.
  • the median diameter d50 is a particle diameter (cumulative average diameter) at a point where the cumulative curve becomes 50% when the total curve of one group of particle bodies is 100%, and the maximum particle The diameter is the particle diameter at which the cumulative curve becomes 100%.
  • the median diameter d50 and the maximum particle diameter can be measured using a general laser diffraction / scattering particle size measuring device. Specifically, HELOS (manufactured by JEOL), Microtrac HRA (manufactured by Nikkiso) And SALD series (manufactured by Shimadzu Corporation). Particularly preferred is the SALD series (manufactured by Shimadzu Corporation).
  • the particle diameter of the glass powder As described above, by setting the particle diameter of the glass powder to a predetermined size, it becomes possible to obtain a kneaded glass in which the phosphor is uniformly dispersed. Thereby, primary light emitted from the LED chip can be satisfactorily scattered, and generation of bubbles that emulsify the glass in white can be suppressed, and the primary light and secondary light emitted from the phosphor can be mixed well and mixed.
  • a kneaded glass capable of emitting light with such mixed color light (third light) can be manufactured.
  • the glass powder does not precipitate crystals under the heating environment during pressure molding, or does not precipitate in a large amount even if slightly precipitated. Therefore, a glass having a crystal precipitation temperature higher than the heating temperature is preferable.
  • the heating temperature is set to 150 ° C. to 200 ° C. higher than the glass yield point
  • the crystal precipitation temperature is preferably 200 ° C. or higher than the glass yield point.
  • P 2 O 5 —BaO glass, P 2 O 5 —ZnO glass, P 2 O 5 —Nb 2 O 5 glass, P 2 O 5 —B 2 O 3 glass, SiO 2 glass B 2 O 3 —ZnO—La 2 O 3 glass, SiO 2 —B 2 O 3 —ZnO glass, and the like can be preferably used.
  • the phosphor content in the kneaded glass is preferably 0.02 to 12%, more preferably 0.05 to 5% in volume ratio. If the phosphor content is less than 0.02%, the amount of fluorescent light is too small, and if it exceeds 12%, the phosphor itself shields the light. Thus, if the phosphor content is 0.02 to 12%, the amount of light to be converted is not too low, and the amount of light that does not hinder the light transmission can be obtained. A kneaded glass capable of emitting mixed color light can be manufactured. In addition, when the phosphor content is 0.05 to 5%, the balance between the converted light and the light transmission is further improved, and a kneaded glass capable of emitting a better color mixture light is manufactured. Can do.
  • the order of the LED chip mounting process and the phosphor layer supplying process is not limited thereto.
  • the LED chip mounting step may be performed after the phosphor layer supplying step.
  • FIGS. 3A to 3C are schematic views sequentially showing the states in the sealing process.
  • the dropping of the molten glass droplet 44 is performed by heating a pipe-shaped dropping nozzle 41 connected to a melting tank (not shown) containing molten glass to a predetermined temperature by a heater 42.
  • a pipe-shaped dropping nozzle 41 connected to a melting tank (not shown) containing molten glass to a predetermined temperature by a heater 42.
  • the molten glass 43 is supplied to the tip of the dripping nozzle 41 by its own weight and accumulates in a droplet shape by the surface tension (FIG. 3A).
  • the molten glass 43 collected at the tip of the dropping nozzle 41 reaches a certain mass, it is separated from the dropping nozzle 41 by gravity and becomes a molten glass droplet 44 that drops downward (FIG. 3B).
  • the mass of the molten glass droplet 44 dropped from the dropping nozzle 41 can be adjusted by the outer diameter of the tip of the dropping nozzle 41 and the like, and depending on the type of glass, the molten glass droplet 44 of about 0.1 to 2 g is dropped. Can be made.
  • a method of pressurizing and extruding the molten glass 43 or a method of separating by applying an external force such as airflow or vibration may be used. Compared with the method of pouring glass directly, the glass mass can be reduced, the mass can be easily adjusted, and the glass temperature to be sealed at the time of dropping is lowered, so that damage to the LED chip due to glass heat can be alleviated.
  • the molten glass droplet 44 dropped from the dropping nozzle 41 is once collided with a member provided with a through-hole, and a part of the collided molten glass droplet 44 is passed through the through-pore, thereby miniaturizing.
  • the molten glass droplet 44 may be dropped.
  • a diode unit can be manufactured.
  • the lower mold 60 is preferably heated to a predetermined temperature in advance. Thereby, the shape of the surface of the glass member formed by the transfer of the lower mold 60 is stabilized.
  • the predetermined temperature is lower than the temperature of the molten glass droplet 44 to be dropped and is a temperature at which the dropped molten glass droplet 44 is cooled and solidified, and may be appropriately selected according to the type of glass to be used. If the temperature of the lower mold 60 is too low, the shape of the surface of the glass member formed by transfer becomes unstable, and wrinkles are likely to occur. On the other hand, if the temperature is set higher than necessary, the life of the lower mold 60 tends to be shortened due to fusion with the glass, surface oxidation, or the like.
  • the temperature of the lower mold 60 is preferably set in the range of Tg-100 ° C. to Tg + 100 ° C., where Tg is the glass transition temperature of the glass used, and the range of Tg ⁇ 100 ° C. to Tg + 50 ° C. It is more preferable to set to.
  • a known heating means can be appropriately selected and used. For example, an infrared heating device, a high frequency induction heating device, a cartridge heater used by being embedded in the lower die 60, a sheet heater used by contacting the outside of the lower die 60, and the like are suitable.
  • the molten glass droplet 44 dropped on the lower mold 60 is rapidly cooled and solidified by heat conduction to the lower mold 60 and the like, and the phosphor layer 30 is sealed with the glass member 40 to form the light emitting diode unit 50. (FIG. 3C).
  • the solidification is usually completed several seconds to several tens of seconds after the molten glass droplet 44 is dropped.
  • the phosphor layer 30 can be sealed with the glass member 40 without applying a high pressure simply by dropping the molten glass droplet 44, damage to the member due to pressure can be suppressed.
  • glass there is no particular limitation on the type of glass that can be used, and a known glass can be selected and used depending on the application. Examples thereof include optical glasses such as borosilicate glass, silicate glass, phosphate glass, and lanthanum glass. From the viewpoint of suppressing light reflection on the surface 12 of the LED chip 10 and further improving the light extraction efficiency, it is preferable to use glass having a small difference in refractive index from the LED chip 10.
  • (Modification of sealing process) 4A to 4C are schematic views showing a modification of the sealing process in the first embodiment.
  • the sealing step shown in FIG. 4 is different from the sealing step shown in FIG. 3 in that the lower mold 60 is inclined by an angle ⁇ , and the molten glass droplet 44 having a temperature higher than that of the inclined lower mold 60 is It is dropped on the lower mold 60.
  • Others are the same as those described in FIG.
  • the tilt angle ⁇ of the lower mold 60 when the molten glass droplet 44 is dropped is preferably 0.1 ° to 10 ° with respect to the horizontal. In this manner, by configuring the molten glass droplet 44 to be dropped while the lower die 60 is inclined, the occurrence of air pockets in the lower die 60 at the time of dropping can be suppressed.
  • the inclination angle ⁇ is greater than 10 °, the dropped molten glass may be inclined or protruded, which may adversely affect the surface accuracy of the glass member 40 after solidification.
  • the inclination angle ⁇ of the lower mold 60 when the molten glass droplet 44 is dropped is more preferably 3 ° to 7 °. If it is this angle range, the inclination of the dripped molten glass does not generate
  • FIG. 5 is a cross-sectional view of the light emitting diode unit 50 manufactured by the method of the present embodiment.
  • 5A to 5C show a light emitting diode unit 50 manufactured by dropping a molten glass droplet 44 on the LED chip 10 or the like shown in FIGS. 2A to 2C, respectively.
  • the phosphor layer 30 is sealed with the glass member 40 in the light emitting diode unit 50 manufactured by the method of the present embodiment, deterioration of the sealing material due to heat generation of the LED chip 10 is suppressed. In addition, high extraction efficiency can be ensured. Further, deterioration of the phosphor layer 30 due to the influence of the external environment is suppressed, and the durability is excellent.
  • the surface 45 of the glass member 40 has a gentle convex shape, but the degree of convexity of the surface 45 can be adjusted by changing the temperature and size of the molten glass droplet 44 to be dropped. For example, when the temperature of the molten glass droplet 44 to be dropped is increased, the viscosity is lowered, and the surface 45 of the glass member 40 has a flatter shape (the curvature is reduced). On the contrary, when the temperature of the molten glass droplet 44 is lowered, the viscosity increases, and the surface 45 of the glass member 40 has a shape with a larger convexity (the curvature increases). Thus, the surface 45 of the glass member 40 can be made into an appropriate shape according to the required condensing characteristic by changing the conditions for dropping the molten glass droplet 44.
  • the lower mold 60 of the electrode unit 11 is dropped by dropping the molten glass droplet 44 in a state where the electrode unit 11 on the back surface side of the LED chip 10 is in contact with the lower mold 60.
  • the contact surface can be exposed without being sealed by the glass member 40 (FIG. 4A).
  • the electrical connection for supplying electric power to the LED chip 10 can be easily performed by sealing with the glass member 40 so that at least a part of the electrode portion 11 is exposed.
  • FIG. 6 is a cross-sectional view of the light emitting diode unit 50 connected to the package substrate 20.
  • FIGS. 6A to 6C show cases where the package substrate 20 is connected to the light emitting diode unit 50 shown in FIGS. 5A to 5C.
  • the package substrate 20 has a lead portion 21 for supplying power to the LED chip 10 via the electrode portion 11.
  • the material of the package substrate 20 is preferably a highly insulating ceramic material such as aluminum nitride or aluminum oxide. Further, a heat resistant resin or a metal material may be used. In the case of a conductive material, an insulating film is preferably provided on the surface.
  • a normal flip chip bonding method may be used for the connection between the electrode portion 11 of the LED chip 10 and the lead portion 21 of the package substrate 20.
  • bumps (protrusions) made of a conductive material are provided on the lead portion 21, the package substrate 20 is fixed on a high-temperature heater, and the load is adjusted while adjusting the position of the LED chip 10 and the package substrate 20 by image processing.
  • the method of connecting by adding.
  • the slope 46 formed on the glass member is used as a positioning surface, thereby eliminating the need for image processing or the like for position adjustment. You can also.
  • the manufacturing method of the light emitting diode unit of this embodiment is a lower mold in which the LED chip supplied with the phosphor layer is placed after the LED chip placing step and the phosphor layer supplying step described in the first embodiment.
  • a molten glass droplet having a temperature higher than that of the lower mold is dropped on the upper mold, and the molten glass droplet is pressed with the upper mold facing the lower mold before the molten glass drop is solidified, so that the glass member has a predetermined shape. It has the process (sealing process) which shape
  • FIGS. 7A to 7D are schematic views sequentially showing the sealing process in the second embodiment.
  • a molten glass droplet 44 having a temperature higher than that of the lower die 60 is dropped on the lower die 60 on which the LED chip 10 supplied with the phosphor layer 30 is placed.
  • the molten glass droplet 44 is dropped by heating the dropping nozzle 41 to a predetermined temperature by the heater 42.
  • the details of the dropping method of the molten glass droplet 44 are the same as in the case of the first embodiment.
  • the sealing step in the second embodiment after dropping the molten glass droplet 44, the lower mold 60 is moved to a position facing the upper mold 70, and the molten glass droplet 44 is pressurized before being cooled and solidified, The glass member 40 is formed into a predetermined shape (FIG. 7C).
  • the molten glass droplet 44 is rapidly cooled by heat conduction to the lower mold 60 and the upper mold 70 and solidifies in a short time to become the glass member 40.
  • the upper mold 70 After releasing the pressure, the upper mold 70 is moved upward, and the obtained light emitting diode unit 50 is recovered (FIG. 7D).
  • the pressure load is much higher than when the glass sheet is heated and pressurized together with the members such as the LED chip 10. It can be kept small, and can be sufficiently deformed in a very short pressurization time. Therefore, the light emitting diode unit 50 can be manufactured in a short time while sufficiently suppressing deterioration due to temperature and damage due to pressure of each member.
  • the preferred material of the upper mold 70 is the same as that of the lower mold 60 described above. Further, like the lower mold 60, the upper mold 70 is preferably preheated to a predetermined temperature. The heating temperature of the lower mold 60 and the upper mold 70 may be the same or different.
  • the load applied to deform the molten glass droplet 44 and the pressurizing time may be appropriately set according to the size of the molten glass droplet 44, etc.
  • a load in the range of several tens to several hundreds N is from several seconds to In many cases, it is sufficient to apply pressure for several tens of seconds. Further, the applied load may be changed with time.
  • the means for applying the load is not particularly limited, and known driving means such as an air cylinder, a hydraulic cylinder, a servo motor, etc. may be appropriately selected and used.
  • FIG. 8 is a cross-sectional view of the light emitting diode unit 50 manufactured by the method of the present embodiment.
  • FIG. 8A shows a light emitting diode unit 50 having one LED chip 10.
  • 8B and 8C show a light emitting diode unit 50 in which three LED chips 10 are integrated by a glass member 40.
  • FIG. 8A shows a light emitting diode unit 50 having one LED chip 10.
  • 8B and 8C show a light emitting diode unit 50 in which three LED chips 10 are integrated by a glass member 40.
  • the shape of the surface 45 of the glass member 40 is formed by forming the molten glass droplet 44 dropped on the lower mold 60 with the upper mold 70, so that a desired shape corresponding to the application is formed. It can be formed easily.
  • the surface 45 of the glass member 40 can have a convex shape with a very large curvature, or like the light emitting diode unit 50 of FIG. 8C.
  • a plurality of convex portions corresponding to the plurality of LED chips 10 may be arranged.
  • a step of electrically connecting the electrode portion 11 of the LED chip 10 and the lead portion 21 of the package substrate 20 is provided, and the package It is also preferable to manufacture the light emitting diode unit 50 integrated with the substrate 20.
  • FIGS. 9A to 9D are schematic views showing a modification of the sealing process in the second embodiment. 9 differs from the sealing process shown in FIG. 7 in FIGS. 9A and 9B in the modification of the sealing process according to the first embodiment shown in FIG. Similarly to the example, the lower mold 60 is inclined by the angle ⁇ , and a molten glass droplet 44 having a temperature higher than that of the inclined lower mold 60 is dropped on the lower mold 60. This is the same as that described in.
  • a molten glass droplet 44 having a temperature higher than that of the package substrate 20 is dropped on the lower mold 60 inclined by the angle ⁇ .
  • the lower mold 60 on which the molten glass droplet 44 is dropped is returned to a horizontal position, the lower mold 60 is moved to a position facing the upper mold 70, and the molten glass droplet 44 is added by the upper mold 70 before being cooled and solidified.
  • the glass member 40 is molded into a predetermined shape (FIG. 9C).
  • the upper mold 70 is moved upward, and the obtained light emitting diode unit 50 is recovered (FIG. 9D).
  • the inclination angle ⁇ of the lower mold 60 when the molten glass droplet 44 is dropped is preferably 0.1 ° to 10 ° with respect to the horizontal.
  • the molten glass droplet 44 is dropped, the lower mold 60 is returned to the horizontal, and the molten glass droplet 44 is pressurized with the upper mold 70 before being cooled and solidified.
  • type 60 at the time of dripping can be suppressed.
  • the dropped molten glass may be inclined or protruded, which may adversely affect the surface shape accuracy of the glass member transferred by the molding surface 74 of the upper mold 70.
  • the inclination angle ⁇ of the lower mold 60 when the molten glass droplet is dropped is more preferably 3 ° to 7 °. With this angle range, there is no tilt of the dropped molten glass, no air pool in the lower mold 60 is dropped, and the surface shape accuracy of the glass member transferred by the molding surface 74 is more preferable. State.
  • the manufacturing method of the light emitting diode unit according to the present embodiment includes a step of temporarily fixing the surface of the LED chip downward (LED chip mounting step) and a step of supplying a phosphor layer to the surface of the LED chip ( A phosphor layer supplying step), and a molten glass droplet having a temperature higher than that of the lower die is dropped on the lower die, and the LED chip is temporarily fixed before the molten glass droplet dropped on the lower die is solidified. And a step of sealing the phosphor with a glass member by pressurizing the molten glass droplet with the upper mold (sealing step).
  • the surface of the LED chip 10 is temporarily fixed to the upper mold 70 with the surface facing downward. Solder or the like may be used for temporary fixing. Other details are the same as those in the first embodiment.
  • the phosphor layer supplying step is the same as in the first embodiment.
  • FIGS. 10A to 10D are schematic views sequentially showing the sealing process in the third embodiment.
  • a molten glass droplet 44 having a temperature higher than that of the lower mold 60 is dropped on the molding surface 64 of the lower mold 60 having the molding surface 64 of a predetermined shape (FIGS. 10A and 10B).
  • the molten glass droplet 44 is dropped by heating the dropping nozzle 41 to a predetermined temperature by the heater 42.
  • the details of the dropping method of the molten glass droplet 44 are the same as in the case of the first embodiment.
  • the molten glass droplet 44 is pressurized with the upper mold 70 to which the LED chip 10 supplied with the phosphor layer 30 is temporarily fixed. (FIG. 10 (c)).
  • the molten glass droplet 44 is rapidly cooled by heat conduction to the lower mold 60 and the upper mold 70 and solidifies in a short time to become the glass member 40.
  • the upper mold 70 is moved upward, the temporary fixing is removed, and the light emitting diode unit 50 is recovered (FIG. 10D).
  • the timing for pressurizing the molten glass droplet 44 with the upper die 70 on which the LED chip 10 is placed is preferably slower from the viewpoint of suppressing deterioration of the phosphor layer 30 and the like due to heat, but if too late, the phosphor layer The pressure required for sealing 30 etc. will become high. From such a viewpoint, it is preferable to pressurize several seconds to several tens of seconds after dropping the molten glass droplet 44 on the lower mold 60. What is necessary is just to set suitably the load and pressurization time to apply similarly to 2nd Embodiment. Moreover, it is preferable that the lower mold
  • the glass member 40 can be formed in a desired shape without applying high pressure.
  • the LED chip 10 and the phosphor layer 30 are sealed in the molten glass droplet 44 at a predetermined timing after the dropped molten glass droplet 44 is cooled to some extent. The influence of heat can be minimized. Accordingly, the light emitting diode unit 50 can be manufactured in a short time while sufficiently suppressing deterioration due to temperature and damage due to pressure of each member.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

Disclosed is a method for manufacturing a light emitting diode unit, which has a step wherein an LED chip is placed on a lower molding die; a step wherein a phosphor material is supplied to the surface of the LED chip; and a step wherein the phosphor material is encapsulated using a glass member by dropping a molten glass droplet at a temperature higher than that of the lower molding die and solidifying the droplet on the lower molding die, which has placed thereon the LED chip having the phosphor material supplied thereon. Thus, the light emitting diode unit can be manufactured in a short time, while suppressing deterioration and breakage of the LED chip phosphor layer and the like.

