JP2003110150A - Semiconductor light-emitting element and light-emitting device using it - Google Patents

Semiconductor light-emitting element and light-emitting device using it

Info

Publication number
JP2003110150A
JP2003110150A JP2001305031A JP2001305031A JP2003110150A JP 2003110150 A JP2003110150 A JP 2003110150A JP 2001305031 A JP2001305031 A JP 2001305031A JP 2001305031 A JP2001305031 A JP 2001305031A JP 2003110150 A JP2003110150 A JP 2003110150A
Authority
JP
Japan
Prior art keywords
phosphor
light emitting
emitting device
semiconductor light
blue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001305031A
Other languages
Japanese (ja)
Other versions
JP3985486B2 (en
Inventor
Toshihide Maeda
俊秀 前田
Shozo Oshio
祥三 大塩
Katsuaki Iwama
克昭 岩間
Hiromi Kitahara
博実 北原
Tadaaki Ikeda
忠昭 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001305031A priority Critical patent/JP3985486B2/en
Publication of JP2003110150A publication Critical patent/JP2003110150A/en
Application granted granted Critical
Publication of JP3985486B2 publication Critical patent/JP3985486B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor light-emitting element which is composed of a near-ultraviolet LED and a fluorescent material layer and emits white light with high beam and to provide a light emitting device. SOLUTION: A semiconductor light-emitting element which emits white light with high beam can be obtained by combining a near-ultraviolet LED and a fluorescent material layer including a blue fluorescent material which absorbs the near-ultraviolet light near 350-410 nm emitted by the near-ultraviolet LED and has its light-emitting peak in the wavelength region of over 400 nm and under 500 nm and a yellow fluorescent material which has its light-emitting peak in the wavelength region over 550 nm and under 600 nm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、近紫外発光ダイオ
ード(以後、近紫外LEDという)と複数の蛍光体とを
組み合わせて白色系光を放つ半導体発光素子と、この半
導体発光素子を用いて構成した半導体発光装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device which emits white light by combining a near ultraviolet light emitting diode (hereinafter, referred to as near ultraviolet LED) and a plurality of phosphors, and a structure using this semiconductor light emitting device. The present invention relates to a semiconductor light emitting device.

【0002】[0002]

【従来の技術】従来から、350nmを超え410nm
以下の近紫外の波長領域に発光ピークを有する近紫外L
ED(厳密には近紫外LEDチップ)と、この近紫外L
EDが放つ近紫外光を吸収して、380nm以上780
nm以下の可視波長範囲内に発光ピークを有する蛍光を
放つ無機蛍光体を含む蛍光体層とを組み合わせてなる、
白色系光を放つ半導体発光素子が知られている。無機蛍
光体を用いる上記半導体発光素子は、有機蛍光体を用い
る半導体発光素子よりも耐久性の面で優れるため、広く
用いられている。
2. Description of the Related Art Conventionally, the wavelength exceeds 350 nm and 410 nm.
Near-ultraviolet L having an emission peak in the following near-ultraviolet wavelength range
ED (strictly near-ultraviolet LED chip) and this near-ultraviolet L
Absorbs near-ultraviolet light emitted by ED and is 380 nm or more 780
In combination with a phosphor layer containing an inorganic phosphor that emits fluorescence having an emission peak in the visible wavelength range of nm or less,
A semiconductor light emitting device that emits white light is known. The semiconductor light emitting device using the inorganic phosphor is more widely used because it is superior in durability to the semiconductor light emitting device using the organic phosphor.

【0003】なお、本明細書では、CIE色度図におけ
る発光色度点(x,y)が、0.21≦x≦0.48、
0.19≦y≦0.45の範囲内にある光を白色系光と
定義している。
In this specification, the emission chromaticity point (x, y) in the CIE chromaticity diagram is 0.21 ≦ x ≦ 0.48,
Light within the range of 0.19 ≦ y ≦ 0.45 is defined as white light.

【0004】このような半導体発光素子としては、例え
ば、特開平11−246857号公報、特開2000−
183408号公報、特表2000−509912号公
報、特開2001−143869号公報などに開示され
る半導体発光素子がある。
As such a semiconductor light emitting device, for example, JP-A-11-246857 and JP-A-2000-
There are semiconductor light emitting elements disclosed in Japanese Patent No. 183408, Japanese Patent Publication No. 2000-509912, Japanese Patent Laid-Open No. 2001-143869, and the like.

【0005】特開平11−246857号公報には、一
般式(La1-x-yEuxSmy22S(ただし、0.0
1≦x≦0.15、0.0001≦y≦0.03)で表
される酸硫化ランタン蛍光体を赤色蛍光体とし、窒化ガ
リウム系化合物半導体で構成した発光層を有し、波長3
70nm前後の光を放つ近紫外LEDと組み合わせてな
る半導体発光素子が記載されている。また、特開平11
−246857号公報には、前記赤色蛍光体と、他の青
色、緑色蛍光体とを適正に組み合わせることにより、任
意の色温度を有する白色光を放つ半導体発光素子に関す
る発明が開示されている。
[0005] Japanese Patent Laid-Open No. 11-246857, the general formula (La 1-xy Eu x Sm y) 2 O 2 S ( where 0.0
1 ≦ x ≦ 0.15, 0.0001 ≦ y ≦ 0.03), the lanthanum oxysulfide phosphor is used as a red phosphor, and the phosphor has a light emitting layer composed of a gallium nitride-based compound semiconductor.
A semiconductor light emitting device is described which is combined with a near-ultraviolet LED which emits light of around 70 nm. In addition, JP-A-11
JP-A-246857 discloses an invention relating to a semiconductor light emitting element which emits white light having an arbitrary color temperature by appropriately combining the red phosphor and other blue and green phosphors.

【0006】特開2000−183408号公報には、
窒化ガリウム系化合物半導体で構成した発光層を有し、
370nm付近に発光ピークを有する紫外光を放つ紫外
LEDチップと、前記紫外光を吸収して青色光を発光す
る青色蛍光体を含む第1の蛍光体層と、前記青色光を吸
収して黄橙色光を発光する黄橙色蛍光体を含む第2の蛍
光体層とを具備する半導体発光素子が記載されている。
ここで青色蛍光体としては、下記の(1)〜(3)から
選ばれる少なくとも1種からなる青色蛍光体が用いられ
ている。 (1)一般式(M1,Eu)10(PO46Cl2(式
中、M1はMg、Ca、SrおよびBaから選ばれる少
なくとも一つの元素を表す)で実質的に表される2価の
ユーロピウム付活ハロ燐酸塩蛍光体。 (2)一般式a(M2,Eu)O・bAl23(式中、
M2はMg、Ca、Sr、Ba、Zn、Li、Rbおよ
びCsから選ばれる少なくとも一つの元素を示し、aお
よびbはa>0、b>0、0.2≦a/b≦1.5を満
足する数値である)で実質的に表される2価のユーロピ
ウム付活アルミン酸塩蛍光体。 (3)一般式a(M2,Euv,Mnw)O・bAl23
(式中、M2はMg、Ca、Sr、Ba、Zn、Li、
RbおよびCsから選ばれる少なくとも一つの元素を示
し、a、b、vおよびwはa>0、b>0、0.2≦a
/b≦1.5、0.001≦w/v≦0.6を満足する
数値である)で実質的に表される2価のユーロピウムお
よびマンガン付活アルミン酸塩蛍光体。
Japanese Patent Laid-Open No. 2000-183408 discloses that
Having a light emitting layer composed of a gallium nitride-based compound semiconductor,
An ultraviolet LED chip that emits ultraviolet light having an emission peak near 370 nm, a first phosphor layer including a blue phosphor that absorbs the ultraviolet light and emits blue light, and a yellow-orange that absorbs the blue light A semiconductor light emitting device comprising a second phosphor layer containing a yellow-orange phosphor that emits light is described.
Here, as the blue phosphor, at least one selected from the following (1) to (3) is used. (1) In formula (M1, Eu) 10 (PO 4) 6 Cl 2 ( wherein, M1 is Mg, Ca, at least represents one element selected from Sr and Ba) 2 divalent substantially represented by Europium-activated halophosphate phosphor. (2) General formula a (M2, Eu) O.bAl 2 O 3 (wherein
M2 represents at least one element selected from Mg, Ca, Sr, Ba, Zn, Li, Rb and Cs, and a and b are a> 0, b> 0, 0.2 ≦ a / b ≦ 1.5. And a divalent europium-activated aluminate phosphor. (3) General formula a (M2, Eu v , Mn w ) O.bAl 2 O 3
(In the formula, M2 is Mg, Ca, Sr, Ba, Zn, Li,
At least one element selected from Rb and Cs, where a, b, v and w are a> 0, b> 0, 0.2 ≦ a
/B≦1.5, and a numerical value satisfying 0.001 ≦ w / v ≦ 0.6), which is a divalent europium- and manganese-activated aluminate phosphor.

【0007】また、黄橙色蛍光体としては、一般式(Y
1-x-yGdxCey3Al512(式中、xおよびyは
0.1≦x≦0.55、0.01≦y≦0.4を満足す
る数。)で実質的に表される3価のセリウム付活アルミ
ン酸塩蛍光体(以後、YAG系蛍光体という)が用いら
れている。
The yellow-orange phosphor is represented by the general formula (Y
1-xy Gd x Ce y ) 3 Al 5 O 12 (in the formula, x and y are numbers satisfying 0.1 ≦ x ≦ 0.55 and 0.01 ≦ y ≦ 0.4). The trivalent cerium-activated aluminate phosphor (hereinafter referred to as YAG-based phosphor) is used.

【0008】また、特表2000−509912号公報
には、300nm以上370nm以下の波長領域に発光
ピークを有する紫外LEDと、430nm以上490n
m以下の波長領域に発光ピークを有する青色蛍光体と、
520nm以上570nm以下の波長領域に発光ピーク
を有する緑色蛍光体と、590nm以上630nm以下
の波長領域に発光ピークを有する赤色蛍光体とを組み合
わせてなる半導体発光素子が開示されている。この半導
体発光素子では、青色蛍光体として、BaMgAl10
17:Eu、Sr5(PO43Cl:Eu、ZnS:Ag
(いずれも発光ピーク波長は450nm)が、緑色蛍光
体として、ZnS:Cu(発光ピーク波長550nm)
やBaMgAl1017:Eu,Mn(発光ピーク波長5
15nm)が、赤色蛍光体としては、Y22S:Eu3+
(発光ピーク波長628nm)、YVO4:Eu3+(発
光ピーク波長620nm)、Y(V,P,B)O4:E
3+(発光ピーク波長615nm)、YNbO4:Eu
3+(発光ピーク波長615nm)、YTaO4:Eu3+
(発光ピーク波長615nm)、[Eu(acac)
3(phen)] (発光ピーク波長611nm)が用い
られている。
Further, in Japanese Patent Publication No. 2000-509912, an ultraviolet LED having an emission peak in a wavelength range of 300 nm to 370 nm and 430 nm to 490 n are disclosed.
a blue phosphor having an emission peak in a wavelength range of m or less,
A semiconductor light emitting device is disclosed which is a combination of a green phosphor having an emission peak in a wavelength range of 520 nm to 570 nm and a red phosphor having an emission peak in a wavelength range of 590 nm to 630 nm. In this semiconductor light emitting device, BaMgAl 10 O is used as the blue phosphor.
17 : Eu, Sr 5 (PO 4 ) 3 Cl: Eu, ZnS: Ag
(Each of them has an emission peak wavelength of 450 nm), but as a green phosphor, ZnS: Cu (emission peak wavelength of 550 nm)
Or BaMgAl 10 O 17 : Eu, Mn (emission peak wavelength 5
15 nm), but as a red phosphor, Y 2 O 2 S: Eu 3+
(Emission peak wavelength 628 nm), YVO 4 : Eu 3+ (emission peak wavelength 620 nm), Y (V, P, B) O 4 : E
u 3+ (emission peak wavelength 615 nm), YNbO 4 : Eu
3+ (emission peak wavelength 615 nm), YTaO 4 : Eu 3+
(Emission peak wavelength 615 nm), [Eu (acac)
3 (phen)] (emission peak wavelength 611 nm) is used.

