WO2013046674A1 - Led device manufacturing method - Google Patents

Led device manufacturing method Download PDF

Info

Publication number
WO2013046674A1
WO2013046674A1 PCT/JP2012/006161 JP2012006161W WO2013046674A1 WO 2013046674 A1 WO2013046674 A1 WO 2013046674A1 JP 2012006161 W JP2012006161 W JP 2012006161W WO 2013046674 A1 WO2013046674 A1 WO 2013046674A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
led chip
led
layer
particles
Prior art date
Application number
PCT/JP2012/006161
Other languages
French (fr)
Japanese (ja)
Inventor
貴志 鷲巣
卓史 波多野
禄人 田口
Original Assignee
コニカミノルタアドバンストレイヤー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタアドバンストレイヤー株式会社 filed Critical コニカミノルタアドバンストレイヤー株式会社
Priority to JP2013535920A priority Critical patent/JP5765428B2/en
Publication of WO2013046674A1 publication Critical patent/WO2013046674A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the present invention relates to a method for manufacturing an LED device.
  • a light-emitting element (LED element) using an LED chip has been increasingly applied to various uses as the light-emitting element has increased brightness and demand for energy saving.
  • LED element a white LED element that emits white light by combining blue light and yellow light by combining a blue LED chip and a phosphor that emits yellow light by receiving blue light is known.
  • white LED elements have come to be used as lighting for electric lights that require white light, backlights for liquid crystal display devices, and the like.
  • a white LED element that combines an LED chip and a phosphor a white LED is formed by further combining an LED chip that emits ultraviolet light and a phosphor that emits blue, green, and red light by ultraviolet light.
  • a white LED element, a white LED element that emits white light by combining an LED chip that emits blue light and a phosphor that emits red and green light has been studied.
  • an illumination configuration combining an LED and a phosphor a configuration in which an LED chip is sealed with a cured resin layer in which the phosphor is dispersed has been developed.
  • the illuminating device in which the LED chip is sealed with the cured resin layer as described above is applied to an illuminating device (such as an automobile headlight) that requires high brightness, the cured resin layer may be thermally deteriorated. This is because the amount of heat generated from the LED chip increases.
  • the phosphor in the LED element is disposed selectively in a necessary position, that is, on the LED chip.
  • a method such as a dispenser or an ink jet.
  • the particle diameter of the phosphor particles is generally 10 ⁇ m to 20 ⁇ m, there is a possibility that nozzle clogging of the ink jet head may occur when the phosphor dispersion liquid is applied using the ink jet method.
  • nozzle clogging is prevented, but application accuracy is reduced, and application to unnecessary portions occurs.
  • the first of the present invention relates to a method for manufacturing an LED device shown below.
  • the manufacturing method of the LED device which has a fluorescent substance layer including the process of removing the said fluorescent substance.
  • a phosphor layer can be selectively formed on a specific part including the LED chip. Therefore, in the LED device of the present invention, the light emitted from the LED chip (excitation light) can be uniformly applied to the phosphor. Therefore, it is possible to provide an LED device that emits light with no color unevenness.
  • the LED device (semiconductor light-emitting device) of the present invention includes an LED light-emitting element and a phosphor layer.
  • FIG. 1 is a cross-sectional view illustrating an example of the LED device 100.
  • the LED light emitting element connects a package (LED substrate) 1 having a recess 11, a metal part (metal wiring) 2, an LED chip 3 disposed in the recess 11 of the package 1, and the metal part 2 and the LED chip 3.
  • the aspect which connects the metal part 2 and LED chip 3 via the protruding electrode 4 is called flip chip type.
  • Package 1 is, for example, liquid crystal polymer or ceramic, but the material is not particularly limited as long as it has insulation and heat resistance.
  • the LED chip 3 is, for example, a blue LED.
  • blue LED configurations include an n-GaN compound semiconductor layer (cladding layer), an InGaN compound semiconductor layer (light emitting layer), and a p-GaN compound semiconductor layer (cladding layer) stacked on the LED substrate 1. ) And a transparent electrode layer.
  • the LED chip 3 has a surface of 200 to 300 ⁇ m ⁇ 200 to 300 ⁇ m, for example, and the height of the LED chip 3 is 50 to 200 ⁇ m.
  • one LED chip 3 is disposed in the recess 11 of the package 1; however, a plurality of LED chips 3 may be disposed in the recess 11 of the package 1.
  • the LED device 100 includes a phosphor layer 6 that covers the light emitting surface of the LED chip 3.
  • the phosphor layer 6 is a ceramic layer including phosphor particles and ceramic as a binder, and may further include tabular particles, oxide fine particles, aluminum silicate (imogolite), and the like. As shown in FIG. 1, the phosphor layer 6 only needs to selectively cover the light emitting surface of the LED chip 3 (the upper surface and the side surface of the LED chip 3). As described above, the phosphor layer 6 is selectively formed on the surface of the LED chip 3 and is not formed on the entire inside of the recess 11 of the package 1.
  • the phosphor layer 6 is a layer that receives light (excitation light) emitted from the LED chip 3 and emits fluorescence. By mixing excitation light and fluorescence, light of a desired color is emitted from the LED device 100. For example, if the light from the LED chip 3 is blue and the fluorescence from the phosphor layer 6 is yellow, the LED device 100 can be a white LED light-emitting device.
  • the phosphor particles contained in the phosphor layer 6 are excited by the wavelength (excitation wavelength) of light emitted from the LED of the LED chip 3, and emit fluorescence having a wavelength different from the excitation wavelength.
  • the phosphor particles emit yellow fluorescence, thereby obtaining a white LED element.
  • Examples of phosphors that emit yellow fluorescence include YAG (yttrium, aluminum, garnet) phosphors.
  • the YAG phosphor can emit excitation light composed of blue light (wavelength 420 nm to 485 nm) emitted from the blue LED chip and emit yellow light (wavelength 550 nm to 650 nm).
  • phosphors can be obtained by, for example, 1) mixing an appropriate amount of a fluoride such as ammonium fluoride as a flux into a mixed raw material having a predetermined composition and pressurizing it to obtain a molded body, and 2) placing the obtained molded body in a crucible. It can be manufactured by packing and firing in air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a sintered body.
  • a fluoride such as ammonium fluoride
  • a mixed raw material having a predetermined composition is obtained by sufficiently mixing the oxides of Y, Gd, Ce, Sm, Al, La, and Ga, or compounds that easily become oxides at high temperatures in a stoichiometric ratio. Can do.
  • the mixed raw material having a predetermined composition is a coprecipitation oxidation obtained by firing a solution obtained by dissolving a rare earth element of Y, Gd, Ce, and Sm in an acid in a stoichiometric ratio and coprecipitating with oxalic acid. It can be obtained by mixing a material with aluminum oxide and gallium oxide.
  • the kind of the phosphor is not limited to the YAG phosphor, and other phosphors such as a non-garnet phosphor not containing Ce can also be used.
  • the average primary particle diameter of the phosphor particles is preferably 1 ⁇ m or more and 50 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • the larger the average primary particle size of the phosphor the higher the light emission efficiency (wavelength conversion efficiency).
  • the average primary particle size of the phosphor is too large, a gap generated at the interface between the phosphor and the binder in the phosphor layer is increased, and the film strength of the phosphor layer is decreased.
  • the average primary particle diameter of the phosphor is a value of D50 measured by a laser diffraction particle size distribution meter.
  • An example of a laser diffraction particle size distribution analyzer is a laser diffraction particle size distribution measuring device manufactured by Shimadzu Corporation.
  • the concentration of the phosphor in the ceramic layer constituting the phosphor layer 6 is the sum of the mass of the phosphor contained therein, the mass of the tabular particles, the mass of the oxide fine particles, and the mass of the ceramic as the binder. On the other hand, it is preferably 60% by mass or more and 95% by mass or less. Basically, the higher the concentration of the phosphor particles in the phosphor particle-containing ceramic layer, the better. This is because if the concentration of the phosphor in the ceramic layer is increased, the content ratio of the ceramic serving as the binder is lowered, and therefore the distribution of the phosphor particles in the ceramic layer tends to be uniform. Further, when the concentration of the phosphor is increased, a necessary amount of the phosphor can be disposed in the LED device even if the ceramic layer is thinned.
  • the concentration of the phosphor particles in the ceramic layer is high, the phosphor particles come into close contact with each other, so that the film strength of the ceramic layer can be increased. Furthermore, if the concentration of the phosphor particles in the ceramic layer is high, heat generated from the phosphor is easily dissipated from the ceramic layer.
  • the concentration of the phosphor in the ceramic layer is too high (greater than 95% by mass), the content ratio of the binder may be extremely lowered, and the phosphor particles may not be bound to each other.
  • the concentration of the phosphor particles in the ceramic layer constituting the phosphor layer 6 can be obtained from the composition of the phosphor dispersion liquid used for forming the film.
  • Tabular grains Typical examples of tabular grains that can be contained in the ceramic layer constituting the phosphor layer 6 include layered clay mineral fine particles.
  • the main component of the layered clay mineral fine particles is a layered silicate mineral, preferably a swellable clay mineral having a mica structure, a kaolinite structure, a smectite structure, etc., and a swellable clay mineral having a smectite structure rich in swelling properties. More preferred. Since the layered clay mineral fine particles have a flat plate shape, the film strength of the ceramic layer constituting the phosphor layer 6 can be improved.
  • a phosphor dispersion is applied to form a ceramic layer.
  • the viscosity of the phosphor dispersion liquid is increased, and sedimentation of the phosphor in the phosphor dispersion liquid is suppressed.
  • the tabular grains exist as a card house structure in the phosphor dispersion liquid, and the viscosity of the phosphor dispersion liquid can be significantly increased with a small amount.
  • the content of the tabular grains in the phosphor layer 6 is preferably 0.5% by mass or more and 20% by mass or less, and more preferably 0.5% by mass or more and 10% by mass or less.
  • the content of the tabular grains in the phosphor layer 6 is less than 0.5% by mass, the effect of increasing the viscosity of the phosphor dispersion cannot be obtained sufficiently.
  • the content of the layered silicate mineral exceeds 20% by mass, the strength of the ceramic layer decreases.
  • the surface of the layered clay mineral fine particles may be modified (surface treatment) with an ammonium salt or the like.
  • Oxide fine particles that can be contained in the phosphor layer 6 can be fine particles such as silicon oxide, titanium oxide, and zinc oxide.
  • the binder in the phosphor layer 6 is a ceramic that is a cured product of a silicon-containing organic compound such as siloxane
  • the oxide fine particles may be silicon oxide from the viewpoint of stability to the formed ceramic. preferable.
  • the oxide fine particles serve as a filler that fills a gap generated at the interface between the ceramic serving as the binder and the phosphor and the layered silicate mineral in the ceramic layer constituting the phosphor layer 6, and increases the film strength of the phosphor layer 6.
  • the average primary particle size of the oxide fine particles is preferably 0.001 ⁇ m or more and 50 ⁇ m or less in consideration of the respective effects described above.
  • the average primary particle size of the oxide fine particles is a value of D50 measured by a laser diffraction particle size distribution meter.
  • An example of a laser diffraction particle size distribution analyzer is a laser diffraction particle size distribution measuring device manufactured by Shimadzu Corporation.
  • the content of the oxide fine particles in the phosphor layer 6 is more preferably 0.5% by mass or more and 20% by mass or less. If the content of the oxide fine particles in the phosphor layer 6 is less than 0.5% by mass or exceeds 20% by mass, the film strength of the ceramic layer constituting the phosphor layer 6 is not sufficiently increased.
  • the surface of the oxide fine particles may be treated with a silane coupling agent or a titanium coupling agent. By the surface treatment, the compatibility of the oxide fine particles with the organometallic compound and the organic solvent is increased.
  • the ceramic contained in the phosphor layer 6 serves as a binder for binding phosphor particles together.
  • the ceramic is a transparent ceramic such as glass. More specifically, the ceramic may be a ceramic made of polysiloxane or polysilazane.
  • a transparent ceramic as a binder, the heat resistance of the phosphor layer 6 can be improved as compared with the case where a cured resin is used as a binder.
  • the content of the ceramic in the phosphor layer 6 is preferably 3% by mass or more and 35% by mass or less, and more preferably 10% by mass or more and 30% by mass or less.
  • the content of the binder (transparent ceramic) in the phosphor layer 6 is less than 3% by mass, the ceramic as the binder is too little, and thus the strength of the phosphor layer 6 after heating and firing is lowered.
  • the content of the binder (transparent ceramic) exceeds 40% by mass, the content of layered clay mineral fine particles and inorganic fine particles is relatively lowered.
  • the strength of the phosphor layer 6 is lowered.
  • the content of the layered clay mineral fine particles in the phosphor layer 6 is relatively lowered, the content of the layered clay mineral fine particles in the phosphor dispersion liquid is likely to be lowered, and the viscosity of the phosphor dispersion liquid is also liable to be lowered.
  • the thickness of the ceramic layer constituting the phosphor layer 6 is not particularly limited because it is set according to the amount of phosphor required by the semiconductor light emitting element. However, since the density
  • the lower limit of the thickness of the phosphor layer 6 is not particularly limited, but is usually 15 ⁇ m or more, preferably 30 ⁇ m or more. Since the size (particle diameter) of the phosphor particles is usually 10 ⁇ m or more, it may be difficult to make the thickness of the phosphor layer 6 less than 15 ⁇ m.
  • the film thickness of the ceramic layer means the maximum thickness L (see FIG. 1) of the ceramic layer disposed on the upper surface of the LED chip 3.
  • the film thickness of the ceramic layer can be measured using a laser holo gauge.
  • the LED device is 1) a step of preparing an LED chip mounting package 90 including the package 1 and the LED chip 3 (S1 in FIG. 3), and 2) the LED chip 3 is mounted.