Description

発光ダイオードユニットの製造方法Manufacturing method of light emitting diode unit
 本発明は、発光ダイオードユニットの製造方法に関し、詳しくは、ガラス部材で蛍光体層を封止した発光ダイオードユニットの製造方法に関する。 The present invention relates to a method for manufacturing a light emitting diode unit, and more particularly to a method for manufacturing a light emitting diode unit in which a phosphor layer is sealed with a glass member.
 白色発光ダイオード(以下、白色LEDともいう)は、低消費電力、小型軽量、発熱が少ない、水銀フリー、光量の調節が容易などといった優れた特徴を備えていることから、白熱電球、蛍光ランプ、高圧放電ランプなどを代替可能な次世代省エネルギー型照明光源として期待されている。 White light-emitting diodes (hereinafter also referred to as white LEDs) have excellent features such as low power consumption, small size, light weight, low heat generation, mercury-free, easy adjustment of light quantity, etc., so incandescent bulbs, fluorescent lamps, It is expected as a next-generation energy-saving illumination light source that can replace high-pressure discharge lamps.
 LEDチップを用いて白色光を発光させる方法として、(1)3色以上のLEDチップを組み合わせて白色光を得る方法(特許文献1参照)や、(2)青色光、青紫色光又は近紫外光等を発光するLEDチップと、蛍光体とを組み合わせて白色光を得る方法(特許文献2、3参照)が知られている。このうち、(1)の方法は各色LEDチップの発光強度のバランスを取るのが困難であることから、(2)のようにLEDチップと、蛍光体とを組み合わせて白色光を得る方法が注目されている。 As a method of emitting white light using an LED chip, (1) a method of obtaining white light by combining three or more color LED chips (see Patent Document 1), or (2) blue light, blue-violet light, or near ultraviolet light A method of obtaining white light by combining an LED chip that emits light or the like and a phosphor (see Patent Documents 2 and 3) is known. Of these, the method (1) is difficult to balance the light emission intensity of each color LED chip, so the method of obtaining white light by combining the LED chip and the phosphor as in (2) is the focus. Has been.
 しかし、青色光等を発光するLEDチップの材料として主に用いられる窒化ガリウム系の基板は屈折率が高いため、LEDチップの表面が空気層等と接していると、全反射によって光の取り出し効率が極端に低下してしまうという問題がある。 However, gallium nitride-based substrates that are mainly used as LED chip materials that emit blue light and the like have a high refractive index. Therefore, if the surface of the LED chip is in contact with an air layer or the like, light extraction efficiency is achieved by total reflection. There is a problem that will be extremely lowered.
 これに対して、特許文献2及び3に記載された発光ダイオードユニットは、LEDチップがエポキシ樹脂やシリコーン樹脂等の樹脂材料で封止されているため、LEDチップの表面における全反射が抑制され、光の取り出し効率の低下を抑制できると考えられる。しかしながら、このような樹脂材料は、LEDチップからの光や、LEDチップ及び蛍光体からの熱の影響などによって着色等の劣化が進行し易く、長期使用に耐えうるだけの耐久性を得ることができないという問題がある。特に、自動車のヘッドライト用LEDのように単位面積当たりの明るさを要求される場合や、演色性の高い白色光を得るために近紫外光を発光するLEDチップを用いる場合には、LEDチップを封止する樹脂材料の劣化が顕著であり問題となる。 On the other hand, in the light emitting diode unit described in Patent Documents 2 and 3, since the LED chip is sealed with a resin material such as an epoxy resin or a silicone resin, total reflection on the surface of the LED chip is suppressed, It is considered that a decrease in light extraction efficiency can be suppressed. However, such a resin material is prone to deterioration such as coloring due to the light from the LED chip and the influence of heat from the LED chip and the phosphor, and can be durable enough to withstand long-term use. There is a problem that you can not. In particular, when the brightness per unit area is required, such as an LED for a headlight of an automobile, or when an LED chip that emits near-ultraviolet light is used to obtain white light with high color rendering properties, the LED chip Deterioration of the resin material that seals the surface is significant and becomes a problem.
 このような課題に対して、蛍光体を混入した絶縁層で覆ったLEDチップの上方及び下方にガラスシートを配置し、所定の温度のもとで加圧プレスすることにより半球状に成形する方法(特許文献4参照)が提案されている。 For such a problem, a method of forming a hemisphere by placing glass sheets above and below an LED chip covered with an insulating layer mixed with a phosphor and press-pressing under a predetermined temperature. (See Patent Document 4).
特開2003-45206号公報JP 2003-45206 A 特開2002-185046号公報JP 2002-185046 A 特開2002-314142号公報JP 2002-314142 A 特開2006-54210号公報JP 2006-54210 A
 しかしながら、特許文献4に記載されている方法では、ガラスシートを半球状に成形するために、LEDチップ、蛍光体、電極部材を含んだパッケージ基板などが長時間にわたって高温かつ高圧下に置かれることになり、これらの部材の劣化や破損が避けられないという問題がある。また、これらの部材全体の加熱と冷却が必要となるため工程に長時間を要し、高コスト化を招くという問題もある。 However, in the method described in Patent Document 4, in order to form a glass sheet into a hemispherical shape, a package substrate including an LED chip, a phosphor, and an electrode member is placed under a high temperature and a high pressure for a long time. Therefore, there is a problem that deterioration and breakage of these members cannot be avoided. Moreover, since heating and cooling of these whole members are required, there is a problem that a long time is required for the process, resulting in an increase in cost.
 本発明は上記のような技術的課題に鑑みてなされたものであり、本発明の目的は、LEDチップや蛍光体の劣化や破損を抑制しながら、短時間で製造することができる発光ダイオードユニットの製造方法を提供することである。 The present invention has been made in view of the above technical problems, and an object of the present invention is a light-emitting diode unit that can be manufactured in a short time while suppressing deterioration and breakage of LED chips and phosphors. It is to provide a manufacturing method.
 上記の課題を解決するために、本発明は以下の特徴を有するものである。 In order to solve the above problems, the present invention has the following features.
 1.表面から所定の波長の光を射出するLEDチップと、
 前記LEDチップから射出した光の波長を変換するための蛍光体と、
 前記蛍光体を封止するガラス部材と、を備えた発光ダイオードユニットの製造方法であって、
 下型の上に前記LEDチップを載置する工程と、
 前記LEDチップの前記表面に前記蛍光体を供給する工程と、
 前記蛍光体が供給された前記LEDチップが載置された前記下型の上に、該下型よりも高温の溶融ガラス滴を滴下して固化させることにより前記蛍光体をガラス部材で封止する工程と、を有することを特徴とする発光ダイオードユニットの製造方法。
1. An LED chip that emits light of a predetermined wavelength from the surface;
A phosphor for converting the wavelength of light emitted from the LED chip;
A glass member for sealing the phosphor, and a manufacturing method of a light emitting diode unit comprising:
Placing the LED chip on the lower mold;
Supplying the phosphor to the surface of the LED chip;
On the lower mold on which the LED chip supplied with the phosphor is mounted, a molten glass droplet having a temperature higher than that of the lower mold is dropped and solidified to seal the phosphor with a glass member. And a process for producing the light emitting diode unit.
 2.前記下型の上に滴下された前記溶融ガラス滴が固化する前に、前記下型に対向する上型で前記溶融ガラス滴を加圧し、前記ガラス部材を所定の形状に成形することを特徴とする前記1に記載の発光ダイオードユニットの製造方法。 2. Before the molten glass droplet dripped on the lower mold is solidified, the molten glass droplet is pressurized with an upper mold facing the lower mold, and the glass member is formed into a predetermined shape, The manufacturing method of the light emitting diode unit of said 1 which does.
 3.表面から所定の波長の光を射出するLEDチップと、
 前記LEDチップから射出した光の波長を変換するための蛍光体と、
 前記蛍光体を封止するガラス部材と、を備えた発光ダイオードユニットの製造方法であって、
 前記LEDチップの前記表面を下方に向けて上型に仮止めする工程と、
 前記LEDチップの前記表面に前記蛍光体を供給する工程と、
 前記上型に対向する下型の上に、該下型よりも高温の溶融ガラス滴を滴下する工程と、
 前記下型に滴下された前記溶融ガラス滴が固化する前に、前記LEDチップが仮止めされた前記上型で前記溶融ガラス滴を加圧し、前記蛍光体をガラス部材で封止する工程と、を有することを特徴とする発光ダイオードユニットの製造方法。
3. An LED chip that emits light of a predetermined wavelength from the surface;
A phosphor for converting the wavelength of light emitted from the LED chip;
A glass member for sealing the phosphor, and a manufacturing method of a light emitting diode unit comprising:
Temporarily fixing the upper surface of the LED chip with the surface facing downward;
Supplying the phosphor to the surface of the LED chip;
Dropping a molten glass droplet having a temperature higher than that of the lower mold on the lower mold facing the upper mold;
Before the molten glass droplets dropped on the lower mold are solidified, pressurizing the molten glass drops with the upper mold on which the LED chip is temporarily fixed, and sealing the phosphor with a glass member; A method for producing a light-emitting diode unit, comprising:
 4.前記LEDチップは、前記表面に対向する裏面側に電極部を有し、
 前記電極部の少なくとも一部が露出するように、前記ガラス部材による封止を行うことを特徴とする前記1~3の何れか1項に記載の発光ダイオードユニットの製造方法。
4). The LED chip has an electrode part on the back side facing the surface,
4. The method for manufacturing a light-emitting diode unit according to any one of claims 1 to 3, wherein sealing with the glass member is performed so that at least a part of the electrode portion is exposed.
 5.前記溶融ガラス滴が固化した後、前記電極部の露出部分と、前記電極部を介して前記LEDチップに給電するためのリード部を有するパッケージ基板の該リード部とを、電気的に接続する工程を有することを特徴とする前記4に記載の発光ダイオードユニットの製造方法。 5. Step of electrically connecting the exposed portion of the electrode portion and the lead portion of the package substrate having a lead portion for supplying power to the LED chip through the electrode portion after the molten glass droplet is solidified The manufacturing method of the light emitting diode unit of said 4 characterized by the above-mentioned.
 6.前記蛍光体の供給は、前記LEDチップの前記表面に前記蛍光体を塗布することにより行うことを特徴とする前記1から5の何れか1項に記載の発光ダイオードユニットの製造方法。 6. 6. The method of manufacturing a light-emitting diode unit according to any one of 1 to 5, wherein the supply of the phosphor is performed by applying the phosphor on the surface of the LED chip.
 7.前記蛍光体の供給は、前記蛍光体を分散させた組成物を塗布して加熱することにより、前記LEDチップの表面に前記蛍光体を含むガラス体を形成することにより行うことを特徴とする前記1から5の何れか1項に記載の発光ダイオードユニットの製造方法。 7. The phosphor is supplied by applying a composition in which the phosphor is dispersed and heating to form a glass body containing the phosphor on the surface of the LED chip. The manufacturing method of the light emitting diode unit of any one of 1-5.
 8.前記組成物は、有機金属化合物、層状ケイ酸塩鉱物、無機微粒子、有機溶媒、及び水を含有することを特徴とする前記7に記載の発光ダイオードユニットの製造方法。 8. 8. The method for producing a light-emitting diode unit according to 7 above, wherein the composition contains an organometallic compound, a layered silicate mineral, inorganic fine particles, an organic solvent, and water.
 9.前記有機金属化合物はポリシロキサンであり、前記層状ケイ酸塩鉱物はスメクタイトであることを特徴とする前記8に記載の発光ダイオードユニットの製造方法。 9. 9. The method of manufacturing a light-emitting diode unit according to 8, wherein the organometallic compound is polysiloxane and the layered silicate mineral is smectite.
 10.前記組成物は無機ポリマーと有機溶剤とを含むことを特徴とする前記7に記載の発光ダイオードユニットの製造方法。 10. 8. The method for producing a light emitting diode unit according to 7, wherein the composition contains an inorganic polymer and an organic solvent.
 11.前記無機ポリマーはポリシラザンであることを特徴とする前記10に記載の発光ダイオードユニットの製造方法。 11. 11. The method for producing a light emitting diode unit according to 10, wherein the inorganic polymer is polysilazane.
 12.前記蛍光体の供給は、前記LEDチップの前記表面に、前記蛍光体を有するガラス板を載置することにより行うことを特徴とする前記1から5の何れか1項に記載の発光ダイオードユニットの製造方法。 12. The light emitting diode unit according to any one of 1 to 5, wherein the phosphor is supplied by placing a glass plate having the phosphor on the surface of the LED chip. Production method.
 13.前記ガラス板は、内部に前記蛍光体を分散させた混錬ガラスであることを特徴とする前記12に記載の発光ダイオードユニットの製造方法。 13. 13. The method for manufacturing a light-emitting diode unit according to 12, wherein the glass plate is a kneaded glass in which the phosphor is dispersed.
 14.前記下型の上に複数の前記LEDチップを配列し、1滴の前記溶融ガラス滴を滴下して該複数のLEDチップを一体化することを特徴とする前記1又は2に記載の発光ダイオードユニットの製造方法。 14. 3. The light emitting diode unit according to 1 or 2, wherein the plurality of LED chips are arranged on the lower mold, and the plurality of LED chips are integrated by dropping one drop of the molten glass drop. Manufacturing method.
 15.前記蛍光体の供給は、前記蛍光体を有する1枚のガラス板を、配列した複数の前記LEDチップの前記表面に跨るように載置することにより行うことを特徴とする前記14に記載の発光ダイオードユニットの製造方法。 15. 15. The light emitting device according to 14, wherein the fluorescent material is supplied by placing one glass plate having the fluorescent material so as to straddle the surface of the arrayed LED chips. Manufacturing method of the diode unit.
 本発明の方法によれば、溶融ガラス滴を滴下して固化させることにより蛍光体層をガラス部材で封止するため、LEDチップや蛍光体層を長時間高温に維持しておく必要が無く、温度による劣化を抑制することができる。また、ガラス部材を所定の形状に成形する場合であっても、従来よりも小さい圧力でガラスを変形させることができるため、これらの部材の破損を抑制することができる。更に、これらの部材全体の加熱と冷却を行う必要が無いため、非常に短時間で蛍光体層の封止を行うことができる。従って、LEDチップや蛍光体層の劣化や破損を抑制しながら、短時間で発光ダイオードユニットを製造することができる。 According to the method of the present invention, since the phosphor layer is sealed with the glass member by dripping and solidifying the molten glass droplet, it is not necessary to maintain the LED chip or the phosphor layer at a high temperature for a long time, Degradation due to temperature can be suppressed. Moreover, even when it is a case where a glass member is shape | molded to a defined shape, since glass can be deformed with a pressure smaller than before, damage to these members can be suppressed. Furthermore, since it is not necessary to heat and cool the entire member, the phosphor layer can be sealed in a very short time. Therefore, a light emitting diode unit can be manufactured in a short time while suppressing deterioration and breakage of the LED chip and the phosphor layer.
下型の上に載置されたLEDチップを示す断面図である。It is sectional drawing which shows the LED chip mounted on the lower mold | type. LEDチップの表面に蛍光体層が供給された状態を示す断面図である。It is sectional drawing which shows the state by which the fluorescent substance layer was supplied to the surface of the LED chip. 第1の実施形態における封止工程を説明するための模式図である。It is a schematic diagram for demonstrating the sealing process in 1st Embodiment. 第1の実施形態における封止工程の変形例を示す模式図である。It is a schematic diagram which shows the modification of the sealing process in 1st Embodiment. 第1の実施形態で製造された発光ダイオードユニットを示す断面図である。It is sectional drawing which shows the light emitting diode unit manufactured by 1st Embodiment. 第1の実施形態で製造され、パッケージ基板と一体化された発光ダイオードユニットを示す断面図である。It is sectional drawing which shows the light emitting diode unit manufactured by 1st Embodiment and integrated with the package board | substrate. 第2の実施形態における封止工程を説明するための模式図である。It is a schematic diagram for demonstrating the sealing process in 2nd Embodiment. 第2の実施形態で製造された発光ダイオードユニットを示す断面図である。It is sectional drawing which shows the light emitting diode unit manufactured by 2nd Embodiment. 第2の実施形態における封止工程の変形例を示す模式図である。It is a schematic diagram which shows the modification of the sealing process in 2nd Embodiment. 第3の実施形態における封止工程を説明するための模式図である。It is a schematic diagram for demonstrating the sealing process in 3rd Embodiment.
 以下、本発明の実施の形態について図1~図10を参照しつつ詳細に説明するが、本発明は該実施の形態に限られるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 to 10, but the present invention is not limited to the embodiments.
 〈第1の実施形態〉
 先ず、第1の実施形態の発光ダイオードユニットの製造方法について図1~図5を参照して説明する。本実施形態の発光ダイオードユニットの製造方法は、下型の上にLEDチップを載置する工程(LEDチップ載置工程)と、LEDチップの表面に蛍光体層を供給する工程(蛍光体層供給工程)と、蛍光体層が供給されたLEDチップが載置された下型の上に、下型よりも高温の溶融ガラス滴を滴下して固化させることにより蛍光体層をガラス部材で封止する工程(封止工程)と、を有している。
<First Embodiment>
First, a method for manufacturing the light emitting diode unit of the first embodiment will be described with reference to FIGS. The light emitting diode unit manufacturing method of this embodiment includes a step of placing an LED chip on the lower mold (LED chip placement step), and a step of supplying a phosphor layer on the surface of the LED chip (phosphor layer supply). Process) and a molten glass droplet having a temperature higher than that of the lower mold is dropped and solidified on the lower mold on which the LED chip supplied with the phosphor layer is placed, and the phosphor layer is sealed with a glass member. A process (sealing process).
 図1はLEDチップ載置工程において下型の上に載置されたLEDチップを模式的に示す断面図、図2は蛍光体層供給工程でLEDチップの表面に蛍光体層が供給された状態を模式的に示す断面図、図3は封止工程を説明するための模式図である。また、図4及び図5は本実施形態の製造方法で製造された発光ダイオードユニットを模式的に示す断面図である。 FIG. 1 is a cross-sectional view schematically showing an LED chip placed on the lower die in the LED chip placing step, and FIG. 2 is a state in which the phosphor layer is supplied to the surface of the LED chip in the phosphor layer supplying step. FIG. 3 is a schematic view for explaining a sealing process. 4 and 5 are cross-sectional views schematically showing a light emitting diode unit manufactured by the manufacturing method of the present embodiment.
  (LEDチップ載置工程)
 図1(a)は、下型60の上にLEDチップ10が載置されている状態の一例を示す図である。LEDチップ10は裏面側に電極部11を有するフリップチップ型と呼ばれるものであり、表面12から所定の波長の光を射出する。LEDチップ10を構成する半導体の種類に特に制限はなく、例えば、窒化ガリウム系の半導体(GaN、InGaN、AlInGaNなど)を用いたものなど、公知のLEDチップを適宜選択して用いればよい。射出する光は青色光でもよいし、青緑色光、近紫外光、紫外光などでもよい。チップサイズについても制限はなく、0.35mm角(スモールチップ)でも1mm角(ラージチップ)でもよい。チップサイズが大きいと発熱量も大きくなるが、本実施形態の製造方法では耐熱性に優れたガラス部材で蛍光体層等を封止するため、サイズの大きい1mm角のチップを用いても、耐久性に優れた発光ダイオードユニットを製造することができる。
(LED chip placement process)
FIG. 1A is a diagram illustrating an example of a state in which the LED chip 10 is placed on the lower mold 60. The LED chip 10 is called a flip chip type having an electrode portion 11 on the back surface side, and emits light of a predetermined wavelength from the front surface 12. There are no particular restrictions on the type of semiconductor that constitutes the LED chip 10. For example, a known LED chip such as one using a gallium nitride-based semiconductor (GaN, InGaN, AlInGaN, etc.) may be appropriately selected and used. The emitted light may be blue light, blue-green light, near ultraviolet light, ultraviolet light, or the like. The chip size is not limited, and may be 0.35 mm square (small chip) or 1 mm square (large chip). When the chip size is large, the amount of heat generation increases, but the phosphor layer and the like are sealed with a glass member having excellent heat resistance in the manufacturing method of this embodiment, so that even if a large 1 mm square chip is used, it is durable. A light emitting diode unit having excellent properties can be manufactured.
 また、図1(b)に示すように、1つの下型60に複数のLEDチップ10を配列して載置し、複数のLEDチップ10をガラス部材で一体化した発光ダイオードユニットを製造することも好ましい。このように複数のLEDチップ10をガラス部材で一体化した構成の発光ダイオードユニットは、特に高い光束が必要とされる用途に適している。 Also, as shown in FIG. 1B, a plurality of LED chips 10 are arranged and placed on one lower mold 60, and a light emitting diode unit in which the plurality of LED chips 10 are integrated with a glass member is manufactured. Is also preferable. Thus, the light emitting diode unit having a configuration in which a plurality of LED chips 10 are integrated with a glass member is particularly suitable for applications requiring a high luminous flux.