【0009】一方、特開2001−143869号公報
には、有機材料を発光層とし、430nm以下の青紫〜
近紫外の波長範囲に発光ピークを有する有機LED、ま
たは、無機材料を発光層とし、上記青紫〜近紫外の波長
範囲に発光ピークを有する無機LEDと、青色蛍光体、
緑色蛍光体および赤色蛍光体を組み合わせてなる半導体
発光素子が記載されている。この半導体発光素子では、
青色蛍光体としては、Sr227:Sn4+、Sr4Al
1425:Eu2+、BaMgAl1017:Eu2+、SrG
24:Ce3+、CaGa24:Ce3+、(Ba,S
r)(Mg,Mn)Al1017:Eu2+、(Sr,C
a,Ba,Mg)10(PO46Cl2:Eu2 +、BaA
2SiO8:Eu2+、Sr227:Eu2+、Sr5(P
43Cl:Eu2+、(Sr,Ca,Ba)5(PO4
3Cl:Eu2+、BaMg2Al1627:Eu2+、(B
a,Ca)5(PO43Cl:Eu2+、Ba3MgSi2
8:Eu 2+、Sr3MgSi28:Eu2+が用いられ、
緑色蛍光体としては、(BaMg)Al1627:E
2+,Mn2+、Sr4Al1425:Eu2+、(SrB
a)Al2Si28:Eu2+、(BaMg)2SiO4
Eu2+、Y2SiO5:Ce3+,Tb 3+、Sr227
Sr227:Eu2+、(BaCaMg)5(PO43
l:Eu2+、Sr2Si38−2SrCl2:Eu2+、Z
2SiO4−MgAl1119:Ce3+,Tb3+、Ba2
SiO4:Eu2+、Sr2SiO4:Eu2+、(BaS
r)SiO4:Eu2+が用いられ、赤色蛍光体として
は、Y22S:Eu3+、YAlO3:Eu3+、Ca22
(SiO46:Eu3+、LiY9(SiO462:Eu
3+、YVO4:Eu3+、CaS:Eu2+、Gd23:E
3+、Gd22S:Eu3+、Y(P,V)O4:Eu3+
が用いられている。
On the other hand, Japanese Patent Laid-Open No. 2001-143869
Includes an organic material as a light-emitting layer and a blue-violet of 430 nm or less.
An organic LED having an emission peak in the near-ultraviolet wavelength range, or
Alternatively, an inorganic material is used as a light emitting layer, and wavelengths in the above-mentioned blue-violet to near-ultraviolet are used.
An inorganic LED having an emission peak in a range, a blue phosphor,
Semiconductor made by combining green phosphor and red phosphor
A light emitting device is described. In this semiconductor light emitting device,
As a blue phosphor, Sr2P2O7: Sn4+, SrFourAl
14Otwenty five: Eu2+, BaMgAlTenO17: Eu2+, SrG
a2SFour: Ce3+, CaGa2SFour: Ce3+, (Ba, S
r) (Mg, Mn) AlTenO17: Eu2+, (Sr, C
a, Ba, Mg)Ten(POFour)6Cl2: Eu2 +, BaA
l2SiO8: Eu2+, Sr2P2O7: Eu2+, SrFive(P
OFour)3Cl: Eu2+, (Sr, Ca, Ba)Five(POFour)
3Cl: Eu2+, BaMg2Al16O27: Eu2+, (B
a, Ca)Five(POFour)3Cl: Eu2+, Ba3MgSi2
O8: Eu 2+, Sr3MgSi2O8: Eu2+Is used,
As the green phosphor, (BaMg) Al16O27: E
u2+, Mn2+, SrFourAl14Otwenty five: Eu2+, (SrB
a) Al2Si2O8: Eu2+, (BaMg)2SiOFour:
Eu2+, Y2SiOFive: Ce3+, Tb 3+, Sr2P2O7
Sr2B2O7: Eu2+, (BaCaMg)Five(POFour)3C
l: Eu2+, Sr2Si3O8-2SrCl2: Eu2+, Z
r2SiOFour-MgAl11O19: Ce3+, Tb3+, Ba2
SiOFour: Eu2+, Sr2SiOFour: Eu2+, (BaS
r) SiOFour: Eu2+Is used as a red phosphor
Is Y2O2S: Eu3+, YAlO3: Eu3+, Ca2Y2
(SiOFour)6: Eu3+, LiY9(SiOFour)6O2: Eu
3+, YVOFour: Eu3+, CaS: Eu2+, Gd2O3: E
u3+, Gd2O2S: Eu3+, Y (P, V) OFour: Eu3+
Is used.

【0010】このように、従来の白色系光を放つ半導体
発光素子では、青色系蛍光体と緑色系蛍光体と赤色系蛍
光体が放つ発光の混色、または、青色系蛍光体と黄色系
蛍光体が放つ発光の混色によって白色系光が得られてい
る。
As described above, in the conventional semiconductor light-emitting device that emits white light, the blue-based phosphor, the green-based phosphor, and the red-based phosphor emit mixed colors, or the blue-based phosphor and the yellow-based phosphor. White-based light is obtained by the color mixture of the emitted light.

【0011】なお、青色系蛍光体と黄色系蛍光体が放つ
発光の混色によって白色系光を得る方式の従来の半導体
発光素子では、黄色系蛍光体として、上記YAG系蛍光
体が用いられている。また、上記YAG系蛍光体が、3
50nmを超え410nm以下の波長領域、特に窒化ガ
リウム系化合物半導体で構成した発光層を有する近紫外
LEDが放つ360nm以上410nm以下の近紫外光
の励起によってほとんど発光せず、410nm以上53
0nm以下の青色系光の励起下で黄色光を高効率で放つ
蛍光体であるために、YAG系蛍光体を用いた従来の半
導体発光素子では、青色系蛍光体を必須とし、この青色
系蛍光体が放つ青色光によって黄色系蛍光体を励起して
白色系光を得ている。
In the conventional semiconductor light emitting device of the type that obtains white light by mixing the colors of light emitted by the blue phosphor and the yellow phosphor, the YAG phosphor is used as the yellow phosphor. . In addition, the above YAG phosphor is 3
The wavelength region of more than 50 nm and less than or equal to 410 nm, in particular, the near-ultraviolet LED having a light-emitting layer composed of a gallium nitride-based compound semiconductor emits almost no light by excitation of near-ultraviolet light of 360 nm or more and 410 nm or less, and 410 nm or more 53
Since the phosphor emits yellow light with high efficiency under the excitation of blue light of 0 nm or less, the conventional semiconductor light emitting device using the YAG phosphor requires the blue phosphor as an essential component. The blue light emitted from the body excites the yellow phosphor to obtain white light.

【0012】このような白色系光を放つ半導体発光素子
は、照明装置や表示装置などの発光装置用として需要の
多い半導体発光素子として知られるものである。
Such a semiconductor light emitting element that emits white light is known as a semiconductor light emitting element that is in great demand for light emitting devices such as lighting devices and display devices.

【0013】一方、YAG系蛍光体以外の無機化合物蛍
光体をLEDと組み合わせた半導体発光素子も従来公知
である。前述した特開2001−143869号公報に
は、Ba2SiO4:Eu2+、Sr2SiO4:Eu2+、M
2SiO4:Eu2+、(BaSr)2SiO4:Eu2+
(BaMg)2SiO4:Eu2+珪酸塩蛍光体を用いた半
導体発光素子が記載されている。
On the other hand, a semiconductor light emitting device in which an inorganic compound fluorescent substance other than the YAG type fluorescent substance is combined with an LED is also conventionally known. In the above-mentioned JP 2001-143869 A, Ba 2 SiO 4 : Eu 2+ , Sr 2 SiO 4 : Eu 2+ , M are disclosed.
g 2 SiO 4 : Eu 2+ , (BaSr) 2 SiO 4 : Eu 2+ ,
A semiconductor light emitting device using a (BaMg) 2 SiO 4 : Eu 2+ silicate phosphor is described.

【0014】しかしながら、この特開2001−143
869号公報に記載の半導体発光素子では、いずれの珪
酸塩蛍光体も緑色系蛍光体としての応用であり、黄色系
蛍光体としての応用ではない。また、無機化合物からな
る無機LEDよりも有機LEDを用いることが発光効率
の点から好ましいともされている。すなわち、この公開
公報に記載の発明は、近紫外LED、好ましくは有機L
EDと、青色系、緑色系、赤色系蛍光体の3種類の無機
化合物の蛍光体とを組み合わせてなる半導体発光素子に
関するものである。
However, this Japanese Patent Laid-Open No. 2001-143
In the semiconductor light emitting device described in Japanese Patent No. 869, any silicate phosphor is applied as a green phosphor, not as a yellow phosphor. It is also said that it is preferable to use an organic LED rather than an inorganic LED made of an inorganic compound from the viewpoint of luminous efficiency. That is, the invention described in this publication is a near-ultraviolet LED, preferably an organic L.
The present invention relates to a semiconductor light emitting device which is a combination of an ED and phosphors of three types of inorganic compounds of blue, green and red phosphors.

【0015】なお、本発明者らの実験の限りでは、この
特開2001−143869号公報に記載されるSr2
SiO4:Eu2+珪酸塩蛍光体は、二つの結晶相(斜方
晶と単斜晶)を持ち得る蛍光体であり、少なくとも実用
的に用いられるEu2+発光中心添加量(=Eu原子の数
/(Sr原子の数+Eu原子の数):x)が、0.01
≦x≦0.05の範囲内では、斜方晶Sr2SiO4:E
2+(α’−Sr2SiO4:Eu2+)は、波長560〜
575nm付近に発光ピークを有する黄色光を放つ黄色
系蛍光体であり、単斜晶Sr2SiO4:Eu2+(β−S
2SiO4:Eu2+)は、波長545nm付近に発光ピ
ークを有する緑色光を放つ緑色系蛍光体である。したが
って、特開2001−143869号公報に記載のSr
2SiO4:Eu2+緑色蛍光体は、単斜晶Sr2SiO4
Eu2+蛍光体と見なすことができる。
As far as the experiments by the present inventors are concerned, Sr 2 described in Japanese Patent Application Laid-Open No. 2001-143869.
The SiO 4 : Eu 2+ silicate phosphor is a phosphor that can have two crystal phases (orthorhombic and monoclinic), and at least the practically used Eu 2+ emission center addition amount (= Eu atom). Number / (number of Sr atoms + number of Eu atoms): x) is 0.01
Within the range of ≦ x ≦ 0.05, orthorhombic Sr 2 SiO 4 : E
u 2+ (α′-Sr 2 SiO 4 : Eu 2+ ) has a wavelength of 560 to 560.
It is a yellow phosphor that emits yellow light having an emission peak near 575 nm, and is a monoclinic Sr 2 SiO 4 : Eu 2+ (β-S
r 2 SiO 4 : Eu 2+ ) is a green phosphor that emits green light having an emission peak near a wavelength of 545 nm. Therefore, Sr described in JP 2001-143869 A
2 SiO 4 : Eu 2+ green phosphor is monoclinic Sr 2 SiO 4 :
It can be considered as an Eu 2+ phosphor.

【0016】ここで、前記珪酸塩蛍光体について説明す
ると、従来から、(Sr1-a3-b3-xBaa3Cab3Eux
2SiO4の化学式で表される珪酸塩蛍光体(ただし、a
3、b3、xは、各々、0≦a3≦1、0≦b3≦1、
0<x<1を満足する数値)が知られている。上記珪酸
塩蛍光体は、蛍光ランプ用の蛍光体として検討がなされ
た蛍光体であり、Ba−Sr−Caの組成を変えること
によって、発光のピーク波長が505nm以上598n
m以下程度の範囲内で変化する蛍光体であることが知ら
れている。さらに、170〜350nmの範囲内の光照
射の下で比較的高効率の発光を示す蛍光体であることも
知られている(J.Electrochemical
Soc.Vol.115、No.11(1968)p
p.1181−1184参照)。
Now, the silicate phosphor will be described. Conventionally, (Sr 1-a3-b3-x Ba a3 Ca b3 Eu x )
Silicate phosphor represented by the chemical formula 2 SiO 4 (however, a
3, b3, and x are 0 ≦ a3 ≦ 1, 0 ≦ b3 ≦ 1, and
A numerical value that satisfies 0 <x <1 is known. The silicate phosphor is a phosphor that has been studied as a phosphor for a fluorescent lamp, and the emission peak wavelength is 505 nm or more and 598 n or more by changing the composition of Ba-Sr-Ca.
It is known that the phosphor changes within a range of about m or less. Further, it is also known to be a phosphor that emits light with relatively high efficiency under irradiation with light in the range of 170 to 350 nm (J. Electrochemical).
Soc. Vol. 115, No. 11 (1968) p
p. 1181-1184).

【0017】しかしながら、上記文献には、上記珪酸塩
蛍光体が、350nmを超える長い波長領域の、近紫外
光励起条件下において高効率の発光を示すことに関する
記載は無い。このため、上記珪酸塩蛍光体が、上記35
0nmを超え410nm以下の近紫外の波長領域、とり
わけ窒化ガリウム系化合物半導体で構成した発光層を有
する近紫外LEDが放つ370〜390nm付近の近紫
外光励起によって、高効率の、550nm以上600n
m未満の黄色系発光を放つ蛍光体であることは、これま
で知られていなかった。
However, there is no description in the above-mentioned document that the silicate phosphor exhibits highly efficient light emission in the long wavelength region of more than 350 nm under near-ultraviolet light excitation conditions. Therefore, the silicate phosphor is
High-efficiency 550 nm to 600 n due to near-ultraviolet light excitation in the near-ultraviolet LED having a light emitting layer formed of a gallium nitride-based compound semiconductor in the near-ultraviolet wavelength range of more than 0 nm and 410 nm or less, particularly near 370 to 390 nm.
It has not been known so far that the phosphor emits a yellowish light emission of less than m.

【0018】近紫外LEDと複数の蛍光体を含む蛍光体
層とを組み合わせてなる半導体発光素子を用いた従来の
発光装置にあっては、青色系蛍光体と緑色系蛍光体と赤
色系蛍光体が放つ発光の混色、または、青色系蛍光体が
放つ青色系光とこの青色系光を吸収してYAG系蛍光体
が放つ黄色系光の混色によって白色系光を得る方式の半
導体発光素子を用いて発光装置を構成していた。
In a conventional light emitting device using a semiconductor light emitting element in which a near-ultraviolet LED and a phosphor layer containing a plurality of phosphors are combined, in a conventional light emitting device, a blue phosphor, a green phosphor and a red phosphor are used. A semiconductor light-emitting element of a system that obtains white light by mixing the colors of the light emitted by the blue light, or by mixing the blue light emitted by the blue phosphor and the yellow light emitted by the YAG phosphor by absorbing the blue light. The light emitting device.

【0019】なお、本明細書では、半導体発光素子を用
いた各種表示装置(例えばLED情報表示端末、LED
交通信号灯、自動車のLEDストップランプやLED方
向指示灯など)や各種照明装置(LED屋内外照明灯、
車内LED灯、LED非常灯、LED面発光源など)を
広く発光装置と定義している。
In this specification, various display devices (for example, LED information display terminal, LED, etc.) using semiconductor light emitting elements are used.
Traffic signal lights, car LED stop lamps and LED turn signals, and various lighting devices (LED indoor and outdoor lighting,
In-vehicle LED lights, LED emergency lights, LED surface emitting sources, etc.) are widely defined as light emitting devices.

【0020】[0020]

【発明が解決しようとする課題】ところで、近紫外LE
Dと複数の蛍光体を含む蛍光体層とを組み合わせた、従
来の白色系半導体発光素子にあっては、半導体発光素子
が放つ白色系光の光束が低かった。これは、350nm
を超え410nm未満の近紫外光励起の下で、高い発光
効率を示す蛍光体の開発がこれまで十分なされていない
ために、青色系蛍光体、緑色系蛍光体、赤色系蛍光体の
すべてにおいて、白色系半導体発光素子用として使用し
得る蛍光体の種類が少なく、比較的高い発光効率を示す
青色系、緑色系、赤色系の各蛍光体が少数に限定される
だけでなく、白色系光の発光スペクトルの形状が限定さ
れることに起因する。また、青色系、緑色系、赤色系の
三種類の蛍光体が放つ光の混色、または、青色系蛍光体
が放つ青色系光とこの青色系光を吸収して波長変換され
た黄色系光の混色によって白色系光を得ていることにも
起因する。
By the way, near ultraviolet LE
In the conventional white semiconductor light emitting device in which D and a phosphor layer containing a plurality of phosphors were combined, the luminous flux of white light emitted by the semiconductor light emitting device was low. This is 350 nm
Since the development of phosphors exhibiting high luminous efficiency under near-ultraviolet light excitation of over 410 nm and less than 410 nm has not been sufficiently developed so far, all of the blue-based phosphors, green-based phosphors and red-based phosphors are white. There are few types of phosphors that can be used for semiconductor light emitting devices, and not only the blue, green, and red phosphors that exhibit relatively high luminous efficiency are limited to a small number, but also white light emission. This is due to the limited shape of the spectrum. Also, blue-based, green-based, mixed colors of light emitted by three types of red-based phosphors, or blue-based light emitted by the blue-based phosphor and yellow-based light wavelength-converted by absorbing this blue-based light This is also due to the fact that white light is obtained by color mixing.

【0021】本発明は、これらの問題を解決するために
なされたものであり、近紫外LEDと蛍光体層とを組み
合わせてなる、高光束の白色系光を放つ半導体発光素子
および半導体発光装置を提供することを目的とする。
The present invention has been made in order to solve these problems, and provides a semiconductor light emitting element and a semiconductor light emitting device which emit a white light with a high luminous flux and are formed by combining a near-ultraviolet LED and a phosphor layer. The purpose is to provide.

【0022】[0022]

【課題を解決するための手段】上記課題を解決するため
に、本発明の請求項1に係る半導体発光素子は、350
nmを超え410nm以下の波長領域に発光ピークを有
する発光を放つ近紫外LEDと、前記近紫外LEDが放
つ近紫外光を吸収して、380nm以上780nm以下
の可視波長領域に発光ピークを有する蛍光を放つ複数の
蛍光体を含む蛍光体層とを組み合わせ、CIE色度図に
おける発光色度点(x,y)が、0.21≦x≦0.4
8、0.19≦y≦0.45の範囲にある白色系光を放
つ半導体発光素子であって、前記蛍光体層が、波長38
0nmおよびその付近の波長領域の近紫外光照射の下
で、550nm以上600nm未満の波長領域に発光ピ
ークを有する黄色系の蛍光を放つ黄色系蛍光体と400
nm以上500nm未満の波長領域に発光ピークを有す
る青色系の蛍光を放つ青色系蛍光体の二種類の蛍光体を
含むことを特徴とする半導体発光素子である。
In order to solve the above problems, a semiconductor light emitting device according to claim 1 of the present invention is 350
and a near-ultraviolet LED that emits light having an emission peak in a wavelength range of more than 410 nm and less than 410 nm, and absorbs near-ultraviolet light emitted by the near-ultraviolet LED, and emits fluorescence having an emission peak in a visible wavelength range of 380 nm to 780 nm. In combination with a phosphor layer containing a plurality of emitting phosphors, the emission chromaticity point (x, y) in the CIE chromaticity diagram is 0.21 ≦ x ≦ 0.4.
8, 0.19 ≦ y ≦ 0.45, which is a semiconductor light emitting device emitting white light, wherein the phosphor layer has a wavelength of 38
A yellow phosphor that emits yellowish fluorescence having an emission peak in a wavelength range of 550 nm or more and less than 600 nm under irradiation with near-ultraviolet light in a wavelength range of 0 nm and its vicinity, and 400
A semiconductor light-emitting device comprising two types of phosphors, which are blue-based phosphors that emit a blue-based fluorescence having an emission peak in a wavelength region of not less than 500 nm and less than 500 nm.

【0023】ここで、前記近紫外LEDは、紫外LED
を含む250nm以上410nm以下の波長領域に発光
ピークを有する発光を放つLEDであれば特に限定され
ないが、入手の容易さ、製造の容易さ、コスト、発光強
度などの観点から、好ましいLEDは300nm以上4
10nm以下の波長領域に発光ピークを有する発光を放
つ近紫外LED、より好ましくは、350nmを超え4
10nm以下の波長領域に発光ピークを有する発光を放
つ近紫外LED、さらに好ましくは350nmを超え4
00nm未満の波長領域に発光ピークを有する発光を放
つ近紫外LEDである。
Here, the near-ultraviolet LED is an ultraviolet LED.
Is not particularly limited as long as it emits light having an emission peak in a wavelength range of 250 nm or more and 410 nm or less including, but from the viewpoint of availability, ease of manufacture, cost, emission intensity, etc., a preferable LED is 300 nm or more. Four
A near-ultraviolet LED that emits light having an emission peak in a wavelength region of 10 nm or less, and more preferably exceeds 350 nm and 4
Near-ultraviolet LED which emits light having an emission peak in a wavelength range of 10 nm or less, more preferably more than 350 nm 4
It is a near-ultraviolet LED that emits light having an emission peak in the wavelength region of less than 00 nm.

【0024】また、前記青色蛍光体は、好ましくは41
0nm以上480nm以下、さらに好ましくは420n
m以上460nm以下の波長領域に発光ピークを有する
青色系蛍光体であることが望ましく、また、前記黄色系
蛍光体は、好ましくは570nm以上590nm以下、
さらに好ましくは570nmを超え590nm未満の波
長領域に発光ピークを有する黄色系蛍光体であることが
望ましい。
The blue phosphor is preferably 41
0 nm or more and 480 nm or less, more preferably 420 n
It is desirable that the blue phosphor has an emission peak in the wavelength region of m or more and 460 nm or less, and the yellow phosphor is preferably 570 nm or more and 590 nm or less,
More preferably, a yellow phosphor having an emission peak in the wavelength region of more than 570 nm and less than 590 nm is desirable.

【0025】このような蛍光体層にすると、上記の黄色
系蛍光体と青色系蛍光体の両方が、近紫外LEDが放つ
前記波長領域に発光ピークを有する近紫外光を吸収し、
効率良く、各々黄色系光と青色系光に波長変換するの
で、半導体発光素子が、400nm以上500nm未満
の青色系発光と、550nm以上600nm未満の黄色
系発光の、2種類の光色を有する発光を高効率に放つよ
うになり、この2種類の光色の混色によって、白色系光
を放つようになる。
With such a phosphor layer, both the yellow phosphor and the blue phosphor absorb the near-ultraviolet light having an emission peak in the wavelength range emitted by the near-ultraviolet LED,
Since the wavelengths are efficiently converted into yellow light and blue light, respectively, the semiconductor light emitting device emits light of two types, blue light having a wavelength of 400 nm to less than 500 nm and yellow light having a wavelength of 550 nm to less than 600 nm. Is emitted with high efficiency, and a white-based light is emitted by mixing these two types of light colors.

【0026】また、上記白色系光の演色性を高めるため
に、下記の化学式で表される化合物を主体にしてなる酸
硫化物蛍光体などの赤色系蛍光体を配合してもよい。
Further, in order to enhance the color rendering of the above white light, a red phosphor such as an oxysulfide phosphor mainly composed of a compound represented by the following chemical formula may be blended.

【0027】(Ln1-xEux)O2S ただし、Lnは、Sc、Y、La、Gdから選ばれる少
なくとも一つの希土類元素、xは0<x<1を満足する
数値である。
(Ln 1-x Eu x ) O 2 S Here, Ln is at least one rare earth element selected from Sc, Y, La and Gd, and x is a numerical value satisfying 0 <x <1.

【0028】本発明の請求項2に係る半導体発光素子
は、請求項1の半導体発光素子において、黄色系蛍光体
を好ましい態様にしたものであり、黄色系蛍光体を、下
記の化学式で表される化合物を主体にしてなる珪酸塩蛍
光体としたものである。
The semiconductor light emitting device according to claim 2 of the present invention is the semiconductor light emitting device according to claim 1 in which a yellow phosphor is a preferred embodiment, and the yellow phosphor is represented by the following chemical formula. It is a silicate phosphor mainly composed of a compound.

【0029】 (Sr1-a1-b1-xBaa1Cab1Eux2SiO4 ただし、a1、b1、xは、各々、0≦a1≦0.3、
0≦b1≦0.8、0<x<1を満足する数値である。
(Sr 1-a1-b1-x Ba a1 Ca b1 Eu x ) 2 SiO 4 where a1, b1 and x are respectively 0 ≦ a1 ≦ 0.3,
It is a numerical value that satisfies 0 ≦ b1 ≦ 0.8 and 0 <x <1.

【0030】ここで、前記化学式におけるa1、b1、
xの数値は、蛍光体の熱に対する結晶の安定性、耐温度
消光特性、黄色系発光の発光強度、および光色の観点か
ら好ましくは、各々、0<a1≦0.2、0≦b1≦
0.7、0.005≦x≦0.1、さらに好ましくは、
各々、0<a1≦0.15、0≦b1≦0.6、0.0
1≦x≦0.05を満足する数値であることが望まし
い。
Here, a1, b1, and
The numerical value of x is preferably 0 <a1 ≦ 0.2 and 0 ≦ b1 ≦, respectively, from the viewpoints of crystal stability against heat of the phosphor, temperature quenching resistance, emission intensity of yellowish emission, and light color.
0.7, 0.005 ≦ x ≦ 0.1, and more preferably,
0 <a1 ≦ 0.15, 0 ≦ b1 ≦ 0.6, 0.0, respectively
It is desirable that the numerical values satisfy 1 ≦ x ≦ 0.05.

【0031】なお、上記珪酸塩蛍光体は、図4に励起ス
ペクトルと発光スペクトルの一例を示すように、250
〜300nm付近に励起ピークを有し、100〜500
nmの広い波長範囲内の光を吸収して、550〜600
nmの黄緑〜黄〜橙の波長領域に発光ピークを有する黄
色系の蛍光を放つ黄色系蛍光体である。したがって、上
記珪酸塩蛍光体は、YAG系蛍光体のように、近紫外光
を青色光に変換する青色系蛍光体が無くとも、近紫外L
EDが放つ近紫外光を照射すると比較的高効率の黄色系
発光を放つことになるので、近紫外光の黄色系光への変
換効率がYAG系蛍光体よりも実質的に高く、発光効率
の面で好ましいものとなる。
It should be noted that the above-mentioned silicate phosphor has a thickness of 250 as shown in an example of the excitation spectrum and the emission spectrum in FIG.
Has an excitation peak around 300 nm,
550 to 600 by absorbing light within a wide wavelength range of nm
It is a yellow fluorescent substance that emits yellowish fluorescent light having an emission peak in the wavelength range of yellowish green to yellow to orange. Therefore, unlike the YAG-based phosphor, the silicate phosphor does not have a near-UV L phosphor even if there is no blue-based phosphor that converts near-ultraviolet light into blue light.
When the near-ultraviolet light emitted by the ED is emitted, it emits relatively high-efficiency yellowish light. Therefore, the conversion efficiency of near-ultraviolet light to yellowish light is substantially higher than that of the YAG-based phosphor, and the emission efficiency From the aspect, it becomes preferable.

【0032】なお、上記a1とb1が、いずれも0に近
い場合には、斜方晶と単斜晶が混在した珪酸塩蛍光体に
なりやすくなり、上記数値範囲よりも大きい場合には結
晶場が弱くなって、いずれの場合でも、緑味を帯びた蛍
光体になって黄色の色純度が悪い発光になる。また、x
が上記数値範囲よりも小さい場合には、Eu2+発光中心
濃度が低いために珪酸塩蛍光体の発光強度が弱くなる
し、大きい場合には、珪酸塩蛍光体の周囲温度の上昇と
ともに発光強度が低下する温度消光の問題が顕著にな
る。
When both a1 and b1 are close to 0, a silicate phosphor in which orthorhombic crystals and monoclinic crystals are mixed is likely to be formed. Is weakened, and in any case, it becomes a phosphor with a greenish tint and emits light with poor yellow color purity. Also, x
Is smaller than the above numerical range, the luminescence intensity of the silicate phosphor is weak because the Eu 2+ emission center concentration is low, and when it is larger, the luminescence intensity is increased as the ambient temperature of the silicate phosphor is increased. The problem of temperature quenching, which decreases

【0033】本発明の請求項3に係る半導体発光素子
は、請求項2の半導体発光素子において、珪酸塩蛍光体
をさらに好ましい態様にしたものであり、珪酸塩蛍光体
を、下記の化学式で表される化合物を主体にしてなり、
かつ、斜方晶の結晶構造を有する珪酸塩蛍光体としたも
のである。
The semiconductor light emitting device according to claim 3 of the present invention is the semiconductor light emitting device according to claim 2 in which a silicate phosphor is a more preferable embodiment. The silicate phosphor is represented by the following chemical formula. Mainly composed of
In addition, the silicate phosphor has an orthorhombic crystal structure.

【0034】 (Sr1-a1-b2-xBaa1Cab2Eux2SiO4 ただし、a1、b2、xは、各々、0≦a1≦0.3、
0≦b2≦0.6、0<x<1を満足する数値であり、
請求項2の場合と同じ観点から、好ましくは、各々、0
<a1≦0.2、0≦b2≦0.4、0.005≦x≦
0.1、さらに好ましくは、各々、0<a1≦0.1
5、0≦b2≦0.3、0.01≦x≦0.05を満足
する数値であることが望ましい。
(Sr 1-a1-b2-x Ba a1 Ca b2 Eu x ) 2 SiO 4 where a1, b2 and x are respectively 0 ≦ a1 ≦ 0.3,
It is a numerical value that satisfies 0 ≦ b2 ≦ 0.6 and 0 <x <1,
From the same viewpoint as in the case of claim 2, preferably, each is 0
<A1 ≦ 0.2, 0 ≦ b2 ≦ 0.4, 0.005 ≦ x ≦
0.1, more preferably 0 <a1 ≦ 0.1
It is desirable that the numerical values satisfy 5, 0 ≦ b2 ≦ 0.3 and 0.01 ≦ x ≦ 0.05.