  • the phosphor dispersion liquid is applied on the package 1 and dried to arrange the phosphor 10 (S2 in FIG. 3), and 3) disposed on a specific portion including the surface of the LED chip 3.
  • the LED chip mounting package 90 includes the package 1 and the LED chip 3 arranged on the package 1 (see S1 in FIG. 3).
  • the phosphor dispersion liquid is applied on the package 1 including the light emitting surface of the LED chip 3 of the LED chip mounting package 90.
  • the phosphor dispersion liquid contains phosphor particles and a solvent, and may further contain tabular particles, oxide fine particles, aluminum silicate (imogolite), and the like. Since the phosphor particles have a large specific gravity, they tend to settle in the phosphor dispersion liquid, and when the phosphor particles settle, it becomes difficult to apply the phosphor dispersion liquid.
  • the tabular particles and the oxide fine particles can adjust the viscosity of the phosphor dispersion liquid and can suppress the precipitation of the phosphor particles.
  • the types of phosphor particles, tabular particles, and oxide particles are as described above.
  • the phosphor dispersion liquid contains a solvent.
  • the solvent preferably contains an alcohol.
  • the alcohol may be a monohydric alcohol such as methanol, ethanol, propanol, or butanol, or a dihydric or higher polyhydric alcohol. Two or more alcohols may be combined. If a divalent or higher alcohol is used as a solvent, it is easy to increase the viscosity of the phosphor dispersion and to prevent sedimentation of the phosphor particles as the dispersoid.
  • the boiling point of the solvent is preferably 250 ° C. or lower. This is to facilitate drying of the solvent from the phosphor dispersion. If the boiling point is too high, the solvent evaporates slowly, and when the solution is applied to form a coating film, the phosphor flows in the coating film.
  • Any polyhydric alcohol can be used as long as it can be used as a solvent; for example, ethylene glycol, propylene glycol, diethylene glycol, glycerin, 1,3-butanediol, and 1,4-butane. Examples include diols, and ethylene glycol, propylene glycol, 1,3-butanediol, 1,4-butanediol, and the like are preferable.
  • the viscosity of the phosphor dispersion is usually 10 to 1000 cp, preferably 12 to 500 cp, more preferably 20 to 400 cp, and even more preferably 200 to 400 cp.
  • the viscosity is low, the phosphor particles easily settle in the phosphor dispersion liquid, and the time until the supernatant layer is generated is shortened.
  • the viscosity is too low, it is difficult to apply the phosphor dispersion, particularly by spraying.
  • a phosphor dispersion liquid can be prepared by mixing a phosphor with a solvent and adding tabular particles and oxide particles thereto as necessary.
  • a phosphor dispersion liquid is applied on the package including the light emitting surface of the LED chip 3 of the LED chip mounting package 90.
  • the means for application is not particularly limited, and examples thereof include blade application, spin coat application, dispenser application, and spray application. Dispenser application or spray application is preferable. Spray coating is preferable because a thin coating film can be easily formed, and thus a thin phosphor layer can be easily formed.
  • dispenser application the amount of application liquid dropped is controlled while using a nozzle that does not cause nozzle clogging such as phosphor particles.
  • a non-contact jet dispenser manufactured by Musashi Engineering Co. or a dispenser manufactured by the company can be used.
  • FIG. 2 shows an outline of a spray device for applying the phosphor dispersion liquid.
  • the phosphor dispersion liquid 220 in the coating liquid tank 210 in the coating apparatus 200 shown in FIG. 2 is supplied with pressure to the head 240 through the connecting pipe 230.
  • the phosphor dispersion liquid 220 supplied to the head 240 is discharged from the nozzle 250 and applied to the application target (the light emitting surface of the LED chip 3). Discharge of the discharge liquid 270 from the nozzle 250 is performed by wind pressure.
  • An opening that can be freely opened and closed is provided at the tip of the nozzle 250, and the opening may be opened and closed to control on / off of the discharge operation.
  • the phosphor dispersion liquid is applied on the package and further dried to place the phosphor 10 inside the package 1 (see S2 in FIG. 3).
  • a binder precursor means a material that binds a phosphor by undergoing a baking treatment.
  • a typical example of the binder precursor is an organometallic compound that is a ceramic precursor, and the organometallic compound becomes a transparent ceramic (preferably a glass ceramic) through a sol-gel reaction.
  • the produced ceramic combines phosphors (layered silicate minerals, inorganic fine particles, aluminum silicate (imogolite) if necessary) to form a phosphor layer that seals the LED chip.
  • the binder precursor is preferably applied to the phosphor on the LED chip as a solution (binder precursor solution) dissolved in a solvent.
  • the solvent of the binder precursor solution preferably contains alcohols, like the solvent of the phosphor dispersion liquid.
  • organometallic compounds include metal alkoxides, metal acetylacetonates, metal carboxylates, etc., but metal alkoxides that are easily gelled by hydrolysis and polymerization reactions are preferred.
  • metal alkoxides that are easily gelled by hydrolysis and polymerization reactions are preferred.
  • There is no limitation on the type of metal as long as a translucent glass ceramic can be formed. From the viewpoint of the stability of the formed glass ceramic and the ease of production, it is preferable to contain silicon.
  • a plurality of types of organometallic compounds may be combined.
  • the metal alkoxide may be a single molecule such as tetraethoxysilane, or may be a polysiloxane in which an organosiloxane compound is linked in a chain or a ring; however, according to the polysiloxane, the viscosity of the binder precursor solution can be increased. .
  • polysilazane also referred to as silazane oligomer
  • Polysilazane can be represented by the general formula: (R 1 R 2 SiNR 3 ) n .
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom or an alkyl group, an aryl group, a vinyl group or a cycloalkyl group, but at least one of R 1 , R 2 and R 3 is A hydrogen atom, preferably all hydrogen atoms, and n represents an integer of 1 to 60.
  • the molecular shape of polysilazane may be any shape, for example, linear or cyclic.
  • the binder precursor solution may contain a reaction accelerator together with an organometallic compound (particularly polysilazane).
  • the reaction accelerator may be an acid or a base.
  • Specific examples of reaction accelerators include bases such as triethylamine, diethylamine, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, hydrochloric acid, oxalic acid, fumaric acid, sulfonic acid, Examples include, but are not limited to, acetic acid, metal carboxylates including nickel, iron, palladium, iridium, platinum, titanium, and aluminum.
  • a particularly preferred reaction accelerator is a metal carboxylate, and the addition amount is preferably 0.01 to 5 mol% based on polysilazane.
  • the concentration of polysilazane in the binder precursor solution is preferably 5 to 50 wt% (mass%).
  • the binder precursor solution When a polysilazane solution is used as the binder precursor solution, it is preferable to apply the binder precursor solution and heat the coating film or irradiate the coating film with light so that the coating film becomes a ceramic film.
  • the temperature for heating the coating film is preferably 150 ° C. to 500 ° C., more preferably 150 ° C. to 350 ° C., from the viewpoint of suppressing the deterioration of the glass material used as the substrate of the LED chip.
  • UVU radiation eg, excimer light
  • heat curing is further performed to further improve the moisture penetration preventing effect. it can.
  • the binder precursor is applied only to the phosphors 10 arranged on the specific part among the phosphors 10 arranged in the package 1.
  • the specific portion includes the surface (upper surface and side surface) of the LED chip 3 and does not include a portion spaced apart from the LED chip 3 by a certain distance.
  • the binder precursor is applied by a dispenser method or an ink jet method. This is because, according to these methods, fine patterning coating of a micro unit is possible.
  • a commercially available apparatus may be used as the inkjet apparatus, and an inkjet apparatus manufactured by Konica Minolta IJ may be used.
  • the binder precursor When the binder precursor is applied, the entire package is heated, and the binder precursor applied to the phosphor 10 disposed on the specific portion is baked to form a binder. That is, the organometallic compound is converted into a transparent ceramic. Thereby, the phosphor particles arranged on the specific part (and oxide fine particles, layered clay mineral particles, alumina silicate, etc. arranged as necessary) are bound and fixed on the specific part. As a result, the phosphor layer 6 is formed on the specific part (see S3 in FIG. 3).
  • the binder precursor solution is not applied to the phosphor 10 arranged in a part other than the specific part in the package 1. Therefore, the fluorescent substance 10 arrange
  • the phosphor layer 6 is formed on the package specific part, and the phosphor 10 that is not fixed on the other part remains (see S3 in FIG. 3).
  • the phosphor 10 remaining on other portions is removed.
  • the removal of the phosphor 10 can be performed by, for example, cleaning or spraying with compressed air. More specifically, the phosphor 10 remaining on the other part may be removed by immersing the package in a solvent.
  • the LED device 100 (see FIG. 1) in which the phosphor layer 6 is formed only on the specific part is obtained.
  • the phosphor layer 6 may be further covered with a protective layer.
  • the protective layer may be formed using a spray device or a dispenser device.
  • the LED device 100 is further provided with other optical components (such as a lens) and used as various optical members.
  • An LED chip mounting package 90 conceptually shown in FIG. 2 was prepared. Specifically, one blue LED chip (in a rectangular parallelepiped shape: 200 ⁇ m ⁇ 300 ⁇ m ⁇ 100 ⁇ m) is flip-chip mounted in the center of a housing portion of a circular package (opening diameter 3 mm, bottom surface diameter 2 mm, wall surface angle 60 °), and LED A chip mounting package was prepared.
  • Yellow phosphor particles were prepared by the following procedure. A mixture obtained by sufficiently mixing phosphor raw materials having the composition shown below was filled in an aluminum crucible, and an appropriate amount of fluoride such as ammonium fluoride was mixed therewith as a flux. The filler is fired in a reducing atmosphere in which hydrogen-containing nitrogen gas is circulated in a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a fired product ((Y 0.72 Gd 0.24 ) 3 Al 5 O 12 : Ce 0.04 ).
  • a fired product ((Y 0.72 Gd 0.24 ) 3 Al 5 O 12 : Ce 0.04 ).
  • the desired fired product was obtained by pulverizing, washing, separating and drying the obtained fired product.
  • the obtained phosphor was pulverized to obtain phosphor particles having a particle size of about 10 ⁇ m.
  • the composition of the obtained phosphor particles was examined to confirm that it was the desired phosphor. When the emission wavelength with respect to the excitation light having a wavelength of 465 nm was examined, the peak wavelength was approximately 570 nm.
  • the obtained phosphor particles were used in the following comparative examples and examples.
  • the prepared dispersion was applied to the top and side surfaces of the LED chip of the LED chip mounting package using a dispenser.
  • the nozzle inner diameter of the dispenser was 500 ⁇ m.
  • the package was baked at 150 ° C. for 1 hour to obtain an LED device.
  • Example 1 3.0g in isopropyl alcohol, propylene glycol 1.0 g, and the phosphor particles of 1.5g, a silicon oxide 0.07 g (SiO 2 Nippon Aerosil Co. RX300, particle size 7 nm), synthetic mica (Micromica MK-100, manufactured by Co-op Chemical) 0.1 g was mixed to prepare a phosphor dispersion. On the other hand, a binder precursor solution A was prepared.
  • the prepared phosphor dispersion was applied on the package using a spray coating method, and heated at 150 ° C. for 1 hour to arrange the phosphor. Furthermore, the binder precursor solution A was applied only to the upper surface and the side surface of the LED chip using inkjet. After coating, the package was baked at 150 ° C. for 1 hour to fix the phosphor. Thereafter, the package was immersed in isopropyl alcohol to remove phosphors that were not fixed. Then, it dried and obtained the LED device.
  • Example 2 An LED device was obtained in the same manner as in Example 1 except that the binder precursor solution A was applied using a dispenser having a nozzle inner diameter of 50 ⁇ m instead of inkjet.
  • Example 3 An LED device was obtained in the same manner as in Example 1 except that the phosphor dispersion liquid was not applied by spray application but a dispenser having a nozzle inner diameter of 500 ⁇ m.
  • Example 4 An LED device was obtained in the same manner as in Example 1 except that the phosphor dispersion was used with a dispenser having a nozzle inner diameter of 500 ⁇ m, and the binder precursor solution A was used with a dispenser having a nozzle inner diameter of 50 ⁇ m.
  • Color unevenness of light emission from the LED devices obtained in Examples 1 to 4 and Comparative Example 1 was evaluated by the following method.
  • the LED device was caused to emit light, and the color unevenness of light emission (white illumination) was measured using a two-dimensional color luminance meter CA2000 manufactured by Konica Minolta Sensing. Irradiation light can be evaluated two-dimensionally by using a two-dimensional color luminance meter. Color unevenness was evaluated by the chromaticity difference of the chromaticity x value in the obtained irradiation light. A large chromaticity difference means that there is color unevenness in the irradiation light.
  • the LED devices of Examples 1 and 3 in which the binder precursor solution is applied by patterning using an inkjet method may have less color unevenness than the LED devices in Examples 2 and 4 in which the binder precursor solution is applied by patterning with a dispenser. all right.
  • LED devices were produced in the same manner as in Examples 1 to 4, except that the synthetic mica contained in the phosphor dispersion liquid was changed to hydrophilic smectite (Lucentite SWN (manufactured by Corp Chemical Co.)).
  • Example 9 An LED device was produced in the same manner as in Example 1 except that the amount of silicon oxide contained in the phosphor dispersion liquid was 0.15 g and no synthetic mica was added.
  • Example 10 An LED device was produced in the same manner as in Example 1 except that the amount of synthetic mica contained in the phosphor dispersion liquid was 0.15 g and silicon oxide was not added.
  • Example 11 The synthetic mica contained in the phosphor dispersion was changed to hydrophilic smectite (Lucentite SWN (manufactured by Corp Chemical Co.)), and an LED device was produced in the same manner as in Example 1 except that silicon oxide was not added. .
  • the LED devices of Examples 5 and 7 in which the binder precursor solution was applied by patterning using an inkjet method had smaller color unevenness than the LED devices of Examples 6 and 8 in which the same binder precursor solution was applied by patterning with a dispenser. It was.
  • the LED device of the present invention has little variation in emission chromaticity. Therefore, it is useful as a semiconductor light emitting device such as an illumination.

Abstract

The purpose of the present invention is to selectively dispose a fluorescent material of an LED element merely on a necessary portion, i.e., on an LED chip. In this LED device manufacturing method, the following steps are performed: a step of disposing a fluorescent material by applying and drying a fluorescent material-diffused liquid on a package having an LED chip mounted thereon, said fluorescent material-diffused liquid containing fluorescent material particles; a step of forming a fluorescent material layer by applying a binder precursor merely to the fluorescent material disposed on a specific portion that includes a portion on the LED chip, and adhering the fluorescent material on the specific portion by firing; and a step of removing, by cleaning, the fluorescent material disposed on portions other than the specific portion.

Description

LED装置の製造方法Manufacturing method of LED device
 本発明は、LED装置の製造方法に関する。 The present invention relates to a method for manufacturing an LED device.
 LEDチップを用いた発光素子(LED素子)は、発光素子の高輝度化および省エネルギーへの要望の高まりに伴い、様々な用途に適用を拡大している。特に、青色LEDチップと、青色光を受けることで黄色光を出射する蛍光体とを組み合わせて、青色光と黄色光とを混色させて白色光を出射する白色LED素子が知られている。このような白色LED素子は、白色光が必要とされる電灯、液晶表示装置のバックライトなどの照明として用いられるようになってきている。 A light-emitting element (LED element) using an LED chip has been increasingly applied to various uses as the light-emitting element has increased brightness and demand for energy saving. In particular, a white LED element that emits white light by combining blue light and yellow light by combining a blue LED chip and a phosphor that emits yellow light by receiving blue light is known. Such white LED elements have come to be used as lighting for electric lights that require white light, backlights for liquid crystal display devices, and the like.
 また、LEDチップと蛍光体とを組み合わせた白色LED素子として、さらに、紫外光を出射するLEDチップと、紫外光により青、緑、赤の光を出射する蛍光体とを組み合わせて白色光とする白色LED素子、青色光を出射するLEDチップと、赤、緑の光を出射する蛍光体とを組み合わせて白色光とする白色LED素子なども検討されている。 In addition, as a white LED element that combines an LED chip and a phosphor, a white LED is formed by further combining an LED chip that emits ultraviolet light and a phosphor that emits blue, green, and red light by ultraviolet light. A white LED element, a white LED element that emits white light by combining an LED chip that emits blue light and a phosphor that emits red and green light has been studied.
 LEDと蛍光体とを組み合わせた照明の構成として、LEDチップを、蛍光体が分散した硬化樹脂層で封止する構成が開発されている。このように硬化樹脂層でLEDチップを封止した照明装置が、高輝度化が求められる照明装置(自動車のヘッドライトなど)に適用されると、硬化樹脂層が熱劣化する恐れがある。LEDチップからの発熱量が増大するためである。 As an illumination configuration combining an LED and a phosphor, a configuration in which an LED chip is sealed with a cured resin layer in which the phosphor is dispersed has been developed. When the illuminating device in which the LED chip is sealed with the cured resin layer as described above is applied to an illuminating device (such as an automobile headlight) that requires high brightness, the cured resin layer may be thermally deteriorated. This is because the amount of heat generated from the LED chip increases.
 これに対して、LEDと蛍光体とを組み合わせた照明の構成として、LEDチップを、蛍光体が分散したセラミック層で封止する構成も提案されている(特許文献1を参照)。 On the other hand, a configuration in which an LED chip is sealed with a ceramic layer in which a phosphor is dispersed has been proposed as a configuration of illumination in which an LED and a phosphor are combined (see Patent Document 1).
特開2000-349347号公報JP 2000-349347 A
 前述の通り、パッケージに実装されたLEDチップを、蛍光体が分散したセラミック層で封止すると、耐久性に優れたLED素子が提供されうる。しかしながら、特許文献1に提案されたLED素子では、蛍光体がパッケージの内部全体に分散しており、本来は不要な部位にまで蛍光体が配置されている。このような状態では、LEDチップの発光(励起光)が蛍光体層を通過して外部に出てくる際に、LEDチップからの光の出射位置や出射角度によって蛍光体層を通過する距離が異なり、蛍光体によって波長変換されて外部に出てくる光の量と波長変換されずに外部に出てくる光の量が異なるため、LED装置からの発光に色ムラが生じる。 As described above, when an LED chip mounted on a package is sealed with a ceramic layer in which a phosphor is dispersed, an LED element having excellent durability can be provided. However, in the LED element proposed in Patent Document 1, the phosphors are dispersed throughout the interior of the package, and the phosphors are disposed even in portions that are not originally required. In such a state, when the light emission (excitation light) of the LED chip passes through the phosphor layer and exits to the outside, the distance that passes through the phosphor layer depends on the emission position and the emission angle of the light from the LED chip. In contrast, the amount of light that is wavelength-converted by the phosphor and exits to the outside is different from the amount of light that is exited without being wavelength-converted, resulting in color unevenness in light emission from the LED device.
 そのためLED素子における蛍光体は、必要な部位にのみ、つまりLEDチップ上に位置選択的に配置されていることが好ましい。微小なLEDチップ上に位置選択的に蛍光体を配置するためには、蛍光体分散液をディスペンサーやインクジェットなどの手法で、位置選択的に塗布することが考えられる。しかしながら、一般的に蛍光体粒子の粒径は10μm~20μmであるため、インクジェット手法を用いて蛍光体分散液を塗布しようとすると、インクジェットヘッドのノズル詰まりが発生する恐れがある。また、ノズル径の大きいディスペンサーを用いて蛍光体分散液を塗布しようとすると、ノズル詰まりは防止されるが、塗布精度が低下し、不要な部位への塗布が生じる。 Therefore, it is preferable that the phosphor in the LED element is disposed selectively in a necessary position, that is, on the LED chip. In order to place phosphors in a position selective manner on a minute LED chip, it is conceivable to apply the phosphor dispersion liquid in a position selective manner by a method such as a dispenser or an ink jet. However, since the particle diameter of the phosphor particles is generally 10 μm to 20 μm, there is a possibility that nozzle clogging of the ink jet head may occur when the phosphor dispersion liquid is applied using the ink jet method. In addition, when the phosphor dispersion liquid is applied using a dispenser having a large nozzle diameter, nozzle clogging is prevented, but application accuracy is reduced, and application to unnecessary portions occurs.
 本発明の第一は、以下に示すLED装置の製造方法に関する。
[1]LEDチップを実装したパッケージ上に、蛍光体粒子を含む蛍光体分散液を塗布し、乾燥することで、蛍光体を配置する工程と;前記LEDチップ上を含む特定部位上に配置された前記蛍光体のみに、バインダー前駆体を塗布し、焼成することで、前記特定部位上の前記蛍光体を固着させて蛍光体層とする工程と;前記特定部位以外の部位上に配置された前記蛍光体を除去する工程とを含む、蛍光体層を有するLED装置の製造方法。
The first of the present invention relates to a method for manufacturing an LED device shown below.
[1] A step of disposing a phosphor by applying a phosphor dispersion liquid including phosphor particles on a package on which the LED chip is mounted and drying; and disposed on a specific portion including the LED chip. A step of fixing the phosphor on the specific part to form a phosphor layer by applying a binder precursor only to the phosphor and baking; and disposed on a part other than the specific part The manufacturing method of the LED device which has a fluorescent substance layer including the process of removing the said fluorescent substance.
[2]前記蛍光体分散液は、スプレー塗布またはディスペンサーで塗布する、[1]に記載の製造方法。
[3]前記バインダー前駆体は、インクジェットまたはディスペンサーで塗布する、[1]または[2]に記載の製造方法。
[2] The manufacturing method according to [1], wherein the phosphor dispersion liquid is applied by spray coating or a dispenser.
[3] The manufacturing method according to [1] or [2], wherein the binder precursor is applied by an inkjet or a dispenser.
[4]前記蛍光体分散液は、酸化物微粒子または層状粘土鉱物をさらに含む、[1]~[3]のいずれかに記載の製造方法。
[5]前記蛍光体分散液は、酸化物微粒子及び層状粘土鉱物をさらに含む、[1]~[4]のいずれかに記載の製造方法。
[6]前記バインダー前駆体は、セラミック前駆体としての有機金属化合物である、[1]~[5]のいずれかに記載の製造方法。
[4] The manufacturing method according to any one of [1] to [3], wherein the phosphor dispersion liquid further includes oxide fine particles or layered clay mineral.
[5] The production method according to any one of [1] to [4], wherein the phosphor dispersion liquid further includes oxide fine particles and a layered clay mineral.
[6] The method according to any one of [1] to [5], wherein the binder precursor is an organometallic compound as a ceramic precursor.
 本発明によれば、LEDチップを実装したLED装置(半導体発光装置)において、LEDチップ上を含む特定部位上に、位置選択的に蛍光体層を形成することができる。そのため、本発明のLED装置では、LEDチップが発する光(励起光)が、均一に蛍光体に照射されうる。よって、色むらのない光を発するLED装置を提供することができる。 According to the present invention, in an LED device (semiconductor light emitting device) on which an LED chip is mounted, a phosphor layer can be selectively formed on a specific part including the LED chip. Therefore, in the LED device of the present invention, the light emitted from the LED chip (excitation light) can be uniformly applied to the phosphor. Therefore, it is possible to provide an LED device that emits light with no color unevenness.
LED装置の断面を概略的に示す図である。It is a figure which shows the cross section of a LED device roughly. 蛍光体分散液をスプレー塗布する様子を示す図である。It is a figure which shows a mode that a fluorescent substance dispersion liquid is spray-coated. 本発明のLED装置の製造フローを示す図である。It is a figure which shows the manufacture flow of the LED device of this invention.
1.LED装置について
 本発明のLED装置(半導体発光装置)は、LED発光素子と、蛍光体層とを有する。図1は、LED装置100の例を示す断面図である。LED発光素子は、凹部11を有するパッケージ(LED基板)1と、メタル部(メタル配線)2と、パッケージ1の凹部11に配置されたLEDチップ3と、メタル部2とLEDチップ3とを接続する突起電極4とを有する。このように、突起電極4を介してメタル部2とLEDチップ3とを接続する態様を、フリップチップ型という。
1. About LED Device The LED device (semiconductor light-emitting device) of the present invention includes an LED light-emitting element and a phosphor layer. FIG. 1 is a cross-sectional view illustrating an example of the LED device 100. The LED light emitting element connects a package (LED substrate) 1 having a recess 11, a metal part (metal wiring) 2, an LED chip 3 disposed in the recess 11 of the package 1, and the metal part 2 and the LED chip 3. A protruding electrode 4. Thus, the aspect which connects the metal part 2 and LED chip 3 via the protruding electrode 4 is called flip chip type.
 パッケージ1は、例えば液晶ポリマーやセラミックであるが、絶縁性と耐熱性を有していれば、その材質は特に限定されない。 Package 1 is, for example, liquid crystal polymer or ceramic, but the material is not particularly limited as long as it has insulation and heat resistance.
 LEDチップ3は、例えば青色LEDである。青色LEDの構成の例には、LED基板1に積層されたn-GaN系化合物半導体層(クラッド層)と、InGaN系化合物半導体層(発光層)と、p-GaN系化合物半導体層(クラッド層)と、透明電極層との積層体である。LEDチップ3は、例えば200~300μm×200~300μmの面を有し、LEDチップ3の高さは50~200μmである。 The LED chip 3 is, for example, a blue LED. Examples of blue LED configurations include an n-GaN compound semiconductor layer (cladding layer), an InGaN compound semiconductor layer (light emitting layer), and a p-GaN compound semiconductor layer (cladding layer) stacked on the LED substrate 1. ) And a transparent electrode layer. The LED chip 3 has a surface of 200 to 300 μm × 200 to 300 μm, for example, and the height of the LED chip 3 is 50 to 200 μm.
 図1に示されるLED装置100には、パッケージ1の凹部11に、1つのLEDチップ3が配置されているが;パッケージ1の凹部11に、複数のLEDチップ3が配置されていてもよい。 1, one LED chip 3 is disposed in the recess 11 of the package 1; however, a plurality of LED chips 3 may be disposed in the recess 11 of the package 1.
 蛍光体層6について
 さらに、LED装置100は、LEDチップ3の発光面を覆う蛍光体層6を有する。蛍光体層6は、蛍光体粒子とバインダーとしてのセラミックとを含むセラミック層であり、さらに平板状粒子、酸化物微粒子、アルミニウムケイ酸塩(イモゴライト)などを含んでいてもよい。蛍光体層6は、図1に示されているように、LEDチップ3の発光面(LEDチップ3の上面と側面)を選択的に覆っていればよい。このように蛍光体層6は、LEDチップ3の表面に選択的に形成されており、パッケージ1の凹部11の内部全体に形成されているわけではない。
Regarding the phosphor layer 6 Further, the LED device 100 includes a phosphor layer 6 that covers the light emitting surface of the LED chip 3. The phosphor layer 6 is a ceramic layer including phosphor particles and ceramic as a binder, and may further include tabular particles, oxide fine particles, aluminum silicate (imogolite), and the like. As shown in FIG. 1, the phosphor layer 6 only needs to selectively cover the light emitting surface of the LED chip 3 (the upper surface and the side surface of the LED chip 3). As described above, the phosphor layer 6 is selectively formed on the surface of the LED chip 3 and is not formed on the entire inside of the recess 11 of the package 1.
 蛍光体層6は、LEDチップ3から出射される光(励起光)を受けて、蛍光を発する層である。励起光と蛍光とが混ざることで、LED装置100から所望の色の光が発光する。例えば、LEDチップ3からの光が青色であり、蛍光体層6からの蛍光が黄色であれば、LED装置100は白色LED発光装置となりうる。 The phosphor layer 6 is a layer that receives light (excitation light) emitted from the LED chip 3 and emits fluorescence. By mixing excitation light and fluorescence, light of a desired color is emitted from the LED device 100. For example, if the light from the LED chip 3 is blue and the fluorescence from the phosphor layer 6 is yellow, the LED device 100 can be a white LED light-emitting device.
 蛍光体粒子について
 蛍光体層6に含有される蛍光体粒子は、LEDチップ3のLEDからの出射光の波長(励起波長)により励起されて、励起波長と異なる波長の蛍光を発する。LEDチップ3から青色光が出射される場合には、蛍光体粒子が黄色の蛍光を発することによって、白色LED素子が得られる。黄色の蛍光を発する蛍光体の例には、YAG(イットリウム・アルミニウム・ガーネット)蛍光体が挙げられる。YAG蛍光体は、青色LEDチップから出射される青色光(波長420nm~485nm)からなる励起光を受けて、黄色光(波長550nm~650nm)の蛍光を発することができる。
About the phosphor particles The phosphor particles contained in the phosphor layer 6 are excited by the wavelength (excitation wavelength) of light emitted from the LED of the LED chip 3, and emit fluorescence having a wavelength different from the excitation wavelength. When blue light is emitted from the LED chip 3, the phosphor particles emit yellow fluorescence, thereby obtaining a white LED element. Examples of phosphors that emit yellow fluorescence include YAG (yttrium, aluminum, garnet) phosphors. The YAG phosphor can emit excitation light composed of blue light (wavelength 420 nm to 485 nm) emitted from the blue LED chip and emit yellow light (wavelength 550 nm to 650 nm).
 蛍光体は、例えば、1)所定の組成を有する混合原料に、フラックスとしてフッ化アンモニウム等のフッ化物を適量混合して加圧し、成形体を得て、2)得られた成形体を坩堝に詰め、空気中1350~1450℃の温度範囲で2~5時間焼成し焼結体を得ることで製造されうる。 For example, phosphors can be obtained by, for example, 1) mixing an appropriate amount of a fluoride such as ammonium fluoride as a flux into a mixed raw material having a predetermined composition and pressurizing it to obtain a molded body, and 2) placing the obtained molded body in a crucible. It can be manufactured by packing and firing in air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a sintered body.
 所定の組成を有する混合原料は、Y、Gd、Ce、Sm、Al、La、Gaの酸化物、または高温で容易に酸化物となる化合物を、化学量論比で十分に混合して得ることができる。あるいは、所定の組成を有する混合原料は、Y、Gd、Ce、Smの希土類元素を化学量論比で酸に溶解した溶液を、シュウ酸で共沈したものを焼成して得られる共沈酸化物と、酸化アルミニウム、酸化ガリウムとを混合して得ることができる。 A mixed raw material having a predetermined composition is obtained by sufficiently mixing the oxides of Y, Gd, Ce, Sm, Al, La, and Ga, or compounds that easily become oxides at high temperatures in a stoichiometric ratio. Can do. Alternatively, the mixed raw material having a predetermined composition is a coprecipitation oxidation obtained by firing a solution obtained by dissolving a rare earth element of Y, Gd, Ce, and Sm in an acid in a stoichiometric ratio and coprecipitating with oxalic acid. It can be obtained by mixing a material with aluminum oxide and gallium oxide.
 蛍光体の種類はYAG蛍光体に限定されるものではなく、例えばCeを含まない非ガーネット系蛍光体などの他の蛍光体を使用することもできる。 The kind of the phosphor is not limited to the YAG phosphor, and other phosphors such as a non-garnet phosphor not containing Ce can also be used.
 蛍光体粒子の平均一次粒径は1μm以上50μm以下であることが好ましく、10μm以下であることがより好ましい。蛍光体の平均一次粒径が大きいほど発光効率(波長変換効率)は高くなる。一方で、蛍光体の平均一次粒径が大きすぎると、蛍光体層において蛍光体とバインダーとの界面に生じる隙間が大きくなり、蛍光体層の膜強度が低下する。蛍光体の平均一次粒径は、レーザー回折式粒度分布計で測定されるD50の値である。レーザー回折式粒度分布計の例には、島津製作所製のレーザー回折式粒度分布測定装置等がある。 The average primary particle diameter of the phosphor particles is preferably 1 μm or more and 50 μm or less, and more preferably 10 μm or less. The larger the average primary particle size of the phosphor, the higher the light emission efficiency (wavelength conversion efficiency). On the other hand, when the average primary particle size of the phosphor is too large, a gap generated at the interface between the phosphor and the binder in the phosphor layer is increased, and the film strength of the phosphor layer is decreased. The average primary particle diameter of the phosphor is a value of D50 measured by a laser diffraction particle size distribution meter. An example of a laser diffraction particle size distribution analyzer is a laser diffraction particle size distribution measuring device manufactured by Shimadzu Corporation.
 蛍光体層6を構成するセラミック層における蛍光体の濃度は、それに含まれる蛍光体の質量と、平板状粒子の質量と、酸化物微粒子の質量と、バインダーとしてのセラミックの質量との合計質量に対して、60質量%以上95質量%以下であることが好ましい。基本的には、蛍光体粒子含有セラミック層における蛍光体粒子の濃度は高いほど好ましい。セラミック層における蛍光体の濃度を高くすると、バインダーであるセラミックの含有比率が低下するので、セラミック層における蛍光体粒子の分布が均一になりやすいからである。また、蛍光体の濃度が高くすると、セラミック層を薄くしても必要量の蛍光体をLED装置に配置することができるからである。 The concentration of the phosphor in the ceramic layer constituting the phosphor layer 6 is the sum of the mass of the phosphor contained therein, the mass of the tabular particles, the mass of the oxide fine particles, and the mass of the ceramic as the binder. On the other hand, it is preferably 60% by mass or more and 95% by mass or less. Basically, the higher the concentration of the phosphor particles in the phosphor particle-containing ceramic layer, the better. This is because if the concentration of the phosphor in the ceramic layer is increased, the content ratio of the ceramic serving as the binder is lowered, and therefore the distribution of the phosphor particles in the ceramic layer tends to be uniform. Further, when the concentration of the phosphor is increased, a necessary amount of the phosphor can be disposed in the LED device even if the ceramic layer is thinned.
 また、セラミック層における蛍光体粒子の濃度が高いと、蛍光体粒子同士が密着するため、セラミック層の膜強度を高めることができる。さらには、セラミック層における蛍光体粒子の濃度が高いと、蛍光体からの発熱が、セラミック層から放散されやすくなる。 In addition, when the concentration of the phosphor particles in the ceramic layer is high, the phosphor particles come into close contact with each other, so that the film strength of the ceramic layer can be increased. Furthermore, if the concentration of the phosphor particles in the ceramic layer is high, heat generated from the phosphor is easily dissipated from the ceramic layer.
 一方で、セラミック層における蛍光体の濃度が高すぎる(95質量%超である)と、バインダーの含有比率が極端に低下して、蛍光体粒子同士が結着することができない場合がある。 On the other hand, if the concentration of the phosphor in the ceramic layer is too high (greater than 95% by mass), the content ratio of the binder may be extremely lowered, and the phosphor particles may not be bound to each other.
 蛍光体層6を構成するセラミック層における蛍光体粒子の濃度は、それを成膜するために用いた蛍光体分散液の組成から求めることができる。 The concentration of the phosphor particles in the ceramic layer constituting the phosphor layer 6 can be obtained from the composition of the phosphor dispersion liquid used for forming the film.
 平板状粒子について
 蛍光体層6を構成するセラミック層に含有されうる平板状粒子の典型例には、層状粘土鉱物微粒子がある。層状粘土鉱物微粒子の主成分は層状ケイ酸塩鉱物であり、雲母構造、カオリナイト構造、スメクタイト構造などの構造を有する膨潤性粘土鉱物が好ましく、膨潤性に富むスメクタイト構造を有する膨潤性粘土鉱物がより好ましい。層状粘土鉱物微粒子は平板状を呈するため、蛍光体層6を構成するセラミック層の膜強度を向上させることもできる。
Tabular grains Typical examples of tabular grains that can be contained in the ceramic layer constituting the phosphor layer 6 include layered clay mineral fine particles. The main component of the layered clay mineral fine particles is a layered silicate mineral, preferably a swellable clay mineral having a mica structure, a kaolinite structure, a smectite structure, etc., and a swellable clay mineral having a smectite structure rich in swelling properties. More preferred. Since the layered clay mineral fine particles have a flat plate shape, the film strength of the ceramic layer constituting the phosphor layer 6 can be improved.
 また、後述するように、セラミック層を成膜するために蛍光体分散液を塗布する。蛍光体分散液に平板状粒子が含まれていると、蛍光体分散液の粘度が高まり、蛍光体分散液中での蛍光体の沈降が抑制される。平板状粒子は、蛍光体分散液中においてカードハウス構造として存在し、少量で蛍光体分散液の粘度を大幅に高めることができる。 Also, as will be described later, a phosphor dispersion is applied to form a ceramic layer. When tabular particles are contained in the phosphor dispersion liquid, the viscosity of the phosphor dispersion liquid is increased, and sedimentation of the phosphor in the phosphor dispersion liquid is suppressed. The tabular grains exist as a card house structure in the phosphor dispersion liquid, and the viscosity of the phosphor dispersion liquid can be significantly increased with a small amount.
 蛍光体層6における平板状粒子の含有量は0.5質量%以上20質量%以下とすることが好ましく、0.5質量%以上10質量%以下がより好ましい。蛍光体層6における平板状粒子の含有量が0.5質量%未満になると蛍光体分散液の粘性を増加させる効果が十分に得られない。一方、層状ケイ酸塩鉱物の含有量が20質量%を超えるとセラミック層の強度が低下する。 The content of the tabular grains in the phosphor layer 6 is preferably 0.5% by mass or more and 20% by mass or less, and more preferably 0.5% by mass or more and 10% by mass or less. When the content of the tabular grains in the phosphor layer 6 is less than 0.5% by mass, the effect of increasing the viscosity of the phosphor dispersion cannot be obtained sufficiently. On the other hand, when the content of the layered silicate mineral exceeds 20% by mass, the strength of the ceramic layer decreases.
 蛍光体分散液での有機溶媒との相溶性を考慮して、層状粘土鉱物微粒子の表面は、アンモニウム塩等で修飾(表面処理)されていてもよい。 In consideration of compatibility with the organic solvent in the phosphor dispersion liquid, the surface of the layered clay mineral fine particles may be modified (surface treatment) with an ammonium salt or the like.
 酸化物微粒子について
 蛍光体層6に含有されうる酸化物微粒子は、酸化ケイ素、酸化チタン、酸化亜鉛などの微粒子でありうる。特に、蛍光体層6におけるバインダーを、シロキサンなどの含ケイ素有機化合物の硬化物であるセラミックとする場合には、形成されるセラミックに対する安定性の観点から、酸化物微粒子を酸化ケイ素とすることが好ましい。
About Oxide Fine Particles Oxide fine particles that can be contained in the phosphor layer 6 can be fine particles such as silicon oxide, titanium oxide, and zinc oxide. In particular, when the binder in the phosphor layer 6 is a ceramic that is a cured product of a silicon-containing organic compound such as siloxane, the oxide fine particles may be silicon oxide from the viewpoint of stability to the formed ceramic. preferable.
 酸化物微粒子は、蛍光体層6を構成するセラミック層において、バインダーであるセラミックと、蛍光体および層状ケイ酸塩鉱物との界面に生じる隙間を埋める充填剤となり、蛍光体層6の膜強度を向上させる膜強化剤として機能しうる。 The oxide fine particles serve as a filler that fills a gap generated at the interface between the ceramic serving as the binder and the phosphor and the layered silicate mineral in the ceramic layer constituting the phosphor layer 6, and increases the film strength of the phosphor layer 6. Can function as a film strengthening agent to improve.
 酸化物微粒子の平均一次粒径は、上述したそれぞれの効果を考慮して0.001μm以上50μm以下であることが好ましい。酸化物微粒子の平均一次粒径は、レーザー回折式粒度分布計で測定されるD50の値である。レーザー回折式粒度分布計の例には、島津製作所製のレーザー回折式粒度分布測定装置等がある。 The average primary particle size of the oxide fine particles is preferably 0.001 μm or more and 50 μm or less in consideration of the respective effects described above. The average primary particle size of the oxide fine particles is a value of D50 measured by a laser diffraction particle size distribution meter. An example of a laser diffraction particle size distribution analyzer is a laser diffraction particle size distribution measuring device manufactured by Shimadzu Corporation.
 蛍光体層6における酸化物微粒子の含有量は0.5質量%以上20質量%以下がより好ましい。蛍光体層6における酸化物微粒子の含有量が0.5質量%未満であるか、または20質量%を超えると、蛍光体層6を構成するセラミック層の膜強度が十分に高まらない。 The content of the oxide fine particles in the phosphor layer 6 is more preferably 0.5% by mass or more and 20% by mass or less. If the content of the oxide fine particles in the phosphor layer 6 is less than 0.5% by mass or exceeds 20% by mass, the film strength of the ceramic layer constituting the phosphor layer 6 is not sufficiently increased.
 酸化物微粒子の表面は、シランカップリング剤やチタンカップリング剤で処理されていてもよい。表面処理によって、酸化物微粒子の、有機金属化合物や有機溶媒との相溶性が高まる。 The surface of the oxide fine particles may be treated with a silane coupling agent or a titanium coupling agent. By the surface treatment, the compatibility of the oxide fine particles with the organometallic compound and the organic solvent is increased.
 セラミックについて
 蛍光体層6に含有されるセラミックは、蛍光体粒子同士を結着させるバインダーとなる。セラミックは、ガラスなどの透明セラミックなどである。より具体的にセラミックは、ポリシロキサンまたはポリシラザンからなるセラミックなどでありうる。透明セラミックをバインダーとして用いることで、硬化樹脂をバインダーとして用いる場合よりも、蛍光体層6の耐熱性などを高めることができる。
About ceramic The ceramic contained in the phosphor layer 6 serves as a binder for binding phosphor particles together. The ceramic is a transparent ceramic such as glass. More specifically, the ceramic may be a ceramic made of polysiloxane or polysilazane. By using a transparent ceramic as a binder, the heat resistance of the phosphor layer 6 can be improved as compared with the case where a cured resin is used as a binder.
 蛍光体層6におけるセラミックの含有量は、3質量%以上35質量%以下であることが好ましく、10質量%以上30質量%以下であることがより好ましい。蛍光体層6におけるバインダー(透明セラミック)の含有量が3質量%未満では、バインダーとしてのセラミックが少なすぎるために、加熱焼成後の蛍光体層6の強度が低下する。一方、バインダー(透明セラミック)の含有量が40質量%を超えると、層状粘土鉱物微粒子や無機微粒子の含有量が相対的に低下する。無機微粒子の含有量が相対的に低下すると、蛍光体層6の強度が低下する。また、蛍光体層6における層状粘土鉱物微粒子の含有量が相対的に低下すると、蛍光体分散液における層状粘土鉱物微粒子の含有量も低下しやすく、蛍光体分散液の粘度も低下しやすい。 The content of the ceramic in the phosphor layer 6 is preferably 3% by mass or more and 35% by mass or less, and more preferably 10% by mass or more and 30% by mass or less. When the content of the binder (transparent ceramic) in the phosphor layer 6 is less than 3% by mass, the ceramic as the binder is too little, and thus the strength of the phosphor layer 6 after heating and firing is lowered. On the other hand, when the content of the binder (transparent ceramic) exceeds 40% by mass, the content of layered clay mineral fine particles and inorganic fine particles is relatively lowered. When the content of the inorganic fine particles is relatively lowered, the strength of the phosphor layer 6 is lowered. Further, when the content of the layered clay mineral fine particles in the phosphor layer 6 is relatively lowered, the content of the layered clay mineral fine particles in the phosphor dispersion liquid is likely to be lowered, and the viscosity of the phosphor dispersion liquid is also liable to be lowered.
 蛍光体層6の膜厚について
 蛍光体層6を構成するセラミック層の厚みは、半導体発光素子が必要とする蛍光体の量に応じて設定されるため、特に限定されない。ただし、本発明におけるセラミック層中の蛍光体の濃度は高いため、セラミック層の厚みを150μm以下とすることができ、さらに100μm以下とすることができる。蛍光体層6を構成するセラミック層の厚みが150μmを超えると、通常は、蛍光体層6における蛍光体粒子の濃度が過剰に低くなるので(60質量%未満となり)、蛍光体粒子を均一に分散させにくかったり、膜強度が低かったりする。
Regarding the film thickness of the phosphor layer 6 The thickness of the ceramic layer constituting the phosphor layer 6 is not particularly limited because it is set according to the amount of phosphor required by the semiconductor light emitting element. However, since the density | concentration of the fluorescent substance in the ceramic layer in this invention is high, the thickness of a ceramic layer can be 150 micrometers or less, Furthermore, it can be 100 micrometers or less. If the thickness of the ceramic layer constituting the phosphor layer 6 exceeds 150 μm, the concentration of the phosphor particles in the phosphor layer 6 is usually excessively low (below 60% by mass). Difficult to disperse or film strength is low.
 蛍光体層6の厚みの下限は特に制限されないが、通常は15μm以上、好ましくは30μm以上である。蛍光体粒子の大きさ(粒径)は、通常10μm以上であるので、蛍光体層6の厚みを15μm未満とすることは困難であることがある。 The lower limit of the thickness of the phosphor layer 6 is not particularly limited, but is usually 15 μm or more, preferably 30 μm or more. Since the size (particle diameter) of the phosphor particles is usually 10 μm or more, it may be difficult to make the thickness of the phosphor layer 6 less than 15 μm.
 セラミック層の膜厚は、LEDチップ3の上面に配置されたセラミック層の最大厚みL(図1参照)を意味する。セラミック層の膜厚は、レーザホロゲージを用いて測定することができる。 The film thickness of the ceramic layer means the maximum thickness L (see FIG. 1) of the ceramic layer disposed on the upper surface of the LED chip 3. The film thickness of the ceramic layer can be measured using a laser holo gauge.
2.LED装置の製造方法について
 LED装置(半導体発光装置)は、1)パッケージ1とLEDチップ3を含むLEDチップ実装パッケージ90を用意する工程(図3のS1)と、2)LEDチップ3を実装したパッケージ1上に、蛍光体分散液を塗布し、乾燥することで、蛍光体10を配置する工程(図3のS2)と、3)前記LEDチップ3の表面上を含む特定部位上に配置された前記蛍光体10のみに、バインダー前駆体を塗布し、焼成することで、前記特定部位上の前記蛍光体10を固着させて蛍光体層6とする工程(図3のS3)と、4)前記特定部位以外の部位上に配置された前記蛍光体10を除去する工程(図3のS4)と、を含むプロセスで製造されうる。
2. Regarding LED Device Manufacturing Method The LED device (semiconductor light-emitting device) is 1) a step of preparing an LED chip mounting package 90 including the package 1 and the LED chip 3 (S1 in FIG. 3), and 2) the LED chip 3 is mounted. The phosphor dispersion liquid is applied on the package 1 and dried to arrange the phosphor 10 (S2 in FIG. 3), and 3) disposed on a specific portion including the surface of the LED chip 3. The step of applying the binder precursor only to the phosphor 10 and baking it to fix the phosphor 10 on the specific part to form the phosphor layer 6 (S3 in FIG. 3) and 4) And a step of removing the phosphor 10 arranged on a site other than the specific site (S4 in FIG. 3).
[蛍光体分散液の塗布および乾燥]
 LEDチップ実装パッケージ90は、パッケージ1とそれに配置されたLEDチップ3とを有する(図3のS1参照)。LEDチップ実装パッケージ90の、LEDチップ3の発光面を含むパッケージ1上に蛍光体分散液を塗布する。
[Application and drying of phosphor dispersion liquid]
The LED chip mounting package 90 includes the package 1 and the LED chip 3 arranged on the package 1 (see S1 in FIG. 3). The phosphor dispersion liquid is applied on the package 1 including the light emitting surface of the LED chip 3 of the LED chip mounting package 90.
 蛍光体分散液について
 蛍光体分散液には、蛍光体粒子と溶媒とが含まれ、さらに平板状粒子、酸化物微粒子、アルミニウムケイ酸塩(イモゴライト)などを含んでいてもよい。蛍光体粒子は比重が大きいため蛍光体分散液中で沈降しやすく、蛍光体粒子が沈降すると蛍光体分散液の塗布が困難になる。平板状粒子および酸化物微粒子は、蛍光体分散液の粘度を調整することができ、蛍光体粒子の沈降を抑制することができる。蛍光体粒子、平板状粒子および酸化物微粒子の種類は、前述した通りである。
Phosphor dispersion liquid The phosphor dispersion liquid contains phosphor particles and a solvent, and may further contain tabular particles, oxide fine particles, aluminum silicate (imogolite), and the like. Since the phosphor particles have a large specific gravity, they tend to settle in the phosphor dispersion liquid, and when the phosphor particles settle, it becomes difficult to apply the phosphor dispersion liquid. The tabular particles and the oxide fine particles can adjust the viscosity of the phosphor dispersion liquid and can suppress the precipitation of the phosphor particles. The types of phosphor particles, tabular particles, and oxide particles are as described above.
 蛍光体分散液には、溶媒が含まれている。溶媒には、アルコール類が含まれることが好ましい。アルコール類は、メタノール、エタノール、プロパノール、ブタノールなどの1価アルコールでもよいし、2価以上の多価アルコールであってもよい。2種以上のアルコールを組み合わせてもよい。2価以上のアルコールを溶媒として用いれば、蛍光体分散液の粘度を高めやすく、分散質である蛍光体粒子の沈降が防止しやすくなる。 The phosphor dispersion liquid contains a solvent. The solvent preferably contains an alcohol. The alcohol may be a monohydric alcohol such as methanol, ethanol, propanol, or butanol, or a dihydric or higher polyhydric alcohol. Two or more alcohols may be combined. If a divalent or higher alcohol is used as a solvent, it is easy to increase the viscosity of the phosphor dispersion and to prevent sedimentation of the phosphor particles as the dispersoid.
 溶媒の沸点は、250℃以下であることが好ましい。蛍光体分散液から、溶媒を乾燥しやすくするためである。沸点が高すぎると溶媒の蒸発が遅いので、溶液を塗布して塗膜としたときに、塗膜中で蛍光体が流れてしまう。 The boiling point of the solvent is preferably 250 ° C. or lower. This is to facilitate drying of the solvent from the phosphor dispersion. If the boiling point is too high, the solvent evaporates slowly, and when the solution is applied to form a coating film, the phosphor flows in the coating film.
 2価以上の多価アルコールは、溶媒として用いることができる限り、いずれの多価アルコールでも使用できるが;例えばエチレングリコール、プロピレングリコール、ジエチレングリコール、グリセリン、1,3-ブタンジオール、1,4-ブタンジオールなどが挙げられ、好ましくは、エチレングリコール、プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオールなどである。 Any polyhydric alcohol can be used as long as it can be used as a solvent; for example, ethylene glycol, propylene glycol, diethylene glycol, glycerin, 1,3-butanediol, and 1,4-butane. Examples include diols, and ethylene glycol, propylene glycol, 1,3-butanediol, 1,4-butanediol, and the like are preferable.
 蛍光体分散液の粘度は、通常は10~1000cpであり、12~500cpであることが好ましく、20~400cpであることがより好ましく、200~400cpであることがさらに好ましい。粘度が低いと、蛍光体分散液において蛍光体粒子が沈降しやすくなり、上澄み層が発生するまでの時間が短くなる。一方、粘度が低すぎると、蛍光体分散液の塗布、特にスプレーによる塗布が困難になる。 The viscosity of the phosphor dispersion is usually 10 to 1000 cp, preferably 12 to 500 cp, more preferably 20 to 400 cp, and even more preferably 200 to 400 cp. When the viscosity is low, the phosphor particles easily settle in the phosphor dispersion liquid, and the time until the supernatant layer is generated is shortened. On the other hand, if the viscosity is too low, it is difficult to apply the phosphor dispersion, particularly by spraying.
 蛍光体分散液の調製について
 蛍光体分散液は、蛍光体を溶媒に混合して、必要に応じて、これに平板状粒子および酸化物粒子を添加して調製されうる。
About Preparation of Phosphor Dispersion Liquid A phosphor dispersion liquid can be prepared by mixing a phosphor with a solvent and adding tabular particles and oxide particles thereto as necessary.
 蛍光体分散液の塗布
 LEDチップ実装パッケージ90のLEDチップ3の発光面を含むパッケージ上に、蛍光体分散液を塗布する。塗布の手段は特に限定されず、ブレード塗布、スピンコート塗布、ディスペンサー塗布、スプレー塗布などが例示されるが、ディスペンサー塗布またはスプレー塗布が好ましい。スプレー塗布は薄い塗布膜を成膜しやすく、従って薄い蛍光体層を形成しやすいために好ましい。一方、ディスペンサー塗布では、蛍光体粒子などのノズル詰まりが発生しないようなノズルを用いつつ、塗布液の滴下量を制御する。ディスペンサー装置の例には、武蔵エンジニアリング社製の非接触ジェットディスペンサーや同社のディスペンサーを用いることができる。
Application of Phosphor Dispersion Liquid A phosphor dispersion liquid is applied on the package including the light emitting surface of the LED chip 3 of the LED chip mounting package 90. The means for application is not particularly limited, and examples thereof include blade application, spin coat application, dispenser application, and spray application. Dispenser application or spray application is preferable. Spray coating is preferable because a thin coating film can be easily formed, and thus a thin phosphor layer can be easily formed. On the other hand, in dispenser application, the amount of application liquid dropped is controlled while using a nozzle that does not cause nozzle clogging such as phosphor particles. As an example of the dispenser device, a non-contact jet dispenser manufactured by Musashi Engineering Co. or a dispenser manufactured by the company can be used.
 図2には、蛍光体分散液を塗布するためのスプレー装置の概略が示される。図2に示される塗布装置200における塗布液タンク210内の蛍光体分散液220は、圧力をかけられて連結管230を通じてヘッド240に供給される。ヘッド240に供給された蛍光体分散液220は、ノズル250から吐出されて、塗布対象物(LEDチップ3の発光面)に塗布される。ノズル250からの吐出液270の吐出は風圧によって行われる。ノズル250の先端に開閉自在な開口部を設けて、この開口部を開閉操作して、吐出作業のオン・オフを制御する構成としてもよい。 FIG. 2 shows an outline of a spray device for applying the phosphor dispersion liquid. The phosphor dispersion liquid 220 in the coating liquid tank 210 in the coating apparatus 200 shown in FIG. 2 is supplied with pressure to the head 240 through the connecting pipe 230. The phosphor dispersion liquid 220 supplied to the head 240 is discharged from the nozzle 250 and applied to the application target (the light emitting surface of the LED chip 3). Discharge of the discharge liquid 270 from the nozzle 250 is performed by wind pressure. An opening that can be freely opened and closed is provided at the tip of the nozzle 250, and the opening may be opened and closed to control on / off of the discharge operation.
 このように、蛍光体分散液をパッケージ上に塗布し、さらに乾燥させることで、蛍光体10をパッケージ1の内部に配置する(図3のS2参照)。 In this way, the phosphor dispersion liquid is applied on the package and further dried to place the phosphor 10 inside the package 1 (see S2 in FIG. 3).
[バインダー前駆体の塗布および焼成]
 バインダー前駆体について
 バインダー前駆体とは、焼成処理を受けることによって、蛍光体を結着する材料を意味する。バインダー前駆体の典型例は、セラミック前駆体である有機金属化合物であり、有機金属化合はゾル-ゲル反応することによって透明セラミック(好ましくはガラスセラミック)となる。生成するセラミックは、蛍光体(必要に応じて、層状ケイ酸塩鉱物、無機微粒子、アルミニウムケイ酸塩(イモゴライト))を結合させて、LEDチップを封止する蛍光体層を構成する。
[Binder precursor coating and firing]
About Binder Precursor A binder precursor means a material that binds a phosphor by undergoing a baking treatment. A typical example of the binder precursor is an organometallic compound that is a ceramic precursor, and the organometallic compound becomes a transparent ceramic (preferably a glass ceramic) through a sol-gel reaction. The produced ceramic combines phosphors (layered silicate minerals, inorganic fine particles, aluminum silicate (imogolite) if necessary) to form a phosphor layer that seals the LED chip.
 バインダー前駆体は、溶媒に溶解された溶液(バインダー前駆体溶液)としてLEDチップ上の蛍光体に塗布されることが好ましい。バインダー前駆体溶液の溶媒は、蛍光体分散液の溶媒と同様に、アルコール類を含むことが好ましい。 The binder precursor is preferably applied to the phosphor on the LED chip as a solution (binder precursor solution) dissolved in a solvent. The solvent of the binder precursor solution preferably contains alcohols, like the solvent of the phosphor dispersion liquid.
 有機金属化合物の例には、金属アルコキシド、金属アセチルアセトネート、金属カルボキシレートなどが含まれるが、加水分解と重合反応によりゲル化し易い金属アルコキシドが好ましい。透光性のガラスセラミックを形成可能であれば金属の種類に制限はない。形成されるガラスセラミックの安定性や製造の容易性の観点から、ケイ素を含有していることが好ましい。また、複数種の有機金属化合物を組み合わせてもよい。 Examples of organometallic compounds include metal alkoxides, metal acetylacetonates, metal carboxylates, etc., but metal alkoxides that are easily gelled by hydrolysis and polymerization reactions are preferred. There is no limitation on the type of metal as long as a translucent glass ceramic can be formed. From the viewpoint of the stability of the formed glass ceramic and the ease of production, it is preferable to contain silicon. A plurality of types of organometallic compounds may be combined.
 金属アルコキシドは、テトラエトキシシランのような単分子でもよいし、有機シロキサン化合物が鎖状または環状に連結したポリシロキサンでもよいが;ポリシロキサンによれば、バインダー前駆体溶液の粘性を高めることができる。 The metal alkoxide may be a single molecule such as tetraethoxysilane, or may be a polysiloxane in which an organosiloxane compound is linked in a chain or a ring; however, according to the polysiloxane, the viscosity of the binder precursor solution can be increased. .
 有機金属化合物の他の例には、ポリシラザン(シラザンオリゴマーともいう)が含まれる。ポリシラザンは、一般式:(RSiNRで表されうる。式中、R、RおよびRは、それぞれ独立して水素原子またはアルキル基、アリール基、ビニル基、シクロアルキル基を表すが、R、R、Rのうち少なくとも1つは水素原子であり、好ましくはすべてが水素原子であり、nは1~60の整数を表す。ポリシラザンの分子形状はいかなる形状であってもよく、例えば、直鎖状または環状であってもよい。 Another example of the organometallic compound includes polysilazane (also referred to as silazane oligomer). Polysilazane can be represented by the general formula: (R 1 R 2 SiNR 3 ) n . In the formula, R 1 , R 2 and R 3 each independently represent a hydrogen atom or an alkyl group, an aryl group, a vinyl group or a cycloalkyl group, but at least one of R 1 , R 2 and R 3 is A hydrogen atom, preferably all hydrogen atoms, and n represents an integer of 1 to 60. The molecular shape of polysilazane may be any shape, for example, linear or cyclic.
 バインダー前駆体溶液には、有機金属化合物(特に、ポリシラザン)とともに、反応促進剤が含まれていてもよい。反応促進剤は、酸または塩基などでありうる。反応促進剤の具体例には、トリエチルアミン、ジエチルアミン、N,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミンなどの塩基や、塩酸、シュウ酸、フマル酸、スルホン酸、酢酸や、ニッケル、鉄、パラジウム、イリジウム、白金、チタン、アルミニウムを含む金属のカルボン酸塩などが含まれるが、これに限られない。特に好ましい反応促進剤は金属カルボン酸塩であり、添加量はポリシラザンを基準にして0.01~5mol%が好ましい添加量である。 The binder precursor solution may contain a reaction accelerator together with an organometallic compound (particularly polysilazane). The reaction accelerator may be an acid or a base. Specific examples of reaction accelerators include bases such as triethylamine, diethylamine, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, hydrochloric acid, oxalic acid, fumaric acid, sulfonic acid, Examples include, but are not limited to, acetic acid, metal carboxylates including nickel, iron, palladium, iridium, platinum, titanium, and aluminum. A particularly preferred reaction accelerator is a metal carboxylate, and the addition amount is preferably 0.01 to 5 mol% based on polysilazane.
 バインダー前駆体溶液におけるポリシラザン濃度は高い方が好ましいが、ポリシラザン濃度が上昇すると、バインダー前駆体溶液の保存期間が短縮する。そのため、バインダー前駆体溶液におけるポリシラザンの濃度は、5~50wt%(質量%)であることが好ましい。 Although it is preferable that the polysilazane concentration in the binder precursor solution is high, when the polysilazane concentration is increased, the storage period of the binder precursor solution is shortened. Therefore, the concentration of polysilazane in the binder precursor solution is preferably 5 to 50 wt% (mass%).
 ポリシラザン溶液をバインダー前駆体溶液として用いる場合には、バインダー前駆体溶液を塗布し、塗膜を加熱するかまたは塗膜に光を照射することで、塗膜をセラミック膜とすることが好ましい。塗膜を加熱する温度は、LEDチップの基板として用いられるガラス材料等の劣化を抑制する観点からは、150℃~500℃が好ましく、150℃~350℃とすることがより好ましい。特に、170~230nmの範囲の波長成分を含むUVU放射線(例えばエキシマ光)を塗膜に照射して硬化させた後に、さらに加熱硬化を行うことで、水分の浸透防止効果をより向上させることができる。 When a polysilazane solution is used as the binder precursor solution, it is preferable to apply the binder precursor solution and heat the coating film or irradiate the coating film with light so that the coating film becomes a ceramic film. The temperature for heating the coating film is preferably 150 ° C. to 500 ° C., more preferably 150 ° C. to 350 ° C., from the viewpoint of suppressing the deterioration of the glass material used as the substrate of the LED chip. In particular, after the coating film is irradiated with UVU radiation (eg, excimer light) containing a wavelength component in the range of 170 to 230 nm and cured, heat curing is further performed to further improve the moisture penetration preventing effect. it can.
 バインダー前駆体は、パッケージ1に配置された蛍光体10のうち、特定部位上に配置された蛍光体10のみに塗布される。特定部位とは、LEDチップ3の表面(上面および側面)を含み、LEDチップ3から一定以上離間した部位を含まない。 The binder precursor is applied only to the phosphors 10 arranged on the specific part among the phosphors 10 arranged in the package 1. The specific portion includes the surface (upper surface and side surface) of the LED chip 3 and does not include a portion spaced apart from the LED chip 3 by a certain distance.
 バインダー前駆体は、ディスペンサー法またはインクジェット法によって塗布される。これらの手法によれば、マイクロ単位の微細パターニング塗布が可能であるからである。インクジェット装置は、市販の装置を用いればよく、コニカミノルタIJ社製のインクジェット装置を用いることができる。 The binder precursor is applied by a dispenser method or an ink jet method. This is because, according to these methods, fine patterning coating of a micro unit is possible. A commercially available apparatus may be used as the inkjet apparatus, and an inkjet apparatus manufactured by Konica Minolta IJ may be used.
 バインダー前駆体を塗布したら、パッケージ全体を加熱して、特定部位上に配置された蛍光体10に塗布されたバインダー前駆体を焼成してバインダーとする。すなわち、有機金属化合物を透明セラミックに変換する。それにより、特定部位上に配置された蛍光体粒子(および必要に応じて配置された酸化物微粒子、層状粘土鉱物粒子、アルミナケイ酸塩など)が結着して、特定部位上に固着する。その結果、特定部位上には蛍光体層6が形成される(図3のS3参照)。 When the binder precursor is applied, the entire package is heated, and the binder precursor applied to the phosphor 10 disposed on the specific portion is baked to form a binder. That is, the organometallic compound is converted into a transparent ceramic. Thereby, the phosphor particles arranged on the specific part (and oxide fine particles, layered clay mineral particles, alumina silicate, etc. arranged as necessary) are bound and fixed on the specific part. As a result, the phosphor layer 6 is formed on the specific part (see S3 in FIG. 3).
 一方で、パッケージ1における、特定部位以外の部位に配置された蛍光体10には、バインダー前駆体溶液は塗布されない。そのため、パッケージ1の特定部位以外の部位に配置された蛍光体10は、固着されない。 On the other hand, the binder precursor solution is not applied to the phosphor 10 arranged in a part other than the specific part in the package 1. Therefore, the fluorescent substance 10 arrange | positioned in site | parts other than the specific site | part of the package 1 is not fixed.
 [蛍光体10の除去]
 このようにして、パッケージ特定部位上に蛍光体層6が形成され、その他の部位上に固着されていない蛍光体10が残存している状態となる(図3のS3参照)。次に、その他の部位上に残存する蛍光体10を除去する。蛍光体10の除去は、例えば、洗浄または圧空の吹き付けなどにより行うことができる。より具体的には、パッケージを溶媒中に浸漬することで、その他の部位上に残存する蛍光体10を除去すればよい。
[Removal of phosphor 10]
In this way, the phosphor layer 6 is formed on the package specific part, and the phosphor 10 that is not fixed on the other part remains (see S3 in FIG. 3). Next, the phosphor 10 remaining on other portions is removed. The removal of the phosphor 10 can be performed by, for example, cleaning or spraying with compressed air. More specifically, the phosphor 10 remaining on the other part may be removed by immersing the package in a solvent.
 このようにして、特定部位上にのみ蛍光体層6が成膜されたLED装置100(図1参照)を得る。蛍光体層6を成膜した後に、さらに保護層で蛍光体層6を覆ってもよい。保護層の成膜も、スプレー装置やディスペンサー装置を用いればよい。LED装置100には、さらに他の光学部品(レンズなど)が設けられて各種光学部材として用いられる。 In this way, the LED device 100 (see FIG. 1) in which the phosphor layer 6 is formed only on the specific part is obtained. After the phosphor layer 6 is formed, the phosphor layer 6 may be further covered with a protective layer. The protective layer may be formed using a spray device or a dispenser device. The LED device 100 is further provided with other optical components (such as a lens) and used as various optical members.
[LEDチップ実装パッケージの製造]
 図2に概念的に示されるLEDチップ実装パッケージ90を用意した。具体的には、円形パッケージ(開口径3mm,底面直径2mm、壁面角度60°)の収容部の中央に、1つの青色LEDチップ(直方体状;200μm×300μm×100μm)をフリップチップ実装し、LEDチップ実装パッケージを用意した。
[Manufacture of LED chip mounting packages]
An LED chip mounting package 90 conceptually shown in FIG. 2 was prepared. Specifically, one blue LED chip (in a rectangular parallelepiped shape: 200 μm × 300 μm × 100 μm) is flip-chip mounted in the center of a housing portion of a circular package (opening diameter 3 mm, bottom surface diameter 2 mm, wall surface angle 60 °), and LED A chip mounting package was prepared.
[蛍光体粒子の作製]
 以下の手順で黄色蛍光体粒子を作製した。下記に示す組成の蛍光体原料を十分に混合した混合物を、アルミ坩堝に充填し、これにフラックスとしてフッ化アンモニウム等のフッ化物を適量混合した。充填物を、水素含有窒素ガスを流通させた還元雰囲気中において1350~1450℃の温度範囲で2~5時間焼成して、焼成品((Y0.72Gd0.24Al12:Ce0.04)を得た。
[Fabrication of phosphor particles]
Yellow phosphor particles were prepared by the following procedure. A mixture obtained by sufficiently mixing phosphor raw materials having the composition shown below was filled in an aluminum crucible, and an appropriate amount of fluoride such as ammonium fluoride was mixed therewith as a flux. The filler is fired in a reducing atmosphere in which hydrogen-containing nitrogen gas is circulated in a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a fired product ((Y 0.72 Gd 0.24 ) 3 Al 5 O 12 : Ce 0.04 ).
 [蛍光体粒子の原料組成]
   Y ・・・ 7.41g
   Gd ・・・ 4.01g
   CeO ・・・ 0.63g
   Al ・・・ 7.77g
[Raw material composition of phosphor particles]
Y 2 O 3 ··· 7.41g
Gd 2 O 3 ... 4.01 g
CeO 2 ... 0.63g
Al 2 O 3 ... 7.77 g
 得られた焼成品を粉砕、洗浄、分離、乾燥することで所望の蛍光体を得た。得られた蛍光体を粉砕して約10μmの粒径の蛍光体粒子とした。得られた蛍光体粒子の組成を調べて、所望の蛍光体であることを確認した。波長465nmの励起光に対する発光波長を調べたところ、おおよそ波長570nmにピーク波長を有していた。得られた蛍光体粒子を、以下の比較例および実施例で用いた。 The desired fired product was obtained by pulverizing, washing, separating and drying the obtained fired product. The obtained phosphor was pulverized to obtain phosphor particles having a particle size of about 10 μm. The composition of the obtained phosphor particles was examined to confirm that it was the desired phosphor. When the emission wavelength with respect to the excitation light having a wavelength of 465 nm was examined, the peak wavelength was approximately 570 nm. The obtained phosphor particles were used in the following comparative examples and examples.
[比較例1]
 3.0gの「バインダー前駆体溶液A:テトラエトキシシラン14重量%,イソプロピルアルコール86重量%)」中に、1.0gのエチレングリコールと、0.42gの蛍光体粒子と、0.05gの(酸化ケイ素 SiO 日本アエロジル株式会社製RX300,粒径7nm)と、合成雲母(ミクロマイカMK-100、コープケミカル社製)0.02gとを混合して分散液を作製した。
[Comparative Example 1]
In 3.0 g of “binder precursor solution A: tetraethoxysilane 14 wt%, isopropyl alcohol 86 wt%)”, 1.0 g of ethylene glycol, 0.42 g of phosphor particles, and 0.05 g of ( silicon oxide SiO 2 Nippon Aerosil Co., Ltd. RX300, and particle size 7nm), synthetic mica (micro mica MK-100, manufactured by Co-op Chemical Co., Ltd.) was mixed with 0.02g to prepare a dispersion.
 作製した分散液を、ディスペンサーを用いて、LEDチップ実装パッケージのLEDチップの上面および側面に塗布した。ディスペンサーのノズル内径は500μmとした。塗布後、パッケージを150℃で1時間焼成して、LED装置を得た。 The prepared dispersion was applied to the top and side surfaces of the LED chip of the LED chip mounting package using a dispenser. The nozzle inner diameter of the dispenser was 500 μm. After application, the package was baked at 150 ° C. for 1 hour to obtain an LED device.
[実施例1]
 3.0gのイソプロピルアルコール中に、1.0gのプロピレングリコールと、1.5gの蛍光体粒子と、0.07gの酸化ケイ素(SiO 日本アエロジル株式会社製RX300,粒径7nm)と、合成雲母(ミクロマイカMK-100、コープケミカル社製)0.1gとを混合して蛍光体分散液を作製した。一方、バインダー前駆体溶液Aを用意した。
[Example 1]
3.0g in isopropyl alcohol, propylene glycol 1.0 g, and the phosphor particles of 1.5g, a silicon oxide 0.07 g (SiO 2 Nippon Aerosil Co. RX300, particle size 7 nm), synthetic mica (Micromica MK-100, manufactured by Co-op Chemical) 0.1 g was mixed to prepare a phosphor dispersion. On the other hand, a binder precursor solution A was prepared.
 作製した蛍光体分散液を、スプレー塗布方法を用いてパッケージ上に塗布し、150℃で1時間加熱して蛍光体を成配置した。さらに、バインダー前駆体溶液Aを、インクジェットを用いてLEDチップの上面と側面のみに塗布した。塗布後、パッケージを150℃で1時間焼成して蛍光体を固着させた。その後、イソプロピルアルコール中にパッケージを浸漬して、固着されていない蛍光体を除去した。その後、乾燥してLED装置を得た。 The prepared phosphor dispersion was applied on the package using a spray coating method, and heated at 150 ° C. for 1 hour to arrange the phosphor. Furthermore, the binder precursor solution A was applied only to the upper surface and the side surface of the LED chip using inkjet. After coating, the package was baked at 150 ° C. for 1 hour to fix the phosphor. Thereafter, the package was immersed in isopropyl alcohol to remove phosphors that were not fixed. Then, it dried and obtained the LED device.
[実施例2]
 バインダー前駆体溶液Aの塗布を、インクジェットではなく、ノズル内径50μmのディスペンサーを用いて塗布した以外は、実施例1と同様の手法でLED装置を得た。
[Example 2]
An LED device was obtained in the same manner as in Example 1 except that the binder precursor solution A was applied using a dispenser having a nozzle inner diameter of 50 μm instead of inkjet.
[実施例3]
 蛍光体分散液を、スプレー塗布ではなく、ノズル内径500μmのディスペンサーを用いて塗布した以外は、実施例1と同様の手法でLED装置を得た。
[Example 3]
An LED device was obtained in the same manner as in Example 1 except that the phosphor dispersion liquid was not applied by spray application but a dispenser having a nozzle inner diameter of 500 μm.
[実施例4]
 蛍光体分散液を、ノズル内径500μmのディスペンサーを用い、バインダー前駆体溶液Aをノズル内径50μmのディスペンサーを用いた以外は、実施例1と同様な手法でLED装置を得た。
[Example 4]
An LED device was obtained in the same manner as in Example 1 except that the phosphor dispersion was used with a dispenser having a nozzle inner diameter of 500 μm, and the binder precursor solution A was used with a dispenser having a nozzle inner diameter of 50 μm.
 実施例1~4および比較例1で得られたLED装置からの発光の色むらを、以下の方法で評価した。
[色ムラ評価方法]
 LED装置を発光させて、発光(白色照明)の色ムラを、コニカミノルタセンシング社製 2次元色彩輝度計CA2000を用いて測定した。2次元色彩輝度計を用いることで2次元的に照射光を評価することができる。得られた照射光内の色度x値の色度差で、色ムラを評価した。色度差が大きいと、照射光内に色ムラがあることを意味する。例えば、照射光内に色ムラがあり、黄色い部分と青い部分とが存在すると、その部分の色度差が大きくなる。色度差に応じて、以下の基準で評価を行った。
 照射光内の色度差 x値の差:0.01未満・・・◎
 照射光内の色度差 x値の差:0.01以上0.02未満・・・○
 照射光内の色度差 x値の差:0.02以上・・・×
Figure JPOXMLDOC01-appb-T000001
Color unevenness of light emission from the LED devices obtained in Examples 1 to 4 and Comparative Example 1 was evaluated by the following method.
[Color unevenness evaluation method]
The LED device was caused to emit light, and the color unevenness of light emission (white illumination) was measured using a two-dimensional color luminance meter CA2000 manufactured by Konica Minolta Sensing. Irradiation light can be evaluated two-dimensionally by using a two-dimensional color luminance meter. Color unevenness was evaluated by the chromaticity difference of the chromaticity x value in the obtained irradiation light. A large chromaticity difference means that there is color unevenness in the irradiation light. For example, if there is color unevenness in the irradiated light and a yellow part and a blue part exist, the chromaticity difference between the parts increases. Evaluation was performed according to the following criteria according to the chromaticity difference.
Chromaticity difference in irradiated light x value difference: less than 0.01
Chromaticity difference in irradiated light x value difference: 0.01 or more and less than 0.02
Chromaticity difference in irradiated light x value difference: 0.02 or more
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、蛍光体とバインダー前駆体とを含む分散液を、ディスペンサーでLEDチップの表面にパターニング塗布した比較例1のLED装置では、発光の色むらが大きいことがわかった(色度差0.058)。これに対して、蛍光体を配置したのち、バインダー前駆体溶液をパターニング塗布した実施例1~4では、発光の色むらが小さいことがわかった(色度差0.006~0.016)。 As shown in Table 1, in the LED device of Comparative Example 1 in which a dispersion liquid containing a phosphor and a binder precursor was applied by patterning to the surface of the LED chip with a dispenser, it was found that the color unevenness of light emission was large ( Chromaticity difference 0.058). In contrast, in Examples 1 to 4, in which the phosphor was placed and then the binder precursor solution was applied by patterning, it was found that the color unevenness of light emission was small (chromaticity difference of 0.006 to 0.016).
 また、バインダー前駆体溶液をインクジェット法でパターニング塗布した実施例1および3のLED装置は、バインダー前駆体溶液をディスペンサーでパターニング塗布した実施例2および4のLED装置よりも、色むらが小さいことがわかった。 In addition, the LED devices of Examples 1 and 3 in which the binder precursor solution is applied by patterning using an inkjet method may have less color unevenness than the LED devices in Examples 2 and 4 in which the binder precursor solution is applied by patterning with a dispenser. all right.
[実施例5~8]
 蛍光体分散液に含まれる合成雲母を親水性スメクタイト(ルーセンタイトSWN(コープケミカル社製))に変更した以外は、実施例1~4と同様にLED装置を作製した。
[Examples 5 to 8]
LED devices were produced in the same manner as in Examples 1 to 4, except that the synthetic mica contained in the phosphor dispersion liquid was changed to hydrophilic smectite (Lucentite SWN (manufactured by Corp Chemical Co.)).
[実施例9]
 蛍光体分散液に含まれる酸化ケイ素量を0.15gとし、合成雲母を添加しなかった以外は、実施例1と同様にLED装置を作製した。
[Example 9]
An LED device was produced in the same manner as in Example 1 except that the amount of silicon oxide contained in the phosphor dispersion liquid was 0.15 g and no synthetic mica was added.
[実施例10]
 蛍光体分散液に含まれる合成雲母量を0.15gとし、酸化ケイ素を添加しなかった以外は、実施例1と同様にLED装置を作製した。
[Example 10]
An LED device was produced in the same manner as in Example 1 except that the amount of synthetic mica contained in the phosphor dispersion liquid was 0.15 g and silicon oxide was not added.
[実施例11]
 蛍光体分散液に含まれる合成雲母を、親水性スメクタイト(ルーセンタイトSWN(コープケミカル社製))に変更し、酸化ケイ素を添加しなかった以外は、実施例1と同様にLED装置を作製した。
[Example 11]
The synthetic mica contained in the phosphor dispersion was changed to hydrophilic smectite (Lucentite SWN (manufactured by Corp Chemical Co.)), and an LED device was produced in the same manner as in Example 1 except that silicon oxide was not added. .
 実施例5~11で得られたLED装置からの発光の色むらを、実施例1と同様に評価した。
Figure JPOXMLDOC01-appb-T000002
Color unevenness of light emission from the LED devices obtained in Examples 5 to 11 was evaluated in the same manner as in Example 1.
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、蛍光体を配置したのち、バインダー前駆体溶液をパターニング塗布した実施例5~11では、発光の色むらが小さかった(色度差0.006~0.019)。 As shown in Table 2, in Examples 5 to 11 in which the phosphor precursor was arranged and the binder precursor solution was applied by patterning, the color unevenness of light emission was small (chromaticity difference of 0.006 to 0.019).
 また、バインダー前駆体溶液をインクジェット法でパターニング塗布した実施例5および7のLED装置は、同様のバインダー前駆体溶液をディスペンサーでパターニング塗布した実施例6および8のLED装置よりも、色むらが小さかった。 Further, the LED devices of Examples 5 and 7 in which the binder precursor solution was applied by patterning using an inkjet method had smaller color unevenness than the LED devices of Examples 6 and 8 in which the same binder precursor solution was applied by patterning with a dispenser. It was.
 さらに、蛍光体分散液中に、酸化物粒子及び層状粘土鉱物の両方が含まれる場合(実施例5~8)のみならず、これらのうち一方のみが含まれる場合(実施例9~11)にも、発光の色むらが小さかった。 Furthermore, not only when both the oxide particles and the layered clay mineral are contained in the phosphor dispersion liquid (Examples 5 to 8), but also when only one of them is contained (Examples 9 to 11). However, the uneven color of the light emission was small.
 本発明のLED装置は、発光色度のばらつきが少ない。よって、照明などの半導体発光装置として有用である。 The LED device of the present invention has little variation in emission chromaticity. Therefore, it is useful as a semiconductor light emitting device such as an illumination.
 1 パッケージ
 2 メタル部
 3 LEDチップ
 4 突起電極
 6 蛍光体層
 10 蛍光体
 90 LEDチップ実装パッケージ
 100 LED装置
 200 塗布装置
 210 塗布液タンク
 220 蛍光体分散液
 230 連結管
 240 ヘッド
 250 ノズル
 270 吐出液
 L 蛍光体層の厚み
 
 
DESCRIPTION OF SYMBOLS 1 Package 2 Metal part 3 LED chip 4 Projection electrode 6 Phosphor layer 10 Phosphor 90 LED chip mounting package 100 LED device 200 Coating device 210 Coating liquid tank 220 Phosphor dispersion liquid 230 Connecting pipe 240 Head 250 Nozzle 270 Discharge liquid L Fluorescence Body layer thickness

Claims (6)

  1.  LEDチップを実装したパッケージ上に、蛍光体粒子を含む蛍光体分散液を塗布し、乾燥することで、蛍光体を配置する工程と、
     前記LEDチップ上を含む特定部位上に配置された前記蛍光体のみに、バインダー前駆体を塗布し、焼成することで、前記特定部位上の前記蛍光体を固着させて蛍光体層とする工程と、
     前記特定部位以外の部位上に配置された前記蛍光体を除去する工程と、
     を含む、蛍光体層を有するLED装置の製造方法。
    A step of arranging a phosphor by applying a phosphor dispersion liquid containing phosphor particles on a package on which an LED chip is mounted, and drying,
    Applying a binder precursor only to the phosphor disposed on a specific part including the LED chip and baking it, thereby fixing the phosphor on the specific part to form a phosphor layer; ,
    Removing the phosphor disposed on a site other than the specific site;
    A method for manufacturing an LED device having a phosphor layer.
  2.  前記蛍光体分散液は、スプレー塗布またはディスペンサーで塗布する、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the phosphor dispersion liquid is applied by spray coating or a dispenser.
  3.  前記バインダー前駆体は、インクジェットまたはディスペンサーで塗布する、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the binder precursor is applied by an inkjet or a dispenser.
  4.  前記蛍光体分散液は、酸化物微粒子または層状粘土鉱物をさらに含む、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the phosphor dispersion liquid further includes oxide fine particles or layered clay mineral.
  5.  前記蛍光体分散液は、酸化物微粒子及び層状粘土鉱物をさらに含む、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the phosphor dispersion further includes oxide fine particles and layered clay mineral.
  6.  前記バインダー前駆体は、セラミック前駆体としての有機金属化合物である、請求項1に記載の製造方法。
     
    The manufacturing method according to claim 1, wherein the binder precursor is an organometallic compound as a ceramic precursor.
PCT/JP2012/006161 2011-09-27 2012-09-26 Led device manufacturing method WO2013046674A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013535920A JP5765428B2 (en) 2011-09-27 2012-09-26 Manufacturing method of LED device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-210633 2011-09-27
JP2011210633 2011-09-27

Publications (1)

Publication Number Publication Date
WO2013046674A1 true WO2013046674A1 (en) 2013-04-04

Family

ID=47994751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006161 WO2013046674A1 (en) 2011-09-27 2012-09-26 Led device manufacturing method

Country Status (2)

Country Link
JP (1) JP5765428B2 (en)
WO (1) WO2013046674A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018107351A (en) * 2016-12-27 2018-07-05 日亜化学工業株式会社 Manufacturing method of light-emitting device
CN113937203A (en) * 2021-10-13 2022-01-14 厦门华联电子股份有限公司 Packaging film covering method for LED chip

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003021691A1 (en) * 2001-09-03 2003-03-13 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting device, light emitting apparatus and production method for semiconductor light emitting device
WO2003034508A1 (en) * 2001-10-12 2003-04-24 Nichia Corporation Light emitting device and method for manufacture thereof
WO2006121197A1 (en) * 2005-05-12 2006-11-16 Matsushita Electric Industrial Co., Ltd. Apparatus for forming phosphor layer and method for forming phosphor layer using the apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036030A (en) * 2005-07-28 2007-02-08 Nichia Chem Ind Ltd Light emitting device and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003021691A1 (en) * 2001-09-03 2003-03-13 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting device, light emitting apparatus and production method for semiconductor light emitting device
WO2003034508A1 (en) * 2001-10-12 2003-04-24 Nichia Corporation Light emitting device and method for manufacture thereof
WO2006121197A1 (en) * 2005-05-12 2006-11-16 Matsushita Electric Industrial Co., Ltd. Apparatus for forming phosphor layer and method for forming phosphor layer using the apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018107351A (en) * 2016-12-27 2018-07-05 日亜化学工業株式会社 Manufacturing method of light-emitting device
CN113937203A (en) * 2021-10-13 2022-01-14 厦门华联电子股份有限公司 Packaging film covering method for LED chip
CN113937203B (en) * 2021-10-13 2023-07-18 厦门华联电子股份有限公司 Packaging and film coating method of LED chip

Also Published As

Publication number Publication date
JP5765428B2 (en) 2015-08-19
JPWO2013046674A1 (en) 2015-03-26

Similar Documents

Publication Publication Date Title
US9306130B2 (en) Method of manufacturing light-emitting device
US9318646B2 (en) LED device manufacturing method and fluorescent material-dispersed solution used in same
US9708492B2 (en) LED device and coating liquid used for production of same
JP5999223B2 (en) Method for manufacturing light emitting device and phosphor mixture
WO2013051280A1 (en) Phosphor dispersion liquid, and production method for led device using same
JP5869769B2 (en) Method for forming phosphor layer and method for manufacturing light emitting device
JP5803541B2 (en) LED device, manufacturing method thereof, and phosphor dispersion used therefor
WO2013121903A1 (en) Wavelength conversion element and method for manufacturing same, and light-emitting device and method for manufacturing same
JP6076909B2 (en) Phosphor dispersion liquid and method for manufacturing LED device
WO2012067200A1 (en) Wavelength conversion element and production method therefor, light-emitting device and production method therefor
JP5880566B2 (en) LED device
JP2014130903A (en) Semiconductor light-emitting device and manufacturing method of the same
JP2014019844A (en) Phosphor dispersion and method for manufacturing led device
JP5803940B2 (en) Light emitting device and manufacturing method thereof
JP5765428B2 (en) Manufacturing method of LED device
JP5729327B2 (en) Manufacturing method of LED device
JP5910340B2 (en) LED device and manufacturing method thereof
JP5870736B2 (en) Method for producing phosphor dispersion and method for producing LED device using the same
JP5862675B2 (en) Method for manufacturing light emitting device
WO2013187067A1 (en) Led device and production method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837576

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013535920

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12837576

Country of ref document: EP

Kind code of ref document: A1