 下型60の、LEDチップ10を載置する面の形状に特に制限は無く、平面の他、凹面や凸面であってもよい。所定の形状の斜面62を設けておき、斜面62の転写によってガラス部材に形成された面を、発光ダイオードユニットをパッケージ基板に固定する際の位置決め面として用いることも好ましい。また、LEDチップ10を所定の位置に位置決めできるような凹凸を設けておくことも好ましい。なお、LEDチップを正確に位置決めして載置する必要がある場合には、半田等を用いてLEDチップを下型60の表面に仮止めしてもよい。 The shape of the surface of the lower mold 60 on which the LED chip 10 is placed is not particularly limited, and may be a concave surface or a convex surface in addition to a flat surface. It is also preferable to provide an inclined surface 62 having a predetermined shape and use the surface formed on the glass member by the transfer of the inclined surface 62 as a positioning surface when the light emitting diode unit is fixed to the package substrate. It is also preferable to provide unevenness so that the LED chip 10 can be positioned at a predetermined position. If it is necessary to accurately position and place the LED chip, the LED chip may be temporarily fixed to the surface of the lower mold 60 using solder or the like.
 下型60の材質は、耐熱性が高く、溶融ガラスと反応しにくい材質が好ましい。例えば、各種耐熱合金(ステンレス等)、炭化タングステンを主成分とする超硬材料、各種セラミックス(炭化珪素、窒化珪素、窒化アルミニウム等)、カーボンを含んだ複合材料等が挙げられる。また、下型60の耐久性向上やガラスとの融着防止などのため、表面に被覆層を設けておくことも好ましい。被覆層の材質にも特に制限は無く、例えば、種々の金属(クロム、アルミニウム、チタン等)、窒化物(窒化クロム、窒化アルミニウム、窒化チタン、窒化硼素等)、酸化物(酸化クロム、酸化アルミニウム、酸化チタン等)等を用いることができる。 The material of the lower mold 60 is preferably a material that has high heat resistance and hardly reacts with molten glass. For example, various heat-resistant alloys (such as stainless steel), super hard materials mainly composed of tungsten carbide, various ceramics (such as silicon carbide, silicon nitride, and aluminum nitride), composite materials containing carbon, and the like can be given. It is also preferable to provide a coating layer on the surface in order to improve the durability of the lower mold 60 and prevent fusion with the glass. There are no particular restrictions on the material of the coating layer. For example, various metals (chromium, aluminum, titanium, etc.), nitrides (chromium nitride, aluminum nitride, titanium nitride, boron nitride, etc.), oxides (chromium oxide, aluminum oxide) , Titanium oxide, etc.) can be used.
  (蛍光体層供給工程)
 図2(a)は図1(a)のLEDチップ10の表面12に蛍光体層30が供給された状態、図2(b)は図1(b)の3つのLEDチップ10の表面12に蛍光体層30が供給された状態を、それぞれ模式的に示す断面図である。
(Phosphor layer supply process)
2A shows a state where the phosphor layer 30 is supplied to the surface 12 of the LED chip 10 of FIG. 1A, and FIG. 2B shows the surface 12 of the three LED chips 10 of FIG. 1B. It is sectional drawing which shows typically the state to which the fluorescent substance layer 30 was supplied, respectively.
 供給する蛍光体層30に用いられる蛍光体は、製造する発光ダイオードユニットの用途や種類に応じて適宜選択して用いればよい。LEDチップ10として青色光を発光するチップを用いる場合は、例えば、青色光を黄色光に波長変換する(青色光で励起され黄色光を発光する)黄色蛍光体を用いて、青色LEDチップ+黄色蛍光体という構成にすることで白色光を得ることができる。2種類以上の蛍光体を用いて、例えば、青色LEDチップ+黄色蛍光体+赤色蛍光体という構成や、青色LEDチップ+緑色蛍光体+赤色蛍光体という構成にすることもできる。また、LEDチップ10として近紫外光を発光するチップを用いる場合は、近紫外LEDチップ+青色蛍光体+黄色蛍光体という構成や、近紫外LEDチップ+青色蛍光体+緑色蛍光体+赤色蛍光体という構成にすることで白色光を得ることができる。 The phosphor used for the phosphor layer 30 to be supplied may be appropriately selected and used according to the application and type of the light emitting diode unit to be manufactured. When a chip that emits blue light is used as the LED chip 10, for example, a blue LED chip + yellow is used by using a yellow phosphor that converts the wavelength of blue light into yellow light (excited by blue light and emits yellow light). White light can be obtained by adopting a phosphor structure. By using two or more kinds of phosphors, for example, a configuration of blue LED chip + yellow phosphor + red phosphor or a configuration of blue LED chip + green phosphor + red phosphor can be used. When a chip that emits near-ultraviolet light is used as the LED chip 10, a configuration of near-ultraviolet LED chip + blue phosphor + yellow phosphor or a near-UV LED chip + blue phosphor + green phosphor + red phosphor With this configuration, white light can be obtained.
 好適な蛍光体として、YAG系蛍光体、シリケート系蛍光体、ナイトライド系蛍光体、オキシナイトライド系蛍光体、サルファイド系蛍光体、チオガレート系蛍光体、アルミネート系蛍光体などが挙げられる。 Suitable phosphors include YAG phosphors, silicate phosphors, nitride phosphors, oxynitride phosphors, sulfide phosphors, thiogallate phosphors, aluminate phosphors, and the like.
 複数種の蛍光体を用いる場合、全ての蛍光体を混合して供給してもよいし、蛍光体の種類毎に層状に分けて供給してもよい。一般に、複数種の蛍光体を同時に使用する場合、第1の蛍光体からの発光が別の第2の蛍光体を励起する、いわゆる多段励起による損失が問題となりやすい。このような多段励起による損失を効果的に減少させる観点からは、蛍光体の種類毎に層状に分けて供給することが好ましい。更に、光源となるLEDチップ10からの光が先に到達する側に発光波長が長い方の蛍光体を配置し、後から到達する側に発光波長が短い方の蛍光体を配置することで、多段励起による損失をより効果的に減少させることができる。 When a plurality of types of phosphors are used, all the phosphors may be mixed and supplied, or may be supplied in layers for each type of phosphor. In general, when a plurality of types of phosphors are used at the same time, loss due to so-called multistage excitation, in which light emitted from the first phosphor excites another second phosphor, tends to be a problem. From the viewpoint of effectively reducing the loss due to such multi-stage excitation, it is preferable to supply the phosphors by dividing them into layers. Furthermore, by arranging the phosphor having the longer emission wavelength on the side where the light from the LED chip 10 serving as the light source reaches first, and arranging the phosphor having the shorter emission wavelength on the side reaching later, Loss due to multistage excitation can be reduced more effectively.
 蛍光体層30は、粉体を塗布することでLEDチップ10の表面12に供給してもよいし、液体やゲル状のバインダに分散させた状態で塗布した後、気化や熱分解させることによってバインダを除去してもよい。バインダを用いる場合は、蛍光体層30等の劣化を抑制する観点から、低温で除去できるバインダを用いることが好ましい。例えば、エタノール、アセトンなどの有機溶媒や、合成樹脂等が好適である。 The phosphor layer 30 may be supplied to the surface 12 of the LED chip 10 by applying powder, or after being applied in a state of being dispersed in a liquid or gel binder, it is vaporized or thermally decomposed. The binder may be removed. When a binder is used, it is preferable to use a binder that can be removed at a low temperature from the viewpoint of suppressing deterioration of the phosphor layer 30 and the like. For example, organic solvents such as ethanol and acetone, and synthetic resins are suitable.
 また、蛍光体を分散させた組成物を塗布して加熱することにより、LEDチップ10の表面12に蛍光体を含む蛍光体層30であるガラス体を形成することも好ましい。組成物の塗布は、スピンコートやディップコート、あるいはスプレーコートなど公知の手法を用いればよい。また、LEDチップ10の形状に応じ、バーコーターを用いて塗布することも好ましい。塗布した組成物の加熱には、ドライオーブン等を用いればよい。加熱後に形成されるガラス体の膜厚は、10μm~80μmが好ましい。塗布する組成物は、加熱によりゲル化した後、ゲルをさらに加熱することにより透明セラミック層(ガラス体)が形成されるもの(ゾルゲル溶液)であってもよいし、溶媒成分を揮発させることにより、ゲル化することなく直接ガラス体が形成されるものであってもよい。 It is also preferable to form a glass body that is a phosphor layer 30 containing a phosphor on the surface 12 of the LED chip 10 by applying and heating a composition in which the phosphor is dispersed. The composition may be applied by a known method such as spin coating, dip coating, or spray coating. Moreover, it is also preferable to apply using a bar coater according to the shape of the LED chip 10. A dry oven or the like may be used to heat the applied composition. The film thickness of the glass body formed after heating is preferably 10 μm to 80 μm. The composition to be applied may be a gel (sol-gel solution) in which a transparent ceramic layer (glass body) is formed by further heating the gel after heating, and by volatilizing the solvent component. The glass body may be formed directly without gelation.
 ゾルゲル溶液(前駆体溶液)としては、ガラス体の成分となる有機金属化合物を有機溶媒に混合した溶液中に、蛍光体、層状ケイ酸塩鉱物、無機微粒子を含有するものを用いることができる。 As the sol-gel solution (precursor solution), a solution containing a phosphor, a layered silicate mineral, and inorganic fine particles in a solution obtained by mixing an organometallic compound as a glass body component in an organic solvent can be used.
 (有機金属化合物)
 有機金属化合物は、蛍光体、層状ケイ酸塩鉱物、無機微粒子を封止するバインダとしての役割を果たすものである。本発明に用いられる有機金属化合物としては、金属アルコシド、金属アセチルアセトネート、金属カルボキシレート等が挙げられるが、加水分解と重合反応によりゲル化し易い金属アルコキシドが好ましい。
(Organic metal compound)
The organometallic compound serves as a binder for sealing the phosphor, the layered silicate mineral, and the inorganic fine particles. Examples of the organometallic compound used in the present invention include metal alcosides, metal acetylacetonates, metal carboxylates and the like, but metal alkoxides that are easily gelled by hydrolysis and polymerization reaction are preferable.
 金属アルコキシドは、テトラエトキシシランのような単分子のものでもよいし、有機シロキサン化合物が鎖状または環状に連なったポリシロキサンでもよいが、混合液の粘性が増加するポリシロキサンが好ましい。なお、透光性のガラス体を形成可能であれば金属の種類に制限はないが、形成されるガラス体の安定性や製造の容易性の観点から、ケイ素を含有していることが好ましい。また、複数種の金属を含有していてもよい。 The metal alkoxide may be a single molecule such as tetraethoxysilane, or may be a polysiloxane in which an organic siloxane compound is linked in a chain or a ring, but a polysiloxane that increases the viscosity of the mixed solution is preferable. In addition, there is no restriction | limiting in the kind of metal if a translucent glass body can be formed, but it is preferable to contain a silicon | silicone from a viewpoint of the stability of the glass body formed and the ease of manufacture. Moreover, you may contain multiple types of metal.
 ガラス体中の有機金属化合物の含有量が2質量%未満では、バインダとしての有機金属化合物が少なすぎて加熱、焼成後のガラス体の強度が低下する。一方、有機金属化合物の含有量が50質量%を超えると、層状ケイ酸塩鉱物の含有量が相対的に低下するため、加熱前の混合液の粘度が低下して蛍光体が沈降し易くなる。また、無機微粒子の含有量も相対的に低下するため、ガラス体の強度も低下する。そのため、ガラス体中の有機金属化合物の含有量は2質量%以上50以下が好ましく、2.5質量%以上30質量%以下がより好ましい。 When the content of the organometallic compound in the glass body is less than 2% by mass, the organometallic compound as the binder is too small, and the strength of the glass body after heating and firing is lowered. On the other hand, when the content of the organometallic compound exceeds 50% by mass, the content of the layered silicate mineral is relatively decreased, so that the viscosity of the mixed solution before heating is decreased and the phosphor is easily precipitated. . Moreover, since the content of the inorganic fine particles is relatively lowered, the strength of the glass body is also lowered. Therefore, the content of the organometallic compound in the glass body is preferably 2% by mass or more and 50 or less, and more preferably 2.5% by mass or more and 30% by mass or less.
 (蛍光体)
 蛍光体は、LEDチップ10からの出射光の波長(励起波長)により励起されて、励起波長と異なる波長の蛍光を出射するものである。本実施形態では、青色LED素子から出射される青色光(波長420nm~485nm)を黄色光(波長550nm~650nm)に変換するYAG(イットリウム・アルミニウム・ガーネット)蛍光体を使用している。
(Phosphor)
The phosphor is excited by the wavelength (excitation wavelength) of light emitted from the LED chip 10 and emits fluorescence having a wavelength different from the excitation wavelength. In this embodiment, a YAG (yttrium, aluminum, garnet) phosphor that converts blue light (wavelength 420 nm to 485 nm) emitted from the blue LED element into yellow light (wavelength 550 nm to 650 nm) is used.
 このような蛍光体は、Y、Gd、Ce、Sm、Al、La、Gaの酸化物、または高温で容易に酸化物となる化合物を使用し、それらを化学量論比で十分に混合して混合原料を得る。或いは、Y、Gd、Ce、Smの希土類元素を化学量論比で酸に溶解した溶液をシュウ酸で共沈したものを焼成して得られる共沈酸化物と、酸化アルミニウム、酸化ガリウムとを混合して混合原料を得る。そして、得られた混合原料にフラックスとしてフッ化アンモニウム等のフッ化物を適量混合して加圧し、成形体を得る。得られた成形体を坩堝に詰め、空気中1350~1450℃の温度範囲で2~5時間焼成し、蛍光体の発光特性を持つ焼結体を得る。 Such phosphors use oxides of Y, Gd, Ce, Sm, Al, La, and Ga, or compounds that easily become oxides at high temperatures, and are mixed well in a stoichiometric ratio. A mixed raw material is obtained. Alternatively, a coprecipitated oxide obtained by calcining a solution obtained by coprecipitation of a solution obtained by dissolving a rare earth element of Y, Gd, Ce, or Sm in an acid with a stoichiometric ratio with oxalic acid, and aluminum oxide or gallium oxide. Mix to obtain a mixed raw material. Then, an appropriate amount of fluoride such as ammonium fluoride is mixed with the obtained mixed raw material as a flux and pressed to obtain a molded body. The obtained molded body is packed in a crucible and fired in air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a sintered body having the light emission characteristics of a phosphor.
 なお、本実施形態ではYAG蛍光体を使用しているが、蛍光体の種類はこれに限定されるものではなく、例えばCeを含まない非ガーネット系蛍光体等の他の蛍光体を使用することもできる。また、蛍光体の粒径が大きいほど発光効率(波長変換効率)は高くなる反面、有機金属化合物との界面に生じる隙間が大きくなって形成されたガラス体の膜強度が低下する。従って、発光効率と有機金属化合物との界面に生じる隙間の大きさを考慮し、平均粒径が1μm以上50μm以下のものを用いることが好ましい。蛍光体の平均粒径は、例えばコールターカウンター法によって測定することができる。 In this embodiment, the YAG phosphor is used. However, the type of the phosphor is not limited to this. For example, other phosphors such as non-garnet phosphors containing no Ce are used. You can also. In addition, the larger the particle size of the phosphor, the higher the light emission efficiency (wavelength conversion efficiency), but the gap generated at the interface with the organometallic compound becomes larger, and the film strength of the formed glass body decreases. Accordingly, in consideration of the size of the gap generated at the interface between the light emission efficiency and the organometallic compound, it is preferable to use one having an average particle diameter of 1 μm or more and 50 μm or less. The average particle diameter of the phosphor can be measured, for example, by a Coulter counter method.
 (層状ケイ酸塩鉱物)
 層状ケイ酸塩鉱物は、雲母構造、カオリナイト構造、スメクタイト構造等の構造を有する膨潤性粘土鉱物が好ましく、膨潤性に富むスメクタイト構造が特に好ましい。これは、後述するように混合液中に水を添加することで、スメクタイト構造の層間に水が進入して膨潤したカードハウス構造をとるため、混合液の粘性を大幅に増加させる効果があるためである。
(Layered silicate mineral)
The layered silicate mineral is preferably a swellable clay mineral having a structure such as a mica structure, a kaolinite structure, or a smectite structure, and particularly preferably a smectite structure rich in swellability. This is because, as will be described later, by adding water to the mixed liquid, it takes a card house structure in which water enters and swells between the layers of the smectite structure, so the viscosity of the mixed liquid is greatly increased. It is.
 ガラス体中における層状ケイ酸塩鉱物の含有量が0.5質量%未満になると混合液の粘性を増加させる効果が十分に得られない。一方、層状ケイ酸塩鉱物の含有量が20質量%を超えると加熱後のガラス体の強度が低下する。従って、層状ケイ酸塩鉱物の含有量は0.5質量%以上20質量%以下とすることが好ましく、0.5質量%以上10質量%以下がより好ましい。なお、有機溶媒との相溶性を考慮して、層状ケイ酸塩鉱物の表面をアンモニウム塩等で修飾(表面処理)したものを適宜用いることもできる。 If the content of the layered silicate mineral in the glass body is less than 0.5% by mass, the effect of increasing the viscosity of the mixed solution cannot be obtained sufficiently. On the other hand, when the content of the layered silicate mineral exceeds 20% by mass, the strength of the glass body after heating is lowered. Therefore, the content of the layered silicate mineral is preferably 0.5% by mass or more and 20% by mass or less, and more preferably 0.5% by mass or more and 10% by mass or less. In consideration of compatibility with an organic solvent, a layered silicate mineral whose surface is modified (surface treatment) with an ammonium salt or the like can be used as appropriate.
 (無機微粒子)
 無機微粒子は、有機金属化合物と、蛍光体及び層状ケイ酸塩鉱物との界面に生じる隙間を埋める充填効果、加熱前の混合液の粘性を増加させる増粘効果、及び加熱後のガラス体の膜強度を向上させる膜強化効果を有する。本発明に用いられる無機微粒子としては、酸化ケイ素、酸化チタン、酸化亜鉛等の酸化物微粒子、フッ化マグネシウム等のフッ化物微粒子等が挙げられる。特に、有機金属化合物としてポリシロキサン等の含ケイ素有機化合物を用いる場合、形成されるガラス体に対する安定性の観点から酸化ケイ素の微粒子を用いることが好ましい。
(Inorganic fine particles)
Inorganic fine particles include a filling effect that fills gaps formed at the interface between the organometallic compound, the phosphor and the layered silicate mineral, a thickening effect that increases the viscosity of the mixed liquid before heating, and a glass body film after heating. It has a film strengthening effect that improves strength. Examples of the inorganic fine particles used in the present invention include oxide fine particles such as silicon oxide, titanium oxide and zinc oxide, and fluoride fine particles such as magnesium fluoride. In particular, when a silicon-containing organic compound such as polysiloxane is used as the organometallic compound, it is preferable to use silicon oxide fine particles from the viewpoint of stability with respect to the formed glass body.
 ガラス体中における無機微粒子の含有量が0.5質量%未満になると上述したそれぞれの効果が十分に得られない。一方、無機微粒子の含有量が50質量%を超えると加熱後のガラス体の強度が低下する。従って、ガラス体中における無機微粒子の含有量は0.5質量%以上50質量%以下とすることが好ましく、1質量%以上40質量%以下がより好ましい。また、無機微粒子の平均粒径は、上述したそれぞれの効果を考慮して0.001μm以上50μm以下のものを用いることが好ましい。無機微粒子の平均粒径は、例えばコールターカウンター法によって測定することができる。なお、有機金属化合物や有機溶媒との相溶性を考慮して、無機微粒子の表面をシランカップリング剤やチタンカップリング剤で処理したものを適宜用いることもできる。 When the content of the inorganic fine particles in the glass body is less than 0.5% by mass, the above-described effects cannot be sufficiently obtained. On the other hand, when the content of the inorganic fine particles exceeds 50% by mass, the strength of the glass body after heating is lowered. Therefore, the content of the inorganic fine particles in the glass body is preferably 0.5% by mass or more and 50% by mass or less, and more preferably 1% by mass or more and 40% by mass or less. The average particle diameter of the inorganic fine particles is preferably 0.001 μm or more and 50 μm or less in consideration of the above-described effects. The average particle diameter of the inorganic fine particles can be measured, for example, by a Coulter counter method. In consideration of compatibility with an organic metal compound or an organic solvent, a material obtained by treating the surface of inorganic fine particles with a silane coupling agent or a titanium coupling agent can be used as appropriate.
 (前駆体溶液)
 前駆体溶液は、有機金属化合物を有機溶媒に混合したものであり、前駆体溶液を加熱することにより透光性のガラス体を得ることができる。この前駆体溶液に蛍光体、層状ケイ酸塩鉱物、及び無機微粒子を混合した混合液を加熱することで、ガラス体が形成される。さらに、混合液に水を添加することにより、層状ケイ酸塩鉱物の層間に水が入り込んで混合液の粘性が増加するため、蛍光体の沈降を抑制することができる。なお、水に不純物が含まれていると重合反応を阻害するおそれがあるため、添加する水は不純物を含まない純水を用いる必要がある。
(Precursor solution)
The precursor solution is a mixture of an organometallic compound in an organic solvent, and a translucent glass body can be obtained by heating the precursor solution. A glass body is formed by heating a mixed solution in which the precursor solution is mixed with a phosphor, a layered silicate mineral, and inorganic fine particles. Furthermore, by adding water to the mixed solution, water enters between the layers of the layered silicate mineral and the viscosity of the mixed solution increases, so that the phosphor can be prevented from settling. In addition, since there exists a possibility of inhibiting a polymerization reaction when the impurity is contained in water, it is necessary to use the pure water which does not contain an impurity for the water to add.
 有機溶媒としては、添加される水との相溶性に優れたメタノール、エタノール、プロパノール、ブタノール等のアルコール類が好ましい。また、有機溶媒に対する有機金属化合物の混合量が5質量%未満になると混合液の粘性を増加させることが困難となり、有機金属化合物の混合量が50質量%を超えると重合反応が必要以上に速く進んでしまう。そのため、有機溶媒に対する有機金属化合物の混合量は5質量%以上50質量%以下が好ましく、8質量%以上40質量%以下がより好ましい。 As the organic solvent, alcohols such as methanol, ethanol, propanol and butanol having excellent compatibility with added water are preferable. Further, when the amount of the organic metal compound mixed with the organic solvent is less than 5% by mass, it becomes difficult to increase the viscosity of the mixed solution, and when the amount of the organic metal compound exceeds 50% by mass, the polymerization reaction is faster than necessary. Proceed. Therefore, the mixing amount of the organometallic compound with respect to the organic solvent is preferably 5% by mass or more and 50% by mass or less, and more preferably 8% by mass or more and 40% by mass or less.
 混合液の調製手順としては、例えば、表面処理された親油性の層状ケイ酸塩鉱物を用いる場合は、先ず有機金属化合物を有機溶媒に混合した溶液(前駆体溶液)に層状ケイ酸塩鉱物を予備混合し、その後に蛍光体、無機微粒子、及び水を混合する。また、表面処理されていない親水性の層状ケイ酸塩鉱物を用いる場合は、先ず層状ケイ酸塩鉱物と水とを予備混合し、その後に蛍光体、無機微粒子、及び前駆体溶液を混合する。これにより、層状ケイ酸塩鉱物を均一に混合して増粘効果をより高めることができる。混合液の好ましい粘度は0.025~0.8Pa・sであり、最も好ましい粘度は0.03~0.5Pa・sである。 For example, when using a surface-treated lipophilic layered silicate mineral, the layered silicate mineral is first added to a solution (precursor solution) in which an organometallic compound is mixed in an organic solvent. Premixing is performed, and then phosphor, inorganic fine particles, and water are mixed. When a hydrophilic layered silicate mineral that has not been surface-treated is used, first the layered silicate mineral and water are premixed, and then the phosphor, inorganic fine particles, and precursor solution are mixed. Thereby, a layered silicate mineral can be mixed uniformly and the thickening effect can be heightened more. The preferred viscosity of the mixed solution is 0.025 to 0.8 Pa · s, and the most preferred viscosity is 0.03 to 0.5 Pa · s.
 また、有機溶媒に水を加えた総溶媒量に対する水の割合が5質量%未満になると上記の増粘効果を十分に得ることができず、水の割合が60質量%を超えると増粘効果よりも水の混合過多による粘度低下効果の方が大きくなる。そのため、水の割合は総溶媒量に対し5質量%以上60質量%以下が好ましく、7質量%以上55質量%以下がより好ましい。混合液の最も好ましい組成は、有機金属化合物としてポリシロキサンを用いたものであり、混合液中に含まれる上記各成分の最も好ましい組成範囲は、ポリシロキサン分散液が4~30質量%、層状ケイ酸塩鉱物が1~10質量%、無機微粒子が1~40質量%、水が10~50質量%である。 In addition, when the ratio of water to the total amount of the solvent obtained by adding water to the organic solvent is less than 5% by mass, the above thickening effect cannot be sufficiently obtained, and when the ratio of water exceeds 60% by mass, the thickening effect is achieved. The effect of reducing the viscosity due to excessive mixing of water is greater than that. Therefore, the ratio of water is preferably 5% by mass or more and 60% by mass or less, and more preferably 7% by mass or more and 55% by mass or less with respect to the total amount of solvent. The most preferable composition of the mixed solution is that using polysiloxane as the organometallic compound. The most preferable composition range of each of the above components contained in the mixed solution is that the polysiloxane dispersion is 4 to 30% by mass, and the layered silica is used. The acid salt mineral is 1 to 10% by mass, the inorganic fine particles are 1 to 40% by mass, and the water is 10 to 50% by mass.
 以上のようにして得られた混合液をLEDチップ10の表面12上に所定量塗布し、加熱、焼成して所定の膜厚のガラス体を形成する。混合液の塗布方法は特に限定されるものではなく、スピンコート法、ディップコート法、スプレーコート法及びバーコート法等、従来公知の種々の方法を用いることができる。加熱温度が50℃未満である場合は有機金属化合物の重合反応が進行せず、加熱温度が1000℃を超える場合は層状ケイ酸塩鉱物が熱分解して層状構造が破壊されてしまう。従って、混合液の加熱温度は50℃以上1000℃以下とする必要があり、100℃~600℃が好ましい。ただし、LEDチップ10が劣化しない温度に設定する必要がある。 A predetermined amount of the mixed liquid obtained as described above is applied onto the surface 12 of the LED chip 10, and heated and baked to form a glass body having a predetermined film thickness. The method for applying the mixed solution is not particularly limited, and various conventionally known methods such as spin coating, dip coating, spray coating, and bar coating can be used. When the heating temperature is less than 50 ° C., the polymerization reaction of the organometallic compound does not proceed. When the heating temperature exceeds 1000 ° C., the layered silicate mineral is thermally decomposed and the layered structure is destroyed. Therefore, the heating temperature of the mixed solution needs to be 50 ° C. or higher and 1000 ° C. or lower, and preferably 100 ° C. to 600 ° C. However, it is necessary to set the temperature at which the LED chip 10 does not deteriorate.
 また、形成されたガラス体の厚みが5μm未満である場合は波長変換効率が低下して十分な蛍光が得られず、ガラス体の厚みが500μmを超える場合は膜強度が低下してクラック等が発生し易くなる。従って、ガラス体の厚みは5μm以上500μm以下であることが好ましい。 Further, when the thickness of the formed glass body is less than 5 μm, the wavelength conversion efficiency is lowered and sufficient fluorescence cannot be obtained, and when the thickness of the glass body exceeds 500 μm, the film strength is reduced and cracks and the like are generated. It tends to occur. Therefore, the thickness of the glass body is preferably 5 μm or more and 500 μm or less.
 このとき、ガラス体に含まれる蛍光体と無機微粒子の粒径が形成されるガラス体の膜厚よりも大きいと、蛍光体または無機微粒子の一部がガラス体の表面から突出してしまい表面の平滑性が失われる。そのため、蛍光体及び無機微粒子は最大粒径がガラス体の膜厚よりも小さいものを用いる。 At this time, if the particle size of the phosphor and inorganic fine particles contained in the glass body is larger than the thickness of the glass body to be formed, a part of the phosphor or inorganic fine particles protrudes from the surface of the glass body and the surface is smooth. Sex is lost. Therefore, phosphors and inorganic fine particles having a maximum particle size smaller than the thickness of the glass body are used.
 こうして製造することで、蛍光体層30が透光性のガラス体で形成されるため、蛍光体層30を樹脂材料で形成した場合に比べて耐熱性や耐光性を向上させることができる。また、ガラス体の形成時に蛍光体が沈降しにくく、ガラス体中に蛍光体が均一に分散しているため、色むらの発生を効果的に低減することができる。さらに、無機微粒子を添加することによりガラス体の膜強度も向上する。 By manufacturing in this way, since the phosphor layer 30 is formed of a translucent glass body, heat resistance and light resistance can be improved as compared with the case where the phosphor layer 30 is formed of a resin material. In addition, since the phosphor is less likely to settle when the glass body is formed and the phosphor is uniformly dispersed in the glass body, the occurrence of color unevenness can be effectively reduced. Furthermore, the film strength of the glass body is improved by adding inorganic fine particles.
 一方、後者(溶媒成分を揮発させることにより、ゲル化することなく直接ガラス体が形成されるもの)としては、例えば、無機ポリマーと有機溶剤とを含む組成物が挙げられる。 On the other hand, examples of the latter (in which a glass body is directly formed without being gelled by volatilizing a solvent component) include, for example, a composition containing an inorganic polymer and an organic solvent.
 無機ポリマーとしては、ポリシラザンを使用できる。本発明で用いられるポリシラザンとは下記一般式(1)で表される。 Polysilazane can be used as the inorganic polymer. The polysilazane used in the present invention is represented by the following general formula (1).
   (RSiNR … (1)
 式(1)中、R、RおよびRはそれぞれ独立して水素原子またはアルキル基、アリール基、ビニル基、シクロアルキル基を表し、R、R、Rのうち少なくとも1つは水素原子であり、好ましくはすべてが水素原子であり、nは1~60の整数を表す。
(R 1 R 2 SiNR 3 ) n (1)
In formula (1), R 1 , R 2 and R 3 each independently represent a hydrogen atom or an alkyl group, an aryl group, a vinyl group or a cycloalkyl group, and at least one of R 1 , R 2 and R 3 Are hydrogen atoms, preferably all are hydrogen atoms, and n represents an integer of 1 to 60.
 ポリシラザンの分子形状はいかなる形状であってもよく、例えば、直鎖状または環状であってもよい。 The molecular shape of polysilazane may be any shape, for example, linear or cyclic.
 上記式(1)に示すポリシラザンと必要に応じた反応促進剤を、適切な溶媒に溶かして塗布し、加熱やエキシマ光処理、UV光処理を行うことで硬化し、耐熱性、耐光性の優れたセラミック膜を作成することができる。特に、170~230nmの範囲の波長成分を含むUVU放射線(例えばエキシマ光)を照射して硬化させた後に、加熱硬化を行うとさらに水分の浸透防止効果を向上させることができる。 The polysilazane represented by the above formula (1) and a reaction accelerator as required are dissolved in an appropriate solvent and then cured by heating, excimer light treatment, UV light treatment, and excellent heat resistance and light resistance. A ceramic film can be made. In particular, the effect of preventing penetration of moisture can be further improved by heat curing after irradiation with UVU radiation (eg, excimer light) containing a wavelength component in the range of 170 to 230 nm.
 反応促進剤としては酸、塩基などを用いることが好ましいが用いなくても良い。反応促進剤としては例えばトリエチルアミン、ジエチルアミン、N,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、塩酸、シュウ酸、フマル酸、スルホン酸、酢酸やニッケル、鉄、パラジウム、イリジウム、白金、チタン、アルミニウムを含む金属カルボン酸塩などが挙げられるがこれに限られない。 As the reaction accelerator, it is preferable to use an acid, a base or the like, but it is not necessary to use it. Examples of reaction accelerators include triethylamine, diethylamine, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, hydrochloric acid, oxalic acid, fumaric acid, sulfonic acid, acetic acid, nickel, iron, palladium , Metal carboxylates including iridium, platinum, titanium, and aluminum, but are not limited thereto.
 反応促進剤を用いる場合に特に好ましいのは金属カルボン酸塩であり、添加量はポリシラザンを基準にして0.01~5mol%が好ましい添加量である。 In the case of using a reaction accelerator, a metal carboxylate is particularly preferable, and the addition amount is preferably 0.01 to 5 mol% based on polysilazane.
 溶媒としては脂肪族炭化水素、芳香族炭化水素、ハロゲン炭化水素、エーテル類、エステル類を使用することができる。好ましくはメチルエチルケトン、テトラヒドロフラン、ベンゼン、トルエン、キシレン、ジメチルフルオライド、クロロホルム、四塩化炭素、エチルエーテル、イソプロピルエーテル、ジブチルエーテル、エチルブチルエーテルである。 As the solvent, aliphatic hydrocarbons, aromatic hydrocarbons, halogen hydrocarbons, ethers, and esters can be used. Preferred are methyl ethyl ketone, tetrahydrofuran, benzene, toluene, xylene, dimethyl fluoride, chloroform, carbon tetrachloride, ethyl ether, isopropyl ether, dibutyl ether, and ethyl butyl ether.
 また、ポリシラザン濃度は高い方が好ましいが、濃度の上昇はポリシラザンの保存期間の短縮につながるため、ポリシラザンは、溶媒中に5~50質量%以下で溶解していることが好ましい。 In addition, it is preferable that the polysilazane concentration is high. However, since an increase in the concentration leads to a shortening of the storage period of the polysilazane, the polysilazane is preferably dissolved in the solvent at 5 to 50% by mass or less.
 また、有機金属化合物や無機ポリマーを前駆体として使用した際に、焼成する際の加熱温度は、基板として用いられる材料等や配線の金属の劣化を抑制する観点からは100℃~350℃が好ましく、150℃~300℃とすることがより好ましい。 In addition, when an organometallic compound or an inorganic polymer is used as a precursor, the heating temperature at the time of firing is preferably 100 ° C. to 350 ° C. from the viewpoint of suppressing deterioration of the material used for the substrate and the metal of the wiring. More preferably, the temperature is 150 ° C to 300 ° C.
 また、ポリシラザンを用いる場合には、組成物に無機微粒子を含有することが好ましい。無機微粒子を含有することによって組成物の粘性が高くなるため、蛍光体を組成物に分散させる際の蛍光体の沈殿速度が低下し、組成物中に蛍光体を均一に分散させることが容易になる。例えば、シリカなどの各種酸化物の無機微粒子や、フッ化マグネシウムの無機微粒子などが好適である。ポリシラザンより形成されるガラス体との安定性の観点からは、シリカの無機微粒子を含有することが好ましい。無機微粒子は50%粒子径(メジアン径)が1nm~500nmであることが好ましい。無機微粒子の形状は、特に限定されるものではないが、好適には球状の微粒子が用いられる。また、粒径の分布に関しても特に制限されるものではないが、蛍光体を均一に分散させる観点からは、広範な分布を有するものよりも、比較的狭い分布を持つものが好適に用いられる。なお、無機微粒子の形状及び粒径分布は、SEM、TEMを用いて確認することができる。無機微粒子の含有量は蛍光体を含む組成物全体に対して0.1質量%~25質量%であることが好ましい。また、無機微粒子の蛍光体を更に均一に分散させるため、蛍光体を混合した組成物に超音波を印加して分散させることも好ましい。 In addition, when polysilazane is used, it is preferable that the composition contains inorganic fine particles. Since the viscosity of the composition is increased by containing inorganic fine particles, the precipitation rate of the phosphor when the phosphor is dispersed in the composition is reduced, and it is easy to uniformly disperse the phosphor in the composition. Become. For example, inorganic fine particles of various oxides such as silica and inorganic fine particles of magnesium fluoride are suitable. From the viewpoint of stability with a glass body formed from polysilazane, it is preferable to contain inorganic fine particles of silica. The inorganic fine particles preferably have a 50% particle diameter (median diameter) of 1 nm to 500 nm. The shape of the inorganic fine particles is not particularly limited, but preferably spherical fine particles are used. The particle size distribution is not particularly limited, but from the viewpoint of uniformly dispersing the phosphor, those having a relatively narrow distribution are preferably used rather than those having a wide distribution. The shape and particle size distribution of the inorganic fine particles can be confirmed using SEM and TEM. The content of the inorganic fine particles is preferably 0.1% by mass to 25% by mass with respect to the entire composition including the phosphor. In order to further uniformly disperse the phosphors of the inorganic fine particles, it is also preferable to apply ultrasonic waves to the composition in which the phosphors are mixed and disperse them.
 また、蛍光体層30を有するガラス板31をLEDチップ10の表面12に載置することで、蛍光体層30を供給してもよい。図2(c)は、蛍光体層30を有するガラス板31を、図1(b)の3つのLEDチップ10の表面12に跨るように載置した状態を示す図である。このように、蛍光体層30を有するガラス板31を用いて蛍光体層30を供給することで、所定量の蛍光体層30を確実かつ容易に供給することができる。また、図2(c)のように、1枚のガラス板31を、配列した複数のLEDチップ10の表面に跨るように載置することにより、蛍光体層30の供給をより容易に行うことができる。蛍光体層30を有するガラス板31としては、(A)内部に蛍光体を分散させた混錬ガラスや、(B)少なくとも一方の表面に蛍光体層30が塗布されたガラス板などを好適に用いることができる。 Alternatively, the phosphor layer 30 may be supplied by placing the glass plate 31 having the phosphor layer 30 on the surface 12 of the LED chip 10. FIG.2 (c) is a figure which shows the state which mounted the glass plate 31 which has the fluorescent substance layer 30 so that it might straddle the surface 12 of the three LED chips 10 of FIG.1 (b). Thus, by supplying the phosphor layer 30 using the glass plate 31 having the phosphor layer 30, a predetermined amount of the phosphor layer 30 can be reliably and easily supplied. In addition, as shown in FIG. 2C, the phosphor layer 30 can be supplied more easily by placing one glass plate 31 across the surface of the arrayed LED chips 10. Can do. As the glass plate 31 having the phosphor layer 30, (A) a kneaded glass in which the phosphor is dispersed inside, or (B) a glass plate in which the phosphor layer 30 is coated on at least one surface is suitably used. Can be used.
 (B)の方法の場合、上述のLEDチップ10の表面12に蛍光体層30を塗布する場合と同様の方法によって、ガラス板の表面に蛍光体層30を塗布、形成すればよい。 In the case of the method (B), the phosphor layer 30 may be applied and formed on the surface of the glass plate by the same method as that for applying the phosphor layer 30 to the surface 12 of the LED chip 10 described above.
 (A)の方法の場合、内部に蛍光体を分散させた混錬ガラスは、ガラス粉末と蛍光体粉末とを混合した混合材料を加圧成形することにより作製することが好ましい。それにより、ガラスの溶融プロセス中に蛍光体を混合する方法に比べて、熱による蛍光体の劣化、失活を抑制することができる。加圧成形の後、更に所定温度で焼成することにより緻密化させることも好ましい。 In the case of the method (A), the kneaded glass in which the phosphor is dispersed is preferably produced by pressure-molding a mixed material in which glass powder and phosphor powder are mixed. Thereby, deterioration and deactivation of the phosphor due to heat can be suppressed as compared with the method of mixing the phosphor during the glass melting process. It is also preferable to make it densified by firing at a predetermined temperature after the pressure molding.
 混合材料中には樹脂バインダを添加してもよいが、その場合、加圧成形後に樹脂バインダを除去する工程が必要となる。そのため、樹脂バインダを用いずに、ガラス粉末と蛍光体粉末とを混合して加圧成形することが好ましい。 In the mixed material, a resin binder may be added, but in that case, a step of removing the resin binder after pressure molding is required. Therefore, it is preferable to perform pressure molding by mixing glass powder and phosphor powder without using a resin binder.
 混合するガラス粉末の大きさは、最大粒子径が160μm以上、且つ、メジアン径d50が5μm以上であることが好ましい。それにより、樹脂バインダを用いなくても、蛍光体が均一に分散された混錬ガラスを得ることができる。加圧成形時に、最大粒子径が160μm以上である方が気泡が抜けやすい。最大粒子径が160μm未満では気泡が抜けにくくなる。また、メジアン径d50が5μm未満であると、型に紛体を投入する際、粉塵の舞い上がりが多くなり、取り扱いが困難となる。更に、作業環境を害する恐れも生じる。また、最大粒子径の上限は、良好な散乱光が得られる範囲であればよく、LEDチップや蛍光体の組み合わせに応じて適宜決めることができる。 The glass powder to be mixed preferably has a maximum particle size of 160 μm or more and a median diameter d50 of 5 μm or more. Thereby, kneaded glass in which the phosphor is uniformly dispersed can be obtained without using a resin binder. At the time of pressure molding, bubbles are more easily removed when the maximum particle size is 160 μm or more. If the maximum particle size is less than 160 μm, bubbles are difficult to escape. Further, when the median diameter d50 is less than 5 μm, when the powder is put into the mold, dust rises and handling becomes difficult. In addition, the work environment may be harmed. Moreover, the upper limit of the maximum particle diameter should just be a range from which favorable scattered light is obtained, and can be suitably determined according to the combination of a LED chip and fluorescent substance.
 ここで、メジアン径d50とは、粒子体の一つの集団の全体積を100%として累積曲線を求めた時、累積曲線が50%となる点の粒子径(累積平均径)であり、最大粒子径は累積曲線が100%となる点の粒子径である。これらのパラメータは、粒度分布を評価するパラメータの一つとして、一般的に利用されている。なお、メジアン径d50、最大粒子径は、一般的なレーザー回折・散乱式粒径測定装置を用いて測定可能であり、具体的には、HELOS(JEOL社製)、Microtrac HRA(日機装社製)、SALDシリーズ(島津製作所社製)などが挙げられる。特に好ましくは、SALDシリーズ(島津製作所社製)である。 Here, the median diameter d50 is a particle diameter (cumulative average diameter) at a point where the cumulative curve becomes 50% when the total curve of one group of particle bodies is 100%, and the maximum particle The diameter is the particle diameter at which the cumulative curve becomes 100%. These parameters are generally used as one of parameters for evaluating the particle size distribution. The median diameter d50 and the maximum particle diameter can be measured using a general laser diffraction / scattering particle size measuring device. Specifically, HELOS (manufactured by JEOL), Microtrac HRA (manufactured by Nikkiso) And SALD series (manufactured by Shimadzu Corporation). Particularly preferred is the SALD series (manufactured by Shimadzu Corporation).
 上記したように、ガラス粉末の粒子径を所定の大きさとすることで、蛍光体が均一に分散された混錬ガラスを得ることが可能となる。それにより、LEDチップが発光する一次光を良好に散乱し、ガラスを白乳化させる気泡の発生を抑制することができ、この一次光と蛍光体が発する二次光とを良好に混色して一様な混色光(第三光)で発光可能な混錬ガラスを製造することができる。 As described above, by setting the particle diameter of the glass powder to a predetermined size, it becomes possible to obtain a kneaded glass in which the phosphor is uniformly dispersed. Thereby, primary light emitted from the LED chip can be satisfactorily scattered, and generation of bubbles that emulsify the glass in white can be suppressed, and the primary light and secondary light emitted from the phosphor can be mixed well and mixed. A kneaded glass capable of emitting light with such mixed color light (third light) can be manufactured.
 また、ガラス粉末は、加圧成形の際の加熱環境下において結晶の析出がないか、もしくは、わずかに析出しても大量に析出しないものが好ましい。そのために、結晶析出温度が加熱温度よりも高いガラスが好ましい。例えば、加熱温度をガラス屈伏点より150℃~200℃高い温度とする場合は、結晶の析出温度がガラス屈伏点よりも200℃以上のものが好ましい。具体的には、P-BaO系ガラス、P-ZnO系ガラス、P-Nb系、P-B系ガラス、SiO系ガラス、B-ZnO-La系ガラス、SiO-B-ZnO系ガラスなどを好適に用いることができる。 Further, it is preferable that the glass powder does not precipitate crystals under the heating environment during pressure molding, or does not precipitate in a large amount even if slightly precipitated. Therefore, a glass having a crystal precipitation temperature higher than the heating temperature is preferable. For example, when the heating temperature is set to 150 ° C. to 200 ° C. higher than the glass yield point, the crystal precipitation temperature is preferably 200 ° C. or higher than the glass yield point. Specifically, P 2 O 5 —BaO glass, P 2 O 5 —ZnO glass, P 2 O 5 —Nb 2 O 5 glass, P 2 O 5 —B 2 O 3 glass, SiO 2 glass B 2 O 3 —ZnO—La 2 O 3 glass, SiO 2 —B 2 O 3 —ZnO glass, and the like can be preferably used.
 また、混錬ガラス中の蛍光体の含有量は体積比で、0.02~12%が好ましく、0.05~5%が更に好ましい。蛍光体の含有量が0.02%未満では、蛍光される光が少なくなりすぎ、12%を超えると蛍光体自身が光を遮蔽してしまう。このように、蛍光体の含有量が、0.02~12%であれば、変換される光の量が低すぎず、また、透光を阻害しない程度の量とすることができ、所望の混色光を発光可能な混錬ガラスを製造することができる。また、蛍光体の含有量が0.05~5%であれば、変換される光と透光とのバランスが更に良好になり、更に良好な混色光を発光可能な混錬ガラスを製造することができる。 Further, the phosphor content in the kneaded glass is preferably 0.02 to 12%, more preferably 0.05 to 5% in volume ratio. If the phosphor content is less than 0.02%, the amount of fluorescent light is too small, and if it exceeds 12%, the phosphor itself shields the light. Thus, if the phosphor content is 0.02 to 12%, the amount of light to be converted is not too low, and the amount of light that does not hinder the light transmission can be obtained. A kneaded glass capable of emitting mixed color light can be manufactured. In addition, when the phosphor content is 0.05 to 5%, the balance between the converted light and the light transmission is further improved, and a kneaded glass capable of emitting a better color mixture light is manufactured. Can do.
 なお、ここでは、LEDチップ載置工程の後に蛍光体層供給工程を行う場合を例に挙げて説明したが、LEDチップ載置工程と蛍光体層供給工程の順序はこれに限られるものではなく、蛍光体層供給工程の後にLEDチップ載置工程を行ってもよい。例えば、多数のLEDチップ10を配列させて蛍光体層30の供給を行った後、個々のLEDチップ10を下型60の上にそれぞれ載置する方法も好ましい。 In addition, although the case where the phosphor layer supplying process is performed after the LED chip mounting process is described as an example here, the order of the LED chip mounting process and the phosphor layer supplying process is not limited thereto. The LED chip mounting step may be performed after the phosphor layer supplying step. For example, it is also preferable to arrange each LED chip 10 on the lower mold 60 after arranging a large number of LED chips 10 and supplying the phosphor layer 30.
  (封止工程)
 LEDチップ載置工程と蛍光体層供給工程の後、蛍光体層30が供給されたLEDチップ10が載置された下型60の上に、下型60よりも高温の溶融ガラス滴44を滴下して固化させることにより蛍光体層30をガラス部材40で封止する。図3(a)~(c)は、封止工程における状態を順に示す模式図である。
(Sealing process)
After the LED chip placing step and the phosphor layer supplying step, a molten glass droplet 44 having a temperature higher than that of the lower die 60 is dropped on the lower die 60 on which the LED chip 10 supplied with the phosphor layer 30 is placed. Then, the phosphor layer 30 is sealed with the glass member 40 by solidifying. FIGS. 3A to 3C are schematic views sequentially showing the states in the sealing process.
 溶融ガラス滴44の滴下は、溶融状態のガラスを収容する溶融槽(不図示)に接続されたパイプ状の滴下ノズル41を、ヒータ42によって所定温度に加熱することにより行う。滴下ノズル41を所定温度に加熱すると、溶融ガラス43は自重によって滴下ノズル41の先端部に供給され、表面張力によって液滴状に溜まる(図3(a))。滴下ノズル41の先端部に溜まった溶融ガラス43が一定の質量になると、重力によって滴下ノズル41から分離し、溶融ガラス滴44となって下方に滴下する(図3(b))。 The dropping of the molten glass droplet 44 is performed by heating a pipe-shaped dropping nozzle 41 connected to a melting tank (not shown) containing molten glass to a predetermined temperature by a heater 42. When the dripping nozzle 41 is heated to a predetermined temperature, the molten glass 43 is supplied to the tip of the dripping nozzle 41 by its own weight and accumulates in a droplet shape by the surface tension (FIG. 3A). When the molten glass 43 collected at the tip of the dropping nozzle 41 reaches a certain mass, it is separated from the dropping nozzle 41 by gravity and becomes a molten glass droplet 44 that drops downward (FIG. 3B).
 滴下ノズル41から滴下する溶融ガラス滴44の質量は、滴下ノズル41の先端部の外径などによって調整可能であり、ガラスの種類等によるが、0.1g~2g程度の溶融ガラス滴44を滴下させることができる。重力のみによって滴下ノズル41から分離させる方法の他、溶融ガラス43を加圧して押し出す方法や、気流や振動等の外力を加えて分離させる方法でもよい。直接ガラスを流し込む方法に比べて、ガラス質量を小さくでき、質量の調整もしやすく、落下時に封止するガラス温度が下がるので、ガラス熱によるLEDチップへのダメージを緩和することができる。 The mass of the molten glass droplet 44 dropped from the dropping nozzle 41 can be adjusted by the outer diameter of the tip of the dropping nozzle 41 and the like, and depending on the type of glass, the molten glass droplet 44 of about 0.1 to 2 g is dropped. Can be made. In addition to the method of separating from the dropping nozzle 41 only by gravity, a method of pressurizing and extruding the molten glass 43 or a method of separating by applying an external force such as airflow or vibration may be used. Compared with the method of pouring glass directly, the glass mass can be reduced, the mass can be easily adjusted, and the glass temperature to be sealed at the time of dropping is lowered, so that damage to the LED chip due to glass heat can be alleviated.
 また、滴下ノズル41から滴下した溶融ガラス滴44を、一旦、貫通細孔を設けた部材に衝突させ、衝突した溶融ガラス滴44の一部を貫通細孔を通過させることによって微小化し、微小化された溶融ガラス滴44を滴下してもよい。このような方法を用いることによって、0.01g~0.1gといった微小な溶融ガラス滴44を得ることができるため、滴下ノズル41から滴下する溶融ガラス滴44をそのまま用いる場合よりも、微小な発光ダイオードユニットの製造が可能となる。貫通細孔部材を通過させることで、封止する滴下ガラス温度をさらに下げることができ、ガラス熱によるLEDチップへのダメージを緩和することができる。また、貫通細孔径、細孔形状、細孔長さを変更することで、さらに微小な滴下ガラス質量の制御が可能となる。 Further, the molten glass droplet 44 dropped from the dropping nozzle 41 is once collided with a member provided with a through-hole, and a part of the collided molten glass droplet 44 is passed through the through-pore, thereby miniaturizing. The molten glass droplet 44 may be dropped. By using such a method, it is possible to obtain a minute molten glass droplet 44 of 0.01 g to 0.1 g, and therefore, a light emission smaller than that when the molten glass droplet 44 dropped from the dropping nozzle 41 is used as it is. A diode unit can be manufactured. By passing through the through pore member, the temperature of the dropping glass to be sealed can be further lowered, and damage to the LED chip due to glass heat can be alleviated. Further, by changing the through-pore diameter, the pore shape, and the pore length, it is possible to further control the mass of the dropped glass.
 下型60は、予め所定の温度に加熱しておくことが好ましい。それにより、下型60の転写によって形成されるガラス部材の面の形状が安定する。所定の温度とは、滴下する溶融ガラス滴44の温度よりも低く、滴下した溶融ガラス滴44が冷却されて固化する温度であって、使用するガラスの種類等に応じて適宜選択すればよい。下型60の温度が低すぎると、転写によって形成されるガラス部材の面の形状が不安定となり、しわが発生しやすくなる。逆に、必要以上に温度を高くしすぎると、ガラスとの融着や表面の酸化等によって下型60の寿命が短くなり易い。これらの観点から、下型60の温度は、使用するガラスのガラス転移温度をTgとしたとき、Tg-100℃からTg+100℃の範囲に設定することが好ましく、Tg-100℃からTg+50℃の範囲に設定することがより好ましい。下型60を加熱するための加熱手段は、公知の加熱手段を適宜選択して用いることができる。例えば、赤外線加熱装置、高周波誘導加熱装置、下型60の内部に埋め込んで使用するカートリッジヒータ、下型60の外側に接触させて使用するシート状のヒータ、などが好適である。 The lower mold 60 is preferably heated to a predetermined temperature in advance. Thereby, the shape of the surface of the glass member formed by the transfer of the lower mold 60 is stabilized. The predetermined temperature is lower than the temperature of the molten glass droplet 44 to be dropped and is a temperature at which the dropped molten glass droplet 44 is cooled and solidified, and may be appropriately selected according to the type of glass to be used. If the temperature of the lower mold 60 is too low, the shape of the surface of the glass member formed by transfer becomes unstable, and wrinkles are likely to occur. On the other hand, if the temperature is set higher than necessary, the life of the lower mold 60 tends to be shortened due to fusion with the glass, surface oxidation, or the like. From these viewpoints, the temperature of the lower mold 60 is preferably set in the range of Tg-100 ° C. to Tg + 100 ° C., where Tg is the glass transition temperature of the glass used, and the range of Tg−100 ° C. to Tg + 50 ° C. It is more preferable to set to. As the heating means for heating the lower mold 60, a known heating means can be appropriately selected and used. For example, an infrared heating device, a high frequency induction heating device, a cartridge heater used by being embedded in the lower die 60, a sheet heater used by contacting the outside of the lower die 60, and the like are suitable.
 下型60の上に滴下した溶融ガラス滴44は、下型60等への熱伝導によって急速に冷却されて固化し、蛍光体層30がガラス部材40で封止され、発光ダイオードユニット50となる(図3(c))。溶融ガラス滴44のサイズ等によるが、通常は、溶融ガラス滴44が滴下してから数秒~数十秒で固化が完了する。 The molten glass droplet 44 dropped on the lower mold 60 is rapidly cooled and solidified by heat conduction to the lower mold 60 and the like, and the phosphor layer 30 is sealed with the glass member 40 to form the light emitting diode unit 50. (FIG. 3C). Depending on the size of the molten glass droplet 44 and the like, the solidification is usually completed several seconds to several tens of seconds after the molten glass droplet 44 is dropped.
 このように、本実施形態の方法によれば、LEDチップ10や蛍光体層30をヒータによって直接加熱する必要が無いため、これらの部材は溶融ガラス滴44からの熱伝導によって短時間昇温されるだけですみ、熱による劣化を十分に抑制することができる。また、非常に短時間で蛍光体層30の封止を完了することができる。更に、溶融ガラス滴44を滴下するだけで、高い圧力を加えること無く蛍光体層30をガラス部材40で封止できるため、圧力による部材の破損を抑制することができる。 Thus, according to the method of the present embodiment, since it is not necessary to directly heat the LED chip 10 and the phosphor layer 30 with the heater, these members are heated for a short time by heat conduction from the molten glass droplet 44. As a result, deterioration due to heat can be sufficiently suppressed. Further, the sealing of the phosphor layer 30 can be completed in a very short time. Furthermore, since the phosphor layer 30 can be sealed with the glass member 40 without applying a high pressure simply by dropping the molten glass droplet 44, damage to the member due to pressure can be suppressed.
 使用できるガラスの種類に特に制限は無く、公知のガラスを用途に応じて選択して用いることができる。例えば、ホウケイ酸塩ガラス、ケイ酸塩ガラス、リン酸塩ガラス、ランタン系ガラス等の光学ガラスが挙げられる。LEDチップ10の表面12における光の反射を抑制し、光の取り出し効率をより向上させる観点からは、LEDチップ10と屈折率の差が小さいガラスを用いることが好ましい。 There is no particular limitation on the type of glass that can be used, and a known glass can be selected and used depending on the application. Examples thereof include optical glasses such as borosilicate glass, silicate glass, phosphate glass, and lanthanum glass. From the viewpoint of suppressing light reflection on the surface 12 of the LED chip 10 and further improving the light extraction efficiency, it is preferable to use glass having a small difference in refractive index from the LED chip 10.
 (封止工程の変形例)
 図4(a)~(c)は、第1の実施形態における封止工程の変形例を示す模式図である。図4に示す封止工程の、図3に示した封止工程と異なるところは、下型60を角度θだけ傾斜させておき、この傾斜した下型60よりも高温の溶融ガラス滴44を、下型60の上に滴下するものである。その他は、図3で説明したものと同様である。
(Modification of sealing process)
4A to 4C are schematic views showing a modification of the sealing process in the first embodiment. The sealing step shown in FIG. 4 is different from the sealing step shown in FIG. 3 in that the lower mold 60 is inclined by an angle θ, and the molten glass droplet 44 having a temperature higher than that of the inclined lower mold 60 is It is dropped on the lower mold 60. Others are the same as those described in FIG.
 図4(a)、(b)に示す、溶融ガラス滴44を滴下するときの下型60の傾斜角θは、水平に対し0.1°~10°であることが好ましい。このように、下型60を傾斜させた状態で、溶融ガラス滴44を滴下するように構成することで、滴下時の下型60内の空気溜まりの発生を抑制できる。傾斜角θが10°より大きくなると、滴下した溶融ガラスの傾きやはみ出しが発生し、固化した後のガラス部材40の表面精度に悪影響を及ぼす場合がある。 4A and 4B, the tilt angle θ of the lower mold 60 when the molten glass droplet 44 is dropped is preferably 0.1 ° to 10 ° with respect to the horizontal. In this manner, by configuring the molten glass droplet 44 to be dropped while the lower die 60 is inclined, the occurrence of air pockets in the lower die 60 at the time of dropping can be suppressed. When the inclination angle θ is greater than 10 °, the dropped molten glass may be inclined or protruded, which may adversely affect the surface accuracy of the glass member 40 after solidification.
 なお、溶融ガラス滴44を滴下するときの下型60の傾斜角θは、3°~7°であればより好ましい。この角度範囲とすれば、滴下した溶融ガラスの傾きが発生せず、滴下時の下型60内の空気溜まりの発生が無くなり、より好ましい。 It should be noted that the inclination angle θ of the lower mold 60 when the molten glass droplet 44 is dropped is more preferably 3 ° to 7 °. If it is this angle range, the inclination of the dripped molten glass does not generate | occur | produce and the generation | occurrence | production of the air pocket in the lower mold | type 60 at the time of dripping does not occur, and is more preferable.
 図5は、本実施形態の方法で製造された発光ダイオードユニット50の断面図である。図5(a)~(c)は、それぞれ図2(a)~(c)に示したLEDチップ10等の上に溶融ガラス滴44を滴下して製造した発光ダイオードユニット50を示している。このように、本実施形態の方法で製造された発光ダイオードユニット50は、蛍光体層30がガラス部材40で封止されているため、LEDチップ10の発熱等による封止材料の劣化が抑制されると共に、高い取り出し効率を確保することができる。また、外部環境の影響による蛍光体層30の劣化も抑制され、耐久性に優れている。 FIG. 5 is a cross-sectional view of the light emitting diode unit 50 manufactured by the method of the present embodiment. 5A to 5C show a light emitting diode unit 50 manufactured by dropping a molten glass droplet 44 on the LED chip 10 or the like shown in FIGS. 2A to 2C, respectively. Thus, since the phosphor layer 30 is sealed with the glass member 40 in the light emitting diode unit 50 manufactured by the method of the present embodiment, deterioration of the sealing material due to heat generation of the LED chip 10 is suppressed. In addition, high extraction efficiency can be ensured. Further, deterioration of the phosphor layer 30 due to the influence of the external environment is suppressed, and the durability is excellent.
 ガラス部材40の表面45は、ゆるやかな凸形状となるが、滴下する溶融ガラス滴44の温度やサイズを変化させることで、表面45の凸の程度を調整することができる。例えば、滴下する溶融ガラス滴44の温度を高くすると粘度が下がり、ガラス部材40の表面45はより平坦な形状となる(曲率が小さくなる)。逆に、溶融ガラス滴44の温度を低くすると粘度が上がり、ガラス部材40の表面45はより凸が大きい形状となる(曲率が大きくなる)。このように溶融ガラス滴44を滴下する条件を変化させることで、ガラス部材40の表面45を、要求される集光特性に応じた適切な形状とすることができる。 The surface 45 of the glass member 40 has a gentle convex shape, but the degree of convexity of the surface 45 can be adjusted by changing the temperature and size of the molten glass droplet 44 to be dropped. For example, when the temperature of the molten glass droplet 44 to be dropped is increased, the viscosity is lowered, and the surface 45 of the glass member 40 has a flatter shape (the curvature is reduced). On the contrary, when the temperature of the molten glass droplet 44 is lowered, the viscosity increases, and the surface 45 of the glass member 40 has a shape with a larger convexity (the curvature increases). Thus, the surface 45 of the glass member 40 can be made into an appropriate shape according to the required condensing characteristic by changing the conditions for dropping the molten glass droplet 44.
 また、例えば図1(a)に示すように、LEDチップ10の裏面側の電極部11を下型60に接触させた状態で溶融ガラス滴44を滴下することにより、電極部11の下型60との接触面を、ガラス部材40に封止されずに露出した状態とすることができる(図4(a))。このように、電極部11の少なくとも一部が露出するようにガラス部材40による封止を行うことで、LEDチップ10へ給電するための電気的な接続を容易に行うことができる。 Also, for example, as shown in FIG. 1A, the lower mold 60 of the electrode unit 11 is dropped by dropping the molten glass droplet 44 in a state where the electrode unit 11 on the back surface side of the LED chip 10 is in contact with the lower mold 60. The contact surface can be exposed without being sealed by the glass member 40 (FIG. 4A). Thus, the electrical connection for supplying electric power to the LED chip 10 can be easily performed by sealing with the glass member 40 so that at least a part of the electrode portion 11 is exposed.
 溶融ガラス滴44が固化した後、電極部11の露出部分と、電極部11を介してLEDチップ10に給電するためのリード部21を有するパッケージ基板20のリード部21とを電気的に接続する工程を設け、パッケージ基板20と一体化した発光ダイオードユニット50を製造することも好ましい。図6は、パッケージ基板20と接続された発光ダイオードユニット50の断面図である。図6(a)~(c)は、図5(a)~(c)に示した発光ダイオードユニット50にパッケージ基板20を接続した場合をそれぞれ示している。 After the molten glass droplet 44 is solidified, the exposed portion of the electrode portion 11 is electrically connected to the lead portion 21 of the package substrate 20 having the lead portion 21 for supplying power to the LED chip 10 via the electrode portion 11. It is also preferable to manufacture the light emitting diode unit 50 integrated with the package substrate 20 by providing a process. FIG. 6 is a cross-sectional view of the light emitting diode unit 50 connected to the package substrate 20. FIGS. 6A to 6C show cases where the package substrate 20 is connected to the light emitting diode unit 50 shown in FIGS. 5A to 5C.
 パッケージ基板20は、電極部11を介してLEDチップ10に給電するためのリード部21を有している。パッケージ基板20の材質は、例えば、窒化アルミニウム、酸化アルミニウムなど、絶縁性の高いセラミック材料を用いることが好ましい。また、耐熱性樹脂や金属材料を用いてもよい。導電性の材料の場合は、表面に絶縁膜を設けることが好ましい。 The package substrate 20 has a lead portion 21 for supplying power to the LED chip 10 via the electrode portion 11. The material of the package substrate 20 is preferably a highly insulating ceramic material such as aluminum nitride or aluminum oxide. Further, a heat resistant resin or a metal material may be used. In the case of a conductive material, an insulating film is preferably provided on the surface.
 LEDチップ10の電極部11とパッケージ基板20のリード部21との接続には、通常のフリップチップボンディングの手法を用いればよい。例えば、リード部21の上に導電材料からなるバンプ(突起)を設けておき、高温のヒータ上にパッケージ基板20を固定し、画像処理によってLEDチップ10とパッケージ基板20の位置調整を行いながら荷重を加えて接続する方法などが挙げられる。接続の際、ヒータの熱と荷重の他、超音波を加えることも好ましい。また、上述のように、下型60に斜面62が設けられている場合には、ガラス部材に形成された斜面46を位置決め面として用いることで、位置調整のための画像処理等を不要とすることもできる。 For the connection between the electrode portion 11 of the LED chip 10 and the lead portion 21 of the package substrate 20, a normal flip chip bonding method may be used. For example, bumps (protrusions) made of a conductive material are provided on the lead portion 21, the package substrate 20 is fixed on a high-temperature heater, and the load is adjusted while adjusting the position of the LED chip 10 and the package substrate 20 by image processing. The method of connecting by adding. When connecting, it is also preferable to apply ultrasonic waves in addition to the heat and load of the heater. Further, as described above, in the case where the lower mold 60 is provided with the slope 62, the slope 46 formed on the glass member is used as a positioning surface, thereby eliminating the need for image processing or the like for position adjustment. You can also.
 〈第2の実施形態〉
 次に、第2の実施形態の発光ダイオードユニットの製造方法について図7、図8を参照して説明する。本実施形態の発光ダイオードユニットの製造方法は、第1の実施形態で説明したLEDチップ載置工程と蛍光体層供給工程の後、蛍光体層が供給されたLEDチップが載置された下型の上に、下型よりも高温の溶融ガラス滴を滴下し、滴下された溶融ガラス滴が固化する前に、下型に対向する上型で溶融ガラス滴を加圧してガラス部材を所定の形状に成形する工程(封止工程)を有している。LEDチップ載置工程と蛍光体層供給工程については上述の第1の実施形態の場合と同様であるため、ここではその後の封止工程について説明する。
<Second Embodiment>
Next, the manufacturing method of the light emitting diode unit of 2nd Embodiment is demonstrated with reference to FIG. 7, FIG. The manufacturing method of the light emitting diode unit of this embodiment is a lower mold in which the LED chip supplied with the phosphor layer is placed after the LED chip placing step and the phosphor layer supplying step described in the first embodiment. A molten glass droplet having a temperature higher than that of the lower mold is dropped on the upper mold, and the molten glass droplet is pressed with the upper mold facing the lower mold before the molten glass drop is solidified, so that the glass member has a predetermined shape. It has the process (sealing process) which shape | molds. Since the LED chip mounting step and the phosphor layer supplying step are the same as those in the first embodiment described above, the subsequent sealing step will be described here.
 図7(a)~(d)は、第2の実施形態における封止工程を順に示す模式図である。先ず、第1の実施形態の場合と同様に、蛍光体層30が供給されたLEDチップ10が載置された下型60の上に、下型60よりも高温の溶融ガラス滴44を滴下する(図7(a)、(b))。溶融ガラス滴44の滴下は、ヒータ42によって滴下ノズル41を所定温度に加熱することにより行う。溶融ガラス滴44の滴下方法の詳細については第1の実施形態の場合と同様である。 FIGS. 7A to 7D are schematic views sequentially showing the sealing process in the second embodiment. First, similarly to the case of the first embodiment, a molten glass droplet 44 having a temperature higher than that of the lower die 60 is dropped on the lower die 60 on which the LED chip 10 supplied with the phosphor layer 30 is placed. (FIGS. 7A and 7B). The molten glass droplet 44 is dropped by heating the dropping nozzle 41 to a predetermined temperature by the heater 42. The details of the dropping method of the molten glass droplet 44 are the same as in the case of the first embodiment.
 第2の実施形態における封止工程では、溶融ガラス滴44を滴下した後、下型60を上型70と対向する位置に移動し、溶融ガラス滴44が冷却されて固化する前に加圧し、ガラス部材40を所定の形状に成形する(図7(c))。溶融ガラス滴44は、下型60及び上型70への熱伝導によって急速に冷却され、短時間で固化してガラス部材40となる。加圧を解除した後、上型70を上方に移動し、得られた発光ダイオードユニット50を回収する(図7(d))。このように、本実施形態においては、滴下した溶融ガラス滴44を加圧して変形させるため、ガラスシートをLEDチップ10等の部材ごと加熱して加圧する場合に比べ、加圧の荷重を非常に小さく抑えることができ、また、非常に短い加圧時間で十分に変形させることができる。そのため、各部材の温度による劣化や圧力による破損を十分に抑制しながら、短時間で発光ダイオードユニット50を製造することができる。 In the sealing step in the second embodiment, after dropping the molten glass droplet 44, the lower mold 60 is moved to a position facing the upper mold 70, and the molten glass droplet 44 is pressurized before being cooled and solidified, The glass member 40 is formed into a predetermined shape (FIG. 7C). The molten glass droplet 44 is rapidly cooled by heat conduction to the lower mold 60 and the upper mold 70 and solidifies in a short time to become the glass member 40. After releasing the pressure, the upper mold 70 is moved upward, and the obtained light emitting diode unit 50 is recovered (FIG. 7D). Thus, in this embodiment, since the dropped molten glass droplet 44 is pressurized and deformed, the pressure load is much higher than when the glass sheet is heated and pressurized together with the members such as the LED chip 10. It can be kept small, and can be sufficiently deformed in a very short pressurization time. Therefore, the light emitting diode unit 50 can be manufactured in a short time while sufficiently suppressing deterioration due to temperature and damage due to pressure of each member.
 上型70の好ましい材質については、上述の下型60の材質と同様である。また、下型60と同様に、上型70も予め所定温度に加熱しておくことが好ましい。下型60と上型70の加熱温度は同じでもよいし、異なっていてもよい。 The preferred material of the upper mold 70 is the same as that of the lower mold 60 described above. Further, like the lower mold 60, the upper mold 70 is preferably preheated to a predetermined temperature. The heating temperature of the lower mold 60 and the upper mold 70 may be the same or different.
 溶融ガラス滴44を変形させるために加える荷重や加圧時間は、溶融ガラス滴44のサイズ等に応じて適宜設定すればよいが、通常は、数十~数百Nの範囲の荷重を数秒~数十秒の時間だけ加圧すれば十分な場合が多い。また、加える荷重は時間的に変化させてもよい。なお、荷重を印加するための手段に特に制限は無く、エアシリンダ、油圧シリンダ、サーボモータ等の公知の駆動手段を適宜選択して用いればよい。 The load applied to deform the molten glass droplet 44 and the pressurizing time may be appropriately set according to the size of the molten glass droplet 44, etc. Usually, a load in the range of several tens to several hundreds N is from several seconds to In many cases, it is sufficient to apply pressure for several tens of seconds. Further, the applied load may be changed with time. The means for applying the load is not particularly limited, and known driving means such as an air cylinder, a hydraulic cylinder, a servo motor, etc. may be appropriately selected and used.
 図8は、本実施形態の方法で製造された発光ダイオードユニット50の断面図である。図8(a)は、1つのLEDチップ10を有する発光ダイオードユニット50を示している。また、図8(b)と(c)は、3つのLEDチップ10がガラス部材40によって一体化された発光ダイオードユニット50を示している。 FIG. 8 is a cross-sectional view of the light emitting diode unit 50 manufactured by the method of the present embodiment. FIG. 8A shows a light emitting diode unit 50 having one LED chip 10. 8B and 8C show a light emitting diode unit 50 in which three LED chips 10 are integrated by a glass member 40. FIG.
 本実施形態の方法によれば、下型60に滴下された溶融ガラス滴44を上型70で成形することによってガラス部材40の表面45の形状を形成するため、用途に応じた所望の形状を容易に形成することができる。例えば、図8(a)の発光ダイオードユニット50のように、ガラス部材40の表面45を、非常に曲率が大きい凸形状とすることもできるし、図8(c)の発光ダイオードユニット50のように、複数のLEDチップ10に対応した複数の凸部が配列した形状とすることもできる。このように、従来知られているガラスシートをLEDチップ10等の部材ごと加熱して加圧する方法では長時間にわたって高温、高圧を加えなければ形成できないような形状であっても、非常に短時間、小さい圧力を加えるだけで形成することができる。 According to the method of the present embodiment, the shape of the surface 45 of the glass member 40 is formed by forming the molten glass droplet 44 dropped on the lower mold 60 with the upper mold 70, so that a desired shape corresponding to the application is formed. It can be formed easily. For example, like the light emitting diode unit 50 of FIG. 8A, the surface 45 of the glass member 40 can have a convex shape with a very large curvature, or like the light emitting diode unit 50 of FIG. 8C. In addition, a plurality of convex portions corresponding to the plurality of LED chips 10 may be arranged. In this way, even when the shape is such that it cannot be formed without applying high temperature and high pressure over a long period of time by a method of heating and pressing a conventionally known glass sheet together with the members such as the LED chip 10, it takes a very short time. It can be formed by applying a small pressure.
 なお、第1の実施形態の場合と同様に、溶融ガラス滴44が固化した後、LEDチップ10の電極部11とパッケージ基板20のリード部21とを、電気的に接続する工程を設け、パッケージ基板20と一体化した発光ダイオードユニット50を製造することも好ましい。 As in the case of the first embodiment, after the molten glass droplet 44 is solidified, a step of electrically connecting the electrode portion 11 of the LED chip 10 and the lead portion 21 of the package substrate 20 is provided, and the package It is also preferable to manufacture the light emitting diode unit 50 integrated with the substrate 20.
 (封止工程の変形例)
 図9(a)~(d)は、第2の実施形態における封止工程の変形例を示す模式図である。図9に示す封止工程の、図7に示した封止工程と異なるところは、図9(a)、(b)において、図4に示した第1の実施形態に係る封止工程の変形例と同様に、下型60を角度θだけ傾斜させておき、この傾斜した下型60よりも高温の溶融ガラス滴44を、下型60の上に滴下するものであり、その他は、図7で説明したものと同様である。
(Modification of sealing process)
FIGS. 9A to 9D are schematic views showing a modification of the sealing process in the second embodiment. 9 differs from the sealing process shown in FIG. 7 in FIGS. 9A and 9B in the modification of the sealing process according to the first embodiment shown in FIG. Similarly to the example, the lower mold 60 is inclined by the angle θ, and a molten glass droplet 44 having a temperature higher than that of the inclined lower mold 60 is dropped on the lower mold 60. This is the same as that described in.
 すなわち図9(a)、(b)に示すように、角度θだけ傾斜させた下型60上にパッケージ基板20よりも高温の溶融ガラス滴44を滴下する。次いで、溶融ガラス滴44が滴下された下型60を水平に戻し、下型60を上型70と対向する位置に移動し、溶融ガラス滴44が冷却されて固化する前に上型70で加圧し、ガラス部材40を所定の形状に成形する(図9(c))。この後は、図7と同様に、加圧を解除した後、上型70を上方に移動し、得られた発光ダイオードユニット50を回収する(図9(d))。 That is, as shown in FIGS. 9A and 9B, a molten glass droplet 44 having a temperature higher than that of the package substrate 20 is dropped on the lower mold 60 inclined by the angle θ. Next, the lower mold 60 on which the molten glass droplet 44 is dropped is returned to a horizontal position, the lower mold 60 is moved to a position facing the upper mold 70, and the molten glass droplet 44 is added by the upper mold 70 before being cooled and solidified. The glass member 40 is molded into a predetermined shape (FIG. 9C). Thereafter, similarly to FIG. 7, after releasing the pressurization, the upper mold 70 is moved upward, and the obtained light emitting diode unit 50 is recovered (FIG. 9D).
 図9(a)、(b)に示すように、溶融ガラス滴44を滴下するときの下型60の傾斜角θは、水平に対し0.1°~10°であることが好ましい。このように、下型60を傾斜させた状態で、溶融ガラス滴44を滴下し、下型60を水平に戻して、溶融ガラス滴44が冷却されて固化する前に上型70で加圧するように構成することで、滴下時の下型60内の空気溜まりの発生を抑制できる。傾斜角θが10°より大きくなると、滴下した溶融ガラスの傾きやはみ出しが発生し、上型70の成形面74により転写されるガラス部材の表面形状精度に悪影響を及ぼす場合がある。 As shown in FIGS. 9A and 9B, the inclination angle θ of the lower mold 60 when the molten glass droplet 44 is dropped is preferably 0.1 ° to 10 ° with respect to the horizontal. In this way, with the lower mold 60 tilted, the molten glass droplet 44 is dropped, the lower mold 60 is returned to the horizontal, and the molten glass droplet 44 is pressurized with the upper mold 70 before being cooled and solidified. By comprising in this, generation | occurrence | production of the air pocket in the lower mold | type 60 at the time of dripping can be suppressed. When the inclination angle θ is larger than 10 °, the dropped molten glass may be inclined or protruded, which may adversely affect the surface shape accuracy of the glass member transferred by the molding surface 74 of the upper mold 70.
 なお、溶融ガラス滴を滴下するときの下型60の傾斜角θは、3°~7°であればより好ましい。この角度範囲とすれば、滴下した溶融ガラスの傾きが発生せず、滴下時の下型60内の空気溜まりの発生が無くなり、成形面74により転写されるガラス部材の表面形状精度を、より好ましい状態とすることができる。 It should be noted that the inclination angle θ of the lower mold 60 when the molten glass droplet is dropped is more preferably 3 ° to 7 °. With this angle range, there is no tilt of the dropped molten glass, no air pool in the lower mold 60 is dropped, and the surface shape accuracy of the glass member transferred by the molding surface 74 is more preferable. State.
 〈第3の実施形態〉
 次に、第3の実施形態の発光ダイオードユニットの製造方法について図10を参照して説明する。本実施形態の発光ダイオードユニットの製造方法は、LEDチップの表面を下方に向けて上型に仮止めする工程(LEDチップ載置工程)と、LEDチップの表面に蛍光体層を供給する工程(蛍光体層供給工程)と、下型の上に、該下型よりも高温の溶融ガラス滴を滴下し、下型に滴下された溶融ガラス滴が固化する前に、LEDチップが仮止めされた上型で溶融ガラス滴を加圧して蛍光体をガラス部材で封止する工程(封止工程)と、を有している。
<Third Embodiment>
Next, the manufacturing method of the light emitting diode unit of 3rd Embodiment is demonstrated with reference to FIG. The manufacturing method of the light emitting diode unit according to the present embodiment includes a step of temporarily fixing the surface of the LED chip downward (LED chip mounting step) and a step of supplying a phosphor layer to the surface of the LED chip ( A phosphor layer supplying step), and a molten glass droplet having a temperature higher than that of the lower die is dropped on the lower die, and the LED chip is temporarily fixed before the molten glass droplet dropped on the lower die is solidified. And a step of sealing the phosphor with a glass member by pressurizing the molten glass droplet with the upper mold (sealing step).
 本実施形態におけるLEDチップ載置工程では、LEDチップ10の表面を下方に向けて上型70に仮止めする。仮止めには半田等を用いればよい。その他の詳細は第1の実施形態の場合と同様である。また、蛍光体層供給工程についても第1の実施形態の場合と同様である。 In the LED chip mounting step in the present embodiment, the surface of the LED chip 10 is temporarily fixed to the upper mold 70 with the surface facing downward. Solder or the like may be used for temporary fixing. Other details are the same as those in the first embodiment. The phosphor layer supplying step is the same as in the first embodiment.
 図10(a)~(d)は、第3の実施形態における封止工程を順に示す模式図である。先ず、所定の形状の成形面64を有する下型60の成形面64に、下型60よりも高温の溶融ガラス滴44を滴下する(図10(a)、(b))。溶融ガラス滴44の滴下は、ヒータ42によって滴下ノズル41を所定温度に加熱することにより行う。溶融ガラス滴44の滴下方法の詳細については第1の実施形態の場合と同様である。 FIGS. 10A to 10D are schematic views sequentially showing the sealing process in the third embodiment. First, a molten glass droplet 44 having a temperature higher than that of the lower mold 60 is dropped on the molding surface 64 of the lower mold 60 having the molding surface 64 of a predetermined shape (FIGS. 10A and 10B). The molten glass droplet 44 is dropped by heating the dropping nozzle 41 to a predetermined temperature by the heater 42. The details of the dropping method of the molten glass droplet 44 are the same as in the case of the first embodiment.
 次に、滴下された溶融ガラス滴44が冷却されて固化する前の所定のタイミングで、蛍光体層30が供給されたLEDチップ10が仮止めされた上型70で溶融ガラス滴44を加圧する(図10(c))。溶融ガラス滴44は、下型60及び上型70への熱伝導によって急速に冷却され、短時間で固化してガラス部材40となる。加圧を解除した後、上型70を上方に移動し、仮止めを外して発光ダイオードユニット50を回収する(図10(d))。 Next, at a predetermined timing before the dropped molten glass droplet 44 is cooled and solidified, the molten glass droplet 44 is pressurized with the upper mold 70 to which the LED chip 10 supplied with the phosphor layer 30 is temporarily fixed. (FIG. 10 (c)). The molten glass droplet 44 is rapidly cooled by heat conduction to the lower mold 60 and the upper mold 70 and solidifies in a short time to become the glass member 40. After releasing the pressure, the upper mold 70 is moved upward, the temporary fixing is removed, and the light emitting diode unit 50 is recovered (FIG. 10D).
 LEDチップ10が載置された上型70で溶融ガラス滴44を加圧するタイミングは、熱による蛍光体層30等の劣化を抑制するという観点からは遅い方が好ましいが、遅すぎると蛍光体層30等を封止するために必要な圧力が高くなってしまう。このような観点から、溶融ガラス滴44を下型60に滴下してから数秒~十数秒後に加圧することが好ましい。加える荷重や加圧時間は、第2の実施形態と同様、適宜設定すればよい。また、下型60及び上型70は予め所定の温度に加熱しておくことが好ましい。下型60及び上型70の温度や材質の詳細については、上述の第2の実施形態の場合と同様である。 The timing for pressurizing the molten glass droplet 44 with the upper die 70 on which the LED chip 10 is placed is preferably slower from the viewpoint of suppressing deterioration of the phosphor layer 30 and the like due to heat, but if too late, the phosphor layer The pressure required for sealing 30 etc. will become high. From such a viewpoint, it is preferable to pressurize several seconds to several tens of seconds after dropping the molten glass droplet 44 on the lower mold 60. What is necessary is just to set suitably the load and pressurization time to apply similarly to 2nd Embodiment. Moreover, it is preferable that the lower mold | type 60 and the upper mold | type 70 are previously heated to predetermined temperature. The details of the temperature and material of the lower mold 60 and the upper mold 70 are the same as in the case of the second embodiment described above.
 このように、本実施形態においては、所定の形状の成形面64に溶融ガラス滴44を滴下するため、高い圧力を加えること無く、ガラス部材40を所望の形状に形成することができる。また、LEDチップ10や蛍光体層30は、滴下された溶融ガラス滴44がある程度冷却された後の所定のタイミングで、溶融ガラス滴44に封入されることになるため、溶融ガラス滴44からの熱の影響を最小限に抑えることができる。従って、各部材の温度による劣化や圧力による破損を十分に抑制しながら、短時間で発光ダイオードユニット50を製造することができる。 Thus, in this embodiment, since the molten glass droplet 44 is dropped on the molding surface 64 having a predetermined shape, the glass member 40 can be formed in a desired shape without applying high pressure. The LED chip 10 and the phosphor layer 30 are sealed in the molten glass droplet 44 at a predetermined timing after the dropped molten glass droplet 44 is cooled to some extent. The influence of heat can be minimized. Accordingly, the light emitting diode unit 50 can be manufactured in a short time while sufficiently suppressing deterioration due to temperature and damage due to pressure of each member.
 10 LEDチップ
 11 電極部
 12 表面
 20 パッケージ基板
 21 リード部
 30 蛍光体層
 31 ガラス板
 40 ガラス部材
 41 滴下ノズル
 42 ヒータ
 43 溶融ガラス
 44 溶融ガラス滴
 45 表面
 46 斜面部
 50 発光ダイオードユニット
 60 下型
 62 斜面部
 64 成形面
 70 上型
 74 成形面
DESCRIPTION OF SYMBOLS 10 LED chip 11 Electrode part 12 Surface 20 Package board 21 Lead part 30 Phosphor layer 31 Glass plate 40 Glass member 41 Dripping nozzle 42 Heater 43 Molten glass 44 Molten glass droplet 45 Surface 46 Slope part 50 Light emitting diode unit 60 Lower mold 62 Slope Part 64 Molding surface 70 Upper mold 74 Molding surface

Claims (15)

  1.  表面から所定の波長の光を射出するLEDチップと、
     前記LEDチップから射出した光の波長を変換するための蛍光体と、
     前記蛍光体を封止するガラス部材と、を備えた発光ダイオードユニットの製造方法であって、
     下型の上に前記LEDチップを載置する工程と、
     前記LEDチップの前記表面に前記蛍光体を供給する工程と、
     前記蛍光体が供給された前記LEDチップが載置された前記下型の上に、該下型よりも高温の溶融ガラス滴を滴下して固化させることにより前記蛍光体をガラス部材で封止する工程と、を有することを特徴とする発光ダイオードユニットの製造方法。
    An LED chip that emits light of a predetermined wavelength from the surface;
    A phosphor for converting the wavelength of light emitted from the LED chip;
    A glass member for sealing the phosphor, and a manufacturing method of a light emitting diode unit comprising:
    Placing the LED chip on the lower mold;
    Supplying the phosphor to the surface of the LED chip;
    On the lower mold on which the LED chip supplied with the phosphor is mounted, a molten glass droplet having a temperature higher than that of the lower mold is dropped and solidified to seal the phosphor with a glass member. And a process for producing the light emitting diode unit.
  2.  前記下型の上に滴下された前記溶融ガラス滴が固化する前に、前記下型に対向する上型で前記溶融ガラス滴を加圧し、前記ガラス部材を所定の形状に成形することを特徴とする請求項1に記載の発光ダイオードユニットの製造方法。 Before the molten glass droplet dripped on the lower mold is solidified, the molten glass droplet is pressurized with an upper mold facing the lower mold, and the glass member is formed into a predetermined shape, The manufacturing method of the light emitting diode unit of Claim 1.
  3.  表面から所定の波長の光を射出するLEDチップと、
     前記LEDチップから射出した光の波長を変換するための蛍光体と、
     前記蛍光体を封止するガラス部材と、を備えた発光ダイオードユニットの製造方法であって、
     前記LEDチップの前記表面を下方に向けて上型に仮止めする工程と、
     前記LEDチップの前記表面に前記蛍光体を供給する工程と、
     前記上型に対向する下型の上に、該下型よりも高温の溶融ガラス滴を滴下する工程と、
     前記下型に滴下された前記溶融ガラス滴が固化する前に、前記LEDチップが仮止めされた前記上型で前記溶融ガラス滴を加圧し、前記蛍光体をガラス部材で封止する工程と、を有することを特徴とする発光ダイオードユニットの製造方法。
    An LED chip that emits light of a predetermined wavelength from the surface;
    A phosphor for converting the wavelength of light emitted from the LED chip;
    A glass member for sealing the phosphor, and a manufacturing method of a light emitting diode unit comprising:
    Temporarily fixing the upper surface of the LED chip with the surface facing downward;
    Supplying the phosphor to the surface of the LED chip;
    Dropping a molten glass droplet having a temperature higher than that of the lower mold on the lower mold facing the upper mold;
    Before the molten glass droplets dropped on the lower mold are solidified, pressurizing the molten glass drops with the upper mold on which the LED chip is temporarily fixed, and sealing the phosphor with a glass member; A method for producing a light-emitting diode unit, comprising:
  4.  前記LEDチップは、前記表面に対向する裏面側に電極部を有し、
     前記電極部の少なくとも一部が露出するように、前記ガラス部材による封止を行うことを特徴とする請求項1~3の何れか1項に記載の発光ダイオードユニットの製造方法。
    The LED chip has an electrode part on the back side facing the surface,
    The method for manufacturing a light-emitting diode unit according to any one of claims 1 to 3, wherein sealing with the glass member is performed so that at least a part of the electrode portion is exposed.
  5.  前記溶融ガラス滴が固化した後、前記電極部の露出部分と、前記電極部を介して前記LEDチップに給電するためのリード部を有するパッケージ基板の該リード部とを、電気的に接続する工程を有することを特徴とする請求項4に記載の発光ダイオードユニットの製造方法。 Step of electrically connecting the exposed portion of the electrode portion and the lead portion of the package substrate having a lead portion for supplying power to the LED chip through the electrode portion after the molten glass droplet is solidified The method of manufacturing a light emitting diode unit according to claim 4, wherein:
  6.  前記蛍光体の供給は、前記LEDチップの前記表面に前記蛍光体を塗布することにより行うことを特徴とする請求項1から5の何れか1項に記載の発光ダイオードユニットの製造方法。 The method of manufacturing a light emitting diode unit according to any one of claims 1 to 5, wherein the phosphor is supplied by applying the phosphor on the surface of the LED chip.
  7.  前記蛍光体の供給は、前記蛍光体を分散させた組成物を塗布して加熱することにより、前記LEDチップの表面に前記蛍光体を含むガラス体を形成することにより行うことを特徴とする請求項1から5の何れか1項に記載の発光ダイオードユニットの製造方法。 The supply of the phosphor is performed by forming a glass body containing the phosphor on the surface of the LED chip by applying and heating a composition in which the phosphor is dispersed. Item 6. The method for producing a light-emitting diode unit according to any one of Items 1 to 5.
  8.  前記組成物は、有機金属化合物、層状ケイ酸塩鉱物、無機微粒子、有機溶媒、及び水を含有することを特徴とする請求項7に記載の発光ダイオードユニットの製造方法。 The method for producing a light-emitting diode unit according to claim 7, wherein the composition contains an organometallic compound, a layered silicate mineral, inorganic fine particles, an organic solvent, and water.
  9.  前記有機金属化合物はポリシロキサンであり、前記層状ケイ酸塩鉱物はスメクタイトであることを特徴とする請求項8に記載の発光ダイオードユニットの製造方法。 The method of manufacturing a light-emitting diode unit according to claim 8, wherein the organometallic compound is polysiloxane and the layered silicate mineral is smectite.
  10.  前記組成物は無機ポリマーと有機溶剤とを含むことを特徴とする請求項7に記載の発光ダイオードユニットの製造方法。 The method for producing a light-emitting diode unit according to claim 7, wherein the composition contains an inorganic polymer and an organic solvent.
  11.  前記無機ポリマーはポリシラザンであることを特徴とする請求項10に記載の発光ダイオードユニットの製造方法。 The method for manufacturing a light emitting diode unit according to claim 10, wherein the inorganic polymer is polysilazane.
  12.  前記蛍光体の供給は、前記LEDチップの前記表面に、前記蛍光体を有するガラス板を載置することにより行うことを特徴とする請求項1から5の何れか1項に記載の発光ダイオードユニットの製造方法。 The light emitting diode unit according to claim 1, wherein the phosphor is supplied by placing a glass plate having the phosphor on the surface of the LED chip. Manufacturing method.
  13.  前記ガラス板は、内部に前記蛍光体を分散させた混錬ガラスであることを特徴とする請求項12に記載の発光ダイオードユニットの製造方法。 The method for manufacturing a light emitting diode unit according to claim 12, wherein the glass plate is a kneaded glass in which the phosphor is dispersed.
  14.  前記下型の上に複数の前記LEDチップを配列し、1滴の前記溶融ガラス滴を滴下して該複数のLEDチップを一体化することを特徴とする請求項1又は2に記載の発光ダイオードユニットの製造方法。 3. The light emitting diode according to claim 1, wherein a plurality of the LED chips are arranged on the lower mold, and the plurality of LED chips are integrated by dropping one drop of the molten glass drop. 4. Unit manufacturing method.
  15.  前記蛍光体の供給は、前記蛍光体を有する1枚のガラス板を、配列した複数の前記LEDチップの前記表面に跨るように載置することにより行うことを特徴とする請求項14に記載の発光ダイオードユニットの製造方法。 The said fluorescent substance is supplied by mounting one glass plate which has the said fluorescent substance so that it may straddle over the said surface of the some said arranged LED chip, It is characterized by the above-mentioned. Manufacturing method of light emitting diode unit.
PCT/JP2010/070786 2009-11-30 2010-11-22 Method for manufacturing light emitting diode unit WO2011065322A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-271224 2009-11-30
JP2009271224 2009-11-30
JP2010067519 2010-03-24
JP2010-067519 2010-03-24

Publications (1)

Publication Number Publication Date
WO2011065322A1 true WO2011065322A1 (en) 2011-06-03

Family

ID=44066427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070786 WO2011065322A1 (en) 2009-11-30 2010-11-22 Method for manufacturing light emitting diode unit

Country Status (1)

Country Link
WO (1) WO2011065322A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051281A1 (en) * 2011-10-07 2013-04-11 コニカミノルタアドバンストレイヤー株式会社 Led device manufacturing method and fluorescent material-dispersed solution used in same
WO2013051280A1 (en) * 2011-10-07 2013-04-11 コニカミノルタアドバンストレイヤー株式会社 Phosphor dispersion liquid, and production method for led device using same
WO2013054658A1 (en) * 2011-10-12 2013-04-18 コニカミノルタアドバンストレイヤー株式会社 Wavelength conversion element and method for manufacturing same, light-emitting device and method for manufacturing same, and liquid mixture
JP2013084796A (en) * 2011-10-11 2013-05-09 Konica Minolta Advanced Layers Inc Led device, manufacturing method of the same, and phosphor dispersion liquid used for the same
CN103165797A (en) * 2013-03-13 2013-06-19 上海大学 Preformed phosphor thin film for white light-emitting diode (LED) thin film packaging and preparation method for thin film
JP2013166886A (en) * 2012-02-16 2013-08-29 Konica Minolta Inc Method for producing phosphor dispersion and method for producing led device by using the same
US8822032B2 (en) 2010-10-28 2014-09-02 Corning Incorporated Phosphor containing glass frit materials for LED lighting applications
JP2015001158A (en) * 2013-06-13 2015-01-05 株式会社日本自動車部品総合研究所 Optical element sealing structure, manufacturing method therefor, and laser ignition device
US9011720B2 (en) 2012-03-30 2015-04-21 Corning Incorporated Bismuth borate glass encapsulant for LED phosphors
US9202996B2 (en) 2012-11-30 2015-12-01 Corning Incorporated LED lighting devices with quantum dot glass containment plates
US10017849B2 (en) 2012-11-29 2018-07-10 Corning Incorporated High rate deposition systems and processes for forming hermetic barrier layers
US10096753B2 (en) 2013-08-07 2018-10-09 Nichia Corporation Light emitting device
US10158057B2 (en) 2010-10-28 2018-12-18 Corning Incorporated LED lighting devices
US10439109B2 (en) 2013-08-05 2019-10-08 Corning Incorporated Luminescent coatings and devices

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292327A (en) * 2002-04-01 2003-10-15 Minolta Co Ltd Method for producing optical element
JP2004153109A (en) * 2002-10-31 2004-05-27 Matsushita Electric Works Ltd Light emitting device and manufacturing method thereof
JP2004304161A (en) * 2003-03-14 2004-10-28 Sony Corp Light emitting element and device, image display device and method for manufacturing light emitting element and image display device
JP2004339039A (en) * 2003-05-19 2004-12-02 Minolta Co Ltd Optical element manufacturing method
JP2005079540A (en) * 2003-09-03 2005-03-24 Matsushita Electric Works Ltd Light emitting element and its manufacturing method
JP2005303285A (en) * 2004-03-18 2005-10-27 Showa Denko Kk Group iii nitride semiconductor light emitting element, its manufacturing method, and led lamp
JP2008034546A (en) * 2006-07-27 2008-02-14 Nichia Chem Ind Ltd Light-emitting device
JP2008124153A (en) * 2006-11-09 2008-05-29 Toyoda Gosei Co Ltd Light-emitting device, and its manufacturing method
JP2008244357A (en) * 2007-03-28 2008-10-09 Toshiba Corp Semiconductor light-emitting device
JP2009256670A (en) * 2008-03-28 2009-11-05 Mitsubishi Chemicals Corp Curable polysiloxane composition and polysiloxane cured material using the same, optical member and component for aerospace and aircraft industry including the cured material, semiconductor light emitter with the optical member, and illminating device and image display device provided with the emitter

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292327A (en) * 2002-04-01 2003-10-15 Minolta Co Ltd Method for producing optical element
JP2004153109A (en) * 2002-10-31 2004-05-27 Matsushita Electric Works Ltd Light emitting device and manufacturing method thereof
JP2004304161A (en) * 2003-03-14 2004-10-28 Sony Corp Light emitting element and device, image display device and method for manufacturing light emitting element and image display device
JP2004339039A (en) * 2003-05-19 2004-12-02 Minolta Co Ltd Optical element manufacturing method
JP2005079540A (en) * 2003-09-03 2005-03-24 Matsushita Electric Works Ltd Light emitting element and its manufacturing method
JP2005303285A (en) * 2004-03-18 2005-10-27 Showa Denko Kk Group iii nitride semiconductor light emitting element, its manufacturing method, and led lamp
JP2008034546A (en) * 2006-07-27 2008-02-14 Nichia Chem Ind Ltd Light-emitting device
JP2008124153A (en) * 2006-11-09 2008-05-29 Toyoda Gosei Co Ltd Light-emitting device, and its manufacturing method
JP2008244357A (en) * 2007-03-28 2008-10-09 Toshiba Corp Semiconductor light-emitting device
JP2009256670A (en) * 2008-03-28 2009-11-05 Mitsubishi Chemicals Corp Curable polysiloxane composition and polysiloxane cured material using the same, optical member and component for aerospace and aircraft industry including the cured material, semiconductor light emitter with the optical member, and illminating device and image display device provided with the emitter

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10158057B2 (en) 2010-10-28 2018-12-18 Corning Incorporated LED lighting devices
US8822032B2 (en) 2010-10-28 2014-09-02 Corning Incorporated Phosphor containing glass frit materials for LED lighting applications
JPWO2013051280A1 (en) * 2011-10-07 2015-03-30 コニカミノルタ株式会社 Phosphor dispersion liquid and method for manufacturing LED device using the same
WO2013051281A1 (en) * 2011-10-07 2013-04-11 コニカミノルタアドバンストレイヤー株式会社 Led device manufacturing method and fluorescent material-dispersed solution used in same
WO2013051280A1 (en) * 2011-10-07 2013-04-11 コニカミノルタアドバンストレイヤー株式会社 Phosphor dispersion liquid, and production method for led device using same
US9318646B2 (en) 2011-10-07 2016-04-19 Konica Minolta, Inc. LED device manufacturing method and fluorescent material-dispersed solution used in same
JPWO2013051281A1 (en) * 2011-10-07 2015-03-30 コニカミノルタ株式会社 Manufacturing method of LED device and phosphor dispersion used therefor
EP2752898A4 (en) * 2011-10-07 2015-09-09 Konica Minolta Inc Phosphor dispersion liquid, and production method for led device using same
US9184352B2 (en) 2011-10-07 2015-11-10 Konica Minolta, Inc. Phosphor dispersion liquid, and production method for LED device using same
EP2752897A4 (en) * 2011-10-07 2015-04-29 Konica Minolta Inc Led device manufacturing method and fluorescent material-dispersed solution used in same
JP2013084796A (en) * 2011-10-11 2013-05-09 Konica Minolta Advanced Layers Inc Led device, manufacturing method of the same, and phosphor dispersion liquid used for the same
WO2013054658A1 (en) * 2011-10-12 2013-04-18 コニカミノルタアドバンストレイヤー株式会社 Wavelength conversion element and method for manufacturing same, light-emitting device and method for manufacturing same, and liquid mixture
JPWO2013054658A1 (en) * 2011-10-12 2015-03-30 コニカミノルタ株式会社 Wavelength conversion element and manufacturing method thereof, light emitting device and manufacturing method thereof, mixed liquid
JP2013166886A (en) * 2012-02-16 2013-08-29 Konica Minolta Inc Method for producing phosphor dispersion and method for producing led device by using the same
US9011720B2 (en) 2012-03-30 2015-04-21 Corning Incorporated Bismuth borate glass encapsulant for LED phosphors
US9624124B2 (en) 2012-03-30 2017-04-18 Corning Incorporated Bismuth borate glass encapsulant for LED phosphors
US10023492B2 (en) 2012-03-30 2018-07-17 Corning Incorporated Bismuth borate glass encapsulant for LED phosphors
US10017849B2 (en) 2012-11-29 2018-07-10 Corning Incorporated High rate deposition systems and processes for forming hermetic barrier layers
US9202996B2 (en) 2012-11-30 2015-12-01 Corning Incorporated LED lighting devices with quantum dot glass containment plates
CN103165797A (en) * 2013-03-13 2013-06-19 上海大学 Preformed phosphor thin film for white light-emitting diode (LED) thin film packaging and preparation method for thin film
JP2015001158A (en) * 2013-06-13 2015-01-05 株式会社日本自動車部品総合研究所 Optical element sealing structure, manufacturing method therefor, and laser ignition device
US10439109B2 (en) 2013-08-05 2019-10-08 Corning Incorporated Luminescent coatings and devices
US10096753B2 (en) 2013-08-07 2018-10-09 Nichia Corporation Light emitting device

Similar Documents

Publication Publication Date Title
WO2011065322A1 (en) Method for manufacturing light emitting diode unit
US8425271B2 (en) Phosphor position in light emitting diodes
US9318646B2 (en) LED device manufacturing method and fluorescent material-dispersed solution used in same
JP5334573B2 (en) Light emission conversion type LED
US9112122B2 (en) Light-emitting device and method for manufacturing same
WO2010140417A1 (en) Method for producing glass member for wavelength conversion
DE102007016228A1 (en) Process for the production of phosphors based on orthosilicates for pcLEDs
WO2012124426A1 (en) Method for manufacturing light emitting device and mixed phosphor solution
WO2011065321A1 (en) Method for manufacturing light emitting diode unit
JP2012234947A (en) Resin package for semiconductor light-emitting device, semiconductor light-emitting device having the resin package and method for manufacturing the same
JP5768816B2 (en) Wavelength conversion element and method for manufacturing the same, light emitting device and method for manufacturing the same
JP5803541B2 (en) LED device, manufacturing method thereof, and phosphor dispersion used therefor
JP5617372B2 (en) Substrate with reduced warpage, light emitting device using the same, and manufacturing method thereof
JP5880566B2 (en) LED device
JP5515946B2 (en) Manufacturing method of light emitting diode unit
JP2014130903A (en) Semiconductor light-emitting device and manufacturing method of the same
JP2011155188A (en) Method for manufacturing light-emitting diode unit
JP2011155187A (en) Method for manufacturing light-emitting diode unit
WO2013054658A1 (en) Wavelength conversion element and method for manufacturing same, light-emitting device and method for manufacturing same, and liquid mixture
WO2012090966A1 (en) Light emitting device and method for manufacturing same
JP5617371B2 (en) Substrate with reduced warpage, light emitting device using the same, and manufacturing method thereof
JP5765428B2 (en) Manufacturing method of LED device
JP2013026590A (en) Light-emitting device manufacturing method
JP2013165223A (en) Wavelength conversion element and manufacturing method thereof, light-emitting device and manufacturing method thereof, and phosphor dispersion liquid
JP5617737B2 (en) Light emitting device manufacturing method, light emitting device, and phosphor particle dispersion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10833168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10833168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP