WO2012067200A1 - Wavelength conversion element and production method therefor, light-emitting device and production method therefor - Google Patents

Wavelength conversion element and production method therefor, light-emitting device and production method therefor Download PDF

Info

Publication number
WO2012067200A1
WO2012067200A1 PCT/JP2011/076570 JP2011076570W WO2012067200A1 WO 2012067200 A1 WO2012067200 A1 WO 2012067200A1 JP 2011076570 W JP2011076570 W JP 2011076570W WO 2012067200 A1 WO2012067200 A1 WO 2012067200A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
emitting device
manufacturing
light emitting
phosphor
Prior art date
Application number
PCT/JP2011/076570
Other languages
French (fr)
Japanese (ja)
Inventor
禄人 田口
卓史 波多野
貴志 鷲巣
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2012544306A priority Critical patent/JP5768816B2/en
Publication of WO2012067200A1 publication Critical patent/WO2012067200A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector

Definitions

  • the present invention relates to a light emitting device having a light emitting element and a wavelength conversion unit including a phosphor that converts the wavelength of light emitted from the light emitting element.
  • phosphors such as YAG (yttrium, aluminum, garnet) phosphors are arranged in the vicinity of gallium nitride (GaN) blue LED (Light Emitting Diode) chips, and blue light emitted from the blue LED chips.
  • GaN gallium nitride
  • a technique for obtaining a white light emitting device by color mixture of yellow light emitted when the phosphor receives blue light and emits secondary light is widely used.
  • a technique for obtaining a white light emitting device by mixing blue light emitted from a blue LED chip and red light and green light emitted by each phosphor receiving blue light and secondary light emission is also used. Yes.
  • Such white light emitting devices have various uses, for example, there is a demand as an alternative to fluorescent lamps and incandescent lamps. In addition, it is also being used for lighting devices such as automobile headlights that require extremely high luminance. Since the headlight is required to have high visibility with respect to an object such as a distant sign, high performance is also required in terms of the color of the white light emitting device and the color uniformity of the irradiation range.
  • a method of sealing an LED chip or a mounting portion using a transparent resin in which a phosphor is dispersed is generally used.
  • the specific gravity of the phosphor particles is larger than that of the transparent resin.
  • Patent Document 1 discloses a light-emitting device that attempts to suppress sedimentation and segregation of a phosphor by using a silicone resin having a viscosity of 100 to 10,000 mPa ⁇ s when cured as a sealing body.
  • an LED element is arranged between the upper end opening and the lower end opening of the cylindrical container, the upper end opening to the lower end opening are filled with a translucent resin, and the emitted light from the LED element is on the upper end opening side.
  • a chip component type LED in which an inner wall surface of a container is formed so as to be reflected.
  • Patent Document 3 discloses a light-emitting device in which a liquid translucent sealing material is added with a lipophilic compound obtained by adding an organic cation to a layered compound mainly composed of a viscous mineral as an anti-settling material for a phosphor, and its A manufacturing method is disclosed.
  • Patent Document 4 discloses a configuration in which a light-emitting element is covered with an adhesive transparent material and a phosphor layer is attached to the outside thereof.
  • Patent Document 5 As a technique for improving the heat resistance of the white light emitting device, for example, in Patent Document 5, phosphor particles are dispersed in a solution containing a metal alkoxide or a ceramic precursor composition, and this is applied to an LED and heated. Thus, a technique of sealing with a ceramic (glass) containing a phosphor has been proposed. Patent Document 5 also discloses that inorganic particles are added to the phosphor dispersion solution as an anti-settling material for the phosphor.
  • Patent Document 1 is characterized by using a resin having a high viscosity
  • Patent Document 4 cannot be combined with the technique of Patent Document 5 that does not use a resin.
  • Patent Document 2 in addition to the problem that the configuration of the LED is complicated and the cost is increased, the highly heat-resistant metal alkoxide and ceramic precursor composition of Patent Document 5 are added to the cylindrical container of Patent Document 2.
  • the dispersion solution of the phosphor and the phosphor is filled, it does not harden even when heated, and therefore, the technique of Patent Document 4 cannot be combined with the technique of Patent Document 2.
  • An object of the present invention is to reduce the occurrence of color unevenness to such an extent that it can be sufficiently used in applications that require a high level of color uniformity, such as automobile headlights, and has excellent durability.
  • An object of the present invention is to provide a method for manufacturing a wavelength conversion element, a wavelength conversion element, a method for manufacturing the light emitting device, and a light emitting device.
  • the present invention uses a mixed solution containing a phosphor, swellable particles, and water and having a viscosity of 25 mPa ⁇ s or more and 800 mPa ⁇ s or less, and the mixture is applied onto a light emitting element. And a step of forming a wavelength conversion layer by heating, and a step of supplying a translucent ceramic material onto the wavelength conversion layer.
  • the mixed solution may contain an organic solvent and / or inorganic particles.
  • the content of the swellable particles in the wavelength conversion layer is preferably 0.3% by weight or more and 70% by weight or less.
  • the swellable particles are preferably a layered silicate mineral.
  • the layered silicate mineral is a swellable clay mineral.
  • the swellable clay mineral preferably has a smectite structure.
  • the step of supplying the translucent ceramic material includes a step of applying and baking a solution containing an organometallic compound or an inorganic polymer.
  • the organometallic compound is preferably an organosiloxane compound.
  • the inorganic polymer is preferably polysilazane.
  • the phosphor has a volume average particle diameter of 1 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of the wavelength conversion layer is preferably 5 ⁇ m or more and 500 ⁇ m or less.
  • a ratio of the total amount of the water and the organic solvent to the swellable particles in the mixed solution is 1000% by weight or more and 9000% by weight or less.
  • the swellable particles when the swellable particles are hydrophilic particles that are not surface-treated, the swellable particles and the water may be mixed first when adjusting the mixed solution. preferable.
  • the swellable particles when the swellable particles are surface-treated hydrophilic particles, the swellable particles and the organic solvent may be first mixed when adjusting the mixed solution. preferable.
  • the light-emitting device of the present invention is manufactured by any one of the above-described methods for manufacturing a light-emitting device.
  • the present invention uses a mixed solution containing a phosphor, swellable particles, and water and having a viscosity of 25 mPa ⁇ s or more and 800 mPa ⁇ s or less, and the mixture is applied to at least one surface of a light-transmitting substrate and heated.
  • a method of manufacturing a wavelength conversion element including the step of forming a wavelength conversion layer and the step of supplying a translucent ceramic material onto the wavelength conversion layer is provided.
  • the mixed solution may contain an organic solvent and / or inorganic particles.
  • the content of the swellable particles in the wavelength conversion layer is preferably 0.3 wt% or more and 70 wt% or less.
  • the swellable particle is preferably a layered silicate mineral.
  • the layered silicate mineral is preferably a swellable clay mineral.
  • the swellable clay mineral preferably has a smectite structure.
  • the step of supplying the translucent ceramic material includes a step of applying and baking a solution containing an organometallic compound or an inorganic polymer.
  • the organometallic compound is preferably an organosiloxane compound.
  • the inorganic polymer is preferably polysilazane.
  • the phosphor has a volume average particle diameter of 1 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of the wavelength conversion layer is preferably 5 ⁇ m or more and 500 ⁇ m or less.
  • the ratio of the total amount of the water and the organic solvent to the swellable particles in the mixed solution is preferably 1000% by weight or more and 9000% by weight or less.
  • the swellable particles are hydrophilic particles that are not surface-treated, the swellable particles and the water are first mixed when adjusting the mixed solution. Is preferred.
  • the swellable particles are surface-treated lipophilic particles, the swellable particles and the organic solvent are first mixed when preparing the mixed solution. Is preferred.
  • the wavelength conversion element of the present invention is manufactured by the above-described method for manufacturing a wavelength conversion element.
  • the method for manufacturing a light emitting device of the present invention is obtained by adding a step of installing the wavelength converting element on the light emitting surface side of the light emitting element in the above method for manufacturing a wavelength converting element.
  • the light-emitting device of the present invention is manufactured by the above-described light-emitting device manufacturing method.
  • the method for producing a light emitting device of the present invention uses a mixed solution containing a phosphor and swellable particles, and applies the mixed solution on a light emitting element and heats the phosphor with the swellable particles. It has the process of forming on a light emitting element and forming a wavelength conversion layer.
  • the mixed solution preferably contains water and has a viscosity of 25 mPa ⁇ s to 800 mPa ⁇ s.
  • the mixed liquid of the present invention is a mixed liquid used for forming the phosphor layer, and includes a phosphor, swellable particles, and water, and has a viscosity of 25 mPa ⁇ s to 800 mPa ⁇ s.
  • the present invention it is possible to reduce the occurrence of color unevenness to the extent that it can be sufficiently used in a light-emitting device that is required to have a high level of color uniformity, such as an automobile headlight, and is excellent in durability. Can be realized.
  • FIG. 6 is a diagram showing component data of Comparative Examples 1 to 6.
  • FIG. 5 is a graph showing the film thickness and chromaticity evaluation results of Examples 1 to 15, 29 to 33, and Comparative Examples 1 to 6, together with the viscosity of a mixed liquid in which a phosphor is dispersed.
  • FIG. 4 is a graph showing the hydrophilic smectite content and luminance of Examples 4, 7 to 9, 12, and 13. It is a figure which shows the result of having measured the viscosity of the liquid mixture which the fluorescent substance of Example 6 and Example 15 disperse
  • FIG. 6 is a graph showing the chromaticity, water and IPA content of Examples 16 to 28, and wettability of a mixed liquid in which a phosphor is dispersed.
  • FIG. 1 is a schematic cross-sectional view of a light emitting device according to a first embodiment of the present invention.
  • a metal part 2 is provided on a flat LED substrate 1, and an LED element 3 is disposed on the metal part 2 as a light emitting element.
  • the LED element 3 is provided with a protruding electrode 4 on a surface facing the metal part 2, and the metal part 2 and the LED element 3 are connected via the protruding electrode 4 (flip chip type).
  • a blue LED element is used as the LED element 3.
  • a blue LED element is formed by laminating an n-GaN-based cladding layer, an InGaN light-emitting layer, a p-GaN-based cladding layer, and a transparent electrode on a sapphire substrate.
  • the wavelength conversion element 9 includes a glass substrate 5 and a wavelength conversion unit 6 formed on the upper surface of the glass substrate 5.
  • the shape of the glass substrate 5 is not particularly limited, and a flat plate shape, a lens shape, or the like can be adopted.
  • the wavelength conversion unit 6 may be formed on the lower surface of the glass substrate 5.
  • the wavelength conversion unit 6 includes a wavelength conversion layer 7 formed on the glass substrate 5 and a ceramic layer 8 formed on the wavelength conversion layer 7.
  • the wavelength conversion layer 7 is a part that converts light having a predetermined wavelength emitted from the LED element 3 into light having a different wavelength, and is excited by the wavelength from the LED element 3 to emit fluorescence having a wavelength different from the excitation wavelength. Contains the body.
  • the ceramic layer 8 is a layer for sealing and protecting the wavelength conversion layer 7, and has translucency that transmits at least the light of the LED element 3 and the fluorescence of the wavelength conversion layer 7.
  • the wavelength conversion layer 7 is a layer obtained by heating a liquid mixture that contains at least a phosphor, swellable particles, and water, and may further contain an organic solvent and / or inorganic particles (inorganic fine particles).
  • the ceramic layer 8 is a transparent ceramic layer (glass body) formed by a so-called sol-gel method in which a sol-like precursor solution in which an organic metal compound or an inorganic polymer is mixed with a solvent is heated to be in a gel state and further fired. is there. (Phosphor)
  • the phosphor is excited by the wavelength of the light emitted from the LED element 3 (excitation wavelength) and emits fluorescence having a wavelength different from the excitation wavelength.
  • a YAG (yttrium, aluminum, garnet) phosphor that converts blue light (wavelength 420 nm to 485 nm) emitted from the blue LED element into yellow light (wavelength 550 nm to 650 nm) is used.
  • Such phosphors use oxides of Y, Gd, Ce, Sm, Al, La, and Ga, or compounds that easily become oxides at high temperatures, and are mixed well in a stoichiometric ratio.
  • a mixed raw material is obtained.
  • a coprecipitated oxide obtained by calcining a solution obtained by coprecipitation of a solution obtained by dissolving a rare earth element of Y, Gd, Ce, or Sm in an acid with a stoichiometric ratio with oxalic acid, and aluminum oxide or gallium oxide.
  • an appropriate amount of fluoride such as ammonium fluoride is mixed with the obtained mixed raw material as a flux and pressed to obtain a molded body.
  • the obtained molded body is packed in a crucible and fired in air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a sintered body having the phosphor emission characteristics.
  • the YAG phosphor is used.
  • the type of the phosphor is not limited to this.
  • other phosphors such as non-garnet phosphors containing no Ce are used. You can also.
  • the larger the particle size of the phosphor the higher the light emission efficiency (wavelength conversion efficiency), but the gap formed at the interface with the swellable particles becomes larger and the film strength of the formed wavelength conversion layer is lowered. Accordingly, in consideration of the size of the gap generated at the interface between the luminous efficiency and the swellable particles, it is preferable to use one having a volume average particle size of 1 ⁇ m to 50 ⁇ m, which is smaller than the thickness of the wavelength conversion layer 7 after heating. Is used.
  • the volume average particle diameter of the phosphor can be measured by, for example, a Coulter counter method or a laser diffraction / scattering particle diameter measuring apparatus. (Swellable particles)
  • swellable particles fluoride particles such as magnesium fluoride, aluminum fluoride, and calcium fluoride, and layered silicate minerals can be used.
  • a layered silicate mineral is preferable, a swellable clay mineral having a structure such as a mica structure, a kaolinite structure, and a smectite structure is more preferable, and a smectite structure rich in swelling property is particularly preferable. This is because, as will be described later, by adding water to the mixed liquid, it takes a card house structure in which water enters and swells between the layers of the smectite structure, so the viscosity of the mixed liquid is greatly increased. It is.
  • the mineral is a solid substance having a certain chemical composition and crystal structure, which is a natural or synthetic inorganic substance.
  • the content of the swellable particles in the wavelength conversion layer 7 is less than 0.3% by weight, the proportion of solid components such as phosphors in the mixed solution increases, and the dispersibility thereof deteriorates.
  • the content of the swellable particles exceeds 70% by weight, scattering of excitation light by the swellable particles occurs frequently, and the emission luminance of the wavelength conversion layer 7 decreases.
  • the content of the swellable particles is preferably 0.3 wt% or more and 70 wt% or less, more preferably 0.5 wt% or more and 65 wt% or less, and further preferably 1 wt% or more and 60 wt% or less.
  • the smectite-structured swellable clay mineral has a thickening effect, but if the ratio in the wavelength conversion layer 7 is high, the viscosity of the liquid mixture does not increase, and the viscosity of the liquid mixture is water, organic solvent, phosphor It is determined by the ratio with other components.
  • a layered silicate mineral whose surface is modified (surface treatment) with an ammonium salt or the like can be used as appropriate. (water)
  • Water has a role of swelling hydrophilic swellable particles.
  • hydrophilic swellable particles For example, when water is added to a hydrophilic layered silicate mineral that has not been surface-treated, water enters between the layers of the layered silicate mineral, increasing the viscosity of the mixture, thereby suppressing phosphor settling. can do.
  • swelling since there exists a possibility that swelling may be inhibited when the impurity is contained in water, it is necessary to use the pure water which does not contain an impurity as the water to add. (Organic solvent)
  • the organic solvent is used for improving the wettability of the mixed solution and adjusting the viscosity.
  • the organic solvent is methanol, ethanol, or propanol with excellent water compatibility. It is preferable to use alcohols such as butanol.
  • lipophilic swellable particles such as surface-treated lipophilic layered silicate minerals, water does not act on the swelling of the swellable particles, but the viscosity increases by adding water.
  • an organic solvent excellent in compatibility with the organic solvent By using an organic solvent having a high boiling point (preferably 150 to 250 ° C.), the pot life of the mixed solution is not shortened and the handleability is excellent. (Inorganic particles)
  • the inorganic particles have a filling effect that fills gaps formed at the interface between the phosphor and the swellable particles, and a thickening effect that increases the viscosity of the mixed solution before heating.
  • the inorganic particles used in the present invention include oxide fine particles such as silicon oxide, titanium oxide and zinc oxide, fluoride fine particles such as magnesium fluoride, and the like.
  • those obtained by treating the surface of the inorganic particles with a silane coupling agent or a titanium coupling agent can be appropriately used.
  • the particle size distribution of the inorganic particles is not particularly limited, and may be distributed over a wide range or may be distributed over a relatively narrow range.
  • the central particle diameter of the primary particle diameter is 0.001 ⁇ m or more and 1 ⁇ m or less, preferably smaller than the phosphor, and smaller than the thickness of the wavelength conversion layer 7 after heating.
  • the average particle diameter of the inorganic particles can be measured, for example, by a Coulter counter method. (Precursor solution)
  • the precursor solution is a mixture of an organometallic compound or an inorganic polymer in a solvent, and the translucent ceramic layer 8 can be obtained by heating the precursor solution.
  • gas barrier properties and film strength can be improved.
  • the characteristics such as the refractive index of the ceramic layer 8 can be adjusted by mixing inorganic particles, swellable particles, water and the like into the precursor solution.
  • the solvent for the organometallic compound when water is added, alcohols such as methanol, ethanol, propanol and butanol, which are excellent in compatibility with water, are preferable. Further, when the amount of the organometallic compound mixed with the solvent is less than 5% by weight, it becomes difficult to increase the viscosity of the solution. When the amount of the organometallic compound mixed exceeds 50% by weight, the polymerization reaction proceeds more rapidly than necessary. End up. Therefore, the amount of the organometallic compound mixed with the solvent is preferably 5% by weight or more and 50% by weight or less, and more preferably 8% by weight or more and 40% by weight or less.
  • aliphatic hydrocarbons aliphatic hydrocarbons, aromatic hydrocarbons, halogen hydrocarbons, ethers, and esters
  • Preferred are methyl ethyl ketone, tetrahydrofuran, benzene, toluene, xylene, dimethyl fluoride, chloroform, carbon tetrachloride, ethyl ether, isopropyl ether, dibutyl ether, and ethyl butyl ether.
  • organometallic compound used in the present invention examples include metal alkoxides, metal acetylacetonates, metal carboxylates, and the like, but metal alkoxides that are easily gelled by hydrolysis and polymerization reaction are preferable.
  • the metal alkoxide may be a single molecule such as tetraethoxysilane, or may be a polysiloxane in which an organosiloxane compound is linked in a chain or a ring, but a polysiloxane that increases the viscosity of the precursor solution is preferable.
  • a translucent glass body can be formed, but it is preferable to contain a silicon
  • polysilazane may be mentioned, but perhydropolysilazane having a low curing condition of curing to a ceramic at low temperature and low humidity is preferable.
  • Polysilazane is represented by the following general formula (1).
  • R 1 R 2 SiNR 3 n
  • R 1 to R 3 each independently represents a hydrogen atom, an alkyl group, an aryl group, a vinyl group, or a cycloalkyl group, and at least one of R 1 to R 3 is a hydrogen atom.
  • the case where all are hydrogen atoms is perhydropolysilazane.
  • n is an integer of 1 to 60.
  • the molecular shape of the polysilazane may be any shape, for example, linear or cyclic.
  • the polysilazane represented by the formula (1) and a reaction accelerator as required are dissolved in an appropriate solvent, applied, and cured by heating, excimer light treatment, UV (ultraviolet) light treatment, heat resistance, light resistance It is possible to produce an excellent ceramic layer.
  • reaction accelerator it is preferable to use an acid, a base or the like, but it is not always necessary to use it.
  • reaction accelerators include triethylamine, diethylamine, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, hydrochloric acid, oxalic acid, fumaric acid, sulfonic acid, acetic acid, nickel, iron, palladium , Metal carboxylates containing iridium, platinum, titanium, and aluminum, but are not limited thereto.
  • reaction accelerator is a metal carboxylate, and the addition amount is preferably 0.01 to 5 mol% based on polysilazane. (Procedure for adjusting the mixture)
  • the mixed liquid As a preparation procedure of the mixed liquid, when using lipophilic swelling particles such as surface-treated layered silicate mineral, first, lipophilic swelling particles are premixed in an organic solvent, and then phosphor, Mix water and inorganic particles as required. On the other hand, when using hydrophilic swellable particles such as layered silicate minerals that have not been surface-treated, first swellable particles are premixed in water, followed by phosphors, organic solvents and inorganic particles as required Mix. Thereby, swellable particle
  • the preferred viscosity of the mixed solution is 25 to 800 mPa ⁇ s, and the most preferred viscosity is 25 to 600 mPa ⁇ s. (Method for manufacturing light emitting device)
  • a predetermined amount of the mixed liquid obtained as described above is applied to one side of the glass substrate 5 and heated to form the wavelength conversion layer 7 having a predetermined thickness.
  • the wavelength conversion layer 7 having a uniform thickness is formed on the glass substrate 5.
  • a predetermined amount of the precursor solution is applied to the upper surface of the wavelength conversion layer 7. Part of the applied precursor solution penetrates into the gaps between the phosphor particles and the swellable particles.
  • a ceramic layer 8 is formed by firing the glass substrate 5 coated with the precursor solution.
  • the precursor solution that has penetrated into the wavelength conversion layer 7 is changed to a ceramic material
  • the ceramic material acts as a binder for the phosphor particles, the swellable particles, and the glass substrate 5. Therefore, by applying the precursor solution on the upper surface of the wavelength conversion layer 7 and firing, the wavelength conversion layer 7 is reliably formed on the glass substrate 5 even if the ceramic layer 8 is not clearly formed on the wavelength conversion layer 7. Fixed. Further, when the ceramic layer 8 is clearly formed on the wavelength conversion layer 7, there is also a function of sealing the wavelength conversion layer 7.
  • the coating method of a liquid mixture and a precursor solution is not specifically limited, Conventionally well-known various methods, such as a bar coat method, a spin coat method, and a spray coat method, can be used.
  • the light-emitting device 100 can be manufactured by cut
  • size for example, 2x2 mm
  • the thickness of the wavelength conversion part 7 is less than 5 ⁇ m, the wavelength conversion efficiency is lowered and sufficient fluorescence cannot be obtained, and when the thickness of the wavelength conversion layer 7 is more than 500 ⁇ m, the film strength is reduced and cracks occur. Etc. are likely to occur. Therefore, the thickness of the wavelength conversion layer 7 is preferably 5 ⁇ m or more and 500 ⁇ m or less.
  • the glass substrate 5 is used in the said embodiment, if it is a board
  • FIG. 2 is a schematic sectional view of a light emitting device according to a second embodiment of the present invention.
  • the metal part 2 is provided at the bottom of the LED substrate 1 having a concave cross section, the LED element 3 is disposed on the metal part 2, and a lid is provided on the recess of the LED substrate 1.
  • a wavelength conversion element 9 is provided. Since the configuration of other parts including the wavelength conversion element 9 is the same as that of the first embodiment, the description thereof is omitted.
  • the LED element 3 is disposed in the concave portion of the LED substrate 1, and the wavelength conversion element 9 used in the first embodiment is bonded to the upper end of the side wall of the LED substrate 1 so as to cover the concave portion. Can be manufactured.
  • light emitted from the side surface of the LED element 3 is also efficiently converted into fluorescence as compared with the first embodiment.
  • the shape and size of the concave portion of the LED substrate 1 can be appropriately designed according to the specifications of the light emitting device 101.
  • the side surface of the recess may be tapered.
  • FIG. 3 is a schematic cross-sectional view of a light emitting device according to a third embodiment of the present invention.
  • the light emitting device 102 is configured such that the metal part 2 is provided on the bottom of the LED substrate 1 having a concave cross section, the LED element 3 is disposed on the metal part 2, and the LED element 3 is covered.
  • a wavelength conversion unit 6 is provided in the concave portion of the substrate 1.
  • the LED element 3 is disposed in the concave portion of the LED substrate 1, and the phosphor mixed solution is sprayed on the concave portion of the LED substrate 1 and the surface of the LED element 3 by a spray coating method, and heated to emit light.
  • the ceramic layer 8 can be manufactured by forming the conversion layer 7, spraying the precursor solution on the wavelength conversion layer 7 by a spray coating method, and baking the precursor solution.
  • the present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. Embodiments are also included in the technical scope of the present invention.
  • a light emitting device that emits white light by using a blue LED and a phosphor together has been described as an example.
  • a green LED or a red LED and a phosphor are used in combination.
  • not only one type of phosphor but also three types of phosphors that absorb ultraviolet light and emit red, green, and blue light, respectively, and red and green light that absorb blue light, respectively. You may use together two types of fluorescent substance to radiate
  • a translucent ceramic layer such as the ceramic layer 8 described above may be formed on the surface of the glass substrate 5 or the LED element 3 before applying the phosphor mixture.
  • Examples 1 to 15, 29 to 33 and Comparative Examples 1 to 6 are examples of the wavelength conversion element 9 of the first or second embodiment, and Examples 16 to 28 are examples of the light emitting device 102 of the third embodiment. is there. (Phosphor preparation example)
  • the obtained fired product was pulverized, washed, separated, and dried to obtain yellow phosphor particles having a volume average particle diameter of about 1 ⁇ m.
  • the emission wavelength of excitation light with a wavelength of 465 nm was measured, it had a peak wavelength at a wavelength of approximately 570 nm.
  • the glass substrate used in each example and comparative example was a rectangular parallelepiped having a width of 50 mm, a length of 20 mm, and a thickness of 1 mm, and a thin plate.
  • a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 ⁇ m, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
  • a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 ⁇ m, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
  • a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 ⁇ m, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
  • a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 ⁇ m, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
  • a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 ⁇ m, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
  • a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 ⁇ m, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
  • hydrophilic smectite (Lucentite SWN, manufactured by Co-op Chemical Co.) that has not been surface-treated and 1 g of pure water were mixed and dispersed.
  • the mixture was prepared by mixing 1 g of the phosphor prepared in the above preparation example and 2 g of IPA. This mixed solution was applied onto a glass substrate by a bar coating method so that the film thickness of the wavelength conversion layer after heating was 30 ⁇ m, and heated at 50 ° C. for 10 minutes.
  • a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 ⁇ m, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
  • the surface-treated hydrophilic smectite (Lucentite SWN, manufactured by Co-op Chemical) 0.43 g and pure water 8.6 g were mixed and dispersed.
  • 1 g of the phosphor prepared in the above preparation example and 17.2 g of IPA were mixed to prepare a mixed solution.
  • This mixed solution was applied onto a glass substrate by a bar coating method so that the film thickness of the wavelength conversion layer after heating was 50 ⁇ m, and heated at 50 ° C. for 10 minutes.
  • a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 ⁇ m, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
  • hydrophilic smectite (Lucentite SWN, manufactured by Co-op Chemical Co.) that has not been surface-treated and 30 g of pure water were mixed and dispersed. This was mixed with 1 g of the phosphor prepared in the above preparation example and 60 g of IPA to prepare a mixed solution. This mixed solution was applied onto a glass substrate by a bar coating method so that the film thickness of the wavelength conversion layer after heating was 200 ⁇ m, and heated at 50 ° C. for 10 minutes.
  • a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 ⁇ m, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
  • the surface-treated lipophilic smectite (Lucentite SPN, manufactured by Co-op Chemical) 0.11 g and IPA 4.4 g were mixed and dispersed. This was mixed with 1 g of the phosphor prepared in the above preparation example and 1.1 g of pure water to prepare a mixed solution. This mixed solution was applied onto a glass substrate by a bar coating method so that the film thickness of the wavelength conversion layer after heating was 35 ⁇ m, and heated at 50 ° C. for 10 minutes.
  • a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 ⁇ m, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
  • Example 4 the polysiloxane dispersion was replaced with a polysilazane dispersion (NL120-20; polysilazane 20 wt%, dibutyl ether 80 wt%; manufactured by AZ Electronic Materials) to prepare a sample of a wavelength conversion element.
  • a polysilazane dispersion NL120-20; polysilazane 20 wt%, dibutyl ether 80 wt%; manufactured by AZ Electronic Materials
  • hydrophilic smectite (Lucentite SWN, manufactured by Co-op Chemical Co.) that has not been surface-treated and 18 g of pure water were mixed and dispersed.
  • 0.1 g of the phosphor prepared in the above preparation example and 36 g of IPA were mixed to prepare a mixed solution.
  • This mixed solution was applied on a glass substrate by a bar coating method so that the film thickness of the wavelength conversion layer after heating was 400 ⁇ m, and heated at 50 ° C. for 10 minutes.
  • a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 ⁇ m, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
  • a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 ⁇ m, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
  • a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 ⁇ m, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
  • hydrophilic smectite (Lucentite SWN, manufactured by Co-op Chemical Co.) that has not been surface-treated and 0.4 g of pure water were mixed and dispersed.
  • 1 g of a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%), 0.7 g of the phosphor prepared according to the above preparation example, and NanoTek Powder (median diameter (D50) 25 nm oxidation) as inorganic particles 0.03 g of silicon fine particles (manufactured by CIK Nanotech) was mixed to prepare a mixed solution.
  • This mixed solution was applied onto a glass substrate by a bar coating method so that the film thickness of the wavelength conversion layer after baking was 40 ⁇ m, and further, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol) was formed thereon. 86 wt%) was applied on the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer was 1 ⁇ m, and baked at 500 ° C. for 1 hour to prepare a sample of the wavelength conversion element.
  • a mixed liquid in which the same phosphor as in Example 2 was dispersed was prepared. This mixed liquid is sprayed at a spray pressure of 0.2 MPa on the concave portions of the LED substrate and the LED element surface by a spray coating method so that the film thickness of the wavelength conversion layer on the LED element after heating becomes 35 ⁇ m, at 50 ° C. Heated for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is spray-coated on the wavelength conversion layer so that the film thickness of the ceramic layer on the LED element after firing is 1 ⁇ m. The sample was sprayed at a spray pressure of 0.1 MPa and fired at 120 ° C. for 1 hour to produce a sample of a light emitting device.
  • a mixed liquid in which the same phosphor as in Example 3 was dispersed was prepared. This mixed liquid is sprayed at a spray pressure of 0.2 MPa on the concave portions of the LED substrate and the LED element surface by a spray coating method so that the film thickness of the wavelength conversion layer on the LED element after heating becomes 35 ⁇ m, at 50 ° C. Heated for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is spray-coated on the wavelength conversion layer so that the film thickness of the ceramic layer on the LED element after firing is 1 ⁇ m. The sample was sprayed at a spray pressure of 0.1 MPa and fired at 120 ° C. for 1 hour to produce a sample of a light emitting device.
  • a mixed liquid in which the same phosphor as in Example 4 was dispersed was prepared. This mixed liquid is sprayed at a spray pressure of 0.2 MPa on the concave portions of the LED substrate and the LED element surface by a spray coating method so that the film thickness of the wavelength conversion layer on the LED element after heating becomes 35 ⁇ m, at 50 ° C. Heated for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is spray-coated on the wavelength conversion layer so that the film thickness of the ceramic layer on the LED element after firing is 1 ⁇ m. The sample was sprayed at a spray pressure of 0.1 MPa and fired at 120 ° C. for 1 hour to produce a sample of a light emitting device.
  • a mixed liquid in which the same phosphor as in Example 5 was dispersed was prepared. This mixed liquid is sprayed at a spray pressure of 0.2 MPa on the concave portions of the LED substrate and the LED element surface by a spray coating method so that the film thickness of the wavelength conversion layer on the LED element after heating becomes 35 ⁇ m, at 50 ° C. Heated for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is spray-coated on the wavelength conversion layer so that the film thickness of the ceramic layer on the LED element after firing is 1 ⁇ m. The sample was sprayed at a spray pressure of 0.1 MPa and fired at 120 ° C. for 1 hour to produce a sample of a light emitting device.
  • a mixed liquid in which the same phosphor as in Example 6 was dispersed was prepared. This mixed liquid is sprayed at a spray pressure of 0.2 MPa on the concave portions of the LED substrate and the LED element surface by a spray coating method so that the film thickness of the wavelength conversion layer on the LED element after heating becomes 35 ⁇ m, at 50 ° C. Heated for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is spray-coated on the wavelength conversion layer so that the film thickness of the ceramic layer on the LED element after firing is 1 ⁇ m. The sample was sprayed at a spray pressure of 0.1 MPa and fired at 120 ° C. for 1 hour to produce a sample of a light emitting device.
  • a mixed liquid in which the same phosphor as in Example 7 was dispersed was prepared. This mixed liquid is sprayed at a spray pressure of 0.2 MPa on the concave portions of the LED substrate and the LED element surface at a spray pressure of 0.2 MPa so that the film thickness of the wavelength conversion layer on the LED element after heating is 30 ⁇ m. Heated for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is spray-coated on the wavelength conversion layer so that the film thickness of the ceramic layer on the LED element after firing is 1 ⁇ m. The sample was sprayed at a spray pressure of 0.1 MPa and fired at 120 ° C. for 1 hour to produce a sample of a light emitting device.
  • a mixed liquid in which the same phosphor as in Example 8 was dispersed was prepared. This mixed solution is sprayed at a spray pressure of 0.2 MPa by spray coating on the concave portions of the LED substrate and the LED element surface so that the film thickness of the wavelength conversion layer on the LED element after heating becomes 50 ⁇ m, and at 50 ° C. Heated for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is spray-coated on the wavelength conversion layer so that the film thickness of the ceramic layer on the LED element after firing is 1 ⁇ m. The sample was sprayed at a spray pressure of 0.1 MPa and fired at 120 ° C. for 1 hour to produce a sample of a light emitting device.
  • a mixed liquid in which the same phosphor as in Example 9 was dispersed was prepared. This mixed solution is sprayed at a spray pressure of 0.2 MPa on the concave portions of the LED substrate and the LED element surface at a spray pressure of 0.2 MPa so that the film thickness of the wavelength conversion layer on the LED element after heating is 200 ⁇ m. Heated for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is spray-coated on the wavelength conversion layer so that the film thickness of the ceramic layer on the LED element after firing is 1 ⁇ m. The sample was sprayed at a spray pressure of 0.1 MPa and fired at 120 ° C. for 1 hour to produce a sample of a light emitting device.
  • a mixed liquid in which the same phosphor as in Example 10 was dispersed was prepared. This mixed liquid is sprayed at a spray pressure of 0.2 MPa on the concave portions of the LED substrate and the LED element surface by a spray coating method so that the film thickness of the wavelength conversion layer on the LED element after heating becomes 35 ⁇ m, at 50 ° C. Heated for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is spray-coated on the wavelength conversion layer so that the film thickness of the ceramic layer on the LED element after firing is 1 ⁇ m. The sample was sprayed at a spray pressure of 0.1 MPa and fired at 120 ° C. for 1 hour to produce a sample of a light emitting device.
  • Example 17 a sample of a light emitting device was produced by replacing the polysiloxane dispersion with a polysilazane dispersion (NL120-20; 20% by weight of polysilazane, 80% by weight of dibutyl ether; manufactured by AZ Electronic Materials). Other conditions are the same as those in Example 17.
  • a mixed liquid in which the same phosphor as in Example 4 was dispersed was prepared. This mixed liquid is sprayed at a spray pressure of 0.2 MPa on the concave portions of the LED substrate and the LED element surface by a spray coating method so that the film thickness of the wavelength conversion layer on the LED element after heating becomes 35 ⁇ m, at 50 ° C. Heated for 10 minutes.
  • a sample of a light emitting device was manufactured.
  • non-surface-treated hydrophilic smectite (Lucentite SWN, manufactured by Co-op Chemical Co.) and 0.4 g of pure water are mixed and dispersed, and a polysiloxane dispersion (polysiloxane 14% by weight, 1 g of isopropyl alcohol (86 wt%) was mixed to prepare a precursor solution.
  • This precursor solution is sprayed onto the wavelength conversion layer at a spray pressure of 0.1 MPa by spray coating so that the thickness of the ceramic layer on the LED element after firing is 1 ⁇ m, and fired at 120 ° C. for 1 hour.
  • a sample of a light emitting device was manufactured.
  • a mixed liquid in which the same phosphor as in Example 4 was dispersed was prepared. This mixed liquid is sprayed at a spray pressure of 0.2 MPa on the concave portions of the LED substrate and the LED element surface by a spray coating method so that the film thickness of the wavelength conversion layer on the LED element after heating becomes 35 ⁇ m, at 50 ° C. Heated for 10 minutes.
  • hydrophilic smectite that has not been surface-treated (Lucentite SWN, manufactured by Co-op Chemical Co., Ltd.) and 0.2 g of pure water are mixed and dispersed, and a polysiloxane dispersion (polysiloxane 14 wt%, 1 g of isopropyl alcohol (86 wt%) was mixed to prepare a precursor solution.
  • This precursor solution is sprayed onto the wavelength conversion layer at a spray pressure of 0.1 MPa by spray coating so that the thickness of the ceramic layer on the LED element after firing is 1 ⁇ m, and fired at 120 ° C. for 1 hour.
  • a sample of a light emitting device was manufactured.
  • a mixed liquid in which the same phosphor as in Example 7 was dispersed was prepared. This mixed liquid is sprayed at a spray pressure of 0.2 MPa on the concave portions of the LED substrate and the LED element surface at a spray pressure of 0.2 MPa so that the film thickness of the wavelength conversion layer on the LED element after heating is 30 ⁇ m. Heated for 10 minutes.
  • a sample of a light emitting device was manufactured.
  • non-surface-treated hydrophilic smectite (Lucentite SWN, manufactured by Co-op Chemical Co.) and 0.4 g of pure water are mixed and dispersed, and a polysiloxane dispersion (polysiloxane 14% by weight, 1 g of isopropyl alcohol (86 wt%) was mixed to prepare a precursor solution.
  • This precursor solution is sprayed onto the wavelength conversion layer at a spray pressure of 0.1 MPa by spray coating so that the thickness of the ceramic layer on the LED element after firing is 1 ⁇ m, and fired at 120 ° C. for 1 hour.
  • a sample of a light emitting device was manufactured.
  • hydrophilic smectite (Lucentite SWN, manufactured by Co-op Chemical Co.) that has not been surface-treated and 1 g of pure water were mixed and dispersed.
  • 1 g of the phosphor prepared according to the above preparation example NanoTek Powder 0.06 g, which is inorganic particles, and 1 g of IPA were mixed to prepare a mixed solution.
  • This mixed solution was applied onto a glass substrate by a bar coating method so that the film thickness of the wavelength conversion layer after heating was 35 ⁇ m, and heated at 50 ° C. for 10 minutes.
  • a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 ⁇ m, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
  • hydrophilic smectite (Lucentite SWN, manufactured by Co-op Chemical Co.) that has not been surface-treated and 1 g of pure water were mixed and dispersed.
  • 1 g of the phosphor prepared according to the above preparation example and RX300 (silica-treated silicic anhydride having an average primary particle size of 7 nm; manufactured by Nippon Aerosil Co., Ltd.), which is inorganic particles, and 1 g of IPA were mixed.
  • This mixed solution was applied onto a glass substrate by a bar coating method so that the film thickness of the wavelength conversion layer after heating was 35 ⁇ m, and heated at 50 ° C. for 10 minutes.
  • a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 ⁇ m, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
  • hydrophilic smectite (Lucentite SWN, manufactured by Co-op Chemical Co.) that has not been surface-treated and 1 g of pure water were mixed and dispersed.
  • 1 g of the phosphor prepared by the above preparation example 0.06 g of inorganic particles RX300, 0.5 g of IPA, and 0.5 g of propylene glycol were mixed to prepare a mixed solution.
  • This mixed solution was applied onto a glass substrate by a bar coating method so that the film thickness of the wavelength conversion layer after heating was 35 ⁇ m, and heated at 50 ° C. for 10 minutes.
  • a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 ⁇ m, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
  • hydrophilic smectite (Lucentite SWN, manufactured by Co-op Chemical Co.) that has not been surface-treated and 1 g of pure water were mixed and dispersed.
  • 1 g of the phosphor prepared according to the above preparation example 0.06 g of RX300 as inorganic particles, 0.5 g of IPA and 0.5 g of 1,3-butanediol were mixed to prepare a mixed solution.
  • This mixed solution was applied onto a glass substrate by a bar coating method so that the film thickness of the wavelength conversion layer after heating was 35 ⁇ m, and heated at 50 ° C. for 10 minutes.
  • a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 ⁇ m, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
  • the surface-treated hydrophilic smectite (Lucentite SWN, manufactured by Co-op Chemical Co.) 0.05 g and 1 g of pure water were mixed and dispersed.
  • 1 g of the phosphor prepared by the above preparation example and silicia 470 as inorganic particles (average particle size of primary particles 14 ⁇ m, specific surface area 300 m 2 / g; manufactured by Fuji Silysia) 0.06 g and IPA 0.5 g 1
  • a mixed solution was prepared by mixing 0.5 g of 3-butanediol. This mixed solution was applied onto a glass substrate by a bar coating method so that the film thickness of the wavelength conversion layer after heating was 35 ⁇ m, and heated at 50 ° C. for 10 minutes.
  • a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 ⁇ m, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
  • a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) was mixed with 0.3 g of the phosphor prepared in the above preparation example to prepare a mixed solution.
  • This mixed solution was applied onto a glass substrate by a bar coating method so that the film thickness after baking was 45 ⁇ m, and baked at 500 ° C. for 1 hour to prepare a sample of a wavelength conversion element.
  • a polysilazane dispersion (NL120-20; 20% by weight of polysilazane, 80% by weight of dibutyl ether; manufactured by AZ Electronic Materials), 0.8 g of the phosphor prepared according to the above preparation example, and RX300 (primary) as inorganic particles Silica-treated silicic acid anhydride having an average particle diameter of 7 nm (manufactured by Nippon Aerosil Co., Ltd.) (0.06 g) was mixed to prepare a mixed solution. This mixed solution was applied onto a glass substrate by a bar coating method so that the film thickness after firing was 50 ⁇ m, and fired at 500 ° C. for 1 hour to prepare a sample of a wavelength conversion element.
  • a mixed liquid was prepared by mixing 0.3 g of silicon fine particles (manufactured by CIK Nanotech Co., Ltd.). This mixed solution was applied onto a glass substrate by a bar coating method so that the film thickness after firing was 160 ⁇ m, and fired at 500 ° C. for 1 hour to prepare a sample of a wavelength conversion element.
  • a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 ⁇ m, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
  • a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 ⁇ m, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
  • Hydrophilic smectite (Lucentite SWN, manufactured by Co-op Chemical Co., Ltd.) 0.11 g not subjected to surface treatment and 2.2 g of pure water were mixed and dispersed. This was mixed with 1 g of the phosphor prepared in the above preparation example and 11 g of IPA to prepare a mixed solution. This mixed solution was applied onto a glass substrate by a bar coating method so that the film thickness of the wavelength conversion layer after heating was 35 ⁇ m, and heated at 50 ° C. for 10 minutes.
  • a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) was applied on the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer was 1 ⁇ m, and 500 A sample of the wavelength conversion element was prepared by baking at a temperature of 1 hour. (Evaluation, examination)
  • a laser holo gauge manufactured by Mitutoyo Corporation was used for measuring the film thickness.
  • a vibration type viscometer (VM-10A-L, manufactured by CBC) is used, and for a viscosity of 1000 mPa ⁇ s or more, a vibration type viscometer (VM-10A-MH, manufactured by CBC) is used.
  • the light emitting device was manufactured by mounting a wavelength conversion element cut to about 1 mm square on a 1000 ⁇ 1000 ⁇ 100 ⁇ m blue LED in a flip chip type. The chromaticity of luminescence was measured using a spectral radiance meter (CS-1000A, manufactured by Konica Minolta Sensing).
  • FIG. 4 is a diagram showing the component data of Examples 1 to 7
  • FIG. 5 is a diagram showing the component data of Examples 8 to 14
  • FIG. 6 is a diagram showing the component data of Examples 29 to 33
  • FIG. FIG. 6 is a diagram showing component data of Comparative Examples 1 to 6.
  • the values of water, IPA, propylene glycol, and 1,3-butanediol indicate how many times the weight of the swellable particles (hydrophilic or lipophilic smectite).
  • FIG. 8 is a graph showing the film thickness and chromaticity evaluation results of Examples 1 to 15, 29 to 33 and Comparative Examples 1 to 6, together with the viscosity of the mixed liquid in which the phosphor is dispersed.
  • the film thickness is evaluated when the film thickness of the first one of the five samples is the reference value (100%), and the film thickness variation of the remaining four sheets is within a range of ⁇ 10%. ⁇ when within ⁇ 20% range, ⁇ when within ⁇ 30% range, and x when variation in film thickness exceeds ⁇ 40%.
  • the chromaticity of white light is (0.33, 0.33). The closer the chromaticity is to this value, the closer to white light.
  • the five chromaticities in FIG. 8 are the chromaticities of each of the five coated samples, and the value of each sample is measured using any three of a number of wavelength conversion elements cut out from a size of 50 mm ⁇ 20 mm. The average value of chromaticity was shown.
  • FIG. 9 is a diagram showing the hydrophilic smectite content and brightness of Examples 4, 7 to 9, 12, and 13.
  • the luminance was measured for a total of 15 samples using any three of a large number of wavelength conversion elements cut out from a size of 50 mm ⁇ 20 mm of each of the five coated samples.
  • the brightness was expressed as a relative value with the brightness of Example 7 being 1.
  • the luminance here is the luminance only in the vertical direction, and is not obtained by measuring light scattered in the non-vertical direction by smectite with an integrating sphere.
  • FIG. 10 is a graph showing the results of measuring the viscosity of the mixed solution in which the phosphors of Example 6 and Example 15 were dispersed over time.
  • the result of the viscosity measurement describes immediately after the preparation of the mixed solution, 3 hours after the preparation, and 168 hours after the preparation.
  • Example 15 including the ceramic material (polysiloxane) serving as a binder a chemical reaction occurs with time after preparation, and the viscosity increases. After 168 hours from preparation, the viscosity increases to an unfavorable viscosity for application. That is, if the coating solution contains a binder component, the pot life of the coating solution is shortened.
  • the solution containing the phosphor, the swellable particles, and water preferably has a small amount of the binder component, and more preferably does not contain the binder component.
  • the binder component is an inorganic polymer or organometallic compound that becomes a ceramic after firing.
  • FIG. 11 is a diagram showing component data of Examples 26 to 28.
  • the blending ratio of polysiloxane is indicated by the weight when it becomes a fired ceramic.
  • the water value indicates how many times the weight of the swellable particles (hydrophilic smectite).
  • FIG. 12 is a diagram showing the chromaticity, water and IPA contents of Examples 16 to 28, and wettability of the mixed liquid in which the phosphor is dispersed.
  • the values of water and IPA indicate how many times the weight of the swellable particles (hydrophilic or lipophilic smectite). The wettability was evaluated as ⁇ when uniform coating was possible and ⁇ when uniform coating was possible but the coating solution was repelled.
  • Comparative Examples 1 to 3, 5, and 6 have low viscosity, so that the phosphor is likely to precipitate and the film thickness is not stable. For this reason, the variation in chromaticity of light emission is large.
  • Comparative Example 4 as shown in FIG. 8, the film thickness is not stable because the viscosity is too high.
  • Examples 1 to 11, 13, 14, and 29 to 33 have high viscosity and stable film thickness and chromaticity.
  • Example 12 although the viscosity is high and the film thickness and chromaticity are stable, since the amount of smectite is large, the luminance in the vertical direction slightly decreases due to scattering. Further, it was found that the same effect was obtained even when the wavelength conversion element was directly applied to the LED element as in Examples 16 to 28. However, in Example 16, since IPA which is an organic solvent is not included, the wettability is slightly lowered.
  • Examples 29 to 33 due to the thickening effect of various silicas added, the phosphor hardly settles in the coating solution, and can be applied in a uniformly dispersed state, and can be stably applied over time. In addition, since the phosphor is dried in a uniformly dispersed state, the occurrence of color unevenness can be suppressed. Further, in Examples 29 to 33, by using an organic solvent having a high boiling point such as propylene glycol and butanediol, the pot life of the coating solution is not shortened, and the nozzle is prevented from being clogged during spray coating, and the handleability is excellent.
  • an organic solvent having a high boiling point such as propylene glycol and butanediol
  • the total content of water and the organic solvent is 10 to 90 times that of the swellable particles (1000 wt% or more and 9000 wt%). Or less).
  • the content of swellable particles in the wavelength conversion layer is preferably from 0.3% by weight to 70% by weight.
  • the preferable viscosity when uniformly applying the wavelength conversion layer is 25 to 800 mPa ⁇ s in the bar coating method, and 25 to 500 mPa ⁇ s because the spray cannot be ejected if the viscosity is too high in the spray coating method.
  • the coating liquid in which the phosphor is dispersed contains an organic solvent, and the content of the organic solvent is 3 times or less of water in order to prevent nozzle clogging.
  • LED board 3 LED element (light emitting element) 5 Glass substrate (translucent substrate) 6 Wavelength conversion unit 7 Wavelength conversion layer 8 Ceramic layer 9 Wavelength conversion element 100, 101, 102 Light emitting device

Abstract

The purpose of the present invention is to decrease the occurrence of color unevenness to the extent that light is sufficiently usable and to achieve excellent durability, in a light-emitting device for use in applications that require a high level of uniformity of color, as in the case of the headlights of a car. For this purpose, the light-emitting device is constituted by arranging, on the light-emitting surface side of a light emitting element, a wavelength conversion element. The wavelength conversion element is produced by a method including: a step of using a mixture that contains a phosphor, swelling particles and water and has the viscosity of 25 mPa·s to 800 mPa·s, and forming a wavelength conversion layer by applying the mixture onto at least one surface of a translucent substrate and heating the mixture; and a step of forming a translucent ceramic layer on the wavelength conversion layer.

Description

波長変換素子及びその製造方法、発光装置及びその製造方法Wavelength conversion element and method for manufacturing the same, light emitting device and method for manufacturing the same
 本発明は発光素子と、発光素子から出射される光の波長を変換する蛍光体を含む波長変換部とを有する発光装置に関する。 The present invention relates to a light emitting device having a light emitting element and a wavelength conversion unit including a phosphor that converts the wavelength of light emitted from the light emitting element.
 近年、窒化ガリウム(GaN)系の青色LED(Light Emitting Diode:発光ダイオード)チップの近傍にYAG(イットリウム・アルミニウム・ガーネット)蛍光体等の蛍光体を配置し、青色LEDチップから出射される青色光と、蛍光体が青色光を受けて二次発光することにより出射される黄色光との混色により白色発光装置を得る技術が広く用いられている。また、青色LEDチップから出射される青色光と、各蛍光体が青色光を受けて二次発光することにより出射される赤色光及び緑色光との混色により白色発光装置を得る技術も用いられている。 In recent years, phosphors such as YAG (yttrium, aluminum, garnet) phosphors are arranged in the vicinity of gallium nitride (GaN) blue LED (Light Emitting Diode) chips, and blue light emitted from the blue LED chips. In addition, a technique for obtaining a white light emitting device by color mixture of yellow light emitted when the phosphor receives blue light and emits secondary light is widely used. In addition, a technique for obtaining a white light emitting device by mixing blue light emitted from a blue LED chip and red light and green light emitted by each phosphor receiving blue light and secondary light emission is also used. Yes.
 このような白色発光装置には様々な用途があり、例えば、蛍光灯や白熱電灯の代替品としての需要がある。また、自動車のヘッドライト等の非常に高い輝度が求められる照明装置へも使われつつある。ヘッドライトには、遠方の標識等の対象物に対する高い視認性が求められるため、白色発光装置の色味や照射範囲の色の均一性においても高い性能が求められる。 Such white light emitting devices have various uses, for example, there is a demand as an alternative to fluorescent lamps and incandescent lamps. In addition, it is also being used for lighting devices such as automobile headlights that require extremely high luminance. Since the headlight is required to have high visibility with respect to an object such as a distant sign, high performance is also required in terms of the color of the white light emitting device and the color uniformity of the irradiation range.
 このような白色発光装置では、蛍光体を分散させた透明樹脂を用いてLEDチップや実装部を封止する方法が一般的である。しかしながら、上記のような高レベルの色の均一性が求められる用途において、蛍光体を単に透明樹脂中に分散させてLEDチップを封止する構成では、蛍光体粒子の比重が透明樹脂より大きいため、透明樹脂が硬化する前に蛍光体が沈降し、発光時に色むら等を生じるという問題がある。 In such a white light emitting device, a method of sealing an LED chip or a mounting portion using a transparent resin in which a phosphor is dispersed is generally used. However, in applications where a high level of color uniformity is required as described above, in the configuration in which the phosphor is simply dispersed in the transparent resin and the LED chip is sealed, the specific gravity of the phosphor particles is larger than that of the transparent resin. There is a problem in that the phosphor settles before the transparent resin is cured, and color unevenness occurs during light emission.
 そこで、蛍光体の沈降を抑制して色むら等の発生を防止する技術が種々提案されている。例えば特許文献1には、樹脂硬化時の粘度が100~10000mPa・sのシリコーン樹脂を封止体として用いることにより、蛍光体の沈降や偏析を抑制しようとする発光装置が開示されている。 Therefore, various techniques for preventing the occurrence of uneven color by suppressing the sedimentation of the phosphor have been proposed. For example, Patent Document 1 discloses a light-emitting device that attempts to suppress sedimentation and segregation of a phosphor by using a silicone resin having a viscosity of 100 to 10,000 mPa · s when cured as a sealing body.
 また特許文献2には、筒状容器の上端開口と下端開口の間にLED素子を配置し、上端開口から下端開口までを透光性樹脂で満たすとともに、LED素子からの出射光が上端開口側へ反射するように容器の内壁面を形成したチップ部品型LEDが開示されている。 Further, in Patent Document 2, an LED element is arranged between the upper end opening and the lower end opening of the cylindrical container, the upper end opening to the lower end opening are filled with a translucent resin, and the emitted light from the LED element is on the upper end opening side. There is disclosed a chip component type LED in which an inner wall surface of a container is formed so as to be reflected.
 また特許文献3には、液状の透光性封止材料に、蛍光体の沈降防止材として粘度鉱物を主とする層状化合物に有機カチオンを添加してなる親油性化合物を加えた発光装置及びその製造方法が開示されている。 Patent Document 3 discloses a light-emitting device in which a liquid translucent sealing material is added with a lipophilic compound obtained by adding an organic cation to a layered compound mainly composed of a viscous mineral as an anti-settling material for a phosphor, and its A manufacturing method is disclosed.
 また特許文献4には、発光素子を粘着性の透明材料で覆い、その外側に蛍光体層を付着させる構成が開示されている。 Patent Document 4 discloses a configuration in which a light-emitting element is covered with an adhesive transparent material and a phosphor layer is attached to the outside thereof.
 特許文献1~3の技術によれば、蛍光体の沈降による色むらの問題については、ある程度改善される。しかしながら、何れの文献でも蛍光体を樹脂内に分散させているため、上記のような高輝度の照明装置に用いる場合、LED自身の発熱やLEDの光により励起された蛍光体からの発光による熱により、樹脂が劣化して着色することで透過率が低下したり、樹脂の変形による色むらや表面散乱といった問題が生じるおそれがある。また、高輝度なLEDではなくても長期間の使用に伴って同様の問題が生じるおそれがある。 According to the techniques of Patent Documents 1 to 3, the problem of uneven color due to the sedimentation of the phosphor is improved to some extent. However, since phosphors are dispersed in a resin in any document, when used in a high-luminance lighting device as described above, the heat generated by the LED itself or the heat generated by the phosphor excited by the LED light is used. As a result, the resin is deteriorated and colored, whereby the transmittance may be reduced, and problems such as uneven color and surface scattering due to deformation of the resin may occur. Moreover, even if it is not a high-intensity LED, there exists a possibility that the same problem may arise with long-term use.
 また特許文献4の技術では、透明材料の外側に蛍光体層を付着させているので蛍光体が沈降するという問題はないが、透明材料が樹脂であるためLED自身の発熱やLEDの光により励起された蛍光体からの発光による熱により、樹脂が劣化して着色することで透過率が低下したり、樹脂の変形による色むらや表面散乱といった問題は生じるおそれがある。 In the technique of Patent Document 4, since the phosphor layer is attached to the outside of the transparent material, there is no problem that the phosphor settles. However, since the transparent material is a resin, it is excited by the heat of the LED itself or the light of the LED. There is a possibility that problems such as color unevenness and surface scattering due to deformation of the resin may occur due to deterioration and coloration of the resin due to heat generated by the emitted light from the phosphor.
 そこで、白色発光装置の耐熱性を高める技術として、例えば特許文献5に、蛍光体粒子を金属アルコキシドやセラミック前駆体組成物を含有した溶液中に分散させ、これをLEDに塗布して加熱することで、蛍光体を含有したセラミック(ガラス)で封止する技術が提案されている。特許文献5には、蛍光体の沈降防止材として無機粒子を蛍光体分散溶液中に添加することも開示されている。 Therefore, as a technique for improving the heat resistance of the white light emitting device, for example, in Patent Document 5, phosphor particles are dispersed in a solution containing a metal alkoxide or a ceramic precursor composition, and this is applied to an LED and heated. Thus, a technique of sealing with a ceramic (glass) containing a phosphor has been proposed. Patent Document 5 also discloses that inorganic particles are added to the phosphor dispersion solution as an anti-settling material for the phosphor.
特開2002-314142号公報JP 2002-314142 A 特開2002-185046号公報JP 2002-185046 A 特開2004-153109公報JP 2004-153109 A 米国特許第7157745号明細書US Pat. No. 7,157,745 特許第3307316号公報Japanese Patent No. 3307316
 しかしながら、特許文献5のように無機粒子を蛍光体分散溶液中に添加しても、上記のような高レベルの色の均一性が求められる用途において使用できる程度まで色むらを低減することは困難である。なぜなら、本発明者らが検証したところ、蛍光体の沈降を抑制するために無機粒子を大量に添加した場合、無機粒子による散乱等により透過率が低下したり、蛍光体を含有する層の表面の平滑性が損なわれて散乱を起こしたりすることが判明した。一方、無機粒子の添加量を少なくした場合は、蛍光体の沈降を十分に抑制できず、色むらを十分に解消できなかった。 However, even if inorganic particles are added to the phosphor dispersion solution as in Patent Document 5, it is difficult to reduce the color unevenness to such an extent that it can be used in applications requiring high-level color uniformity as described above. It is. This is because, when the present inventors have verified, when a large amount of inorganic particles are added to suppress the sedimentation of the phosphor, the transmittance decreases due to scattering by the inorganic particles, or the surface of the layer containing the phosphor It has been found that the smoothness of the glass is impaired and scattering occurs. On the other hand, when the addition amount of the inorganic particles was reduced, the sedimentation of the phosphor could not be sufficiently suppressed, and the color unevenness could not be sufficiently eliminated.
 さらに、本発明者らは特許文献5に記載されている耐熱性を高める技術に、特許文献1~3に記載されている蛍光体の沈降を抑制する技術を適用することを試みた。まず、特許文献1の技術は粘度の高い樹脂を用いることを特徴としているので、樹脂を用いない特許文献5の技術に特許文献4の技術を組み合わせることはできない。 Furthermore, the present inventors tried to apply the technology for suppressing the sedimentation of the phosphors described in Patent Documents 1 to 3 to the technology for improving the heat resistance described in Patent Document 5. First, since the technique of Patent Document 1 is characterized by using a resin having a high viscosity, the technique of Patent Document 4 cannot be combined with the technique of Patent Document 5 that does not use a resin.
 次に、特許文献2の技術ではLEDの構成が複雑になってコストアップに繋がるという問題に加え、特許文献2の筒状容器に特許文献5の高耐熱性の金属アルコキシドやセラミック前駆体組成物と蛍光体との分散溶液を充填した場合には加熱しても硬化しないので、特許文献2の技術に特許文献4の技術を組み合わせることはできない。 Next, in the technique of Patent Document 2, in addition to the problem that the configuration of the LED is complicated and the cost is increased, the highly heat-resistant metal alkoxide and ceramic precursor composition of Patent Document 5 are added to the cylindrical container of Patent Document 2. When the dispersion solution of the phosphor and the phosphor is filled, it does not harden even when heated, and therefore, the technique of Patent Document 4 cannot be combined with the technique of Patent Document 2.
 次に、特許文献5の金属アルコキシドやセラミック前駆体組成物と蛍光体との分散溶液に、蛍光体の沈降防止材として特許文献3の層状化合物を添加する組み合わせによれば、蛍光体の分散状態がある程度安定し、色むらの発生をある程度低減できたが、封止材料と沈降防止材との混合液の粘度を十分に高めることはできず、封止材料が硬化する前に蛍光体が沈降してしまい、蛍光体の均一性が損なわれるので、色むらの発生を十分に抑制するには至らなかった。 Next, according to the combination in which the layered compound of Patent Document 3 is added to the dispersion solution of the metal alkoxide or ceramic precursor composition of Patent Document 5 and the phosphor as an anti-settling material for the phosphor, the dispersed state of the phosphor However, the viscosity of the mixed liquid of the sealing material and the anti-settling material cannot be sufficiently increased, and the phosphor settles before the sealing material is cured. As a result, the uniformity of the phosphor is impaired, and the occurrence of color unevenness has not been sufficiently suppressed.
 本発明は、自動車のヘッドライトのように高レベルの色の均一性が求められる用途において十分使用可能な程度に色むらの発生を低減すること、耐久性に優れていることを課題とし、その波長変換素子の製造方法、その波長変換素子、その発光装置の製造方法、その発光装置をそれぞれ提供することを目的とする。 An object of the present invention is to reduce the occurrence of color unevenness to such an extent that it can be sufficiently used in applications that require a high level of color uniformity, such as automobile headlights, and has excellent durability. An object of the present invention is to provide a method for manufacturing a wavelength conversion element, a wavelength conversion element, a method for manufacturing the light emitting device, and a light emitting device.
 上記目的を達成するために本発明は、蛍光体、膨潤性粒子、及び水を含み、粘度が25mPa・s以上800mPa・s以下である混合液を用い、該混合液を発光素子上に塗布して加熱することで波長変換層を形成する工程と、前記波長変換層上に透光性セラミック材料を供給する工程と、を有する発光装置の製造方法とする。 In order to achieve the above object, the present invention uses a mixed solution containing a phosphor, swellable particles, and water and having a viscosity of 25 mPa · s or more and 800 mPa · s or less, and the mixture is applied onto a light emitting element. And a step of forming a wavelength conversion layer by heating, and a step of supplying a translucent ceramic material onto the wavelength conversion layer.
 上記の発光装置の製造方法において、前記混合液が有機溶媒及び/又は無機粒子を含んでいてもよい。 In the above method for manufacturing a light emitting device, the mixed solution may contain an organic solvent and / or inorganic particles.
 また上記の発光装置の製造方法において、前記波長変換層中の前記膨潤性粒子の含有量が0.3重量%以上70重量%以下であることが好ましい。 In the above method for manufacturing a light emitting device, the content of the swellable particles in the wavelength conversion layer is preferably 0.3% by weight or more and 70% by weight or less.
 また上記の発光装置の製造方法において、前記膨潤性粒子が層状ケイ酸塩鉱物であることが好ましい。 In the above method for manufacturing a light emitting device, the swellable particles are preferably a layered silicate mineral.
 また上記の発光装置の製造方法において、前記層状ケイ酸塩鉱物が膨潤性粘土鉱物であることが好ましい。 In the method for manufacturing a light emitting device, it is preferable that the layered silicate mineral is a swellable clay mineral.
 また上記の発光装置の製造方法において、前記膨潤性粘土鉱物がスメクタイト構造であることが好ましい。 In the above method for manufacturing a light emitting device, the swellable clay mineral preferably has a smectite structure.
 また上記の発光装置の製造方法において、前記透光性セラミック材料を供給する工程は、有機金属化合物又は無機ポリマーを含む溶液を塗布し、焼成する工程を含むことが好ましい。 In the method for manufacturing a light emitting device, it is preferable that the step of supplying the translucent ceramic material includes a step of applying and baking a solution containing an organometallic compound or an inorganic polymer.
 また上記の発光装置の製造方法において、前記有機金属化合物が有機シロキサン化合物であることが好ましい。 In the above method for manufacturing a light emitting device, the organometallic compound is preferably an organosiloxane compound.
 また上記の発光装置の製造方法において、前記無機ポリマーがポリシラザンであることが好ましい。 In the method for manufacturing a light emitting device, the inorganic polymer is preferably polysilazane.
 また上記の発光装置の製造方法において、前記蛍光体の体積平均粒径が1μm以上50μm以下であることが好ましい。 In the above method for manufacturing a light emitting device, it is preferable that the phosphor has a volume average particle diameter of 1 μm or more and 50 μm or less.
 また上記の発光装置の製造方法において、前記波長変換層の厚みが5μm以上500μm以下であることが好ましい。 In the above method for manufacturing a light emitting device, the thickness of the wavelength conversion layer is preferably 5 μm or more and 500 μm or less.
 また上記の発光装置の製造方法において、前記混合液中の前記膨潤性粒子に対する前記水と前記有機溶媒の合計量の割合が1000重量%以上9000重量%以下であることが好ましい。 In the method for manufacturing a light emitting device, it is preferable that a ratio of the total amount of the water and the organic solvent to the swellable particles in the mixed solution is 1000% by weight or more and 9000% by weight or less.
 また上記の発光装置の製造方法において、前記膨潤性粒子が表面処理されていない親水性の粒子である場合、前記混合液の調整時には、最初に前記膨潤性粒子と前記水とを混合することが好ましい。 Further, in the above method for producing a light emitting device, when the swellable particles are hydrophilic particles that are not surface-treated, the swellable particles and the water may be mixed first when adjusting the mixed solution. preferable.
 また上記の発光装置の製造方法において、前記膨潤性粒子が表面処理された親水性の粒子である場合、前記混合液の調整時には、最初に前記膨潤性粒子と前記有機溶媒とを混合することが好ましい。 Further, in the above method for producing a light emitting device, when the swellable particles are surface-treated hydrophilic particles, the swellable particles and the organic solvent may be first mixed when adjusting the mixed solution. preferable.
 また本発明の発光装置は、上記の発光装置の製造方法の何れかによって製造されたものである。 The light-emitting device of the present invention is manufactured by any one of the above-described methods for manufacturing a light-emitting device.
 また本発明は、蛍光体、膨潤性粒子、及び水を含み、粘度が25mPa・s以上800mPa・s以下である混合液を用い、該混合液を透光性基板の少なくとも片面に塗布して加熱することで波長変換層を形成する工程と、前記波長変換層上に透光性セラミック材料を供給する工程と、を有する波長変換素子の製造方法とする。 Further, the present invention uses a mixed solution containing a phosphor, swellable particles, and water and having a viscosity of 25 mPa · s or more and 800 mPa · s or less, and the mixture is applied to at least one surface of a light-transmitting substrate and heated. Thus, a method of manufacturing a wavelength conversion element including the step of forming a wavelength conversion layer and the step of supplying a translucent ceramic material onto the wavelength conversion layer is provided.
 上記の波長変換素子の製造方法において、前記混合液が有機溶媒及び/又は無機粒子を含んでいてもよい。 In the above-described method for manufacturing a wavelength conversion element, the mixed solution may contain an organic solvent and / or inorganic particles.
 また上記の波長変換素子の製造方法において、前記波長変換層中の前記膨潤性粒子の含有量が0.3重量%以上70重量%以下であることが好ましい。 In the method for manufacturing a wavelength conversion element, the content of the swellable particles in the wavelength conversion layer is preferably 0.3 wt% or more and 70 wt% or less.
 また上記の波長変換素子の製造方法において、前記膨潤性粒子が層状ケイ酸塩鉱物であることが好ましい。 In the above-described method for manufacturing a wavelength conversion element, the swellable particle is preferably a layered silicate mineral.
 また上記の波長変換素子の製造方法において、前記層状ケイ酸塩鉱物が膨潤性粘土鉱物であることが好ましい。 In the above-described method for manufacturing a wavelength conversion element, the layered silicate mineral is preferably a swellable clay mineral.
 また上記の波長変換素子の製造方法において、前記膨潤性粘土鉱物がスメクタイト構造であることが好ましい。 In the above-described method for manufacturing a wavelength conversion element, the swellable clay mineral preferably has a smectite structure.
 また上記の波長変換素子の製造方法において、前記透光性セラミック材料を供給する工程は、有機金属化合物又は無機ポリマーを含む溶液を塗布し、焼成する工程を含むことが好ましい。 In the method for manufacturing a wavelength conversion element, it is preferable that the step of supplying the translucent ceramic material includes a step of applying and baking a solution containing an organometallic compound or an inorganic polymer.
 また上記の波長変換素子の製造方法において、前記有機金属化合物が有機シロキサン化合物であることが好ましい。 In the above-described method for manufacturing a wavelength conversion element, the organometallic compound is preferably an organosiloxane compound.
 また上記の波長変換素子の製造方法において、前記無機ポリマーがポリシラザンであることが好ましい。 In the above-described method for manufacturing a wavelength conversion element, the inorganic polymer is preferably polysilazane.
 また上記の波長変換素子の製造方法において、前記蛍光体の体積平均粒径が1μm以上50μm以下であることが好ましい。 In the above-described method for manufacturing a wavelength conversion element, it is preferable that the phosphor has a volume average particle diameter of 1 μm or more and 50 μm or less.
 また上記の波長変換素子の製造方法において、前記波長変換層の厚みが5μm以上500μm以下であることが好ましい。 In the above-described method for manufacturing a wavelength conversion element, the thickness of the wavelength conversion layer is preferably 5 μm or more and 500 μm or less.
 また上記の波長変換素子の製造方法において、前記混合液中の前記膨潤性粒子に対する前記水と前記有機溶媒の合計量の割合が1000重量%以上9000重量%以下であることが好ましい。 In the method for manufacturing a wavelength conversion element, the ratio of the total amount of the water and the organic solvent to the swellable particles in the mixed solution is preferably 1000% by weight or more and 9000% by weight or less.
 また上記の波長変換素子の製造方法において、前記膨潤性粒子が表面処理されていない親水性の粒子である場合、前記混合液の調整時には、最初に前記膨潤性粒子と前記水とを混合することが好ましい。 In the method of manufacturing a wavelength conversion element, when the swellable particles are hydrophilic particles that are not surface-treated, the swellable particles and the water are first mixed when adjusting the mixed solution. Is preferred.
 また上記の波長変換素子の製造方法において、前記膨潤性粒子が表面処理された親油性の粒子である場合、前記混合液の調整時には、最初に前記膨潤性粒子と前記有機溶媒とを混合することが好ましい。 Further, in the above-described method for manufacturing a wavelength conversion element, when the swellable particles are surface-treated lipophilic particles, the swellable particles and the organic solvent are first mixed when preparing the mixed solution. Is preferred.
 また本発明の波長変換素子は、上記の波長変換素子の製造方法によって製造されたものである。 The wavelength conversion element of the present invention is manufactured by the above-described method for manufacturing a wavelength conversion element.
 また本発明の発光装置の製造方法は、上記の波長変換素子の製造方法において波長変換素子を発光素子の発光面側に設置する工程を加えたものである。 Further, the method for manufacturing a light emitting device of the present invention is obtained by adding a step of installing the wavelength converting element on the light emitting surface side of the light emitting element in the above method for manufacturing a wavelength converting element.
 また本発明の発光装置は、上記の発光装置の製造方法によって製造されたものである。 The light-emitting device of the present invention is manufactured by the above-described light-emitting device manufacturing method.
 また本発明の発光装置の製造方法は、蛍光体と膨潤性粒子とを含む混合液を用い、該混合液を発光素子上に塗布して加熱することで前記膨潤性粒子により前記蛍光体を前記発光素子上に固定して波長変換層を形成する工程を有するものである。 Further, the method for producing a light emitting device of the present invention uses a mixed solution containing a phosphor and swellable particles, and applies the mixed solution on a light emitting element and heats the phosphor with the swellable particles. It has the process of forming on a light emitting element and forming a wavelength conversion layer.
 上記の発光装置の製造方法において、前記混合液は、水を含み、粘度が25mPa・s以上800mPa・s以下であることが好ましい。 In the above method for manufacturing a light emitting device, the mixed solution preferably contains water and has a viscosity of 25 mPa · s to 800 mPa · s.
 また本発明の混合液は、蛍光体層の形成に用いる混合液であって、蛍光体、膨潤性粒子、及び水を含み、粘度が25mPa・s以上800mPa・s以下である。 The mixed liquid of the present invention is a mixed liquid used for forming the phosphor layer, and includes a phosphor, swellable particles, and water, and has a viscosity of 25 mPa · s to 800 mPa · s.
 本発明によると、自動車のヘッドライトのように高レベルの色の均一性が求められる用途の発光装置において、十分使用可能な程度に色むらの発生を低減すること、耐久性に優れていることを実現することができる。 According to the present invention, it is possible to reduce the occurrence of color unevenness to the extent that it can be sufficiently used in a light-emitting device that is required to have a high level of color uniformity, such as an automobile headlight, and is excellent in durability. Can be realized.
本発明の第1実施形態の発光装置の概略断面図である。It is a schematic sectional drawing of the light-emitting device of 1st Embodiment of this invention. 本発明の第2実施形態の発光装置の概略断面図である。It is a schematic sectional drawing of the light-emitting device of 2nd Embodiment of this invention. 本発明の第3実施形態の発光装置の概略断面図である。It is a schematic sectional drawing of the light-emitting device of 3rd Embodiment of this invention. 実施例1~7の成分データを示す図である。It is a figure which shows the component data of Examples 1-7. 実施例8~14の成分データを示す図である。It is a figure which shows the component data of Examples 8-14. 実施例29~33の成分データを示す図である。It is a figure which shows the component data of Examples 29-33. 比較例1~6の成分データを示す図である。FIG. 6 is a diagram showing component data of Comparative Examples 1 to 6. 実施例1~15、29~33及び比較例1~6の膜厚、及び色度の評価結果を蛍光体が分散した混合液の粘度と併せて示した図である。FIG. 5 is a graph showing the film thickness and chromaticity evaluation results of Examples 1 to 15, 29 to 33, and Comparative Examples 1 to 6, together with the viscosity of a mixed liquid in which a phosphor is dispersed. 実施例4、7~9、12、13の親水性スメクタイトの含有量と輝度とを示す図である。FIG. 4 is a graph showing the hydrophilic smectite content and luminance of Examples 4, 7 to 9, 12, and 13. 実施例6及び実施例15の蛍光体が分散した混合液の粘度を経時測定した結果を示す図である。It is a figure which shows the result of having measured the viscosity of the liquid mixture which the fluorescent substance of Example 6 and Example 15 disperse | distributed with time. 実施例26~28の成分データを示す図である。It is a figure which shows the component data of Examples 26-28. 実施例16~28の色度、水及びIPAの含有量、蛍光体が分散した混合液のぬれ性を示す図である。FIG. 6 is a graph showing the chromaticity, water and IPA content of Examples 16 to 28, and wettability of a mixed liquid in which a phosphor is dispersed.
 以下、本発明の波長変換素子及びそれを備えた発光装置の実施形態を、図面を参照しながら説明する。図1は、本発明の第1実施形態の発光装置の概略断面図である。図1に示すように、発光装置100は、平板状のLED基板1上にメタル部2を設け、メタル部2上に発光素子としてLED素子3を配置している。LED素子3は、メタル部2に対向する面に、突起電極4が設けられており、メタル部2とLED素子3とを突起電極4を介して接続している(フリップチップ型)。 Hereinafter, embodiments of a wavelength conversion element of the present invention and a light emitting device including the same will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view of a light emitting device according to a first embodiment of the present invention. As shown in FIG. 1, in the light emitting device 100, a metal part 2 is provided on a flat LED substrate 1, and an LED element 3 is disposed on the metal part 2 as a light emitting element. The LED element 3 is provided with a protruding electrode 4 on a surface facing the metal part 2, and the metal part 2 and the LED element 3 are connected via the protruding electrode 4 (flip chip type).
 本実施形態では、LED素子3として青色LED素子を用いている。青色LED素子は、例えばサファイア基板上にn-GaN系クラッド層、InGaN発光層、p-GaN系クラッド層、及び透明電極を積層してなる。 In the present embodiment, a blue LED element is used as the LED element 3. For example, a blue LED element is formed by laminating an n-GaN-based cladding layer, an InGaN light-emitting layer, a p-GaN-based cladding layer, and a transparent electrode on a sapphire substrate.
 また、LED素子3の上面には波長変換素子9が設けられている。波長変換素子9は、ガラス基板5と、ガラス基板5の上面に形成された波長変換部6とを有している。ガラス基板5の形状には特に限定はなく、平板状、レンズ状等を採用できる。なお、波長変換部6はガラス基板5の下面に形成してもよい。波長変換部6は、ガラス基板5上に形成された波長変換層7と、波長変換層7上に形成されたセラミック層8とを有している。波長変換層7は、LED素子3から出射される所定波長の光を異なる波長の光に変換する部分であり、LED素子3からの波長により励起されて、励起波長と異なる波長の蛍光を出す蛍光体が含まれている。セラミック層8は、波長変換層7を封止して保護するための層であり、少なくともLED素子3の光及び波長変換層7の蛍光を透過する透光性を有する。 Further, a wavelength conversion element 9 is provided on the upper surface of the LED element 3. The wavelength conversion element 9 includes a glass substrate 5 and a wavelength conversion unit 6 formed on the upper surface of the glass substrate 5. The shape of the glass substrate 5 is not particularly limited, and a flat plate shape, a lens shape, or the like can be adopted. The wavelength conversion unit 6 may be formed on the lower surface of the glass substrate 5. The wavelength conversion unit 6 includes a wavelength conversion layer 7 formed on the glass substrate 5 and a ceramic layer 8 formed on the wavelength conversion layer 7. The wavelength conversion layer 7 is a part that converts light having a predetermined wavelength emitted from the LED element 3 into light having a different wavelength, and is excited by the wavelength from the LED element 3 to emit fluorescence having a wavelength different from the excitation wavelength. Contains the body. The ceramic layer 8 is a layer for sealing and protecting the wavelength conversion layer 7, and has translucency that transmits at least the light of the LED element 3 and the fluorescence of the wavelength conversion layer 7.
 次に、波長変換部6(波長変換層7及びセラミック層8)の構成及び形成方法と、発光装置100の製造方法とについて詳述する。波長変換層7は、少なくとも蛍光体、膨潤性粒子、及び水を含み、さらに有機溶媒及び/又は無機粒子(無機微粒子)を含んでいてもよい混合液を加熱して得られる層である。セラミック層8は、有機金属化合物又は無機ポリマーを溶媒に混合したゾル状の前駆体溶液を加熱によりゲル状態とし、さらに焼成する、いわゆるゾル・ゲル法により形成された透明セラミック層(ガラス体)である。
(蛍光体)
Next, the configuration and formation method of the wavelength conversion unit 6 (the wavelength conversion layer 7 and the ceramic layer 8) and the manufacturing method of the light emitting device 100 will be described in detail. The wavelength conversion layer 7 is a layer obtained by heating a liquid mixture that contains at least a phosphor, swellable particles, and water, and may further contain an organic solvent and / or inorganic particles (inorganic fine particles). The ceramic layer 8 is a transparent ceramic layer (glass body) formed by a so-called sol-gel method in which a sol-like precursor solution in which an organic metal compound or an inorganic polymer is mixed with a solvent is heated to be in a gel state and further fired. is there.
(Phosphor)
 蛍光体は、LED素子3からの出射光の波長(励起波長)により励起されて、励起波長と異なる波長の蛍光を出射するものである。本実施形態では、青色LED素子から出射される青色光(波長420nm~485nm)を黄色光(波長550nm~650nm)に変換するYAG(イットリウム・アルミニウム・ガーネット)蛍光体を使用している。 The phosphor is excited by the wavelength of the light emitted from the LED element 3 (excitation wavelength) and emits fluorescence having a wavelength different from the excitation wavelength. In this embodiment, a YAG (yttrium, aluminum, garnet) phosphor that converts blue light (wavelength 420 nm to 485 nm) emitted from the blue LED element into yellow light (wavelength 550 nm to 650 nm) is used.
 このような蛍光体は、Y、Gd、Ce、Sm、Al、La、Gaの酸化物、または高温で容易に酸化物となる化合物を使用し、それらを化学量論比で十分に混合して混合原料を得る。或いは、Y、Gd、Ce、Smの希土類元素を化学量論比で酸に溶解した溶液をシュウ酸で共沈したものを焼成して得られる共沈酸化物と、酸化アルミニウム、酸化ガリウムとを混合して混合原料を得る。そして、得られた混合原料にフラックスとしてフッ化アンモニウム等のフッ化物を適量混合して加圧し、成形体を得る。得られた成形体を坩堝に詰め、空気中1350~1450℃の温度範囲で2~5時間焼成し、蛍光体の発光特性をもつ焼結体を得る。 Such phosphors use oxides of Y, Gd, Ce, Sm, Al, La, and Ga, or compounds that easily become oxides at high temperatures, and are mixed well in a stoichiometric ratio. A mixed raw material is obtained. Alternatively, a coprecipitated oxide obtained by calcining a solution obtained by coprecipitation of a solution obtained by dissolving a rare earth element of Y, Gd, Ce, or Sm in an acid with a stoichiometric ratio with oxalic acid, and aluminum oxide or gallium oxide. Mix to obtain a mixed raw material. Then, an appropriate amount of fluoride such as ammonium fluoride is mixed with the obtained mixed raw material as a flux and pressed to obtain a molded body. The obtained molded body is packed in a crucible and fired in air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a sintered body having the phosphor emission characteristics.
 なお、本実施形態ではYAG蛍光体を使用しているが、蛍光体の種類はこれに限定されるものではなく、例えばCeを含まない非ガーネット系蛍光体等の他の蛍光体を使用することもできる。また、蛍光体の粒径が大きいほど発光効率(波長変換効率)は高くなる反面、膨潤性粒子との界面に生じる隙間が大きくなって形成された波長変換層の膜強度が低下する。従って、発光効率と膨潤性粒子との界面に生じる隙間の大きさを考慮し、体積平均粒径が1μm以上50μm以下のものを用いることが好ましく、加熱後の波長変換層7の厚さより小さいものを用いる。蛍光体の体積平均粒径は、例えばコールターカウンター法やレーザー回折・散乱式粒径測定装置によって測定することができる。
(膨潤性粒子)
In this embodiment, the YAG phosphor is used. However, the type of the phosphor is not limited to this. For example, other phosphors such as non-garnet phosphors containing no Ce are used. You can also. In addition, the larger the particle size of the phosphor, the higher the light emission efficiency (wavelength conversion efficiency), but the gap formed at the interface with the swellable particles becomes larger and the film strength of the formed wavelength conversion layer is lowered. Accordingly, in consideration of the size of the gap generated at the interface between the luminous efficiency and the swellable particles, it is preferable to use one having a volume average particle size of 1 μm to 50 μm, which is smaller than the thickness of the wavelength conversion layer 7 after heating. Is used. The volume average particle diameter of the phosphor can be measured by, for example, a Coulter counter method or a laser diffraction / scattering particle diameter measuring apparatus.
(Swellable particles)
 膨潤性粒子としては、フッ化マグネシウム、フッ化アルミニウム、フッ化カルシウム等のフッ化物粒子や、層状ケイ酸塩鉱物を用いることができる。その中でも層状ケイ酸塩鉱物が好ましく、雲母構造、カオリナイト構造、スメクタイト構造等の構造を有する膨潤性粘土鉱物がより好ましく、膨潤性に富むスメクタイト構造が特に好ましい。これは、後述するように混合液中に水を添加することで、スメクタイト構造の層間に水が進入して膨潤したカードハウス構造をとるため、混合液の粘性を大幅に増加させる効果があるためである。 As the swellable particles, fluoride particles such as magnesium fluoride, aluminum fluoride, and calcium fluoride, and layered silicate minerals can be used. Among them, a layered silicate mineral is preferable, a swellable clay mineral having a structure such as a mica structure, a kaolinite structure, and a smectite structure is more preferable, and a smectite structure rich in swelling property is particularly preferable. This is because, as will be described later, by adding water to the mixed liquid, it takes a card house structure in which water enters and swells between the layers of the smectite structure, so the viscosity of the mixed liquid is greatly increased. It is.
 ここでの鉱物とは、天然又は合成の無機質で一定の化学組成と結晶構造を有する固体物質であるとする。 Here, it is assumed that the mineral is a solid substance having a certain chemical composition and crystal structure, which is a natural or synthetic inorganic substance.
 波長変換層7における膨潤性粒子の含有量が0.3重量%未満になると混合液中の蛍光体等の固形成分の割合が高くなり、それらの分散性が悪化する。一方、膨潤性粒子の含有量が70重量%を超えると膨潤性粒子による励起光の散乱が多く発生し、波長変換層7の発光輝度が低下する。従って、膨潤性粒子の含有量は0.3重量%以上70重量%以下とすることが好ましく、0.5重量%以上65重量%以下がより好ましく、1重量%以上60重量%以下がさらに好ましい。 When the content of the swellable particles in the wavelength conversion layer 7 is less than 0.3% by weight, the proportion of solid components such as phosphors in the mixed solution increases, and the dispersibility thereof deteriorates. On the other hand, when the content of the swellable particles exceeds 70% by weight, scattering of excitation light by the swellable particles occurs frequently, and the emission luminance of the wavelength conversion layer 7 decreases. Accordingly, the content of the swellable particles is preferably 0.3 wt% or more and 70 wt% or less, more preferably 0.5 wt% or more and 65 wt% or less, and further preferably 1 wt% or more and 60 wt% or less. .
 スメクタイト構造の膨潤性粘土鉱物には増粘効果があるが、波長変換層7中での割合が高ければ混合液の粘度が高くなるわけではなく、混合液の粘度は水、有機溶媒、蛍光体など他の成分との比率で決まる。なお、溶媒との相溶性を考慮して、層状ケイ酸塩鉱物の表面をアンモニウム塩等で修飾(表面処理)したものを適宜用いることもできる。
(水)
The smectite-structured swellable clay mineral has a thickening effect, but if the ratio in the wavelength conversion layer 7 is high, the viscosity of the liquid mixture does not increase, and the viscosity of the liquid mixture is water, organic solvent, phosphor It is determined by the ratio with other components. In consideration of compatibility with a solvent, a layered silicate mineral whose surface is modified (surface treatment) with an ammonium salt or the like can be used as appropriate.
(water)
 水は親水性の膨潤性粒子を膨潤させる役割がある。例えば、表面処理されていない親水性の層状ケイ酸塩鉱物に水を添加することにより、層状ケイ酸塩鉱物の層間に水が入り込んで混合液の粘性が増加するため、蛍光体の沈降を抑制することができる。なお、水に不純物が含まれていると膨潤を阻害するおそれがあるため、添加する水は不純物を含まない純水を用いる必要がある。
(有機溶媒)
Water has a role of swelling hydrophilic swellable particles. For example, when water is added to a hydrophilic layered silicate mineral that has not been surface-treated, water enters between the layers of the layered silicate mineral, increasing the viscosity of the mixture, thereby suppressing phosphor settling. can do. In addition, since there exists a possibility that swelling may be inhibited when the impurity is contained in water, it is necessary to use the pure water which does not contain an impurity as the water to add.
(Organic solvent)
 有機溶媒は、混合液のぬれ性向上、粘度調整のために用いられる。表面処理されていない親水性の層状ケイ酸塩鉱物などの親水性の膨潤性粒子に水を添加して膨潤させる場合には、有機溶媒として、水との相溶性に優れたメタノール、エタノール、プロパノール、ブタノール等のアルコール類を用いることが好ましい。一方、表面処理した親油性の層状ケイ酸塩鉱物などの親油性の膨潤性粒子を用いる場合は、膨潤性粒子の膨潤に水は作用しないが、水を加えることにより粘度が増加するため、水との相溶性に優れた有機溶媒を用いることが好ましい。高沸点(150~250℃が好ましい)の有機溶媒を用いることにより、混合液のポットライフが短くならず、取り扱い性に優れる。
(無機粒子)
The organic solvent is used for improving the wettability of the mixed solution and adjusting the viscosity. When adding water to hydrophilic swellable particles such as hydrophilic layered silicate minerals that have not been surface-treated, the organic solvent is methanol, ethanol, or propanol with excellent water compatibility. It is preferable to use alcohols such as butanol. On the other hand, when using lipophilic swellable particles such as surface-treated lipophilic layered silicate minerals, water does not act on the swelling of the swellable particles, but the viscosity increases by adding water. It is preferable to use an organic solvent excellent in compatibility with the organic solvent. By using an organic solvent having a high boiling point (preferably 150 to 250 ° C.), the pot life of the mixed solution is not shortened and the handleability is excellent.
(Inorganic particles)
 無機粒子は、蛍光体と膨潤性粒子との界面に生じる隙間を埋める充填効果、加熱前の混合液の粘性を増加させる増粘効果を有する。本発明に用いられる無機粒子としては、酸化ケイ素、酸化チタン、酸化亜鉛等の酸化物微粒子、フッ化マグネシウム等のフッ化物微粒子等が挙げられる。なお、溶媒との相溶性を考慮して、無機粒子の表面をシランカップリング剤やチタンカップリング剤で処理したものを適宜用いることもできる。 The inorganic particles have a filling effect that fills gaps formed at the interface between the phosphor and the swellable particles, and a thickening effect that increases the viscosity of the mixed solution before heating. Examples of the inorganic particles used in the present invention include oxide fine particles such as silicon oxide, titanium oxide and zinc oxide, fluoride fine particles such as magnesium fluoride, and the like. In addition, in consideration of compatibility with the solvent, those obtained by treating the surface of the inorganic particles with a silane coupling agent or a titanium coupling agent can be appropriately used.
 無機粒子の粒径分布には特に制限はなく、広範囲に分布していてもよいし、比較的狭い範囲に分布していてもよい。なお、無機粒子の粒径としては、一次粒径の中心粒径が0.001μm以上1μm以下であり、蛍光体より小さいものが好ましく、加熱後の波長変換層7の厚さより小さいものを用いる。無機粒子の平均粒径は、例えばコールターカウンター法によって測定することができる。
(前駆体溶液)
The particle size distribution of the inorganic particles is not particularly limited, and may be distributed over a wide range or may be distributed over a relatively narrow range. As the particle diameter of the inorganic particles, the central particle diameter of the primary particle diameter is 0.001 μm or more and 1 μm or less, preferably smaller than the phosphor, and smaller than the thickness of the wavelength conversion layer 7 after heating. The average particle diameter of the inorganic particles can be measured, for example, by a Coulter counter method.
(Precursor solution)
 前駆体溶液は、有機金属化合物又は無機ポリマーを溶媒に混合したものであり、前駆体溶液を加熱することにより透光性のセラミック層8を得ることができる。セラミック層8で波長変換層7を封止することで、ガスバリア性や膜強度を向上させることができる。また、前駆体溶液に無機粒子、膨潤性粒子、水などを混合することにより、セラミック層8の屈折率等の特性を調整できる。 The precursor solution is a mixture of an organometallic compound or an inorganic polymer in a solvent, and the translucent ceramic layer 8 can be obtained by heating the precursor solution. By sealing the wavelength conversion layer 7 with the ceramic layer 8, gas barrier properties and film strength can be improved. Moreover, the characteristics such as the refractive index of the ceramic layer 8 can be adjusted by mixing inorganic particles, swellable particles, water and the like into the precursor solution.
 有機金属化合物に対する溶媒としては、水を添加する場合は水との相溶性に優れたメタノール、エタノール、プロパノール、ブタノール等のアルコール類が好ましい。また、溶媒に対する有機金属化合物の混合量が5重量%未満になると溶液の粘性を増加させることが困難となり、有機金属化合物の混合量が50重量%を超えると重合反応が必要以上に速く進んでしまう。そのため、溶媒に対する有機金属化合物の混合量は5重量%以上50重量%以下が好ましく、8重量%以上40重量%以下がより好ましい。 As the solvent for the organometallic compound, when water is added, alcohols such as methanol, ethanol, propanol and butanol, which are excellent in compatibility with water, are preferable. Further, when the amount of the organometallic compound mixed with the solvent is less than 5% by weight, it becomes difficult to increase the viscosity of the solution. When the amount of the organometallic compound mixed exceeds 50% by weight, the polymerization reaction proceeds more rapidly than necessary. End up. Therefore, the amount of the organometallic compound mixed with the solvent is preferably 5% by weight or more and 50% by weight or less, and more preferably 8% by weight or more and 40% by weight or less.
 無機ポリマーに対する溶媒としては、脂肪族炭化水素、芳香族炭化水素、ハロゲン炭化水素、エーテル類、エステル類を使用することができる。好ましくはメチルエチルケトン、テトラヒドロフラン、ベンゼン、トルエン、キシレン、ジメチルフルオライド、クロロホルム、四塩化炭素、エチルエーテル、イソプロピルエーテル、ジブチルエーテル、エチルブチルエーテルである。
(有機金属化合物)
As the solvent for the inorganic polymer, aliphatic hydrocarbons, aromatic hydrocarbons, halogen hydrocarbons, ethers, and esters can be used. Preferred are methyl ethyl ketone, tetrahydrofuran, benzene, toluene, xylene, dimethyl fluoride, chloroform, carbon tetrachloride, ethyl ether, isopropyl ether, dibutyl ether, and ethyl butyl ether.
(Organic metal compound)
 本発明に用いられる有機金属化合物としては、金属アルコキシド、金属アセチルアセトネート、金属カルボキシレート等が挙げられるが、加水分解と重合反応によりゲル化し易い金属アルコキシドが好ましい。 Examples of the organometallic compound used in the present invention include metal alkoxides, metal acetylacetonates, metal carboxylates, and the like, but metal alkoxides that are easily gelled by hydrolysis and polymerization reaction are preferable.
 金属アルコキシドは、テトラエトキシシランのような単分子のものでもよいし、有機シロキサン化合物が鎖状または環状に連なったポリシロキサンでもよいが、前駆体溶液の粘性が増加するポリシロキサンが好ましい。なお、透光性のガラス体を形成可能であれば金属の種類に制限はないが、形成されるガラス体の安定性や製造の容易性の観点から、ケイ素を含有していることが好ましい。また、複数種の金属を含有していてもよい。
(無機ポリマー)
The metal alkoxide may be a single molecule such as tetraethoxysilane, or may be a polysiloxane in which an organosiloxane compound is linked in a chain or a ring, but a polysiloxane that increases the viscosity of the precursor solution is preferable. In addition, there is no restriction | limiting in the kind of metal if a translucent glass body can be formed, but it is preferable to contain a silicon | silicone from a viewpoint of the stability of the glass body formed and the ease of manufacture. Moreover, you may contain multiple types of metal.
(Inorganic polymer)
 本発明に用いられる無機ポリマーとしては、ポリシラザンが挙げられるが、低温度、低湿度でセラミックへ硬化するという硬化条件の緩いパーハイドロポリシラザンが好ましい。 As the inorganic polymer used in the present invention, polysilazane may be mentioned, but perhydropolysilazane having a low curing condition of curing to a ceramic at low temperature and low humidity is preferable.
 ポリシラザンは、下記の一般式(1)で表される。
 (RSiNR     (1)
 式(1)において、R~Rは、それぞれ独立して水素原子又はアルキル基、アリール基、ビニル基、シクロアルキル基を表し、R~Rのうち少なくとも1つは水素原子であり、全てが水素原子である場合がパーハイドロポリシラザンである。nは1~60の整数である。
Polysilazane is represented by the following general formula (1).
(R 1 R 2 SiNR 3 ) n (1)
In the formula (1), R 1 to R 3 each independently represents a hydrogen atom, an alkyl group, an aryl group, a vinyl group, or a cycloalkyl group, and at least one of R 1 to R 3 is a hydrogen atom. The case where all are hydrogen atoms is perhydropolysilazane. n is an integer of 1 to 60.
 ポリシラザンの分子形状はいかなる形状でもよく、例えば、直鎖状又は環状であってもよい。式(1)に示すポリシラザンと必要に応じた反応促進剤を、適切な溶媒に溶かして塗布し、加熱やエキシマー光処理、UV(紫外)光処理を行うことで硬化し、耐熱性、耐光性に優れたセラミック層を作製することができる。 The molecular shape of the polysilazane may be any shape, for example, linear or cyclic. The polysilazane represented by the formula (1) and a reaction accelerator as required are dissolved in an appropriate solvent, applied, and cured by heating, excimer light treatment, UV (ultraviolet) light treatment, heat resistance, light resistance It is possible to produce an excellent ceramic layer.
 反応促進剤としては酸、塩基などを用いることが好ましいが必ずしも用いる必要はない。反応促進剤としては例えばトリエチルアミン、ジエチルアミン、N,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、塩酸、シュウ酸、フマル酸、スルホン酸、酢酸やニッケル、鉄、パラジウム、イリジウム、白金、チタン、アルミニウムを含む金属カルボン酸塩などが挙げられるが、これらに限定されるものではない。 As the reaction accelerator, it is preferable to use an acid, a base or the like, but it is not always necessary to use it. Examples of reaction accelerators include triethylamine, diethylamine, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, hydrochloric acid, oxalic acid, fumaric acid, sulfonic acid, acetic acid, nickel, iron, palladium , Metal carboxylates containing iridium, platinum, titanium, and aluminum, but are not limited thereto.
 反応促進剤を用いる場合に特に好ましいのは金属カルボン酸塩であり、添加量はポリシラザンを基準にして0.01~5mol%が好ましい。
(混合液の調整手順)
Particularly preferred when a reaction accelerator is used is a metal carboxylate, and the addition amount is preferably 0.01 to 5 mol% based on polysilazane.
(Procedure for adjusting the mixture)
 混合液の調製手順としては、表面処理された層状ケイ酸塩鉱物などの親油性の膨潤性粒子を用いる場合は、まず有機溶媒に親油性の膨潤性粒子を予備混合し、その後に蛍光体、水、必要に応じて無機粒子を混合する。一方、表面処理されていない層状ケイ酸塩鉱物などの親水性の膨潤性粒子を用いる場合は、まず水に膨潤性粒子を予備混合し、その後に蛍光体、必要に応じて有機溶媒や無機粒子を混合する。これにより、膨潤性粒子を均一に混合して増粘効果をより高めることができる。混合液の好ましい粘度は25~800mPa・sであり、最も好ましい粘度は25~600mPa・sである。
(発光装置の製造方法)
As a preparation procedure of the mixed liquid, when using lipophilic swelling particles such as surface-treated layered silicate mineral, first, lipophilic swelling particles are premixed in an organic solvent, and then phosphor, Mix water and inorganic particles as required. On the other hand, when using hydrophilic swellable particles such as layered silicate minerals that have not been surface-treated, first swellable particles are premixed in water, followed by phosphors, organic solvents and inorganic particles as required Mix. Thereby, swellable particle | grains can be mixed uniformly and the thickening effect can be heightened more. The preferred viscosity of the mixed solution is 25 to 800 mPa · s, and the most preferred viscosity is 25 to 600 mPa · s.
(Method for manufacturing light emitting device)
 以上のようにして得られた混合液をガラス基板5の片面に所定量塗布し、加熱して所定の膜厚の波長変換層7を形成する。上記混合液を塗布、加熱することで、ガラス基板5上に均一な厚さ(均一な蛍光体分布)の波長変換層7が形成される。次に、波長変換層7の上面に前駆体溶液を所定量塗布する。塗布された前駆体溶液の一部は蛍光体粒子や膨潤性粒子の隙間に浸透する。前駆体溶液が塗布されたガラス基板5を焼成することでセラミック層8が形成される。 A predetermined amount of the mixed liquid obtained as described above is applied to one side of the glass substrate 5 and heated to form the wavelength conversion layer 7 having a predetermined thickness. By applying and heating the mixed liquid, the wavelength conversion layer 7 having a uniform thickness (uniform phosphor distribution) is formed on the glass substrate 5. Next, a predetermined amount of the precursor solution is applied to the upper surface of the wavelength conversion layer 7. Part of the applied precursor solution penetrates into the gaps between the phosphor particles and the swellable particles. A ceramic layer 8 is formed by firing the glass substrate 5 coated with the precursor solution.
 ここで、波長変換層7に浸透した前駆体溶液はセラミック材料に変化するため、セラミック材料は蛍光体粒子と膨潤性粒子とガラス基板5に対してバインダとして作用する。したがって、波長変換層7の上面に前駆体溶液を塗布して焼成することで、波長変換層7上にセラミック層8が明確に形成されなくても、ガラス基板5に波長変換層7が確実に固定される。また、波長変換層7上にセラミック層8が明確に形成される場合には、波長変換層7を封止するという機能もある。なお、混合液及び前駆体溶液の塗布方法は特に限定されるものではなく、バーコート法、スピンコート法、スプレーコート法等、従来公知の種々の方法を用いることができる。 Here, since the precursor solution that has penetrated into the wavelength conversion layer 7 is changed to a ceramic material, the ceramic material acts as a binder for the phosphor particles, the swellable particles, and the glass substrate 5. Therefore, by applying the precursor solution on the upper surface of the wavelength conversion layer 7 and firing, the wavelength conversion layer 7 is reliably formed on the glass substrate 5 even if the ceramic layer 8 is not clearly formed on the wavelength conversion layer 7. Fixed. Further, when the ceramic layer 8 is clearly formed on the wavelength conversion layer 7, there is also a function of sealing the wavelength conversion layer 7. In addition, the coating method of a liquid mixture and a precursor solution is not specifically limited, Conventionally well-known various methods, such as a bar coat method, a spin coat method, and a spray coat method, can be used.
 そして、波長変換部6が形成されたガラス基板5を所定の大きさ(例えば2×2mm)に切断してLED素子3上に配置することにより、発光装置100を製造することができる。 And the light-emitting device 100 can be manufactured by cut | disconnecting the glass substrate 5 in which the wavelength conversion part 6 was formed in predetermined magnitude | size (for example, 2x2 mm), and arrange | positioning on the LED element 3. FIG.
 形成された波長変換部7の厚みが5μm未満である場合は波長変換効率が低下して十分な蛍光が得られず、波長変換層7の厚みが500μmを超える場合は膜強度が低下してクラック等が発生し易くなる。従って、波長変換層7の厚みは5μm以上500μm以下であることが好ましい。 When the thickness of the formed wavelength conversion part 7 is less than 5 μm, the wavelength conversion efficiency is lowered and sufficient fluorescence cannot be obtained, and when the thickness of the wavelength conversion layer 7 is more than 500 μm, the film strength is reduced and cracks occur. Etc. are likely to occur. Therefore, the thickness of the wavelength conversion layer 7 is preferably 5 μm or more and 500 μm or less.
 なお、上記実施形態ではガラス基板5を使用しているが、ガラス基板に限らず、透光性の無機材料からなる基板であれば、例えば、単結晶サファイア等の結晶基板やセラミック基板を用いてもよい。 In addition, although the glass substrate 5 is used in the said embodiment, if it is a board | substrate which consists of not only a glass substrate but a translucent inorganic material, for example, crystal substrates, such as a single crystal sapphire, and a ceramic substrate will be used. Also good.
 図2は、本発明の第2実施形態の発光装置の概略断面図である。図2に示すように、発光装置101は、断面凹状のLED基板1の底部にメタル部2が設けられ、メタル部2上にLED素子3が配置されるとともに、LED基板1の凹部に蓋をするように波長変換素子9が設けられている。波長変換素子9を含む他の部分の構成は第1実施形態と同様であるため説明を省略する。 FIG. 2 is a schematic sectional view of a light emitting device according to a second embodiment of the present invention. As shown in FIG. 2, in the light emitting device 101, the metal part 2 is provided at the bottom of the LED substrate 1 having a concave cross section, the LED element 3 is disposed on the metal part 2, and a lid is provided on the recess of the LED substrate 1. Thus, a wavelength conversion element 9 is provided. Since the configuration of other parts including the wavelength conversion element 9 is the same as that of the first embodiment, the description thereof is omitted.
 本実施形態の発光装置101は、LED基板1の凹部にLED素子3を配置し、第1実施形態で用いた波長変換素子9をLED基板1の側壁の上端に凹部を覆うように接着して製造することができる。 In the light emitting device 101 of the present embodiment, the LED element 3 is disposed in the concave portion of the LED substrate 1, and the wavelength conversion element 9 used in the first embodiment is bonded to the upper end of the side wall of the LED substrate 1 so as to cover the concave portion. Can be manufactured.
 本実施形態の発光装置101は、第1実施形態に比べて、LED素子3の側面から出射される光も効率良く蛍光に変換される。 In the light emitting device 101 of the present embodiment, light emitted from the side surface of the LED element 3 is also efficiently converted into fluorescence as compared with the first embodiment.
 なお、LED基板1の凹部の形状や大きさは発光装置101の仕様に応じて適宜設計することができる。例えば、凹部の側面をテーパ状としてもよい。また、凹部の内面を反射面とすることにより、発光装置101の発光効率を高める構成としてもよい。 In addition, the shape and size of the concave portion of the LED substrate 1 can be appropriately designed according to the specifications of the light emitting device 101. For example, the side surface of the recess may be tapered. Moreover, it is good also as a structure which improves the light emission efficiency of the light-emitting device 101 by making the inner surface of a recessed part into a reflective surface.
 図3は、本発明の第3実施形態の発光装置の概略断面図である。図3に示すように、発光装置102は、断面凹状のLED基板1の底部にメタル部2が設けられ、メタル部2上にLED素子3が配置されるとともに、LED素子3を覆うようにLED基板1の凹部に波長変換部6が設けられている。 FIG. 3 is a schematic cross-sectional view of a light emitting device according to a third embodiment of the present invention. As shown in FIG. 3, the light emitting device 102 is configured such that the metal part 2 is provided on the bottom of the LED substrate 1 having a concave cross section, the LED element 3 is disposed on the metal part 2, and the LED element 3 is covered. A wavelength conversion unit 6 is provided in the concave portion of the substrate 1.
 本実施形態の発光装置102は、LED基板1の凹部にLED素子3を配置し、LED基板1の凹部及びLED素子3表面に蛍光体の混合溶液をスプレーコート法により噴霧し、加熱して波長変換層7を形成し、波長変換層7の上に前駆体溶液をスプレーコート法により噴霧し、焼成してセラミック層8を形成して製造することができる。 In the light emitting device 102 of the present embodiment, the LED element 3 is disposed in the concave portion of the LED substrate 1, and the phosphor mixed solution is sprayed on the concave portion of the LED substrate 1 and the surface of the LED element 3 by a spray coating method, and heated to emit light. The ceramic layer 8 can be manufactured by forming the conversion layer 7, spraying the precursor solution on the wavelength conversion layer 7 by a spray coating method, and baking the precursor solution.
 その他、本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態では青色LEDと蛍光体とを併用することで白色発光する発光装置を例に挙げて説明したが、緑色LEDや赤色LEDと蛍光体とを併用する場合にも同様に適用できるのはもちろんである。さらに言えば、蛍光体は1種類だけでなく、紫外光を吸収して赤色、緑色、青色の光をそれぞれ放射する3種類の蛍光体や、青色光を吸収して赤色、緑色の光をそれぞれ放射する2種類の蛍光体を併用してもよい。また、蛍光体の混合液を塗布する前に、ガラス基板5又はLED素子3の表面に、上述したセラミック層8のような透光性のセラミック層を形成しておいてもよい。 In addition, the present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. Embodiments are also included in the technical scope of the present invention. In each of the above embodiments, a light emitting device that emits white light by using a blue LED and a phosphor together has been described as an example. However, the same applies to a case where a green LED or a red LED and a phosphor are used in combination. Of course you can. Furthermore, not only one type of phosphor, but also three types of phosphors that absorb ultraviolet light and emit red, green, and blue light, respectively, and red and green light that absorb blue light, respectively. You may use together two types of fluorescent substance to radiate | emit. In addition, a translucent ceramic layer such as the ceramic layer 8 described above may be formed on the surface of the glass substrate 5 or the LED element 3 before applying the phosphor mixture.
 以下、本発明の発光装置について実施例及び比較例により更に具体的に説明する。実施例1~15、29~33及び比較例1~6は第1又は第2実施形態の波長変換素子9の例であり、実施例16~28は第3実施形態の発光装置102の例である。
(蛍光体の調製例)
Hereinafter, the light emitting device of the present invention will be described more specifically with reference to Examples and Comparative Examples. Examples 1 to 15, 29 to 33 and Comparative Examples 1 to 6 are examples of the wavelength conversion element 9 of the first or second embodiment, and Examples 16 to 28 are examples of the light emitting device 102 of the third embodiment. is there.
(Phosphor preparation example)
 各実施例及び比較例で用いる蛍光体は、蛍光体原料として、Y7.41g、Gd4.01g、CeO0.63g、Al7.77gを十分に混合し、これにフラックスとしてフッ化アンモニウムを適量混合したものをアルミ製の坩堝に充填し、水素含有窒素ガスを流通させた還元雰囲気中において、1350~1450℃の温度範囲で2~5時間焼成して焼成品((Y0.72Gd0.24Al12:Ce0.04)を得た。 Phosphor used in the Examples and Comparative Examples, mixing the phosphor material, Y 2 O 3 7.41g, Gd 2 O 3 4.01g, CeO 2 0.63g, the Al 2 O 3 7.77 g fully An aluminum crucible mixed with an appropriate amount of ammonium fluoride as a flux is filled in an aluminum crucible and fired at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours in a reducing atmosphere in which hydrogen-containing nitrogen gas is circulated. In this way, a fired product ((Y 0.72 Gd 0.24 ) 3 Al 5 O 12 : Ce 0.04 ) was obtained.
 得られた焼成品を粉砕、洗浄、分離、乾燥して、体積平均粒径が1μm程度の黄色蛍光体粒子を得た。波長465nmの励起光における発光波長を測定したところ、おおよそ波長570nmにピーク波長を有していた。
(ガラス基板)
The obtained fired product was pulverized, washed, separated, and dried to obtain yellow phosphor particles having a volume average particle diameter of about 1 μm. When the emission wavelength of excitation light with a wavelength of 465 nm was measured, it had a peak wavelength at a wavelength of approximately 570 nm.
(Glass substrate)
 各実施例及び比較例で用いるガラス基板は、横50mm、縦20mm、厚さ1mmの直方体で薄板のものを用いた。 The glass substrate used in each example and comparative example was a rectangular parallelepiped having a width of 50 mm, a length of 20 mm, and a thickness of 1 mm, and a thin plate.
 表面処理されていない親水性スメクタイト(ルーセンタイトSWN、コープケミカル社製)0.11gと純水2.2gを混合して分散させた。これに上記調製例により調製した蛍光体1gを混合して混合液を調製した。この混合液を、加熱後の波長変換層の膜厚が35μmとなるように、ガラス基板上にバーコート法により塗布し、50℃で10分間加熱した。次に、ポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)を、焼成後のセラミック層の膜厚が1μmとなるように、波長変換層上にバーコート法により塗布し、500℃で1時間焼成して波長変換素子のサンプルを作製した。 Surface-treated hydrophilic smectite (Lucentite SWN, manufactured by Corp Chemical Co.) 0.11 g and 2.2 g of pure water were mixed and dispersed. This was mixed with 1 g of the phosphor prepared in the above preparation example to prepare a mixed solution. This mixed solution was applied onto a glass substrate by a bar coating method so that the film thickness of the wavelength conversion layer after heating was 35 μm, and heated at 50 ° C. for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 μm, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
 表面処理されていない親水性スメクタイト(ルーセンタイトSWN、コープケミカル社製)0.11gと純水5.5gを混合して分散させた。これに上記調製例により調製した蛍光体1gを混合して混合液を調製した。この混合液を、加熱後の波長変換層の膜厚が35μmとなるように、ガラス基板上にバーコート法により塗布し、50℃で10分間加熱した。次に、ポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)を、焼成後のセラミック層の膜厚が1μmとなるように、波長変換層上にバーコート法により塗布し、500℃で1時間焼成して波長変換素子のサンプルを作製した。 Surface-treated hydrophilic smectite (Lucentite SWN, manufactured by Co-op Chemical Co.) 0.11 g and pure water 5.5 g were mixed and dispersed. This was mixed with 1 g of the phosphor prepared in the above preparation example to prepare a mixed solution. This mixed solution was applied onto a glass substrate by a bar coating method so that the film thickness of the wavelength conversion layer after heating was 35 μm, and heated at 50 ° C. for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 μm, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
 表面処理されていない親水性スメクタイト(ルーセンタイトSWN、コープケミカル社製)0.11gと純水2.2gを混合して分散させた。これに上記調製例により調製した蛍光体1gとイソプロピルアルコール(IPA)2.2gとを混合して混合液を調製した。この混合液を、加熱後の波長変換層の膜厚が35μmとなるように、ガラス基板上にバーコート法により塗布し、50℃で10分間加熱した。次に、ポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)を、焼成後のセラミック層の膜厚が1μmとなるように、波長変換層上にバーコート法により塗布し、500℃で1時間焼成して波長変換素子のサンプルを作製した。 Surface-treated hydrophilic smectite (Lucentite SWN, manufactured by Corp Chemical Co.) 0.11 g and 2.2 g of pure water were mixed and dispersed. To this, 1 g of the phosphor prepared in the above preparation example and 2.2 g of isopropyl alcohol (IPA) were mixed to prepare a mixed solution. This mixed solution was applied onto a glass substrate by a bar coating method so that the film thickness of the wavelength conversion layer after heating was 35 μm, and heated at 50 ° C. for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 μm, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
 表面処理されていない親水性スメクタイト(ルーセンタイトSWN、コープケミカル社製)0.11gと純水2.2gを混合して分散させた。これに上記調製例により調製した蛍光体1gとIPA4.4gとを混合して混合液を調製した。この混合液を、加熱後の波長変換層の膜厚が35μmとなるように、ガラス基板上にバーコート法により塗布し、50℃で10分間加熱した。次に、ポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)を、焼成後のセラミック層の膜厚が1μmとなるように、波長変換層上にバーコート法により塗布し、500℃で1時間焼成して波長変換素子のサンプルを作製した。 Surface-treated hydrophilic smectite (Lucentite SWN, manufactured by Corp Chemical Co.) 0.11 g and 2.2 g of pure water were mixed and dispersed. To this, 1 g of the phosphor prepared according to the above preparation example and 4.4 g of IPA were mixed to prepare a mixed solution. This mixed solution was applied onto a glass substrate by a bar coating method so that the film thickness of the wavelength conversion layer after heating was 35 μm, and heated at 50 ° C. for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 μm, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
 表面処理されていない親水性スメクタイト(ルーセンタイトSWN、コープケミカル社製)0.11gと純水2.2gを混合して分散させた。これに上記調製例により調製した蛍光体1gとIPA3.3gとを混合して混合液を調製した。この混合液を、加熱後の波長変換層の膜厚が35μmとなるように、ガラス基板上にバーコート法により塗布し、50℃で10分間加熱した。次に、ポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)を、焼成後のセラミック層の膜厚が1μmとなるように、波長変換層上にバーコート法により塗布し、500℃で1時間焼成して波長変換素子のサンプルを作製した。 Surface-treated hydrophilic smectite (Lucentite SWN, manufactured by Corp Chemical Co.) 0.11 g and 2.2 g of pure water were mixed and dispersed. To this, 1 g of the phosphor prepared by the above preparation example and 3.3 g of IPA were mixed to prepare a mixed solution. This mixed solution was applied onto a glass substrate by a bar coating method so that the film thickness of the wavelength conversion layer after heating was 35 μm, and heated at 50 ° C. for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 μm, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
 表面処理されていない親水性スメクタイト(ルーセンタイトSWN、コープケミカル社製)0.11gと純水2.2gを混合して分散させた。これに上記調製例により調製した蛍光体1gとIPA3.85gとを混合して混合液を調製した。この混合液を、加熱後の波長変換層の膜厚が35μmとなるように、ガラス基板上にバーコート法により塗布し、50℃で10分間加熱した。次に、ポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)を、焼成後のセラミック層の膜厚が1μmとなるように、波長変換層上にバーコート法により塗布し、500℃で1時間焼成して波長変換素子のサンプルを作製した。 Surface-treated hydrophilic smectite (Lucentite SWN, manufactured by Corp Chemical Co.) 0.11 g and 2.2 g of pure water were mixed and dispersed. To this, 1 g of the phosphor prepared by the above preparation example and 3.85 g of IPA were mixed to prepare a mixed solution. This mixed solution was applied onto a glass substrate by a bar coating method so that the film thickness of the wavelength conversion layer after heating was 35 μm, and heated at 50 ° C. for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 μm, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
 表面処理されていない親水性スメクタイト(ルーセンタイトSWN、コープケミカル社製)0.05gと純水1gを混合して分散させた。これに上記調製例により調製した蛍光体1gとIPA2gとを混合して混合液を調製した。この混合液を、加熱後の波長変換層の膜厚が30μmとなるように、ガラス基板上にバーコート法により塗布し、50℃で10分間加熱した。次に、ポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)を、焼成後のセラミック層の膜厚が1μmとなるように、波長変換層上にバーコート法により塗布し、500℃で1時間焼成して波長変換素子のサンプルを作製した。 0.05 g of hydrophilic smectite (Lucentite SWN, manufactured by Co-op Chemical Co.) that has not been surface-treated and 1 g of pure water were mixed and dispersed. The mixture was prepared by mixing 1 g of the phosphor prepared in the above preparation example and 2 g of IPA. This mixed solution was applied onto a glass substrate by a bar coating method so that the film thickness of the wavelength conversion layer after heating was 30 μm, and heated at 50 ° C. for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 μm, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
 表面処理されていない親水性スメクタイト(ルーセンタイトSWN、コープケミカル社製)0.43gと純水8.6gを混合して分散させた。これに上記調製例により調製した蛍光体1gとIPA17.2gとを混合して混合液を調製した。この混合液を、加熱後の波長変換層の膜厚が50μmとなるように、ガラス基板上にバーコート法により塗布し、50℃で10分間加熱した。次に、ポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)を、焼成後のセラミック層の膜厚が1μmとなるように、波長変換層上にバーコート法により塗布し、500℃で1時間焼成して波長変換素子のサンプルを作製した。 The surface-treated hydrophilic smectite (Lucentite SWN, manufactured by Co-op Chemical) 0.43 g and pure water 8.6 g were mixed and dispersed. To this, 1 g of the phosphor prepared in the above preparation example and 17.2 g of IPA were mixed to prepare a mixed solution. This mixed solution was applied onto a glass substrate by a bar coating method so that the film thickness of the wavelength conversion layer after heating was 50 μm, and heated at 50 ° C. for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 μm, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
 表面処理されていない親水性スメクタイト(ルーセンタイトSWN、コープケミカル社製)1.5gと純水30gを混合して分散させた。これに上記調製例により調製した蛍光体1gとIPA60gとを混合して混合液を調製した。この混合液を、加熱後の波長変換層の膜厚が200μmとなるように、ガラス基板上にバーコート法により塗布し、50℃で10分間加熱した。次に、ポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)を、焼成後のセラミック層の膜厚が1μmとなるように、波長変換層上にバーコート法により塗布し、500℃で1時間焼成して波長変換素子のサンプルを作製した。 1.5 g of hydrophilic smectite (Lucentite SWN, manufactured by Co-op Chemical Co.) that has not been surface-treated and 30 g of pure water were mixed and dispersed. This was mixed with 1 g of the phosphor prepared in the above preparation example and 60 g of IPA to prepare a mixed solution. This mixed solution was applied onto a glass substrate by a bar coating method so that the film thickness of the wavelength conversion layer after heating was 200 μm, and heated at 50 ° C. for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 μm, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
 表面処理された親油性スメクタイト(ルーセンタイトSPN、コープケミカル社製)0.11gとIPA4.4gを混合して分散させた。これに上記調製例により調製した蛍光体1gと純水1.1gとを混合して混合液を調製した。この混合液を、加熱後の波長変換層の膜厚が35μmとなるように、ガラス基板上にバーコート法により塗布し、50℃で10分間加熱した。次に、ポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)を、焼成後のセラミック層の膜厚が1μmとなるように、波長変換層上にバーコート法により塗布し、500℃で1時間焼成して波長変換素子のサンプルを作製した。 The surface-treated lipophilic smectite (Lucentite SPN, manufactured by Co-op Chemical) 0.11 g and IPA 4.4 g were mixed and dispersed. This was mixed with 1 g of the phosphor prepared in the above preparation example and 1.1 g of pure water to prepare a mixed solution. This mixed solution was applied onto a glass substrate by a bar coating method so that the film thickness of the wavelength conversion layer after heating was 35 μm, and heated at 50 ° C. for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 μm, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
 実施例4において、ポリシロキサン分散液をポリシラザン分散液(NL120-20;ポリシラザン20重量%、ジブチルエーテル80重量%;AZエレクトロニックマテリアルズ社製)に代えて波長変換素子のサンプルを作製した。他の条件は実施例4と同じである。 In Example 4, the polysiloxane dispersion was replaced with a polysilazane dispersion (NL120-20; polysilazane 20 wt%, dibutyl ether 80 wt%; manufactured by AZ Electronic Materials) to prepare a sample of a wavelength conversion element. Other conditions are the same as those in Example 4.
 表面処理されていない親水性スメクタイト(ルーセンタイトSWN、コープケミカル社製)0.9gと純水18gを混合して分散させた。これに上記調製例により調製した蛍光体0.1gとIPA36gとを混合して混合液を調製した。この混合液を、加熱後の波長変換層の膜厚が400μmとなるように、ガラス基板上にバーコート法により塗布し、50℃で10分間加熱した。次に、ポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)を、焼成後のセラミック層の膜厚が1μmとなるように、波長変換層上にバーコート法により塗布し、500℃で1時間焼成して波長変換素子のサンプルを作製した。 0.9 g of hydrophilic smectite (Lucentite SWN, manufactured by Co-op Chemical Co.) that has not been surface-treated and 18 g of pure water were mixed and dispersed. To this, 0.1 g of the phosphor prepared in the above preparation example and 36 g of IPA were mixed to prepare a mixed solution. This mixed solution was applied on a glass substrate by a bar coating method so that the film thickness of the wavelength conversion layer after heating was 400 μm, and heated at 50 ° C. for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 μm, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
 表面処理されていない親水性スメクタイト(ルーセンタイトSWN、コープケミカル社製)0.11gと純水2.2gを混合して分散させた。これに上記調製例により調製した蛍光体21.9gとIPA4.4gとを混合して混合液を調製した。この混合液を、加熱後の波長変換層の膜厚が35μmとなるように、ガラス基板上にバーコート法により塗布し、50℃で10分間加熱した。次に、ポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)を、焼成後のセラミック層の膜厚が1μmとなるように、波長変換層上にバーコート法により塗布し、500℃で1時間焼成して波長変換素子のサンプルを作製した。 Surface-treated hydrophilic smectite (Lucentite SWN, manufactured by Corp Chemical Co.) 0.11 g and 2.2 g of pure water were mixed and dispersed. The mixture was prepared by mixing 21.9 g of the phosphor prepared in the above preparation example and 4.4 g of IPA. This mixed solution was applied onto a glass substrate by a bar coating method so that the film thickness of the wavelength conversion layer after heating was 35 μm, and heated at 50 ° C. for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 μm, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
 表面処理されていない親水性スメクタイト(ルーセンタイトSWN、コープケミカル社製)0.11gと純水1.4gを混合して分散させた。これに上記調製例により調製した蛍光体1gとIPA0.3gとを混合して混合液を調製した。この混合液を、加熱後の波長変換層の膜厚が35μmとなるように、ガラス基板上にバーコート法により塗布し、50℃で10分間加熱した。次に、ポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)を、焼成後のセラミック層の膜厚が1μmとなるように、波長変換層上にバーコート法により塗布し、500℃で1時間焼成して波長変換素子のサンプルを作製した。 Surface-treated hydrophilic smectite (Lucentite SWN, manufactured by Corp Chemical Co.) 0.11 g and 1.4 g of pure water were mixed and dispersed. This was mixed with 1 g of the phosphor prepared according to the above preparation example and 0.3 g of IPA to prepare a mixed solution. This mixed solution was applied onto a glass substrate by a bar coating method so that the film thickness of the wavelength conversion layer after heating was 35 μm, and heated at 50 ° C. for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 μm, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
 表面処理されていない親水性スメクタイト(ルーセンタイトSWN、コープケミカル社製)0.02gと純水0.4gを混合して分散させた。これにポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)1gと、上記調製例により調製した蛍光体0.7gと、無機粒子であるNanoTek Powder(メジアン径(D50)25nmの酸化ケイ素微粒子;CIKナノテック社製)0.03gとを混合して混合液を調製した。この混合液を、焼成後の波長変換層の膜厚が40μmとなるように、ガラス基板上にバーコート法により塗布し、さらにその上から、ポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)を、焼成後のセラミック層の膜厚が1μmとなるように、波長変換層上にバーコート法により塗布し、500℃で1時間焼成して波長変換素子のサンプルを作製した。 0.02 g of hydrophilic smectite (Lucentite SWN, manufactured by Co-op Chemical Co.) that has not been surface-treated and 0.4 g of pure water were mixed and dispersed. To this, 1 g of a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%), 0.7 g of the phosphor prepared according to the above preparation example, and NanoTek Powder (median diameter (D50) 25 nm oxidation) as inorganic particles 0.03 g of silicon fine particles (manufactured by CIK Nanotech) was mixed to prepare a mixed solution. This mixed solution was applied onto a glass substrate by a bar coating method so that the film thickness of the wavelength conversion layer after baking was 40 μm, and further, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol) was formed thereon. 86 wt%) was applied on the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer was 1 μm, and baked at 500 ° C. for 1 hour to prepare a sample of the wavelength conversion element.
 実施例2と同様の蛍光体が分散した混合液を調整した。この混合液を、加熱後のLED素子上の波長変換層の膜厚が35μmとなるように、LED基板の凹部及びLED素子表面にスプレーコート法によりスプレー圧0.2MPaにて噴霧し、50℃で10分間加熱した。次に、ポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)を、焼成後のLED素子上のセラミック層の膜厚が1μmとなるように、波長変換層上にスプレーコート法によりスプレー圧0.1MPaにて噴霧し、120℃で1時間焼成して発光装置のサンプルを作製した。 A mixed liquid in which the same phosphor as in Example 2 was dispersed was prepared. This mixed liquid is sprayed at a spray pressure of 0.2 MPa on the concave portions of the LED substrate and the LED element surface by a spray coating method so that the film thickness of the wavelength conversion layer on the LED element after heating becomes 35 μm, at 50 ° C. Heated for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is spray-coated on the wavelength conversion layer so that the film thickness of the ceramic layer on the LED element after firing is 1 μm. The sample was sprayed at a spray pressure of 0.1 MPa and fired at 120 ° C. for 1 hour to produce a sample of a light emitting device.
 実施例3と同様の蛍光体が分散した混合液を調整した。この混合液を、加熱後のLED素子上の波長変換層の膜厚が35μmとなるように、LED基板の凹部及びLED素子表面にスプレーコート法によりスプレー圧0.2MPaにて噴霧し、50℃で10分間加熱した。次に、ポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)を、焼成後のLED素子上のセラミック層の膜厚が1μmとなるように、波長変換層上にスプレーコート法によりスプレー圧0.1MPaにて噴霧し、120℃で1時間焼成して発光装置のサンプルを作製した。 A mixed liquid in which the same phosphor as in Example 3 was dispersed was prepared. This mixed liquid is sprayed at a spray pressure of 0.2 MPa on the concave portions of the LED substrate and the LED element surface by a spray coating method so that the film thickness of the wavelength conversion layer on the LED element after heating becomes 35 μm, at 50 ° C. Heated for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is spray-coated on the wavelength conversion layer so that the film thickness of the ceramic layer on the LED element after firing is 1 μm. The sample was sprayed at a spray pressure of 0.1 MPa and fired at 120 ° C. for 1 hour to produce a sample of a light emitting device.
 実施例4と同様の蛍光体が分散した混合液を調整した。この混合液を、加熱後のLED素子上の波長変換層の膜厚が35μmとなるように、LED基板の凹部及びLED素子表面にスプレーコート法によりスプレー圧0.2MPaにて噴霧し、50℃で10分間加熱した。次に、ポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)を、焼成後のLED素子上のセラミック層の膜厚が1μmとなるように、波長変換層上にスプレーコート法によりスプレー圧0.1MPaにて噴霧し、120℃で1時間焼成して発光装置のサンプルを作製した。 A mixed liquid in which the same phosphor as in Example 4 was dispersed was prepared. This mixed liquid is sprayed at a spray pressure of 0.2 MPa on the concave portions of the LED substrate and the LED element surface by a spray coating method so that the film thickness of the wavelength conversion layer on the LED element after heating becomes 35 μm, at 50 ° C. Heated for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is spray-coated on the wavelength conversion layer so that the film thickness of the ceramic layer on the LED element after firing is 1 μm. The sample was sprayed at a spray pressure of 0.1 MPa and fired at 120 ° C. for 1 hour to produce a sample of a light emitting device.
 実施例5と同様の蛍光体が分散した混合液を調整した。この混合液を、加熱後のLED素子上の波長変換層の膜厚が35μmとなるように、LED基板の凹部及びLED素子表面にスプレーコート法によりスプレー圧0.2MPaにて噴霧し、50℃で10分間加熱した。次に、ポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)を、焼成後のLED素子上のセラミック層の膜厚が1μmとなるように、波長変換層上にスプレーコート法によりスプレー圧0.1MPaにて噴霧し、120℃で1時間焼成して発光装置のサンプルを作製した。 A mixed liquid in which the same phosphor as in Example 5 was dispersed was prepared. This mixed liquid is sprayed at a spray pressure of 0.2 MPa on the concave portions of the LED substrate and the LED element surface by a spray coating method so that the film thickness of the wavelength conversion layer on the LED element after heating becomes 35 μm, at 50 ° C. Heated for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is spray-coated on the wavelength conversion layer so that the film thickness of the ceramic layer on the LED element after firing is 1 μm. The sample was sprayed at a spray pressure of 0.1 MPa and fired at 120 ° C. for 1 hour to produce a sample of a light emitting device.
 実施例6と同様の蛍光体が分散した混合液を調整した。この混合液を、加熱後のLED素子上の波長変換層の膜厚が35μmとなるように、LED基板の凹部及びLED素子表面にスプレーコート法によりスプレー圧0.2MPaにて噴霧し、50℃で10分間加熱した。次に、ポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)を、焼成後のLED素子上のセラミック層の膜厚が1μmとなるように、波長変換層上にスプレーコート法によりスプレー圧0.1MPaにて噴霧し、120℃で1時間焼成して発光装置のサンプルを作製した。 A mixed liquid in which the same phosphor as in Example 6 was dispersed was prepared. This mixed liquid is sprayed at a spray pressure of 0.2 MPa on the concave portions of the LED substrate and the LED element surface by a spray coating method so that the film thickness of the wavelength conversion layer on the LED element after heating becomes 35 μm, at 50 ° C. Heated for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is spray-coated on the wavelength conversion layer so that the film thickness of the ceramic layer on the LED element after firing is 1 μm. The sample was sprayed at a spray pressure of 0.1 MPa and fired at 120 ° C. for 1 hour to produce a sample of a light emitting device.
 実施例7と同様の蛍光体が分散した混合液を調整した。この混合液を、加熱後のLED素子上の波長変換層の膜厚が30μmとなるように、LED基板の凹部及びLED素子表面にスプレーコート法によりスプレー圧0.2MPaにて噴霧し、50℃で10分間加熱した。次に、ポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)を、焼成後のLED素子上のセラミック層の膜厚が1μmとなるように、波長変換層上にスプレーコート法によりスプレー圧0.1MPaにて噴霧し、120℃で1時間焼成して発光装置のサンプルを作製した。 A mixed liquid in which the same phosphor as in Example 7 was dispersed was prepared. This mixed liquid is sprayed at a spray pressure of 0.2 MPa on the concave portions of the LED substrate and the LED element surface at a spray pressure of 0.2 MPa so that the film thickness of the wavelength conversion layer on the LED element after heating is 30 μm. Heated for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is spray-coated on the wavelength conversion layer so that the film thickness of the ceramic layer on the LED element after firing is 1 μm. The sample was sprayed at a spray pressure of 0.1 MPa and fired at 120 ° C. for 1 hour to produce a sample of a light emitting device.
 実施例8と同様の蛍光体が分散した混合液を調整した。この混合液を、加熱後のLED素子上の波長変換層の膜厚が50μmとなるように、LED基板の凹部及びLED素子表面にスプレーコート法によりスプレー圧0.2MPaにて噴霧し、50℃で10分間加熱した。次に、ポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)を、焼成後のLED素子上のセラミック層の膜厚が1μmとなるように、波長変換層上にスプレーコート法によりスプレー圧0.1MPaにて噴霧し、120℃で1時間焼成して発光装置のサンプルを作製した。 A mixed liquid in which the same phosphor as in Example 8 was dispersed was prepared. This mixed solution is sprayed at a spray pressure of 0.2 MPa by spray coating on the concave portions of the LED substrate and the LED element surface so that the film thickness of the wavelength conversion layer on the LED element after heating becomes 50 μm, and at 50 ° C. Heated for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is spray-coated on the wavelength conversion layer so that the film thickness of the ceramic layer on the LED element after firing is 1 μm. The sample was sprayed at a spray pressure of 0.1 MPa and fired at 120 ° C. for 1 hour to produce a sample of a light emitting device.
 実施例9と同様の蛍光体が分散した混合液を調整した。この混合液を、加熱後のLED素子上の波長変換層の膜厚が200μmとなるように、LED基板の凹部及びLED素子表面にスプレーコート法によりスプレー圧0.2MPaにて噴霧し、50℃で10分間加熱した。次に、ポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)を、焼成後のLED素子上のセラミック層の膜厚が1μmとなるように、波長変換層上にスプレーコート法によりスプレー圧0.1MPaにて噴霧し、120℃で1時間焼成して発光装置のサンプルを作製した。 A mixed liquid in which the same phosphor as in Example 9 was dispersed was prepared. This mixed solution is sprayed at a spray pressure of 0.2 MPa on the concave portions of the LED substrate and the LED element surface at a spray pressure of 0.2 MPa so that the film thickness of the wavelength conversion layer on the LED element after heating is 200 μm. Heated for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is spray-coated on the wavelength conversion layer so that the film thickness of the ceramic layer on the LED element after firing is 1 μm. The sample was sprayed at a spray pressure of 0.1 MPa and fired at 120 ° C. for 1 hour to produce a sample of a light emitting device.
 実施例10と同様の蛍光体が分散した混合液を調整した。この混合液を、加熱後のLED素子上の波長変換層の膜厚が35μmとなるように、LED基板の凹部及びLED素子表面にスプレーコート法によりスプレー圧0.2MPaにて噴霧し、50℃で10分間加熱した。次に、ポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)を、焼成後のLED素子上のセラミック層の膜厚が1μmとなるように、波長変換層上にスプレーコート法によりスプレー圧0.1MPaにて噴霧し、120℃で1時間焼成して発光装置のサンプルを作製した。 A mixed liquid in which the same phosphor as in Example 10 was dispersed was prepared. This mixed liquid is sprayed at a spray pressure of 0.2 MPa on the concave portions of the LED substrate and the LED element surface by a spray coating method so that the film thickness of the wavelength conversion layer on the LED element after heating becomes 35 μm, at 50 ° C. Heated for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is spray-coated on the wavelength conversion layer so that the film thickness of the ceramic layer on the LED element after firing is 1 μm. The sample was sprayed at a spray pressure of 0.1 MPa and fired at 120 ° C. for 1 hour to produce a sample of a light emitting device.
 実施例17において、ポリシロキサン分散液をポリシラザン分散液(NL120-20;ポリシラザン20重量%、ジブチルエーテル80重量%;AZエレクトロニックマテリアルズ社製)に代えて発光装置のサンプルを作製した。他の条件は実施例17と同じである。 In Example 17, a sample of a light emitting device was produced by replacing the polysiloxane dispersion with a polysilazane dispersion (NL120-20; 20% by weight of polysilazane, 80% by weight of dibutyl ether; manufactured by AZ Electronic Materials). Other conditions are the same as those in Example 17.
 実施例4と同様の蛍光体が分散した混合液を調整した。この混合液を、加熱後のLED素子上の波長変換層の膜厚が35μmとなるように、LED基板の凹部及びLED素子表面にスプレーコート法によりスプレー圧0.2MPaにて噴霧し、50℃で10分間加熱した。次に、表面処理されていない親水性スメクタイト(ルーセンタイトSWN、コープケミカル社製)0.02gと純水0.4gを混合して分散させ、これにポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)を1g混合して前駆体溶液を調整した。この前駆体溶液を、焼成後のLED素子上のセラミック層の膜厚が1μmとなるように、波長変換層上にスプレーコート法によりスプレー圧0.1MPaにて噴霧し、120℃で1時間焼成して発光装置のサンプルを作製した。 A mixed liquid in which the same phosphor as in Example 4 was dispersed was prepared. This mixed liquid is sprayed at a spray pressure of 0.2 MPa on the concave portions of the LED substrate and the LED element surface by a spray coating method so that the film thickness of the wavelength conversion layer on the LED element after heating becomes 35 μm, at 50 ° C. Heated for 10 minutes. Next, 0.02 g of non-surface-treated hydrophilic smectite (Lucentite SWN, manufactured by Co-op Chemical Co.) and 0.4 g of pure water are mixed and dispersed, and a polysiloxane dispersion (polysiloxane 14% by weight, 1 g of isopropyl alcohol (86 wt%) was mixed to prepare a precursor solution. This precursor solution is sprayed onto the wavelength conversion layer at a spray pressure of 0.1 MPa by spray coating so that the thickness of the ceramic layer on the LED element after firing is 1 μm, and fired at 120 ° C. for 1 hour. Thus, a sample of a light emitting device was manufactured.
 実施例4と同様の蛍光体が分散した混合液を調整した。この混合液を、加熱後のLED素子上の波長変換層の膜厚が35μmとなるように、LED基板の凹部及びLED素子表面にスプレーコート法によりスプレー圧0.2MPaにて噴霧し、50℃で10分間加熱した。次に、表面処理されていない親水性スメクタイト(ルーセンタイトSWN、コープケミカル社製)0.01gと純水0.2gを混合して分散させ、これにポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)を1g混合して前駆体溶液を調整した。この前駆体溶液を、焼成後のLED素子上のセラミック層の膜厚が1μmとなるように、波長変換層上にスプレーコート法によりスプレー圧0.1MPaにて噴霧し、120℃で1時間焼成して発光装置のサンプルを作製した。 A mixed liquid in which the same phosphor as in Example 4 was dispersed was prepared. This mixed liquid is sprayed at a spray pressure of 0.2 MPa on the concave portions of the LED substrate and the LED element surface by a spray coating method so that the film thickness of the wavelength conversion layer on the LED element after heating becomes 35 μm, at 50 ° C. Heated for 10 minutes. Next, 0.01 g of hydrophilic smectite that has not been surface-treated (Lucentite SWN, manufactured by Co-op Chemical Co., Ltd.) and 0.2 g of pure water are mixed and dispersed, and a polysiloxane dispersion (polysiloxane 14 wt%, 1 g of isopropyl alcohol (86 wt%) was mixed to prepare a precursor solution. This precursor solution is sprayed onto the wavelength conversion layer at a spray pressure of 0.1 MPa by spray coating so that the thickness of the ceramic layer on the LED element after firing is 1 μm, and fired at 120 ° C. for 1 hour. Thus, a sample of a light emitting device was manufactured.
 実施例7と同様の蛍光体が分散した混合液を調整した。この混合液を、加熱後のLED素子上の波長変換層の膜厚が30μmとなるように、LED基板の凹部及びLED素子表面にスプレーコート法によりスプレー圧0.2MPaにて噴霧し、50℃で10分間加熱した。次に、表面処理されていない親水性スメクタイト(ルーセンタイトSWN、コープケミカル社製)0.02gと純水0.4gを混合して分散させ、これにポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)を1g混合して前駆体溶液を調整した。この前駆体溶液を、焼成後のLED素子上のセラミック層の膜厚が1μmとなるように、波長変換層上にスプレーコート法によりスプレー圧0.1MPaにて噴霧し、120℃で1時間焼成して発光装置のサンプルを作製した。 A mixed liquid in which the same phosphor as in Example 7 was dispersed was prepared. This mixed liquid is sprayed at a spray pressure of 0.2 MPa on the concave portions of the LED substrate and the LED element surface at a spray pressure of 0.2 MPa so that the film thickness of the wavelength conversion layer on the LED element after heating is 30 μm. Heated for 10 minutes. Next, 0.02 g of non-surface-treated hydrophilic smectite (Lucentite SWN, manufactured by Co-op Chemical Co.) and 0.4 g of pure water are mixed and dispersed, and a polysiloxane dispersion (polysiloxane 14% by weight, 1 g of isopropyl alcohol (86 wt%) was mixed to prepare a precursor solution. This precursor solution is sprayed onto the wavelength conversion layer at a spray pressure of 0.1 MPa by spray coating so that the thickness of the ceramic layer on the LED element after firing is 1 μm, and fired at 120 ° C. for 1 hour. Thus, a sample of a light emitting device was manufactured.
 表面処理されていない親水性スメクタイト(ルーセンタイトSWN、コープケミカル社製)0.05gと純水1gを混合して分散させた。これに上記調製例により調製した蛍光体1gと無機粒子であるNanoTek Powder0.06gとIPA1gとを混合して混合液を調製した。この混合液を、加熱後の波長変換層の膜厚が35μmとなるように、ガラス基板上にバーコート法により塗布し、50℃で10分間加熱した。次に、ポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)を、焼成後のセラミック層の膜厚が1μmとなるように、波長変換層上にバーコート法により塗布し、500℃で1時間焼成して波長変換素子のサンプルを作製した。 0.05 g of hydrophilic smectite (Lucentite SWN, manufactured by Co-op Chemical Co.) that has not been surface-treated and 1 g of pure water were mixed and dispersed. To this, 1 g of the phosphor prepared according to the above preparation example, NanoTek Powder 0.06 g, which is inorganic particles, and 1 g of IPA were mixed to prepare a mixed solution. This mixed solution was applied onto a glass substrate by a bar coating method so that the film thickness of the wavelength conversion layer after heating was 35 μm, and heated at 50 ° C. for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 μm, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
 表面処理されていない親水性スメクタイト(ルーセンタイトSWN、コープケミカル社製)0.05gと純水1gを混合して分散させた。これに上記調製例により調製した蛍光体1gと無機粒子であるRX300(1次粒子の平均粒径が7nmのシリル化処理無水ケイ酸;日本アエロジル社製)0.06gとIPA1gとを混合して混合液を調製した。この混合液を、加熱後の波長変換層の膜厚が35μmとなるように、ガラス基板上にバーコート法により塗布し、50℃で10分間加熱した。次に、ポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)を、焼成後のセラミック層の膜厚が1μmとなるように、波長変換層上にバーコート法により塗布し、500℃で1時間焼成して波長変換素子のサンプルを作製した。 0.05 g of hydrophilic smectite (Lucentite SWN, manufactured by Co-op Chemical Co.) that has not been surface-treated and 1 g of pure water were mixed and dispersed. To this, 1 g of the phosphor prepared according to the above preparation example and RX300 (silica-treated silicic anhydride having an average primary particle size of 7 nm; manufactured by Nippon Aerosil Co., Ltd.), which is inorganic particles, and 1 g of IPA were mixed. A mixture was prepared. This mixed solution was applied onto a glass substrate by a bar coating method so that the film thickness of the wavelength conversion layer after heating was 35 μm, and heated at 50 ° C. for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 μm, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
 表面処理されていない親水性スメクタイト(ルーセンタイトSWN、コープケミカル社製)0.05gと純水1gを混合して分散させた。これに上記調製例により調製した蛍光体1gと無機粒子であるRX300を0.06gとIPA0.5gとプロピレングリコール0.5gとを混合して混合液を調製した。この混合液を、加熱後の波長変換層の膜厚が35μmとなるように、ガラス基板上にバーコート法により塗布し、50℃で10分間加熱した。次に、ポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)を、焼成後のセラミック層の膜厚が1μmとなるように、波長変換層上にバーコート法により塗布し、500℃で1時間焼成して波長変換素子のサンプルを作製した。 0.05 g of hydrophilic smectite (Lucentite SWN, manufactured by Co-op Chemical Co.) that has not been surface-treated and 1 g of pure water were mixed and dispersed. 1 g of the phosphor prepared by the above preparation example, 0.06 g of inorganic particles RX300, 0.5 g of IPA, and 0.5 g of propylene glycol were mixed to prepare a mixed solution. This mixed solution was applied onto a glass substrate by a bar coating method so that the film thickness of the wavelength conversion layer after heating was 35 μm, and heated at 50 ° C. for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 μm, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
 表面処理されていない親水性スメクタイト(ルーセンタイトSWN、コープケミカル社製)0.05gと純水1gを混合して分散させた。これに上記調製例により調製した蛍光体1gと無機粒子であるRX300を0.06gとIPA0.5gと1,3-ブタンジオール0.5gとを混合して混合液を調製した。この混合液を、加熱後の波長変換層の膜厚が35μmとなるように、ガラス基板上にバーコート法により塗布し、50℃で10分間加熱した。次に、ポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)を、焼成後のセラミック層の膜厚が1μmとなるように、波長変換層上にバーコート法により塗布し、500℃で1時間焼成して波長変換素子のサンプルを作製した。 0.05 g of hydrophilic smectite (Lucentite SWN, manufactured by Co-op Chemical Co.) that has not been surface-treated and 1 g of pure water were mixed and dispersed. To this, 1 g of the phosphor prepared according to the above preparation example, 0.06 g of RX300 as inorganic particles, 0.5 g of IPA and 0.5 g of 1,3-butanediol were mixed to prepare a mixed solution. This mixed solution was applied onto a glass substrate by a bar coating method so that the film thickness of the wavelength conversion layer after heating was 35 μm, and heated at 50 ° C. for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 μm, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
 表面処理されていない親水性スメクタイト(ルーセンタイトSWN、コープケミカル社製)0.05gと純水1gを混合して分散させた。これに上記調製例により調製した蛍光体1gと無機粒子であるサイリシア470(1次粒子の平均粒径14μm、比表面積300m/g;富士シリシア社製)0.06gとIPA0.5gと1,3-ブタンジオール0.5gとを混合して混合液を調製した。この混合液を、加熱後の波長変換層の膜厚が35μmとなるように、ガラス基板上にバーコート法により塗布し、50℃で10分間加熱した。次に、ポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)を、焼成後のセラミック層の膜厚が1μmとなるように、波長変換層上にバーコート法により塗布し、500℃で1時間焼成して波長変換素子のサンプルを作製した。 The surface-treated hydrophilic smectite (Lucentite SWN, manufactured by Co-op Chemical Co.) 0.05 g and 1 g of pure water were mixed and dispersed. To this, 1 g of the phosphor prepared by the above preparation example and silicia 470 as inorganic particles (average particle size of primary particles 14 μm, specific surface area 300 m 2 / g; manufactured by Fuji Silysia) 0.06 g and IPA 0.5 g 1, A mixed solution was prepared by mixing 0.5 g of 3-butanediol. This mixed solution was applied onto a glass substrate by a bar coating method so that the film thickness of the wavelength conversion layer after heating was 35 μm, and heated at 50 ° C. for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 μm, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
比較例1Comparative Example 1
 ポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)1gに、上記調製例により調製した蛍光体0.3gを混合して混合液を調製した。この混合液を、焼成後の膜厚が45μmとなるように、ガラス基板上にバーコート法により塗布し、500℃で1時間焼成して波長変換素子のサンプルを作製した。 1 g of a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) was mixed with 0.3 g of the phosphor prepared in the above preparation example to prepare a mixed solution. This mixed solution was applied onto a glass substrate by a bar coating method so that the film thickness after baking was 45 μm, and baked at 500 ° C. for 1 hour to prepare a sample of a wavelength conversion element.
比較例2Comparative Example 2
 ポリシラザン分散液(NL120-20;ポリシラザン20重量%、ジブチルエーテル80重量%;AZエレクトロニックマテリアルズ社製)1gに、上記調製例により調製した蛍光体0.8gと、無機粒子であるRX300(1次粒子の平均粒径が7nmのシリル化処理無水ケイ酸;日本アエロジル社製)0.06gとを混合して混合液を調製した。この混合液を、焼成後の膜厚が50μmとなるように、ガラス基板上にバーコート法により塗布し、500℃で1時間焼成して波長変換素子のサンプルを作製した。 To 1 g of a polysilazane dispersion (NL120-20; 20% by weight of polysilazane, 80% by weight of dibutyl ether; manufactured by AZ Electronic Materials), 0.8 g of the phosphor prepared according to the above preparation example, and RX300 (primary) as inorganic particles Silica-treated silicic acid anhydride having an average particle diameter of 7 nm (manufactured by Nippon Aerosil Co., Ltd.) (0.06 g) was mixed to prepare a mixed solution. This mixed solution was applied onto a glass substrate by a bar coating method so that the film thickness after firing was 50 μm, and fired at 500 ° C. for 1 hour to prepare a sample of a wavelength conversion element.
比較例3Comparative Example 3
 ポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)2.6gに、上記調製例により調製した蛍光体0.5gと、無機粒子であるNanoTek Powder(メジアン径(D50)25nmの酸化ケイ素微粒子;CIKナノテック社製)0.3gとを混合して混合液を調製した。この混合液を、焼成後の膜厚が160μmとなるように、ガラス基板上にバーコート法により塗布し、500℃で1時間焼成して波長変換素子のサンプルを作製した。 To 2.6 g of a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%), 0.5 g of the phosphor prepared according to the above preparation example, and NanoTek Powder (median diameter (D50) 25 nm) as inorganic particles A mixed liquid was prepared by mixing 0.3 g of silicon fine particles (manufactured by CIK Nanotech Co., Ltd.). This mixed solution was applied onto a glass substrate by a bar coating method so that the film thickness after firing was 160 μm, and fired at 500 ° C. for 1 hour to prepare a sample of a wavelength conversion element.
比較例4Comparative Example 4
 表面処理されていない親水性スメクタイト(ルーセンタイトSWN、コープケミカル社製)0.11gと純水0.55gを混合して分散させた。これに上記調製例により調製した蛍光体1gを混合して混合液を調製した。この混合液を、加熱後の波長変換層の膜厚が35μmとなるように、ガラス基板上にバーコート法により塗布し、50℃で10分間加熱した。次に、ポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)を、焼成後のセラミック層の膜厚が1μmとなるように、波長変換層上にバーコート法により塗布し、500℃で1時間焼成して波長変換素子のサンプルを作製した。 Surface-treated hydrophilic smectite (Lucentite SWN, manufactured by Co-op Chemical) 0.11 g and pure water 0.55 g were mixed and dispersed. This was mixed with 1 g of the phosphor prepared in the above preparation example to prepare a mixed solution. This mixed solution was applied onto a glass substrate by a bar coating method so that the film thickness of the wavelength conversion layer after heating was 35 μm, and heated at 50 ° C. for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 μm, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
比較例5Comparative Example 5
 表面処理されていない親水性スメクタイト(ルーセンタイトSWN、コープケミカル社製)0.11gと純水11gを混合して分散させた。これに上記調製例により調製した蛍光体1gを混合して混合液を調製した。この混合液を、加熱後の波長変換層の膜厚が35μmとなるように、ガラス基板上にバーコート法により塗布し、50℃で10分間加熱した。次に、ポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)を、焼成後のセラミック層の膜厚が1μmとなるように、波長変換層上にバーコート法により塗布し、500℃で1時間焼成して波長変換素子のサンプルを作製した。 Surface-treated hydrophilic smectite (Lucentite SWN, manufactured by Co-op Chemical) 0.11 g and 11 g of pure water were mixed and dispersed. This was mixed with 1 g of the phosphor prepared in the above preparation example to prepare a mixed solution. This mixed solution was applied onto a glass substrate by a bar coating method so that the film thickness of the wavelength conversion layer after heating was 35 μm, and heated at 50 ° C. for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) is applied onto the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer is 1 μm, and 500 A sample of a wavelength conversion element was prepared by baking at 1 ° C. for 1 hour.
比較例6Comparative Example 6
 表面処理されていない親水性スメクタイト(ルーセンタイトSWN、コープケミカル社製)0.11gと純水2.2gを混合して分散させた。これに上記調製例により調製した蛍光体1gとIPA11gとを混合して混合液を調製した。この混合液を、加熱後の波長変換層の膜厚が35μmとなるように、ガラス基板上にバーコート法により塗布し、50℃で10分間加熱した。次に、ポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)を、焼成後のセラミック層の膜厚が1μmとなるように、波長変換層上にバーコート法により塗布し、500℃で1時間焼成して波長変換素子のサンプルを作製した。
(評価、検討)
Hydrophilic smectite (Lucentite SWN, manufactured by Co-op Chemical Co., Ltd.) 0.11 g not subjected to surface treatment and 2.2 g of pure water were mixed and dispersed. This was mixed with 1 g of the phosphor prepared in the above preparation example and 11 g of IPA to prepare a mixed solution. This mixed solution was applied onto a glass substrate by a bar coating method so that the film thickness of the wavelength conversion layer after heating was 35 μm, and heated at 50 ° C. for 10 minutes. Next, a polysiloxane dispersion (polysiloxane 14 wt%, isopropyl alcohol 86 wt%) was applied on the wavelength conversion layer by a bar coating method so that the thickness of the fired ceramic layer was 1 μm, and 500 A sample of the wavelength conversion element was prepared by baking at a temperature of 1 hour.
(Evaluation, examination)
 各実施例及び比較例のサンプルは各々5つずつ作製した。そして、膜厚の測定にはミツトヨ社製レーザホロゲージを用いた。混合液の粘度を、1000mPa・s未満は振動式粘度計(VM-10A-L、CBC社製)を用い、1000mPa・s以上は振動式粘度計(VM-10A-MH、CBC社製)を用いて測定した。発光装置は、1000×1000×100μmの青色LED上に、約1mm角に切断した波長変換素子をフリップチップタイプで実装して作製した。発光の色度を分光放射輝度計(CS-1000A、コニカミノルタセンシング社製)を用いて測定した。 5 samples were prepared for each of the examples and comparative examples. A laser holo gauge manufactured by Mitutoyo Corporation was used for measuring the film thickness. When the viscosity of the mixed solution is less than 1000 mPa · s, a vibration type viscometer (VM-10A-L, manufactured by CBC) is used, and for a viscosity of 1000 mPa · s or more, a vibration type viscometer (VM-10A-MH, manufactured by CBC) is used. And measured. The light emitting device was manufactured by mounting a wavelength conversion element cut to about 1 mm square on a 1000 × 1000 × 100 μm blue LED in a flip chip type. The chromaticity of luminescence was measured using a spectral radiance meter (CS-1000A, manufactured by Konica Minolta Sensing).
 図4は実施例1~7の成分データを示す図であり、図5は実施例8~14の成分データを示す図、図6は実施例29~33の成分データを示す図、図7は比較例1~6の成分データを示す図である。図中、水、IPA、プロピレングリコール、1,3-ブタンジオールの値は膨潤性粒子(親水性又は親油性スメクタイト)の重量の何倍であるかを示している。 4 is a diagram showing the component data of Examples 1 to 7, FIG. 5 is a diagram showing the component data of Examples 8 to 14, FIG. 6 is a diagram showing the component data of Examples 29 to 33, and FIG. FIG. 6 is a diagram showing component data of Comparative Examples 1 to 6. In the figure, the values of water, IPA, propylene glycol, and 1,3-butanediol indicate how many times the weight of the swellable particles (hydrophilic or lipophilic smectite).
 図8は、実施例1~15、29~33及び比較例1~6の膜厚、及び色度の評価結果を蛍光体が分散した混合液の粘度と併せて示した図である。膜厚の評価は、各サンプル5枚のうち最初に塗布した1枚の膜厚を基準値(100%)とし、残りの4枚の膜厚のばらつきが±10%の範囲内であるとき◎、±20%の範囲内であるとき○、±30%の範囲内であるとき△、膜厚のばらつきが±40%を超えるとき×とした。 FIG. 8 is a graph showing the film thickness and chromaticity evaluation results of Examples 1 to 15, 29 to 33 and Comparative Examples 1 to 6, together with the viscosity of the mixed liquid in which the phosphor is dispersed. The film thickness is evaluated when the film thickness of the first one of the five samples is the reference value (100%), and the film thickness variation of the remaining four sheets is within a range of ± 10%. ◯ when within ± 20% range, Δ when within ± 30% range, and x when variation in film thickness exceeds ± 40%.
 色度は、色空間をXYZ座標系で表したCIE-XYZ表色系で、ある点と原点を結ぶ直線が平面x+y+z=1と交わる点で定義される。色度は(x、y)座標で表し、x+y+z=1の関係から得られるz座標は省略する。白色光の色度は(0.33,0.33)であり、色度がこの値に近いほど白色光に近くなる。x座標の値が小さくなると青色がかった白色になり、x座標の値が大きくなると黄色がかった白色になる。図8中の5つの色度は5枚の塗布サンプルそれぞれの色度であり、各サンプルの値は50mm×20mmのサイズから切り出された多数の波長変換素子のうち任意の3枚を用いて測定した色度の平均値を示した。 The chromaticity is defined by a point where a straight line connecting a point and the origin intersects the plane x + y + z = 1 in the CIE-XYZ color system in which the color space is expressed in the XYZ coordinate system. The chromaticity is represented by (x, y) coordinates, and the z coordinate obtained from the relationship of x + y + z = 1 is omitted. The chromaticity of white light is (0.33, 0.33). The closer the chromaticity is to this value, the closer to white light. When the x coordinate value decreases, the color becomes blueish white, and when the x coordinate value increases, the color becomes yellowish white. The five chromaticities in FIG. 8 are the chromaticities of each of the five coated samples, and the value of each sample is measured using any three of a number of wavelength conversion elements cut out from a size of 50 mm × 20 mm. The average value of chromaticity was shown.
 図9は、実施例4、7~9、12、13の親水性スメクタイトの含有量と輝度とを示す図である。5枚の各塗布サンプルの50mm×20mmのサイズから切り出された多数の波長変換素子のうち任意の3枚を用い、計15枚のサンプルについて輝度を測定した。輝度は実施例7の輝度を1とし、相対値で示した。ここでの輝度とは鉛直方向のみの輝度であり、スメクタイトにより散乱された鉛直方向以外の光を積分球で測定したものではない。 FIG. 9 is a diagram showing the hydrophilic smectite content and brightness of Examples 4, 7 to 9, 12, and 13. The luminance was measured for a total of 15 samples using any three of a large number of wavelength conversion elements cut out from a size of 50 mm × 20 mm of each of the five coated samples. The brightness was expressed as a relative value with the brightness of Example 7 being 1. The luminance here is the luminance only in the vertical direction, and is not obtained by measuring light scattered in the non-vertical direction by smectite with an integrating sphere.
 図10は、実施例6及び実施例15の蛍光体が分散した混合液の粘度を経時測定した結果を示す図である。粘度測定の結果は、混合液の調製直後と、調製から3時間後と、調製から168時間後とを記している。バインダとなるセラミック材料(ポリシロキサン)を含む実施例15は、調製から時間が経つと化学反応を起こして粘度が高くなり、調製から168時間後では塗布するのに好ましくない粘度にまで上昇する。すなわち、塗布液にバインダ成分を含むと、塗布液のポットライフが短くなってしまう。したがって、蛍光体、膨潤性粒子、水を含む溶液には、バインダ成分の量が少ないことが好ましく、バインダ成分を含まないことがさらに好ましい。ここでバインダ成分とは、焼成後にセラミックとなる無機ポリマーや有機金属化合物のことである。 FIG. 10 is a graph showing the results of measuring the viscosity of the mixed solution in which the phosphors of Example 6 and Example 15 were dispersed over time. The result of the viscosity measurement describes immediately after the preparation of the mixed solution, 3 hours after the preparation, and 168 hours after the preparation. In Example 15 including the ceramic material (polysiloxane) serving as a binder, a chemical reaction occurs with time after preparation, and the viscosity increases. After 168 hours from preparation, the viscosity increases to an unfavorable viscosity for application. That is, if the coating solution contains a binder component, the pot life of the coating solution is shortened. Therefore, the solution containing the phosphor, the swellable particles, and water preferably has a small amount of the binder component, and more preferably does not contain the binder component. Here, the binder component is an inorganic polymer or organometallic compound that becomes a ceramic after firing.
 図11は、実施例26~28の成分データを示す図である。図中、ポリシロキサンの配合割合については焼成後のセラミックになった際の重量で記している。また、水の値は膨潤性粒子(親水性スメクタイト)の重量の何倍であるかを示している。 FIG. 11 is a diagram showing component data of Examples 26 to 28. In the figure, the blending ratio of polysiloxane is indicated by the weight when it becomes a fired ceramic. The water value indicates how many times the weight of the swellable particles (hydrophilic smectite).
 図12は、実施例16~28の色度、水及びIPAの含有量、蛍光体が分散した混合液のぬれ性を示す図である。図中、水とIPAの値は膨潤性粒子(親水性又は親油性スメクタイト)の重量の何倍であるかを示している。ぬれ性の評価は、均一に塗布できる場合◎、均一に塗布できるが塗布液のはじかれる箇所がある場合○とした。 FIG. 12 is a diagram showing the chromaticity, water and IPA contents of Examples 16 to 28, and wettability of the mixed liquid in which the phosphor is dispersed. In the figure, the values of water and IPA indicate how many times the weight of the swellable particles (hydrophilic or lipophilic smectite). The wettability was evaluated as ◎ when uniform coating was possible and 場合 when uniform coating was possible but the coating solution was repelled.
 実施例及び比較例の評価結果を検討したところ、比較例1~3、5、6は、粘度が低いため蛍光体が沈殿しやすく、膜厚も安定していない。そのため、発光の色度のばらつきが大きい。比較例4は、図8に示したように、粘度が高すぎるため膜厚が安定しない。 When the evaluation results of Examples and Comparative Examples were examined, Comparative Examples 1 to 3, 5, and 6 have low viscosity, so that the phosphor is likely to precipitate and the film thickness is not stable. For this reason, the variation in chromaticity of light emission is large. In Comparative Example 4, as shown in FIG. 8, the film thickness is not stable because the viscosity is too high.
 実施例1~11、13、14、29~33は、粘度が高く、膜厚及び色度が安定している。実施例12は、粘度が高く、膜厚及び色度が安定しているが、スメクタイト量が多いため、散乱により鉛直方向の輝度が若干低下する。また、実施例16~28のように、波長変換素子をLED素子に直接塗布しても同様の効果が得られことがわかった。ただし、実施例16では有機溶媒であるIPAが含まれていないため、ぬれ性が若干低下する。 Examples 1 to 11, 13, 14, and 29 to 33 have high viscosity and stable film thickness and chromaticity. In Example 12, although the viscosity is high and the film thickness and chromaticity are stable, since the amount of smectite is large, the luminance in the vertical direction slightly decreases due to scattering. Further, it was found that the same effect was obtained even when the wavelength conversion element was directly applied to the LED element as in Examples 16 to 28. However, in Example 16, since IPA which is an organic solvent is not included, the wettability is slightly lowered.
 また、実施例29~33では添加された各種シリカの増粘効果により、塗布液内で蛍光体が沈降しにくく、一様に分散された状態で塗布でき、経時でも安定した塗布ができる。また、蛍光体が均一に分散された状態で乾燥されるので、色むらの発生を抑制することができる。さらに、実施例29~33ではプロピレングリコールやブタンジオールなどの高沸点の有機溶媒を用いることにより、塗布液のポットライフが短くならず、またスプレー塗布時にはノズルの詰まりを防ぎ、取り扱い性に優れる。 Further, in Examples 29 to 33, due to the thickening effect of various silicas added, the phosphor hardly settles in the coating solution, and can be applied in a uniformly dispersed state, and can be stably applied over time. In addition, since the phosphor is dried in a uniformly dispersed state, the occurrence of color unevenness can be suppressed. Further, in Examples 29 to 33, by using an organic solvent having a high boiling point such as propylene glycol and butanediol, the pot life of the coating solution is not shortened, and the nozzle is prevented from being clogged during spray coating, and the handleability is excellent.
 また、比較例4の粘度が高すぎ、比較例5及び6の粘度が低すぎることから、水と有機溶媒の合計の含有量は膨潤性粒子の10~90倍(1000重量%以上9000重量%以下)であることが好ましい。 Further, since the viscosity of Comparative Example 4 is too high and the viscosity of Comparative Examples 5 and 6 is too low, the total content of water and the organic solvent is 10 to 90 times that of the swellable particles (1000 wt% or more and 9000 wt%). Or less).
 また、粘度調整と固形成分の分散、発光時の輝度の低下を抑えるためには、波長変換層中の膨潤性粒子の含有量が0.3重量%以上70重量%以下であることが好ましい。 Further, in order to suppress viscosity adjustment, dispersion of solid components, and reduction in luminance at the time of light emission, the content of swellable particles in the wavelength conversion layer is preferably from 0.3% by weight to 70% by weight.
 また、波長変換層を均一に塗布する際の好ましい粘度は、バーコート法では25~800mPa・sであり、スプレーコート法では粘度が高すぎると噴射できないため25~500mPa・sである。 Further, the preferable viscosity when uniformly applying the wavelength conversion layer is 25 to 800 mPa · s in the bar coating method, and 25 to 500 mPa · s because the spray cannot be ejected if the viscosity is too high in the spray coating method.
 なお、スプレーコート法により噴霧する場合、蛍光体が分散した塗布液は有機溶媒を含有し、ノズル詰まりの防止のために有機溶媒の含有量は水の3倍以下であることが好ましい。 In addition, when spraying by the spray coating method, it is preferable that the coating liquid in which the phosphor is dispersed contains an organic solvent, and the content of the organic solvent is 3 times or less of water in order to prevent nozzle clogging.
   1 LED基板
   3 LED素子(発光素子)
   5 ガラス基板(透光性基板)
   6 波長変換部
   7 波長変換層
   8 セラミック層
   9 波長変換素子
   100、101、102 発光装置
1 LED board 3 LED element (light emitting element)
5 Glass substrate (translucent substrate)
6 Wavelength conversion unit 7 Wavelength conversion layer 8 Ceramic layer 9 Wavelength conversion element 100, 101, 102 Light emitting device

Claims (35)

  1.  蛍光体、膨潤性粒子、及び水を含み、粘度が25mPa・s以上800mPa・s以下である混合液を用い、該混合液を発光素子上に塗布して加熱することで波長変換層を形成する工程と、
     前記波長変換層上に透光性セラミック材料を供給する工程と、を有する発光装置の製造方法。
    A wavelength conversion layer is formed by using a mixed solution containing a phosphor, swellable particles, and water and having a viscosity of 25 mPa · s or more and 800 mPa · s or less, and applying and heating the mixture on a light emitting element. Process,
    Supplying a light-transmitting ceramic material on the wavelength conversion layer.
  2.  前記混合液が有機溶媒及び/又は無機粒子を含むことを特徴とする請求項1記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to claim 1, wherein the mixed solution contains an organic solvent and / or inorganic particles.
  3.  前記波長変換層中の前記膨潤性粒子の含有量が0.3重量%以上70重量%以下であることを特徴とする請求項1又は2記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to claim 1 or 2, wherein the content of the swellable particles in the wavelength conversion layer is 0.3 wt% or more and 70 wt% or less.
  4.  前記膨潤性粒子が層状ケイ酸塩鉱物であることを特徴とする請求項1~3の何れかに記載の発光装置の製造方法。 The method for producing a light emitting device according to any one of claims 1 to 3, wherein the swellable particles are layered silicate minerals.
  5.  前記層状ケイ酸塩鉱物が膨潤性粘土鉱物であることを特徴とする請求項4記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to claim 4, wherein the layered silicate mineral is a swellable clay mineral.
  6.  前記膨潤性粘土鉱物がスメクタイト構造であることを特徴とする請求項5記載の発光装置の製造方法。 6. The method for manufacturing a light emitting device according to claim 5, wherein the swellable clay mineral has a smectite structure.
  7.  前記透光性セラミック材料を供給する工程は、有機金属化合物又は無機ポリマーを含む溶液を塗布し、焼成する工程を含むことを特徴とする請求項1~6の何れかに記載の発光装置の製造方法。 The light emitting device manufacturing method according to claim 1, wherein the step of supplying the translucent ceramic material includes a step of applying and baking a solution containing an organometallic compound or an inorganic polymer. Method.
  8.  前記有機金属化合物が有機シロキサン化合物であることを特徴とする請求項7記載の発光装置の製造方法。 The method of manufacturing a light emitting device according to claim 7, wherein the organometallic compound is an organosiloxane compound.
  9.  前記無機ポリマーがポリシラザンであることを特徴とする請求項7記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to claim 7, wherein the inorganic polymer is polysilazane.
  10.  前記蛍光体の体積平均粒径が1μm以上50μm以下であることを特徴とする請求項1~9の何れかに記載の発光装置の製造方法。 10. The method for manufacturing a light emitting device according to claim 1, wherein the phosphor has a volume average particle diameter of 1 μm or more and 50 μm or less.
  11.  前記波長変換層の厚みが5μm以上500μm以下であることを特徴とする請求項1~10の何れかに記載の発光装置の製造方法。 11. The method for manufacturing a light emitting device according to claim 1, wherein the wavelength conversion layer has a thickness of 5 μm or more and 500 μm or less.
  12.  前記混合液中の前記膨潤性粒子に対する前記水と前記有機溶媒の合計量の割合が1000重量%以上9000重量%以下であることを特徴とする請求項2記載の発光装置の製造方法。 3. The method of manufacturing a light emitting device according to claim 2, wherein a ratio of a total amount of the water and the organic solvent to the swellable particles in the mixed solution is 1000% by weight or more and 9000% by weight or less.
  13.  前記膨潤性粒子が表面処理されていない親水性の粒子である場合、
     前記混合液の調整時には、最初に前記膨潤性粒子と前記水とを混合することを特徴とする請求項1~12の何れかに記載の発光装置の製造方法。
    When the swellable particles are hydrophilic particles that are not surface-treated,
    13. The method for manufacturing a light emitting device according to claim 1, wherein when the mixed liquid is adjusted, the swellable particles and the water are first mixed.
  14.  前記膨潤性粒子が表面処理された親水性の粒子である場合、
     前記混合液の調整時には、最初に前記膨潤性粒子と前記有機溶媒とを混合することを特徴とする請求項2記載の発光装置の製造方法。
    When the swellable particles are surface-treated hydrophilic particles,
    3. The method of manufacturing a light emitting device according to claim 2, wherein the swellable particles and the organic solvent are first mixed when adjusting the mixed solution.
  15.  請求項1~14の何れかに記載の発光装置の製造方法によって製造された発光装置。 A light-emitting device manufactured by the method for manufacturing a light-emitting device according to any one of claims 1 to 14.
  16.  蛍光体、膨潤性粒子、及び水を含み、粘度が25mPa・s以上800mPa・s以下である混合液を用い、該混合液を透光性基板の少なくとも片面に塗布して加熱することで波長変換層を形成する工程と、
     前記波長変換層上に透光性セラミック材料を供給する工程と、を有する波長変換素子の製造方法。
    Wavelength conversion is achieved by using a mixed solution containing phosphor, swellable particles, and water and having a viscosity of 25 mPa · s or more and 800 mPa · s or less, and applying the mixture to at least one surface of a light-transmitting substrate and heating it. Forming a layer;
    Supplying a translucent ceramic material onto the wavelength conversion layer.
  17.  前記混合液が有機溶媒及び/又は無機粒子を含むことを特徴とする請求項16記載の波長変換素子の製造方法。 The method for producing a wavelength conversion element according to claim 16, wherein the mixed solution contains an organic solvent and / or inorganic particles.
  18.  前記波長変換層中の前記膨潤性粒子の含有量が0.3重量%以上70重量%以下であることを特徴とする請求項16又は17記載の波長変換素子の製造方法。 The method for producing a wavelength conversion element according to claim 16 or 17, wherein the content of the swellable particles in the wavelength conversion layer is 0.3 wt% or more and 70 wt% or less.
  19.  前記膨潤性粒子が層状ケイ酸塩鉱物であることを特徴とする請求項16~18の何れかに記載の波長変換素子の製造方法。 19. The method for manufacturing a wavelength conversion element according to claim 16, wherein the swellable particles are layered silicate minerals.
  20.  前記層状ケイ酸塩鉱物が膨潤性粘土鉱物であることを特徴とする請求項19記載の波長変換素子の製造方法。 20. The method of manufacturing a wavelength conversion element according to claim 19, wherein the layered silicate mineral is a swellable clay mineral.
  21.  前記膨潤性粘土鉱物がスメクタイト構造であることを特徴とする請求項20記載の波長変換素子の製造方法。 The method for producing a wavelength conversion element according to claim 20, wherein the swellable clay mineral has a smectite structure.
  22.  前記透光性セラミック材料を供給する工程は、有機金属化合物又は無機ポリマーを含む溶液を塗布し、焼成する工程を含むことを特徴とする請求項16~21の何れかに記載の波長変換素子の製造方法。 The wavelength converting element according to any one of claims 16 to 21, wherein the step of supplying the translucent ceramic material includes a step of applying and baking a solution containing an organometallic compound or an inorganic polymer. Production method.
  23.  前記有機金属化合物が有機シロキサン化合物であることを特徴とする請求項22記載の波長変換素子の製造方法。 The method for producing a wavelength conversion element according to claim 22, wherein the organometallic compound is an organosiloxane compound.
  24.  前記無機ポリマーがポリシラザンであることを特徴とする請求項22記載の波長変換素子の製造方法。 The method for producing a wavelength conversion element according to claim 22, wherein the inorganic polymer is polysilazane.
  25.  前記蛍光体の体積平均粒径が1μm以上50μm以下であることを特徴とする請求項16~24の何れかに記載の波長変換素子の製造方法。 25. The method of manufacturing a wavelength conversion element according to claim 16, wherein the phosphor has a volume average particle diameter of 1 μm or more and 50 μm or less.
  26.  前記波長変換層の厚みが5μm以上500μm以下であることを特徴とする請求項16~25の何れかに記載の波長変換素子の製造方法。 The method for manufacturing a wavelength conversion element according to any one of claims 16 to 25, wherein the wavelength conversion layer has a thickness of 5 µm to 500 µm.
  27.  前記混合液中の前記膨潤性粒子に対する前記水と前記有機溶媒の合計量の割合が1000重量%以上9000重量%以下であることを特徴とする請求項17記載の波長変換素子の製造方法。 The method of manufacturing a wavelength conversion element according to claim 17, wherein a ratio of a total amount of the water and the organic solvent to the swellable particles in the mixed solution is 1000 wt% or more and 9000 wt% or less.
  28.  前記膨潤性粒子が表面処理されていない親水性の粒子である場合、
     前記混合液の調整時には、最初に前記膨潤性粒子と前記水とを混合することを特徴とする請求項16~27の何れかに記載の波長変換素子の製造方法。
    When the swellable particles are hydrophilic particles that are not surface-treated,
    The method for manufacturing a wavelength conversion element according to any one of claims 16 to 27, wherein when the mixed liquid is prepared, the swellable particles and the water are first mixed.
  29.  前記膨潤性粒子が表面処理された親油性の粒子である場合、
     前記混合液の調整時には、最初に前記膨潤性粒子と前記有機溶媒とを混合することを特徴とする請求項17記載の波長変換素子の製造方法。
    When the swellable particles are surface-treated lipophilic particles,
    18. The method for manufacturing a wavelength conversion element according to claim 17, wherein when the mixed liquid is adjusted, the swellable particles and the organic solvent are first mixed.
  30.  請求項16~29の何れかに記載の波長変換素子の製造方法によって製造された波長変換素子。 A wavelength conversion element manufactured by the method for manufacturing a wavelength conversion element according to any one of claims 16 to 29.
  31.  請求項16~29の何れかに記載の波長変換素子の製造方法に、前記波長変換素子を発光素子の発光面側に設置する工程を加えた発光装置の製造方法。 30. A method for manufacturing a light-emitting device, comprising the step of installing the wavelength conversion element on the light-emitting surface side of the light-emitting element in addition to the method for manufacturing a wavelength conversion element according to claim 16.
  32.  請求項31に記載の発光装置の製造方法によって製造された発光装置。 A light emitting device manufactured by the method for manufacturing a light emitting device according to claim 31.
  33.  蛍光体と膨潤性粒子とを含む混合液を用い、該混合液を発光素子上に塗布して加熱することで前記膨潤性粒子により前記蛍光体を前記発光素子上に固定して波長変換層を形成する工程を有する発光装置の製造方法。 A liquid mixture containing phosphor and swellable particles is used, and the phosphor is fixed on the light emitting element by the swellable particles by applying the mixture on the light emitting element and heating to form a wavelength conversion layer. A manufacturing method of a light-emitting device including a forming step.
  34.  前記混合液は、水を含み、粘度が25mPa・s以上800mPa・s以下であることを特徴とする請求項33に記載の発光装置の製造方法。 34. The method of manufacturing a light emitting device according to claim 33, wherein the liquid mixture contains water and has a viscosity of 25 mPa · s to 800 mPa · s.
  35.  蛍光体層の形成に用いる混合液であって、蛍光体、膨潤性粒子、及び水を含み、粘度が25mPa・s以上800mPa・s以下である混合液。 A mixed solution used for forming a phosphor layer, which contains a phosphor, swellable particles, and water, and has a viscosity of 25 mPa · s to 800 mPa · s.
PCT/JP2011/076570 2010-11-19 2011-11-17 Wavelength conversion element and production method therefor, light-emitting device and production method therefor WO2012067200A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012544306A JP5768816B2 (en) 2010-11-19 2011-11-17 Wavelength conversion element and method for manufacturing the same, light emitting device and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-259344 2010-11-19
JP2010259344 2010-11-19

Publications (1)

Publication Number Publication Date
WO2012067200A1 true WO2012067200A1 (en) 2012-05-24

Family

ID=46084121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076570 WO2012067200A1 (en) 2010-11-19 2011-11-17 Wavelength conversion element and production method therefor, light-emitting device and production method therefor

Country Status (2)

Country Link
JP (1) JP5768816B2 (en)
WO (1) WO2012067200A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014003065A (en) * 2012-06-15 2014-01-09 Konica Minolta Inc Led device and method for manufacturing the same
WO2014041812A1 (en) * 2012-09-12 2014-03-20 コニカミノルタ株式会社 Patterning method using ink jet coating composition and method for producing led devices
WO2014104295A1 (en) * 2012-12-28 2014-07-03 コニカミノルタ株式会社 Light emitting device
JP2014138081A (en) * 2013-01-17 2014-07-28 Konica Minolta Inc Light emitting device, wavelength conversion-light diffusion element, method for manufacturing the same, and composition for forming light diffusion ceramic layer
EP2816620A4 (en) * 2012-02-13 2015-08-19 Konica Minolta Inc Wavelength conversion element and method for manufacturing same, and light-emitting device and method for manufacturing same
JP2017515310A (en) * 2014-04-30 2017-06-08 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH LIGHTING DEVICE AND METHOD FOR MANUFACTURING LIGHTING DEVICE

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181614A (en) * 1999-12-24 2001-07-03 Teikoku Tsushin Kogyo Co Ltd Fluorescent substance paste for el element and method for producing the same
JP2002314142A (en) * 2001-04-09 2002-10-25 Toyoda Gosei Co Ltd Light emitting device
WO2003034508A1 (en) * 2001-10-12 2003-04-24 Nichia Corporation Light emitting device and method for manufacture thereof
WO2006111907A2 (en) * 2005-04-20 2006-10-26 Philips Intellectual Property & Standards Gmbh Illumination system comprising a ceramic luminescence converter
JP2009091380A (en) * 2007-10-03 2009-04-30 Jsr Corp Composition for light emitting element coating, light emitting device, and method for manufacturing composition for light emitting element coating
WO2010123059A1 (en) * 2009-04-22 2010-10-28 シーシーエス株式会社 Method for manufacturing led light emitting device
WO2011129320A1 (en) * 2010-04-13 2011-10-20 コニカミノルタオプト株式会社 Light emitting device and method for manufacturing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181614A (en) * 1999-12-24 2001-07-03 Teikoku Tsushin Kogyo Co Ltd Fluorescent substance paste for el element and method for producing the same
JP2002314142A (en) * 2001-04-09 2002-10-25 Toyoda Gosei Co Ltd Light emitting device
WO2003034508A1 (en) * 2001-10-12 2003-04-24 Nichia Corporation Light emitting device and method for manufacture thereof
WO2006111907A2 (en) * 2005-04-20 2006-10-26 Philips Intellectual Property & Standards Gmbh Illumination system comprising a ceramic luminescence converter
JP2009091380A (en) * 2007-10-03 2009-04-30 Jsr Corp Composition for light emitting element coating, light emitting device, and method for manufacturing composition for light emitting element coating
WO2010123059A1 (en) * 2009-04-22 2010-10-28 シーシーエス株式会社 Method for manufacturing led light emitting device
WO2011129320A1 (en) * 2010-04-13 2011-10-20 コニカミノルタオプト株式会社 Light emitting device and method for manufacturing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2816620A4 (en) * 2012-02-13 2015-08-19 Konica Minolta Inc Wavelength conversion element and method for manufacturing same, and light-emitting device and method for manufacturing same
JP2014003065A (en) * 2012-06-15 2014-01-09 Konica Minolta Inc Led device and method for manufacturing the same
WO2014041812A1 (en) * 2012-09-12 2014-03-20 コニカミノルタ株式会社 Patterning method using ink jet coating composition and method for producing led devices
JPWO2014041812A1 (en) * 2012-09-12 2016-08-18 コニカミノルタ株式会社 Patterning method using inkjet coating composition and method for manufacturing LED device
WO2014104295A1 (en) * 2012-12-28 2014-07-03 コニカミノルタ株式会社 Light emitting device
JP2014138081A (en) * 2013-01-17 2014-07-28 Konica Minolta Inc Light emitting device, wavelength conversion-light diffusion element, method for manufacturing the same, and composition for forming light diffusion ceramic layer
JP2017515310A (en) * 2014-04-30 2017-06-08 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH LIGHTING DEVICE AND METHOD FOR MANUFACTURING LIGHTING DEVICE
US10374196B2 (en) 2014-04-30 2019-08-06 Osram Opto Semiconductors Gmbh Lighting device with color scattering layer and method for producing a lighting device

Also Published As

Publication number Publication date
JP5768816B2 (en) 2015-08-26
JPWO2012067200A1 (en) 2014-05-19

Similar Documents

Publication Publication Date Title
JP5742839B2 (en) Light emitting device and manufacturing method thereof
US9708492B2 (en) LED device and coating liquid used for production of same
US9318646B2 (en) LED device manufacturing method and fluorescent material-dispersed solution used in same
JP5768816B2 (en) Wavelength conversion element and method for manufacturing the same, light emitting device and method for manufacturing the same
US20150333233A1 (en) Light emitting device
WO2013051280A1 (en) Phosphor dispersion liquid, and production method for led device using same
WO2013121903A1 (en) Wavelength conversion element and method for manufacturing same, and light-emitting device and method for manufacturing same
JP2011238778A (en) Method for manufacturing wavelength conversion element, wavelength conversion element and light emitting device
JP2014138081A (en) Light emitting device, wavelength conversion-light diffusion element, method for manufacturing the same, and composition for forming light diffusion ceramic layer
KR20140054321A (en) Phosphor dispersion liquid and method for manufacturing led device
JP5747994B2 (en) Wavelength conversion element and method for manufacturing the same, light emitting device and method for manufacturing the same
JP2013084796A (en) Led device, manufacturing method of the same, and phosphor dispersion liquid used for the same
JP5617372B2 (en) Substrate with reduced warpage, light emitting device using the same, and manufacturing method thereof
JP2014019844A (en) Phosphor dispersion and method for manufacturing led device
JP5880566B2 (en) LED device
JP5803940B2 (en) Light emitting device and manufacturing method thereof
JP5910340B2 (en) LED device and manufacturing method thereof
JP5729327B2 (en) Manufacturing method of LED device
JP5617371B2 (en) Substrate with reduced warpage, light emitting device using the same, and manufacturing method thereof
JP5765428B2 (en) Manufacturing method of LED device
JP2013165223A (en) Wavelength conversion element and manufacturing method thereof, light-emitting device and manufacturing method thereof, and phosphor dispersion liquid
JP5617737B2 (en) Light emitting device manufacturing method, light emitting device, and phosphor particle dispersion
JP2013258339A (en) Light-emitting device and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841993

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012544306

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11841993

Country of ref document: EP

Kind code of ref document: A1