【0035】本発明の請求項4に係る半導体発光素子
は、請求項1〜3のいずれかの半導体発光素子にあっ
て、青色系蛍光体を下記の(1)または(2)のいずれ
かの青色系蛍光体としたものである。 (1)下記の化学式で表される化合物を主体にしてなる
ハロ燐酸塩蛍光体 (M11-xEux10(PO46Cl2 ただし、M1は、Ba、Sr、Ca、Mgから選ばれる
少なくとも一つのアルカリ土類金属元素、xは、0<x
<1を満足する数値である。 (2)下記の化学式で表される化合物を主体にしてなる
アルミン酸塩蛍光体 (M21-xEux)(M31-y1Mny1)Al1017 ただし、M2は、Ba、Sr、Caから選ばれる少なく
とも一つのアルカリ土類金属元素、M3は、Mg、Zn
から選ばれる少なくとも一つの元素、x、y1は、各
々、0<x<1、0≦y1<0.05を満足する数値で
ある。
A semiconductor light emitting device according to a fourth aspect of the present invention is the semiconductor light emitting device according to any one of the first to third aspects, in which a blue phosphor is added to the following (1) or (2): It is a blue phosphor. (1) Halophosphate phosphor (M1 1-x Eu x ) 10 (PO 4 ) 6 Cl 2 which is mainly composed of a compound represented by the following chemical formula, where M1 is Ba, Sr, Ca or Mg. At least one alkaline earth metal element selected, x is 0 <x
It is a numerical value that satisfies <1. (2) Aluminate phosphor (M2 1-x Eu x ) (M3 1-y1 Mny 1 ) Al 10 O 17 mainly composed of a compound represented by the following chemical formula, where M2 is Ba, Sr, At least one alkaline earth metal element selected from Ca, M3 is Mg, Zn
At least one element selected from x and y1 are numerical values that satisfy 0 <x <1 and 0 ≦ y1 <0.05, respectively.

【0036】上記の青色系蛍光体は、近紫外光の励起に
よって強い光を放つ高効率蛍光体であるので、このよう
な蛍光体の組み合わせにすると、前記蛍光体層が発光強
度の大きな白色系光を放つようになる。
The above-mentioned blue phosphor is a high-efficiency phosphor that emits strong light when excited by near-ultraviolet light. Therefore, when such phosphors are combined, the phosphor layer emits white light with high emission intensity. It begins to emit light.

【0037】本発明の請求項5に係る半導体発光素子
は、請求項1〜4のいずれかの半導体発光素子におい
て、近紫外LEDを、窒化ガリウム系化合物半導体で構
成した発光層を有する近紫外LEDとしたものである。
A semiconductor light-emitting device according to claim 5 of the present invention is the semiconductor light-emitting device according to any one of claims 1 to 4, wherein the near-ultraviolet LED has a light-emitting layer composed of a gallium nitride compound semiconductor. It is what

【0038】窒化ガリウム系化合物半導体で構成した発
光層を有する近紫外LEDは、高い発光効率を示し、長
期連続動作も可能であるので、このような近紫外LED
を用いることにより、長期連続動作が可能で、しかも、
高光束の白色系光を放つ半導体発光素子が得られる。
A near-ultraviolet LED having a light-emitting layer composed of a gallium nitride-based compound semiconductor exhibits high luminous efficiency and is capable of long-term continuous operation.
The long-term continuous operation is possible by using
It is possible to obtain a semiconductor light emitting device that emits white light with a high luminous flux.

【0039】本発明の請求項6に係る半導体発光装置
は、上記の請求項1〜5のいずれかに記載の半導体発光
素子を用いて構成した半導体発光装置である。
A semiconductor light emitting device according to a sixth aspect of the present invention is a semiconductor light emitting device configured by using the semiconductor light emitting element according to any one of the first to fifth aspects.

【0040】本発明の請求項1〜5に記載の半導体発光
素子は、高光束白色系光を放つので、本発明に係る半導
体発光素子を用いて発光装置を構成すると、高光束の白
色系光を放つ半導体発光装置が得られる。ここで、半導
体発光装置の具体例としては、LED情報表示端末、L
ED交通信号灯、自動車のLEDストップランプ、LE
D方向指示灯などの各種表示装置や、LED屋内外照明
灯、車内LED灯、LED非常灯、LED面発光源など
の各種照明装置を挙げることができる。
Since the semiconductor light emitting device according to any one of claims 1 to 5 of the present invention emits a high luminous flux white light, when a semiconductor light emitting device according to the present invention is used to constitute a light emitting device, a high luminous flux white light is emitted. A semiconductor light emitting device that emits is obtained. Here, as a specific example of the semiconductor light emitting device, an LED information display terminal, L
ED traffic lights, car LED stop lamps, LEs
Examples include various display devices such as a D-direction indicator light, and various lighting devices such as an LED indoor / outdoor illumination light, an in-vehicle LED light, an LED emergency light, and an LED surface light source.

【0041】なお、本発明における近紫外LEDに代え
て、同じ波長領域に発光ピークを有する発光を主発光成
分として放つ発光素子(半導体発光素子に限定されな
い)を用いても、同様の作用効果が得られ、同様の白色
系発光素子が得られることはいうまでもない。
Even if a light emitting element (not limited to a semiconductor light emitting element) that emits light emission having an emission peak in the same wavelength region as a main light emitting component is used instead of the near-ultraviolet LED in the present invention, the same effect can be obtained. It goes without saying that the obtained white light emitting device is obtained.

【0042】[0042]

【発明の実施の形態】(実施の形態1)以下、本発明の
半導体発光素子の実施の形態を、図面を用いて説明す
る。図1〜図3はそれぞれ形式の異なる半導体発光素子
の縦断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (Embodiment 1) Embodiments of a semiconductor light emitting device of the present invention will be described below with reference to the drawings. 1 to 3 are vertical sectional views of semiconductor light emitting devices of different types.

【0043】半導体発光素子の代表的な例として、図1
に、サブマウント素子5の上にフリップチップ型の近紫
外LED1を導通搭載するとともに、青色系蛍光体粒子
3と珪酸塩蛍光体の粒子を含む黄色系蛍光体粒子4を内
在し蛍光体層2を兼ねる樹脂のパッケージによって、近
紫外LED1を封止した構造の半導体発光素子を示し、
図2に、リードフレーム6のマウント・リードに設けた
カップ7に近紫外LED1を導通搭載するとともに、カ
ップ7内に青色系蛍光体粒子3と珪酸塩蛍光体の粒子を
含む黄色系蛍光体粒子4を内在した蛍光体層2を設け、
全体を封止樹脂8で封止した構造の半導体発光素子を示
し、図3に、筐体9内に近紫外LED1を配置するとと
もに、筐体9内に青色系蛍光体粒子3と珪酸塩蛍光体の
粒子を含む黄色系蛍光体粒子4を内在する樹脂で形成し
た蛍光体層2を設けた構造のチップタイプの半導体発光
素子を示している。
As a typical example of the semiconductor light emitting device, FIG.
In addition, the flip-chip type near-ultraviolet LED 1 is conductively mounted on the sub-mount element 5, and the blue phosphor particles 3 and the yellow phosphor particles 4 containing particles of the silicate phosphor are internally provided and the phosphor layer 2 is provided. Shows a semiconductor light emitting device having a structure in which the near-ultraviolet LED 1 is sealed by a resin package that also serves as
In FIG. 2, the near-ultraviolet LED 1 is conductively mounted on the cup 7 provided in the mount lead of the lead frame 6, and the yellow phosphor particles containing the blue phosphor particles 3 and the silicate phosphor particles in the cup 7. 4 is provided with a phosphor layer 2 therein,
A semiconductor light emitting device having a structure in which the entire structure is sealed with a sealing resin 8 is shown in FIG. 3, in which a near-ultraviolet LED 1 is arranged in a casing 9, and blue-based phosphor particles 3 and a silicate fluorescence are arranged in the casing 9. 1 shows a chip-type semiconductor light emitting device having a structure in which a phosphor layer 2 formed of a resin containing yellow phosphor particles 4 containing body particles is provided.

【0044】図1〜図3において、近紫外LED1は、
350nmを超え410nm以下、好ましくは350n
mを超え400nm未満の波長領域に発光ピークを有す
る近紫外光を得るためのものであり、窒化ガリウム系化
合物半導体、炭化シリコン系化合物半導体、セレン化亜
鉛系化合物半導体、硫化亜鉛系化合物半導体などの無機
化合物や、有機化合物で構成した発光層を有する光電変
換素子(いわゆる、LED、無機エレクトロルミネッセ
ンス(EL)素子、有機EL素子)である。
1 to 3, the near-ultraviolet LED 1 is
More than 350 nm and 410 nm or less, preferably 350 n
It is for obtaining near-ultraviolet light having an emission peak in a wavelength region of more than m and less than 400 nm, such as gallium nitride compound semiconductors, silicon carbide compound semiconductors, zinc selenide compound semiconductors, and zinc sulfide compound semiconductors. A photoelectric conversion element (so-called LED, inorganic electroluminescence (EL) element, organic EL element) having a light emitting layer composed of an inorganic compound or an organic compound.

【0045】ここで、大きな近紫外光出力を長期間安定
して得るためには、近紫外LED1は無機化合物で構成
した無機LEDが好ましく、その中でも、窒化ガリウム
系化合物半導体で構成した発光層を有する近紫外LED
が、発光強度が大きいのでより好ましい。
Here, in order to obtain a large near-ultraviolet light output stably for a long period of time, the near-ultraviolet LED 1 is preferably an inorganic LED composed of an inorganic compound, and among them, a light emitting layer composed of a gallium nitride compound semiconductor is used. Near UV LED
However, since the emission intensity is high, it is more preferable.

【0046】蛍光体層2は、近紫外LED1が放つ近紫
外光を吸収して、CIE色度図における発光色度点
(x,y)が、0.21≦x≦0.48、0.19≦y
≦0.45の範囲にある白色系光に変換するためのもの
であり、近紫外LED1が放つ近紫外光を吸収して40
0nm以上500nm未満の波長領域に発光ピークを有
する青色系の蛍光を放つ青色系蛍光体粒子3と、近紫外
LED1が放つ近紫外光、とりわけ波長380nm付近
の近紫外光を吸収して550nm以上600nm未満の
波長領域に発光ピークを有する黄色系の蛍光を放つ黄色
系蛍光体粒子4を含む。
The phosphor layer 2 absorbs the near-ultraviolet light emitted by the near-ultraviolet LED 1, and the emission chromaticity point (x, y) in the CIE chromaticity diagram is 0.21≤x≤0.48,0. 19 ≦ y
It is for converting to white light in the range of ≤0.45, and absorbs the near-ultraviolet light emitted by the near-ultraviolet LED 1 to 40
Absorbing near-ultraviolet light emitted by the near-ultraviolet LED 1 and near-ultraviolet light emitted by the near-ultraviolet LED 1 and, particularly, near-ultraviolet light having a wavelength of 380 nm or more and 550 nm to 600 nm. The yellow phosphor particles 4 which emit yellowish fluorescence having an emission peak in a wavelength range of

【0047】本発明の半導体発光素子にあっては、蛍光
体層2は、青色系蛍光体粒子3と黄色系蛍光体粒子4を
含む蛍光体を母材中に分散させて形成する。母材として
は、エポキシ樹脂、アクリル樹脂、ポリイミド樹脂、ユ
リア樹脂、シリコン樹脂などの樹脂を用いることがで
き、入手と取り扱いが容易でしかも安価な点でエポキシ
樹脂またはシリコン樹脂が好ましい。蛍光体層2の実質
厚みは、10μm以上1mm以下、好ましくは100μ
m以上700μm以下である。
In the semiconductor light emitting device of the present invention, the phosphor layer 2 is formed by dispersing the phosphor containing the blue phosphor particles 3 and the yellow phosphor particles 4 in the base material. As the base material, a resin such as an epoxy resin, an acrylic resin, a polyimide resin, a urea resin, or a silicone resin can be used, and the epoxy resin or the silicone resin is preferable because it is easy to obtain and handle and inexpensive. The substantial thickness of the phosphor layer 2 is 10 μm or more and 1 mm or less, preferably 100 μm.
m or more and 700 μm or less.

【0048】蛍光体層2中の青色系蛍光体粒子3は、近
紫外LED1が放つ近紫外光を吸収して、400nm以
上500nm未満の波長領域に発光ピークを有する青色
系の蛍光を放つ蛍光体であれば、無機材料であっても有
機材料(例えば蛍光色素)であっても使用することがで
きるが、望ましくは、下記の(1)または(2)のいず
れかの蛍光体とするのがよい。 (1)以下の化学式で表される化合物を主体にしてなる
ハロ燐酸塩蛍光体 (M11-xEux10(PO46Cl2 ただし、M1は、Ba、Sr、Ca、Mgから選ばれる
少なくとも一つのアルカリ土類金属元素、xは、0<x
<1を満足する数値である。 (2)以下の化学式で表される化合物を主体にしてなる
アルミン酸塩蛍光体 (M21-xEux)(M31-y1Mny1)Al1017 ただし、M2は、Ba、Sr、Caから選ばれる少なく
とも一つのアルカリ土類金属元素、M3は、Mg、Zn
から選ばれる少なくとも一つの元素、x、y1は、各
々、0<x<1、0≦y1<0.05を満足する数値で
ある。
The blue-based phosphor particles 3 in the phosphor layer 2 absorb the near-ultraviolet light emitted by the near-ultraviolet LED 1 and emit a blue-based fluorescence having an emission peak in a wavelength region of 400 nm or more and less than 500 nm. As long as it is an inorganic material or an organic material (for example, a fluorescent dye), it can be used, but it is desirable to use the phosphor of either (1) or (2) below. Good. (1) Halophosphate phosphor (M1 1-x Eu x ) 10 (PO 4 ) 6 Cl 2 which is mainly composed of a compound represented by the following chemical formula, where M1 is Ba, Sr, Ca or Mg. At least one alkaline earth metal element selected, x is 0 <x
It is a numerical value that satisfies <1. (2) Aluminate phosphor (M2 1-x Eu x ) (M3 1-y1 Mny y ) Al 10 O 17 mainly composed of a compound represented by the following chemical formula, where M2 is Ba, Sr, At least one alkaline earth metal element selected from Ca, M3 is Mg, Zn
At least one element selected from x and y1 are numerical values that satisfy 0 <x <1 and 0 ≦ y1 <0.05, respectively.

【0049】なお、上記望ましい青色系蛍光体の具体例
としては、BaMgAl1017:Eu2+、(Ba,S
r)(Mg,Mn)Al1017:Eu2+、(Sr,C
a,Ba,Mg)10(PO46Cl2:Eu2+、Sr
5(PO43Cl:Eu2+、(Sr,Ca,Ba)5(P
43Cl:Eu2+、BaMg2Al1627:Eu2+
(Ba,Ca)5(PO43Cl:Eu2+などを挙げる
ことができる。
As a specific example of the desirable blue phosphor, BaMgAl 10 O 17 : Eu 2+ , (Ba, S
r) (Mg, Mn) Al 10 O 17 : Eu 2+ , (Sr, C
a, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu 2+ , Sr
5 (PO 4 ) 3 Cl: Eu 2+ , (Sr, Ca, Ba) 5 (P
O 4 ) 3 Cl: Eu 2+ , BaMg 2 Al 16 O 27 : Eu 2+ ,
(Ba, Ca) 5 (PO 4) 3 Cl: Eu 2+ and the like.

【0050】蛍光体層2中の黄色系蛍光体粒子4として
は、製造の容易さや発光性能の良好さ(高輝度、高黄色
純度)の点から、下記の化学式で表される化合物を主体
にしてなる珪酸塩蛍光体が望ましい。
The yellow phosphor particles 4 in the phosphor layer 2 are mainly composed of a compound represented by the following chemical formula from the viewpoint of ease of production and good emission performance (high brightness, high yellow purity). A silicate phosphor composed of

【0051】 (Sr1-a1-b1-xBaa1Cab1Eux2SiO4 ただし、a1、b1、xは、各々、0≦a1≦0.3、
0≦b1≦0.8、0<x<1を満足する数値、好まし
くは、0<a1≦0.2、0≦b1≦0.7、0.00
5≦x≦0.1、さらに好ましくは、0<a1≦0.1
5、0≦b1≦0.6、0.01≦x≦0.05であ
る。
(Sr 1-a1-b1-x Ba a1 Ca b1 Eu x ) 2 SiO 4 where a1, b1 and x are respectively 0 ≦ a1 ≦ 0.3,
Numerical values satisfying 0 ≦ b1 ≦ 0.8 and 0 <x <1, preferably 0 <a1 ≦ 0.2, 0 ≦ b1 ≦ 0.7, 0.00
5 ≦ x ≦ 0.1, more preferably 0 <a1 ≦ 0.1
5, 0 ≦ b1 ≦ 0.6 and 0.01 ≦ x ≦ 0.05.

【0052】このような黄色系蛍光体としては、下記の
(1)または(2)に記載のいずれかの珪酸塩蛍光体が
ある。 (1)斜方晶の結晶構造を有する、下記の組成の珪酸塩
蛍光体 (Sr1-a1-b2-xBaa1Cab2Eux2SiO4 ただし、a1、b2、xは、各々、0≦a1≦0.3、
0≦b2≦0.6、0<x<1、好ましくは、各々、0
<a1≦0.2、0≦b2≦0.4、0.005≦x≦
0.1、さらに好ましくは、各々、0<a1≦0.1
5、0≦b2≦0.3、0.01≦x≦0.05を満足
する数値である。 (2)単斜晶の結晶構造を有する、下記の組成の珪酸塩
蛍光体 (Sr1-a2-b1-xBaa2Cab1Eux2SiO4 ただし、a2、b1、xは、各々、0≦a2≦0.2、
0≦b1≦0.8、0<x<1、好ましくは、各々、0
≦a2≦0.15、0<b1≦0.7、0.005≦x
≦0.1、さらに好ましくは、各々、0≦a2≦0.
1、0<b1≦0.6、0.01≦x≦0.05を満足
する数値である。
As such a yellow phosphor, there is any of the silicate phosphors described in (1) or (2) below. (1) Silicate phosphor (Sr 1-a1-b2-x Ba a1 Ca b2 Eu x ) 2 SiO 4 having the following composition having an orthorhombic crystal structure, where a1, b2 and x are respectively 0 ≦ a1 ≦ 0.3,
0 ≦ b2 ≦ 0.6, 0 <x <1, preferably 0 respectively
<A1 ≦ 0.2, 0 ≦ b2 ≦ 0.4, 0.005 ≦ x ≦
0.1, more preferably 0 <a1 ≦ 0.1
It is a numerical value that satisfies 5, 0 ≦ b2 ≦ 0.3 and 0.01 ≦ x ≦ 0.05. (2) Silicate phosphor (Sr 1-a2-b1-x Ba a2 Ca b1 Eu x ) 2 SiO 4 having a monoclinic crystal structure and having the following composition, where a2, b1 and x are respectively: 0 ≦ a2 ≦ 0.2,
0 ≦ b1 ≦ 0.8, 0 <x <1, preferably 0 respectively
≦ a2 ≦ 0.15, 0 <b1 ≦ 0.7, 0.005 ≦ x
≦ 0.1, more preferably 0 ≦ a2 ≦ 0.
It is a numerical value that satisfies 1, 0 <b1 ≦ 0.6 and 0.01 ≦ x ≦ 0.05.

【0053】a1、a2、b1、b2の数値が上記範囲
内よりも小さい数値の組成では、珪酸塩蛍光体の結晶構
造が不安定になりやすく、動作温度によって発光特性が
変化する問題が生じる。一方、上記範囲内よりも大きい
数値の組成では、発光が緑味を帯びたものとなり、良好
な黄色系蛍光体にはならず、緑色系蛍光体となるため
に、青系の蛍光体と組み合わせても、高光束、白色系光
を放つ半導体発光素子にはならない。また、Eu添加量
xが上記範囲内よりも小さい数値の組成では発光強度が
弱く、大きい数値の組成では、周囲温度の上昇とともに
発光強度が低下する温度消光の問題が顕著に生じる。
In a composition in which the numerical values of a1, a2, b1 and b2 are smaller than the above range, the crystal structure of the silicate phosphor is likely to be unstable, and there arises a problem that the emission characteristics change depending on the operating temperature. On the other hand, in the case of a composition having a numerical value larger than the above range, the light emission becomes greenish, and not a good yellow phosphor, but a green phosphor, so that it is combined with a blue phosphor. However, it does not become a semiconductor light emitting device that emits high luminous flux and white light. Further, when the Eu addition amount x has a numerical value smaller than the above range, the emission intensity is weak, and when the Eu addition amount x is large, the problem of temperature quenching, in which the emission intensity decreases as the ambient temperature rises, remarkably occurs.

【0054】本発明の半導体発光素子において用いる黄
色系蛍光体としては、珪酸塩蛍光体が放つ黄色系光の色
純度が優れる理由で、上記斜方晶の結晶構造を有する珪
酸塩蛍光体を用いるのが好ましい。また、珪酸塩蛍光体
の結晶構造を安定化したり、発光強度を高める目的で、
Sr、Ba、Caの一部をMgやZnで置き換えること
もできる。
As the yellow phosphor used in the semiconductor light emitting device of the present invention, the silicate phosphor having the orthorhombic crystal structure is used because of the excellent yellow color purity of the yellow light emitted by the silicate phosphor. Is preferred. In addition, for the purpose of stabilizing the crystal structure of the silicate phosphor and increasing the emission intensity,
It is also possible to replace a part of Sr, Ba and Ca with Mg or Zn.

【0055】さらに、珪酸塩蛍光体の発光色を制御する
目的で、Siの一部をGeで置き換えることもできる。
すなわち、黄色系蛍光体として下記の化学式で表される
化合物を主体にしてなる珪酸塩蛍光体を用いることがで
きる。
Further, part of Si can be replaced by Ge for the purpose of controlling the emission color of the silicate phosphor.
That is, a silicate phosphor mainly composed of a compound represented by the following chemical formula can be used as the yellow phosphor.

【0056】(Sr1-a1-b1-xBaa1Cab1Eux
2(Si1-zGez)O4 ただし、a1、b1、x、zは、各々、0≦a1≦0.
3、0≦b1≦0.8、0<x<1、0≦z<1を満足
する数値である。
(Sr 1-a1-b1-x Ba a1 Ca b1 Eu x )
2 (Si 1-z Ge z ) O 4 where a1, b1, x, and z are 0 ≦ a1 ≦ 0.
The numerical values satisfy 3, 0 ≦ b1 ≦ 0.8, 0 <x <1, and 0 ≦ z <1.

【0057】上記珪酸塩蛍光体は、レーザー回折・散乱
式粒度分布測定器(例えばLMS−30:株式会社セイ
シン企業製)による粒度分布評価で、中心粒径が0.1
μm以上100μm以下のものであれば足りるが、蛍光
体の合成の容易さ、入手の容易さ、蛍光体層の形成の容
易さなどの理由で、中心粒径が1μm以上20μm以下
が好ましく、2μm以上10μm以下がさらに好まし
い。粒度分布については、0.01μm未満および10
00μmを超える粒子を含まなければよいが、中心粒径
と同じ理由で、1μm以上50μm以下の範囲内で正規
分布に近似した分布を有する珪酸塩蛍光体が好ましい。
The silicate phosphor has a central particle size of 0.1 when evaluated by a particle size distribution analyzer (for example, LMS-30 manufactured by Seishin Enterprise Co., Ltd.) with a laser diffraction / scattering type particle size distribution analyzer.
A particle size of 1 μm or more and 20 μm or less is preferable, and a center particle size of 1 μm or more and 20 μm or less is preferable because it is easy to synthesize a phosphor, is easily available, and is easy to form a phosphor layer. More preferably, it is 10 μm or less. For particle size distribution, less than 0.01 μm and 10
It is sufficient that the particles do not contain particles exceeding 00 μm, but for the same reason as the central particle diameter, a silicate phosphor having a distribution close to a normal distribution in the range of 1 μm or more and 50 μm or less is preferable.

【0058】なお、上記の珪酸塩蛍光体は、例えば、前
記文献(J.Electrochemical So
c.Vol.115、No.11(1968)pp.1
181−1184)に記載の合成方法によって製造する
ことができる。
The above-mentioned silicate phosphor is described in, for example, the above-mentioned document (J. Electrochemical So).
c. Vol. 115, No. 11 (1968) pp. 1
181-1184).

【0059】以下、上記珪酸塩蛍光体の特性をさらに具
体的に説明する。
The characteristics of the silicate phosphor will be described in more detail below.

【0060】図4は、上記珪酸塩蛍光体の励起スペクト
ルおよび発光スペクトルの例を示す図である。同図には
比較のために、従来のYAG系蛍光体の励起スペクトル
および発光スペクトルの例もまとめて示している。
FIG. 4 is a diagram showing an example of an excitation spectrum and an emission spectrum of the above silicate phosphor. For comparison, the figure also shows an example of the excitation spectrum and the emission spectrum of the conventional YAG-based phosphor.

【0061】図4からわかるように、YAG系蛍光体が
100nm〜300nm付近、300nm〜360nm
付近、400nm〜550nm付近の三カ所に励起帯を
有し、これら各々の狭い波長範囲内の光を吸収して、5
50〜580nmの黄緑〜黄の波長領域に発光ピークを
有する黄色系の蛍光を放つ蛍光体であるのに対して、本
発明において使用する珪酸塩蛍光体は、250〜300
nm付近に励起ピークを有し、100〜500nmの広
い波長範囲内の光を吸収して、550〜600nmの黄
緑〜黄〜橙の波長領域に発光ピークを有する黄色系の蛍
光を放つ黄色系蛍光体である。また、350nmを超え
400nm未満の近紫外光の励起下では、YAG系蛍光
体をはるかに凌ぐ高効率の蛍光体であることもわかる。
特に、波長領域が370〜390nmの近紫外光の励起
下では、従来のYAG系蛍光体が実質的に発光しないの
に対して、珪酸塩蛍光体は高効率の黄色系光を放つこと
がわかる。
As can be seen from FIG. 4, the YAG-based phosphor is around 100 nm to 300 nm, and 300 nm to 360 nm.
Has excitation bands at three locations, near 400 nm to 550 nm, and absorbs light within each narrow wavelength range to
The silicate phosphor used in the present invention is 250 to 300, while the yellow fluorescing phosphor has an emission peak in a yellow-green to yellow wavelength region of 50 to 580 nm.
having a excitation peak in the vicinity of nm, absorbing light in a wide wavelength range of 100 to 500 nm, and emitting yellowish fluorescence having an emission peak in a yellow-green to yellow-orange wavelength region of 550 to 600 nm. It is a phosphor. It is also found that under the excitation of near-ultraviolet light of more than 350 nm and less than 400 nm, it is a highly efficient phosphor far superior to the YAG-based phosphor.
In particular, under the excitation of near-ultraviolet light having a wavelength range of 370 to 390 nm, it can be seen that the conventional YAG phosphor does not substantially emit light, whereas the silicate phosphor emits highly efficient yellow light. .

【0062】したがって、上記珪酸塩蛍光体を黄色系蛍
光体粒子4として蛍光体層2に含めることによって、蛍
光体層2が近紫外光の励起下で強い黄色系光を発光成分
として放つようになる。
Therefore, by including the silicate phosphor as the yellow phosphor particles 4 in the phosphor layer 2, the phosphor layer 2 emits a strong yellow light as a light emitting component under the excitation of near-ultraviolet light. Become.

【0063】なお、上記したa1、a2、b1、b2、
x、zの数値範囲内の組成の珪酸塩蛍光体であれば、励
起および発光スペクトルは、図4に例示した珪酸塩蛍光
体のスペクトルに類似したものとなる。
The above a1, a2, b1, b2,
If the silicate phosphor has a composition within the numerical range of x and z, the excitation and emission spectra will be similar to those of the silicate phosphor illustrated in FIG.

【0064】また、上記の青色系蛍光体粒子3と黄色系
蛍光体粒子4のほかに、白色系光の演色性を高めるため
に、下記の化学式で表される化合物を主体にしてなる酸
硫化物蛍光体などの赤色系蛍光体粒子を配合してもよ
い。
In addition to the blue-based phosphor particles 3 and the yellow-based phosphor particles 4 described above, in order to improve the color rendering of white light, oxysulfidation mainly composed of a compound represented by the following chemical formula You may mix | blend red type fluorescent substance particles, such as a fluorescent substance.

【0065】(Ln1-xEux)O2S ただし、Lnは、Sc、Y、La、Gdから選ばれる少
なくとも一つの希土類元素、xは0<x<1を満足する
数値である。
(Ln 1-x Eu x ) O 2 S Here, Ln is at least one rare earth element selected from Sc, Y, La and Gd, and x is a numerical value satisfying 0 <x <1.

【0066】(実施の形態2)以下、本発明の半導体発
光装置の実施の形態を図面を用いて説明する。図5〜図
7は本発明に係る半導体発光装置の例を示す図である。
(Embodiment 2) Hereinafter, an embodiment of the semiconductor light emitting device of the present invention will be described with reference to the drawings. 5 to 7 are views showing examples of the semiconductor light emitting device according to the present invention.

【0067】図5は本発明の半導体発光素子を用いたス
タンド型の照明装置を示し、図6は本発明の半導体発光
素子を用いた画像表示用の表示装置を示し、図7は本発
明の半導体発光素子を用いた数字表示用の表示装置を示
している。
FIG. 5 shows a stand type illumination device using the semiconductor light emitting device of the present invention, FIG. 6 shows a display device for image display using the semiconductor light emitting device of the present invention, and FIG. 1 shows a display device for displaying numbers using a semiconductor light emitting element.

【0068】図5ないし図7において、半導体発光素子
10は実施の形態1で説明した本発明の半導体発光素子
である。
5 to 7, the semiconductor light emitting element 10 is the semiconductor light emitting element of the present invention described in the first embodiment.

【0069】図5において、11は半導体発光素子10
を点灯させるためのスイッチであり、スイッチ11をO
Nすると、半導体発光素子10が通電して発光を放つよ
うになる。
In FIG. 5, 11 is a semiconductor light emitting device 10.
Switch 11 for turning on the switch
When N, the semiconductor light emitting element 10 is energized and emits light.

【0070】なお、図5の照明装置は好ましい一例とし
て示したもので、本発明に係る半導体発光装置はこの実
施形態に限定されるものではなく、本発明の半導体発光
素子10のほかに例えば、青、緑、黄、赤などの光を放
つLEDと組み合わせたものであってもよい。また、半
導体発光素子10の発光色、大きさ、数、発光部分の形
状なども特に限定されるものではない。
The illuminating device of FIG. 5 is shown as a preferred example, and the semiconductor light emitting device according to the present invention is not limited to this embodiment. For example, in addition to the semiconductor light emitting element 10 of the present invention, It may be combined with an LED that emits light of blue, green, yellow, red, or the like. Further, the emission color, size, number, shape of the light emitting portion, etc. of the semiconductor light emitting element 10 are not particularly limited.

【0071】また、この例の照明装置において、好まし
い色温度は2000K以上12000K以下、好ましく
は3000K以上10000K以下、さらに好ましくは
3500K以上8000K以下であるが、本発明に係る
半導体発光装置としての照明装置は前記色温度に限定さ
れるものではない。
Further, in the illuminating device of this example, the preferable color temperature is 2000 K or more and 12000 K or less, preferably 3000 K or more and 10000 K or less, more preferably 3500 K or more and 8000 K or less, but the illuminating device as the semiconductor light emitting device according to the present invention. Is not limited to the above color temperature.

【0072】図6と図7には、本発明に係る半導体発光
装置としての表示装置の例として画像表示装置と数字表
示装置を示したが、本発明に係る半導体発光装置はこれ
らに限定されるものではない。
6 and 7 show an image display device and a numerical display device as examples of the display device as the semiconductor light emitting device according to the present invention, the semiconductor light emitting device according to the present invention is not limited thereto. Not a thing.

【0073】半導体発光装置の一例としての表示装置
は、上記照明装置の場合と同様に、実施の形態1で説明
した半導体発光素子10を用いて構成しておればよく、
また、半導体発光素子10以外の半導体発光素子、例え
ば、青、緑、黄、赤などの光を放つLEDと組み合わせ
ていてもよい。また、半導体発光素子10の発光色、大
きさ、数、発光部分の形状や半導体発光素子の配置の仕
方なども特に限定されるものではないし、外観形状も特
に限定されるものではない。
A display device as an example of the semiconductor light emitting device may be configured using the semiconductor light emitting element 10 described in the first embodiment, as in the case of the above lighting device.
Further, it may be combined with a semiconductor light emitting element other than the semiconductor light emitting element 10, for example, an LED that emits light of blue, green, yellow, red, or the like. Further, the emission color, size, number, shape of the light emitting portion, arrangement of the semiconductor light emitting elements, and the like of the semiconductor light emitting element 10 are not particularly limited, and the appearance shape is not particularly limited.

【0074】画像表示装置としての寸法は幅1cm以上
10m以下、高さ1cm以上10m以下、奥行き5mm
以上5m以下の範囲で任意に製作することができ、この
寸法に応じて半導体発光素子の個数を設定することがで
きる。
The image display device has a width of 1 cm or more and 10 m or less, a height of 1 cm or more and 10 m or less, and a depth of 5 mm.
It can be arbitrarily manufactured within the range of 5 m or less, and the number of semiconductor light emitting elements can be set according to this dimension.

【0075】図6に示す数字表示装置において、10が
実施の形態1で説明した半導体発光素子である。この数
字表示装置においても、画像表示装置の場合と同様に、
半導体発光素子10の発光色、大きさ、数、画素の形状
などは限定されるものではない。また、表示文字は数字
に限定されるものではなく、漢字、カタカナ、アルファ
ベット、ギリシア文字などであっても構わない。
In the numeral display device shown in FIG. 6, 10 is the semiconductor light emitting element described in the first embodiment. Also in this numerical display device, as in the case of the image display device,
The emission color, size, number, and pixel shape of the semiconductor light emitting element 10 are not limited. The display characters are not limited to numbers, and may be kanji, katakana, alphabets, Greek characters, or the like.

【0076】なお、図5〜図7に示したような半導体発
光装置にあっては、一種類のLEDチップだけを用いた
複数個の半導体発光素子10を用いて構成した発光装置
にすると、全く同じ駆動電圧や注入電流での各半導体発
光素子の動作が可能になるとともに、周囲温度などの外
部要因による発光素子の特性変動もほぼ同一にできるよ
うになり、電圧変化や温度変化に対する発光素子の発光
強度や色調の変化率を少なくできるとともに、発光装置
の回路構成をシンプルにできる。
Incidentally, in the semiconductor light emitting device as shown in FIGS. 5 to 7, if the light emitting device is constructed by using a plurality of semiconductor light emitting elements 10 using only one kind of LED chip, It is possible to operate each semiconductor light emitting element with the same driving voltage and injection current, and it is also possible to make the characteristic fluctuations of the light emitting element due to external factors such as ambient temperature almost the same, and the light emitting element The rate of change in emission intensity and color tone can be reduced, and the circuit configuration of the light emitting device can be simplified.

【0077】また、画素面が平坦な半導体発光素子を用
いて半導体発光装置を構成すると、表示面が平坦な表示
装置や面発光する照明装置など、発光面の平坦な発光装
置を提供でき、良好な画質を有する画像表示装置や、デ
ザイン性に優れる照明装置を提供できる。
Further, when the semiconductor light emitting device is constructed by using the semiconductor light emitting element having a flat pixel surface, it is possible to provide a light emitting device having a flat light emitting surface such as a display device having a flat display surface and a lighting device emitting surface light. It is possible to provide an image display device having excellent image quality and a lighting device having excellent design.

【0078】本発明に係る半導体発光装置は、実施の形
態1に記載した、高光束の白色系光が得られる半導体発
光素子を用いて発光装置を構成することによって、高光
束の発光装置となる。
The semiconductor light-emitting device according to the present invention is a high-luminance light-emitting device by forming the light-emitting device using the semiconductor light-emitting element described in the first embodiment, which can obtain high-luminance white light. .

【0079】[0079]

【実施例】(実施例1)青色系蛍光体を(M21-x
x)(M31-y1Mny1)Al1017(ただし、M2
は、Ba、Sr、Caから選ばれる少なくとも一つのア
ルカリ土類金属元素、M3は、Mg、Znから選ばれる
少なくとも一つの元素、x、y1は、各々、0<x<
1、0≦y1<0.05を満足する数値である。)の化
学式で表される、(Ba,Sr)MgAl1017:Eu
2+,Mn2+アルミン酸塩青色蛍光体(M2=0.9Ba
+0.1Sr、x=0.1、y=0.015)とし、黄
色系蛍光体を(Sr1-a1-b1-xBaa1Cab1Eux2
iO4(ただし、a1、b1、xは、各々、0≦a1≦
0.3、0≦b1≦0.8、0<x<1を満足する数値
である。)の化学式で表され、斜方晶の結晶構造を有す
る、(Sr,Ba)2SiO4:Eu2+珪酸塩黄色蛍光体
(a1=0.1、b1=0、x=0.02)とし、この
青色蛍光体と黄色蛍光体の混合重量割合を35:15、
エポキシ樹脂と混合蛍光体との重量割合を120:5
0、蛍光体層の実質厚みを約600μmとして半導体発
光素子(実施例1)を製作した。
[Example] (Example 1) A blue-based phosphor (M2 1-x E
u x ) (M3 1-y1 Mn y1 ) Al 10 O 17 (however, M2
Is at least one alkaline earth metal element selected from Ba, Sr, and Ca, M3 is at least one element selected from Mg and Zn, and x and y1 are 0 <x <, respectively.
It is a numerical value that satisfies 1, 0 ≦ y1 <0.05. (Ba, Sr) MgAl 10 O 17 : Eu represented by the chemical formula
2+ , Mn 2+ aluminate blue phosphor (M2 = 0.9Ba
+ 0.1Sr, x = 0.1, y = 0.015) and the yellow phosphor is (Sr 1-a1-b1-x Ba a1 Ca b1 Eu x ) 2 S
iO 4 (where a1, b1 and x are respectively 0 ≦ a1 ≦
It is a numerical value that satisfies 0.3, 0 ≦ b1 ≦ 0.8, and 0 <x <1. (Sr, Ba) 2 SiO 4 : Eu 2+ silicate yellow phosphor (a1 = 0.1, b1 = 0, x = 0.02) having an orthorhombic crystal structure. And the mixing weight ratio of the blue phosphor and the yellow phosphor is 35:15,
The weight ratio of the epoxy resin and the mixed phosphor is 120: 5.
0, the semiconductor light emitting device (Example 1) was manufactured with the substantial thickness of the phosphor layer being about 600 μm.

【0080】半導体発光素子の構造は、図2に示したよ
うな、マウント・リードに設けたカップに近紫外LED
を導通搭載するとともに、カップ内に蛍光体粒子が内在
するエポキシ樹脂で形成した蛍光体層を設けた構造の半
導体発光素子とした。また、近紫外LEDは、窒化ガリ
ウム系化合物半導体で構成した発光層を有し、波長38
0nmに発光ピークを有する、InGaN系の近紫外L
EDとした。
The structure of the semiconductor light emitting device is as shown in FIG.
The semiconductor light-emitting device has a structure in which a phosphor layer formed of an epoxy resin containing phosphor particles is provided in the cup while being electrically connected. The near-ultraviolet LED has a light emitting layer made of a gallium nitride-based compound semiconductor and has a wavelength of 38
InGaN-based near-ultraviolet L having an emission peak at 0 nm
It was ED.

【0081】この近紫外LEDからの波長380nmの
近紫外光励起下での、青色系蛍光体の発光スペクトルを
図8の(a)に、黄色蛍光体の発光スペクトルを同図の
(b)に示した。
The emission spectrum of the blue phosphor under excitation of near-ultraviolet light having a wavelength of 380 nm from this near-ultraviolet LED is shown in FIG. 8 (a), and the emission spectrum of the yellow phosphor is shown in FIG. 8 (b). It was

【0082】比較のために、前記(Ba,Sr)MgA
1017:Eu2+,Mn2+アルミン酸塩青色蛍光体を青
色系蛍光体、BaMgAl1017:Eu2+、Mn2+(B
0. 9Eu0.1Mg0.7Mn0.3Al1017)アルミン酸塩
緑色蛍光体を緑色系蛍光体、LaO2S:Eu3+(La
0.9Eu0.12S)酸硫化物赤色蛍光体を赤色系蛍光体
とし、蛍光体層中に黄色系蛍光体を含まない、上記と同
様の半導体発光素子(比較例1)を製作した。比較例1
の半導体発光素子でのアルミン酸塩青色蛍光体、アルミ
ン酸塩緑色蛍光体、酸硫化物赤色蛍光体の混合重量割合
は7:13:40であり、エポキシ樹脂と混合蛍光体と
の重量割合と蛍光体層の実質厚みは実施例1の半導体発
光素子と同じである。
For comparison, the above (Ba, Sr) MgA
l 10 O 17 : Eu 2+ , Mn 2+ aluminate blue phosphor is a blue phosphor, BaMgAl 10 O 17 : Eu 2+ , Mn 2+ (B
a 0. 9 Eu 0.1 Mg 0.7 Mn 0.3 Al 10 O 17) green phosphor aluminates green phosphor, LaO 2 S: Eu 3+ ( La
A semiconductor light-emitting device (Comparative Example 1) similar to the above was manufactured by using 0.9 Eu 0.1 O 2 S) oxysulfide red phosphor as a red phosphor and not containing a yellow phosphor in the phosphor layer. Comparative Example 1
In the semiconductor light-emitting element, the mixed weight ratio of the aluminate blue phosphor, the aluminate green phosphor, and the oxysulfide red phosphor is 7:13:40, and the weight ratio of the epoxy resin and the mixed phosphor is The substantial thickness of the phosphor layer is the same as that of the semiconductor light emitting device of Example 1.

【0083】上記半導体発光素子の近紫外LEDに10
mAを通電して、近紫外LEDを動作させ、半導体発光
素子からの白色系光のCIE色度図における(x,y)
値、光束の相対値を、瞬間マルチ測光システム(MCP
D−7000:大塚電子株式会社製)を用いて評価し
た。この結果を表1に示す。表1からわかるように、ほ
ぼ同じ色度の白色系光のもとでは、本発明にかかる半導
体発光素子(実施例1)の方が、高い光束(約3.7
倍)が得られた。
For the near-ultraviolet LED of the semiconductor light emitting device, 10
(x, y) in the CIE chromaticity diagram of the white light from the semiconductor light emitting element by energizing mA to operate the near-ultraviolet LED
Value, relative value of luminous flux, instantaneous multi-photometry system (MCP
D-7000: manufactured by Otsuka Electronics Co., Ltd.). The results are shown in Table 1. As can be seen from Table 1, under the white light of approximately the same chromaticity, the semiconductor light emitting device according to the present invention (Example 1) has a higher luminous flux (about 3.7).
Times) was obtained.

【0084】[0084]

【表1】 [Table 1]

【0085】[0085]

【発明の効果】本発明の半導体発光素子は、近紫外LE
Dと、この近紫外LEDが放つ350〜410nm付近
の近紫外光を吸収して400nm以上500nm未満の
波長領域に発光ピークを有する青色系蛍光体と、前記近
紫外光を吸収して550nm以上600nm未満の波長
領域に発光ピークを有する黄色系蛍光体を含む蛍光体層
とを組み合わせたことにより、高光束の白色系光を放つ
半導体発光素子を得ることができる。特に黄色系蛍光体
として珪酸塩蛍光体を用いることにより、YAG系蛍光
体を用いた従来の半導体発光素子をはるかに凌ぐ高効率
の半導体発光素子となる。
The semiconductor light emitting device of the present invention is a near ultraviolet LE.
D, a blue-based phosphor that absorbs near-ultraviolet light in the vicinity of 350 to 410 nm emitted by this near-ultraviolet LED and has an emission peak in a wavelength region of 400 nm or more and less than 500 nm, and 550 nm or more and 600 nm that absorbs the near-ultraviolet light. A semiconductor light emitting element that emits white light with a high luminous flux can be obtained by combining with a phosphor layer containing a yellow phosphor having an emission peak in a wavelength region of less than. In particular, by using the silicate phosphor as the yellow phosphor, a highly efficient semiconductor light emitting device far surpassing the conventional semiconductor light emitting device using the YAG phosphor can be obtained.

【0086】また、本発明の発光装置は、近紫外光励起
の下で効率良く発光する青色系蛍光体と黄色系蛍光体の
2種類の蛍光体を含む蛍光体層を有し、高光束の前記半
導体発光素子を用いて発光装置を構成することにより、
高光束の白色系光を放つ発光装置とすることができる。
The light emitting device of the present invention has a phosphor layer containing two kinds of phosphors, a blue phosphor and a yellow phosphor, which efficiently emits light under near-ultraviolet light excitation, and has a high luminous flux. By configuring a light emitting device using a semiconductor light emitting element,
A light emitting device that emits white light with a high luminous flux can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態である半導体発光素子の縦断
面図
FIG. 1 is a vertical cross-sectional view of a semiconductor light emitting device that is an embodiment of the present invention.

【図2】本発明の実施形態である半導体発光素子の縦断
面図
FIG. 2 is a vertical cross-sectional view of a semiconductor light emitting device that is an embodiment of the present invention.

【図3】本発明の実施形態である半導体発光素子の縦断
面図
FIG. 3 is a vertical cross-sectional view of a semiconductor light emitting device that is an embodiment of the present invention.

【図4】珪酸塩蛍光体とYAG系蛍光体の発光および励
起スペクトルの例を示す図
FIG. 4 is a diagram showing an example of emission and excitation spectra of a silicate phosphor and a YAG phosphor.

【図5】本発明の実施形態である発光装置の斜視図FIG. 5 is a perspective view of a light emitting device according to an embodiment of the present invention.

【図6】本発明の実施形態である発光装置の斜視図FIG. 6 is a perspective view of a light emitting device according to an embodiment of the present invention.

【図7】本発明の実施形態である発光装置の斜視図FIG. 7 is a perspective view of a light emitting device according to an embodiment of the present invention.

【図8】(a)は、青色系蛍光体の発光スペクトルを示
す図 (b)は、黄色系蛍光体の発光スペクトルを示す図
FIG. 8A shows an emission spectrum of a blue phosphor, and FIG. 8B shows an emission spectrum of a yellow phosphor.

【符号の説明】[Explanation of symbols]

1 近紫外LED 2 蛍光体層 3 青色系蛍光体粒子 4 黄色系蛍光体粒子 5 サブマウント素子 6 リードフレーム 7 カップ 8 封止樹脂 9 筐体 10 半導体発光素子 11 スイッチ 1 near-ultraviolet LED 2 Phosphor layer 3 Blue phosphor particles 4 Yellow phosphor particles 5 Submount element 6 lead frame 7 cups 8 Sealing resin 9 housing 10 Semiconductor light emitting device 11 switch

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09K 11/59 CPX C09K 11/59 CPX 11/64 11/64 11/73 11/73 (72)発明者 岩間 克昭 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 北原 博実 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 池田 忠昭 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 4H001 CA02 CA04 CA05 XA08 XA12 XA14 XA15 XA17 XA20 XA30 XA38 XA56 YA25 YA63 5F041 AA11 CA34 CA40 DA18 DA19 DA44 DA46 EE25 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C09K 11/59 CPX C09K 11/59 CPX 11/64 11/64 11/73 11/73 (72) Inventor Katsuaki Iwama 1006 Kadoma, Kadoma, Osaka Prefecture Matsuda Denki Sangyo Co., Ltd. (72) Inventor Hiromi Kitahara 1006 Kadoma, Kadoma City, Osaka Pref. Matsuda Denki Sangyo Co., Ltd. (72) Tadaaki Ikeda, Kadoma, Osaka Address 1006 Matsushita Electric Industrial Co., Ltd. F term (reference) 4H001 CA02 CA04 CA05 XA08 XA12 XA14 XA15 XA17 XA20 XA30 XA38 XA56 YA25 YA63 5F041 AA11 CA34 CA40 DA18 DA19 DA44 DA46 EE25

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 350nmを超え410nm以下の波長
領域に発光ピークを有する発光を放つ近紫外発光ダイオ
ードと、前記近紫外発光ダイオードが放つ近紫外光を吸
収して、380nm以上780nm以下の可視波長領域
に発光ピークを有する蛍光を放つ複数の蛍光体を含む蛍
光体層とを組み合わせ、CIE色度図における発光色度
点(x,y)が、0.21≦x≦0.48、0.19≦
y≦0.45の範囲にある白色系光を放つ半導体発光素
子であって、前記蛍光体層が、波長380nmおよびそ
の付近の波長領域の近紫外光照射の下で、550nm以
上600nm未満の波長領域に発光ピークを有する黄色
系の蛍光を放つ黄色系蛍光体と400nm以上500n
m未満の波長領域に発光ピークを有する青色系の蛍光を
放つ青色系蛍光体の二種類の蛍光体を含むことを特徴と
する半導体発光素子。
1. A near-ultraviolet light emitting diode that emits light having an emission peak in a wavelength region of more than 350 nm and 410 nm or less, and a visible wavelength region of 380 nm or more and 780 nm or less by absorbing near ultraviolet light emitted by the near-ultraviolet light emitting diode. In combination with a phosphor layer containing a plurality of phosphors that emit fluorescence having an emission peak, and the emission chromaticity point (x, y) in the CIE chromaticity diagram is 0.21 ≦ x ≦ 0.48, 0.19. ≤
A semiconductor light-emitting device that emits white light in the range of y ≦ 0.45, wherein the phosphor layer has a wavelength of 550 nm or more and less than 600 nm under irradiation with near-ultraviolet light having a wavelength range of 380 nm and its vicinity. Yellow fluorescent substance that emits yellow fluorescent light having an emission peak in a region and 400 nm or more and 500 n
A semiconductor light-emitting device comprising two types of phosphors, which are blue-based phosphors that emit blue-based fluorescence having an emission peak in a wavelength region of less than m.
【請求項2】 前記黄色系蛍光体が、下記の化学式で表
される化合物を主体にしてなる珪酸塩蛍光体である請求
項1記載の半導体発光素子。 (Sr1-a1-b1-xBaa1Cab1Eux2SiO4 ただし、a1、b1、xは、各々、0≦a1≦0.3、
0≦b1≦0.8、0<x<1を満足する数値である。
2. The semiconductor light emitting device according to claim 1, wherein the yellow phosphor is a silicate phosphor mainly composed of a compound represented by the following chemical formula. (Sr 1-a1-b1-x Ba a1 Ca b1 Eu x ) 2 SiO 4 where a1, b1 and x are respectively 0 ≦ a1 ≦ 0.3,
It is a numerical value that satisfies 0 ≦ b1 ≦ 0.8 and 0 <x <1.
【請求項3】 前記珪酸塩蛍光体が、斜方晶の結晶構造
を有し下記の化学式で表される化合物を主体にしてなる
珪酸塩蛍光体である請求項2記載の半導体発光素子。 (Sr1-a1-b2-xBaa1Cab2Eux2SiO4 ただし、a1、b2、xは、各々、0≦a1≦0.3、
0≦b2≦0.6、0<x<1を満足する数値である。
3. The semiconductor light emitting device according to claim 2, wherein the silicate phosphor is a silicate phosphor mainly having a compound represented by the following chemical formula and having an orthorhombic crystal structure. (Sr 1-a1-b2-x Ba a1 Ca b2 Eu x ) 2 SiO 4 where a1, b2 and x are respectively 0 ≦ a1 ≦ 0.3,
It is a numerical value that satisfies 0 ≦ b2 ≦ 0.6 and 0 <x <1.
【請求項4】 前記青色系蛍光体が、下記の(1)また
は(2)のいずれかの青色系蛍光体である請求項1〜3
のいずれかに記載の半導体発光素子。 (1)下記の化学式で表される化合物を主体にしてなる
ハロ燐酸塩蛍光体 (M11-xEux10(PO46Cl2 ただし、M1は、Ba、Sr、Ca、Mgから選ばれる
少なくとも一つのアルカリ土類金属元素、xは、0<x
<1を満足する数値である。 (2)下記の化学式で表される化合物を主体にしてなる
アルミン酸塩蛍光体 (M21-xEux)(M31-y1Mny1)Al1017 ただし、M2は、Ba、Sr、Caから選ばれる少なく
とも一つのアルカリ土類金属元素、M3は、Mg、Zn
から選ばれる少なくとも一つの元素、x、y1は、各
々、0<x<1、0≦y1<0.05を満足する数値で
ある。
4. The blue-based phosphor is any one of the following blue-based phosphors (1) and (2).
The semiconductor light emitting device according to any one of 1. (1) Halophosphate phosphor (M1 1-x Eu x ) 10 (PO 4 ) 6 Cl 2 which is mainly composed of a compound represented by the following chemical formula, where M1 is Ba, Sr, Ca or Mg. At least one alkaline earth metal element selected, x is 0 <x
It is a numerical value that satisfies <1. (2) Aluminate phosphor (M2 1-x Eu x ) (M3 1-y1 Mn y1 ) Al 10 O 17 mainly composed of a compound represented by the following chemical formula, where M2 is Ba, Sr, At least one alkaline earth metal element selected from Ca, M3 is Mg, Zn
At least one element selected from x and y1 are numerical values that satisfy 0 <x <1 and 0 ≦ y1 <0.05, respectively.
【請求項5】 前記近紫外発光ダイオードが、窒化ガリ
ウム系化合物半導体で構成した発光層を有する近紫外発
光ダイオードである請求項1〜4のいずれかに記載の半
導体発光素子。
5. The semiconductor light emitting device according to claim 1, wherein the near ultraviolet light emitting diode is a near ultraviolet light emitting diode having a light emitting layer made of a gallium nitride compound semiconductor.
【請求項6】 請求項1〜5のいずれかに記載の半導体
発光素子を用いて構成したことを特徴とする半導体発光
装置。
6. A semiconductor light emitting device comprising the semiconductor light emitting element according to claim 1.
JP2001305031A 2001-10-01 2001-10-01 Semiconductor light emitting element and light emitting device using the same Expired - Fee Related JP3985486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001305031A JP3985486B2 (en) 2001-10-01 2001-10-01 Semiconductor light emitting element and light emitting device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001305031A JP3985486B2 (en) 2001-10-01 2001-10-01 Semiconductor light emitting element and light emitting device using the same

Publications (2)

Publication Number Publication Date
JP2003110150A true JP2003110150A (en) 2003-04-11
JP3985486B2 JP3985486B2 (en) 2007-10-03

Family

ID=19124882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001305031A Expired - Fee Related JP3985486B2 (en) 2001-10-01 2001-10-01 Semiconductor light emitting element and light emitting device using the same

Country Status (1)

Country Link
JP (1) JP3985486B2 (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005005482A (en) * 2003-06-12 2005-01-06 Citizen Electronics Co Ltd Led light emitting device and color display device using the same
JP2005039284A (en) * 2003-06-30 2005-02-10 Nichia Chem Ind Ltd Semiconductor light emitting element and light emitting device employing it
JP2005064272A (en) * 2003-08-13 2005-03-10 Mitsubishi Chemicals Corp Light emitting device, illumination device, and image display apparatus
JP2005093985A (en) * 2003-09-17 2005-04-07 Nan Ya Plast Corp Method of generating white light by secondary excitation system and its white light emitting device
JP2005109289A (en) * 2003-10-01 2005-04-21 Nichia Chem Ind Ltd Light-emitting device
JP2005235847A (en) * 2004-02-17 2005-09-02 Toyoda Gosei Co Ltd Light emitting device
JP2005243699A (en) * 2004-02-24 2005-09-08 Mitsubishi Chemicals Corp Light emitting element, image display device, and lighting device
WO2006043747A1 (en) * 2004-10-18 2006-04-27 Lg Innotek Co., Ltd Phosphor, light emitting device by using the same and manufacturing method of the same
JP2006324410A (en) * 2005-05-18 2006-11-30 Showa Denko Kk Resin composition for sealing light emitting diode
JP2006351773A (en) * 2005-06-15 2006-12-28 Rohm Co Ltd Semiconductor light-emitting apparatus
JP2007039517A (en) * 2005-08-02 2007-02-15 Sharp Corp Blue light-emitting phosphor and light emitter using the same
WO2007018260A1 (en) * 2005-08-10 2007-02-15 Mitsubishi Chemical Corporation Phosphor and light-emitting device using same
JP2007506264A (en) * 2003-09-15 2007-03-15 コニンクリユケ フィリップス エレクトロニクス エヌ.ブイ. White light emitting lighting system
US7201858B2 (en) 2004-10-18 2007-04-10 Kabushiki Kaisha Toshiba Fluorescent substance, method of manufacturing fluorescent substance, and light emitting device using the fluorescent substance
US7224000B2 (en) 2002-08-30 2007-05-29 Lumination, Llc Light emitting diode component
JP2007150309A (en) * 2005-11-23 2007-06-14 Visteon Global Technologies Inc Light emitting diode device having shield and/or filter
JP2007158298A (en) * 2005-11-08 2007-06-21 Sharp Corp Light-emitting device
JP2007191680A (en) * 2005-09-01 2007-08-02 Sharp Corp Light-emitting device
JP2007528606A (en) * 2004-03-10 2007-10-11 ゲルコアー リミテッド ライアビリティ カンパニー Phosphors for use in LEDs and mixtures thereof
JP2007533149A (en) * 2004-04-16 2007-11-15 ロディア・シミ White light emitting diode
US7391060B2 (en) 2004-04-27 2008-06-24 Matsushita Electric Industrial Co., Ltd. Phosphor composition and method for producing the same, and light-emitting device using the same
DE102008017039A1 (en) 2007-04-05 2008-10-09 Koito Manufacturing Co., Ltd. fluorescent
EP2015614A2 (en) 2007-07-12 2009-01-14 Koito Manufacturing Co., Ltd. Light emitting device
JP2009038348A (en) * 2007-07-12 2009-02-19 Koito Mfg Co Ltd Light emitting device
JP2010050438A (en) * 2008-08-22 2010-03-04 National Taiwan Univ Of Science & Technology White light-emitting diode
WO2010058961A3 (en) * 2008-11-21 2010-08-12 Lg Innotek Co., Ltd Light emitting apparatus and display apparatus using the same
US7800121B2 (en) 2002-08-30 2010-09-21 Lumination Llc Light emitting diode component
US7842960B2 (en) 2006-09-06 2010-11-30 Lumination Llc Light emitting packages and methods of making same
JP2011018934A (en) * 2004-08-04 2011-01-27 Intematix Corp New phosphor system for white light emitting diode
US7911127B2 (en) 2005-03-30 2011-03-22 Samsung Led Co., Ltd. Phosphor blend for wavelength conversion and white light emitting device using the same
WO2011108194A1 (en) * 2010-03-03 2011-09-09 株式会社小糸製作所 Light emitting device
JP2012190744A (en) * 2011-03-14 2012-10-04 Koito Mfg Co Ltd Fluorescent lamp type led lamp
US8513872B2 (en) 2010-08-05 2013-08-20 Sharp Kabushiki Kaisha Light emitting apparatus and method for manufacturing thereof
US8663498B2 (en) 2006-11-24 2014-03-04 Sharp Kabushiki Kaisha Phosphor, method of producing the same, and light emitting apparatus
US8729788B2 (en) 2005-05-30 2014-05-20 Sharp Kabushiki Kaisha Light emitting device provided with a wavelength conversion unit incorporating plural kinds of phosphors
US9146453B2 (en) 2012-06-21 2015-09-29 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device and projection apparatus
US9841175B2 (en) 2012-05-04 2017-12-12 GE Lighting Solutions, LLC Optics system for solid state lighting apparatus
US9951938B2 (en) 2009-10-02 2018-04-24 GE Lighting Solutions, LLC LED lamp
US10340424B2 (en) 2002-08-30 2019-07-02 GE Lighting Solutions, LLC Light emitting diode component

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070384A1 (en) 2016-10-11 2018-04-19 株式会社 東芝 Fluorescent body and production method therefor, and light-emitting device

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10340424B2 (en) 2002-08-30 2019-07-02 GE Lighting Solutions, LLC Light emitting diode component
US7224000B2 (en) 2002-08-30 2007-05-29 Lumination, Llc Light emitting diode component
US7800121B2 (en) 2002-08-30 2010-09-21 Lumination Llc Light emitting diode component
JP2005005482A (en) * 2003-06-12 2005-01-06 Citizen Electronics Co Ltd Led light emitting device and color display device using the same
JP2005039284A (en) * 2003-06-30 2005-02-10 Nichia Chem Ind Ltd Semiconductor light emitting element and light emitting device employing it
JP4581540B2 (en) * 2003-06-30 2010-11-17 日亜化学工業株式会社 Semiconductor light emitting element and light emitting device using the same
JP2005064272A (en) * 2003-08-13 2005-03-10 Mitsubishi Chemicals Corp Light emitting device, illumination device, and image display apparatus
JP4561064B2 (en) * 2003-08-13 2010-10-13 三菱化学株式会社 Light emitting device, lighting device, and image display device
JP2007506264A (en) * 2003-09-15 2007-03-15 コニンクリユケ フィリップス エレクトロニクス エヌ.ブイ. White light emitting lighting system
JP2005093985A (en) * 2003-09-17 2005-04-07 Nan Ya Plast Corp Method of generating white light by secondary excitation system and its white light emitting device
JP2005109289A (en) * 2003-10-01 2005-04-21 Nichia Chem Ind Ltd Light-emitting device
JP4534513B2 (en) * 2004-02-17 2010-09-01 豊田合成株式会社 Light emitting device
JP2005235847A (en) * 2004-02-17 2005-09-02 Toyoda Gosei Co Ltd Light emitting device
JP2005243699A (en) * 2004-02-24 2005-09-08 Mitsubishi Chemicals Corp Light emitting element, image display device, and lighting device
JP2007528606A (en) * 2004-03-10 2007-10-11 ゲルコアー リミテッド ライアビリティ カンパニー Phosphors for use in LEDs and mixtures thereof
JP4799549B2 (en) * 2004-04-16 2011-10-26 ロディア・シミ White light emitting diode
US7968005B2 (en) 2004-04-16 2011-06-28 Rhodia Chimie White light emitting diode
JP2007533149A (en) * 2004-04-16 2007-11-15 ロディア・シミ White light emitting diode
US7391060B2 (en) 2004-04-27 2008-06-24 Matsushita Electric Industrial Co., Ltd. Phosphor composition and method for producing the same, and light-emitting device using the same
US7651634B2 (en) 2004-04-27 2010-01-26 Panasonic Corporation Phosphor composition and method for producing the same, and light-emitting device using the same
US8419975B2 (en) 2004-04-27 2013-04-16 Panasonic Corporation Phosphor composition and method for producing the same, and light-emitting device using the same
US8221649B2 (en) 2004-04-27 2012-07-17 Panasonic Corporation Phosphor composition and method for producing the same, and light-emitting device using the same
US8551362B2 (en) 2004-04-27 2013-10-08 Panasonic Corporation Phosphor composition and method for producing the same, and light-emitting device using the same
US7892453B2 (en) 2004-04-27 2011-02-22 Panasonic Corporation Phosphor composition and method for producing the same, and light-emitting device using the same
US7811472B2 (en) 2004-04-27 2010-10-12 Panasonic Corporation Phosphor composition and method for producing the same, and light-emitting device using the same
US7507354B2 (en) 2004-04-27 2009-03-24 Panasonic Corporation Phosphor composition and method for producing the same, and light-emitting device using the same
US7615797B2 (en) 2004-04-27 2009-11-10 Panasonic Corporation Phosphor composition and method for producing the same, and light-emitting device using the same
US8226853B2 (en) 2004-04-27 2012-07-24 Panasonic Corporation Phosphor composition and method for producing the same, and light-emitting device using the same
JP4833212B2 (en) * 2004-08-04 2011-12-07 インテマティックス・コーポレーション A new phosphor system for white light emitting diodes
JP2011018934A (en) * 2004-08-04 2011-01-27 Intematix Corp New phosphor system for white light emitting diode
US7201858B2 (en) 2004-10-18 2007-04-10 Kabushiki Kaisha Toshiba Fluorescent substance, method of manufacturing fluorescent substance, and light emitting device using the fluorescent substance
WO2006043747A1 (en) * 2004-10-18 2006-04-27 Lg Innotek Co., Ltd Phosphor, light emitting device by using the same and manufacturing method of the same
JP2008517458A (en) * 2004-10-18 2008-05-22 エルジー イノテック カンパニー リミテッド Fluorescent substance, light emitting device using the fluorescent substance, and method for producing the fluorescent substance {Phosphor, lightemitting device using the manufacturing and manufacturing method of the same}
US7911127B2 (en) 2005-03-30 2011-03-22 Samsung Led Co., Ltd. Phosphor blend for wavelength conversion and white light emitting device using the same
JP2006324410A (en) * 2005-05-18 2006-11-30 Showa Denko Kk Resin composition for sealing light emitting diode
US10008644B2 (en) 2005-05-30 2018-06-26 Sharp Kabushiki Kaisha Light emitting device and fabricating method thereof
US8729788B2 (en) 2005-05-30 2014-05-20 Sharp Kabushiki Kaisha Light emitting device provided with a wavelength conversion unit incorporating plural kinds of phosphors
US9281456B2 (en) 2005-05-30 2016-03-08 Sharp Kabushiki Kaisha Light emitting device and fabricating method thereof
US9722149B2 (en) 2005-05-30 2017-08-01 Sharp Kabushiki Kaisha Light emitting device and fabricating method thereof
JP2006351773A (en) * 2005-06-15 2006-12-28 Rohm Co Ltd Semiconductor light-emitting apparatus
JP2007039517A (en) * 2005-08-02 2007-02-15 Sharp Corp Blue light-emitting phosphor and light emitter using the same
US8277687B2 (en) 2005-08-10 2012-10-02 Mitsubishi Chemical Corporation Phosphor and light-emitting device using same
WO2007018260A1 (en) * 2005-08-10 2007-02-15 Mitsubishi Chemical Corporation Phosphor and light-emitting device using same
JP2007191680A (en) * 2005-09-01 2007-08-02 Sharp Corp Light-emitting device
JP2007158298A (en) * 2005-11-08 2007-06-21 Sharp Corp Light-emitting device
JP2007150309A (en) * 2005-11-23 2007-06-14 Visteon Global Technologies Inc Light emitting diode device having shield and/or filter
US7842960B2 (en) 2006-09-06 2010-11-30 Lumination Llc Light emitting packages and methods of making same
US8663498B2 (en) 2006-11-24 2014-03-04 Sharp Kabushiki Kaisha Phosphor, method of producing the same, and light emitting apparatus
US9884990B2 (en) 2006-11-24 2018-02-06 Ge Phosphors Technology, Llc Phosphor, method of producing the same, and light emitting apparatus
US10259997B2 (en) 2006-11-24 2019-04-16 Ge Phosphors Technology, Llc Phosphor, method of producing the same, and light emitting apparatus
US9624427B2 (en) 2006-11-24 2017-04-18 Ge Phosphors Technology, Llc Phosphor, method of producing the same, and light emitting apparatus
DE102008017039A1 (en) 2007-04-05 2008-10-09 Koito Manufacturing Co., Ltd. fluorescent
US7704411B2 (en) 2007-04-05 2010-04-27 Koito Manufacturing Co., Ltd. Phosphor
EP2015614A2 (en) 2007-07-12 2009-01-14 Koito Manufacturing Co., Ltd. Light emitting device
JP2009038348A (en) * 2007-07-12 2009-02-19 Koito Mfg Co Ltd Light emitting device
US8187495B2 (en) * 2007-07-12 2012-05-29 Koito Manufacturing Co., Ltd. Light emitting device
JP2010050438A (en) * 2008-08-22 2010-03-04 National Taiwan Univ Of Science & Technology White light-emitting diode
US8913213B2 (en) 2008-11-21 2014-12-16 Lg Innotek Co., Ltd. Light emitting apparatus and display apparatus using the same
KR101081246B1 (en) 2008-11-21 2011-11-08 엘지이노텍 주식회사 Light emitting apparatus and fabrication method thereof
WO2010058961A3 (en) * 2008-11-21 2010-08-12 Lg Innotek Co., Ltd Light emitting apparatus and display apparatus using the same
CN102007612A (en) * 2008-11-21 2011-04-06 Lg伊诺特有限公司 Light emitting apparatus and display apparatus using the same
US9951938B2 (en) 2009-10-02 2018-04-24 GE Lighting Solutions, LLC LED lamp
US8754432B2 (en) 2010-03-03 2014-06-17 Koito Manufacturing Co., Ltd. Light emitting device
WO2011108194A1 (en) * 2010-03-03 2011-09-09 株式会社小糸製作所 Light emitting device
US8513872B2 (en) 2010-08-05 2013-08-20 Sharp Kabushiki Kaisha Light emitting apparatus and method for manufacturing thereof
JP2012190744A (en) * 2011-03-14 2012-10-04 Koito Mfg Co Ltd Fluorescent lamp type led lamp
US10139095B2 (en) 2012-05-04 2018-11-27 GE Lighting Solutions, LLC Reflector and lamp comprised thereof
US9841175B2 (en) 2012-05-04 2017-12-12 GE Lighting Solutions, LLC Optics system for solid state lighting apparatus
US9146453B2 (en) 2012-06-21 2015-09-29 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device and projection apparatus

Also Published As

Publication number Publication date
JP3985486B2 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
JP3985486B2 (en) Semiconductor light emitting element and light emitting device using the same
JP3993854B2 (en) Semiconductor light emitting element and light emitting device using the same
KR100798054B1 (en) Light emitting devices having silicate fluorescent phosphors
US7753553B2 (en) Illumination system comprising color deficiency compensating luminescent material
US7544309B2 (en) Illumination system comprising a radiation source and a fluorescent material
US7648649B2 (en) Red line emitting phosphors for use in led applications
JP4559496B2 (en) Light emitting device
US7002291B2 (en) LED-based white-emitting illumination unit
US20070194695A1 (en) White light emitting device
JP2017147467A (en) Red line emitting phosphors for use in led applications
US20060208270A1 (en) Borate phosphor materials for use in lighting applications
US20060027781A1 (en) Novel phosphor systems for a white light emitting diode (LED)
US20040124758A1 (en) Luminescene conversion based light emitting diode and phosphors for wave length conversion
US20070252513A1 (en) Illumination System Comprising a Radiation Source and a Fluorescent Material
JP2007145958A (en) Fluorophor and light-emitting device
JP4989454B2 (en) Phosphor and light emitting device using the same
JP2006219636A (en) Phosphor, method for producing the same and light-emitting device
JP2004123764A (en) Red light-emitting phosphor and light-emitting element using the same
KR101153194B1 (en) Novel yellow-emitting phosphors and white light emitting diodes using the same thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040702

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees