JP2003110150A - Semiconductor light-emitting element and light-emitting device using it - Google Patents

Semiconductor light-emitting element and light-emitting device using it

Info

Publication number
JP2003110150A
JP2003110150A JP2001305031A JP2001305031A JP2003110150A JP 2003110150 A JP2003110150 A JP 2003110150A JP 2001305031 A JP2001305031 A JP 2001305031A JP 2001305031 A JP2001305031 A JP 2001305031A JP 2003110150 A JP2003110150 A JP 2003110150A
Authority
JP
Japan
Prior art keywords
phosphor
light
emitting device
near
semiconductor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001305031A
Other languages
Japanese (ja)
Other versions
JP3985486B2 (en
Inventor
Tadaaki Ikeda
Katsuaki Iwama
Hiromi Kitahara
Toshihide Maeda
Shozo Oshio
俊秀 前田
博実 北原
祥三 大塩
克昭 岩間
忠昭 池田
Original Assignee
Matsushita Electric Ind Co Ltd
松下電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Ind Co Ltd, 松下電器産業株式会社 filed Critical Matsushita Electric Ind Co Ltd
Priority to JP2001305031A priority Critical patent/JP3985486B2/en
Publication of JP2003110150A publication Critical patent/JP2003110150A/en
Application granted granted Critical
Publication of JP3985486B2 publication Critical patent/JP3985486B2/en
Application status is Expired - Fee Related legal-status Critical
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor light-emitting element which is composed of a near-ultraviolet LED and a fluorescent material layer and emits white light with high beam and to provide a light emitting device. SOLUTION: A semiconductor light-emitting element which emits white light with high beam can be obtained by combining a near-ultraviolet LED and a fluorescent material layer including a blue fluorescent material which absorbs the near-ultraviolet light near 350-410 nm emitted by the near-ultraviolet LED and has its light-emitting peak in the wavelength region of over 400 nm and under 500 nm and a yellow fluorescent material which has its light-emitting peak in the wavelength region over 550 nm and under 600 nm.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、近紫外発光ダイオード(以後、近紫外LEDという)と複数の蛍光体とを組み合わせて白色系光を放つ半導体発光素子と、この半導体発光素子を用いて構成した半導体発光装置に関するものである。 BACKGROUND OF THE INVENTION [0001] [Technical Field of the Invention The present invention provides near-ultraviolet light-emitting diode (hereinafter, referred to as near-ultraviolet LED) a semiconductor light emitting device that emits white light by combining a and a plurality of phosphor When, to a semiconductor light emitting apparatus using the semiconductor light-emitting device. 【0002】 【従来の技術】従来から、350nmを超え410nm 2. Description of the Related Art, 410nm beyond the 350nm
以下の近紫外の波長領域に発光ピークを有する近紫外L Near ultraviolet L having an emission peak in a near ultraviolet wavelength region
ED(厳密には近紫外LEDチップ)と、この近紫外L And ED (strictly, a near-ultraviolet LED chip), the near-ultraviolet L
EDが放つ近紫外光を吸収して、380nm以上780 It absorbs near-ultraviolet light emitted by the ED, 780 more than 380nm
nm以下の可視波長範囲内に発光ピークを有する蛍光を放つ無機蛍光体を含む蛍光体層とを組み合わせてなる、 Comprising a combination of a phosphor layer containing an inorganic phosphor that emits fluorescence having an emission peak within the following visible wavelength range nm,
白色系光を放つ半導体発光素子が知られている。 The semiconductor light emitting device that emits white light is known. 無機蛍光体を用いる上記半導体発光素子は、有機蛍光体を用いる半導体発光素子よりも耐久性の面で優れるため、広く用いられている。 The semiconductor light emitting device using an inorganic fluorescent material is because it is excellent in durability, widely used than the semiconductor light emitting device using an organic fluorescent material. 【0003】なお、本明細書では、CIE色度図における発光色度点(x,y)が、0.21≦x≦0.48、 [0003] In this specification, the light-emitting chromaticity point in the CIE chromaticity diagram (x, y) is, 0.21 ≦ x ≦ 0.48,
0.19≦y≦0.45の範囲内にある光を白色系光と定義している。 The light in the range of 0.19 ≦ y ≦ 0.45 is defined as white light. 【0004】このような半導体発光素子としては、例えば、特開平11−246857号公報、特開2000− [0004] As such a semiconductor light emitting device, for example, JP-A 11-246857, JP 2000-
183408号公報、特表2000−509912号公報、特開2001−143869号公報などに開示される半導体発光素子がある。 183408, JP-T-2000-509912, JP-there is a semiconductor light emitting device is disclosed in, JP 2001-143869. 【0005】特開平11−246857号公報には、一般式(La 1-xy Eu x Sm y22 S(ただし、0.0 [0005] Japanese Patent Laid-Open No. 11-246857, the general formula (La 1-xy Eu x Sm y) 2 O 2 S ( where 0.0
1≦x≦0.15、0.0001≦y≦0.03)で表される酸硫化ランタン蛍光体を赤色蛍光体とし、窒化ガリウム系化合物半導体で構成した発光層を有し、波長3 1 ≦ x ≦ 0.15,0.0001 ≦ y ≦ 0.03) in oxysulfide lanthanum phosphor represented was a red phosphor, a light-emitting layer composed of gallium nitride-based compound semiconductor, the wavelength 3
70nm前後の光を放つ近紫外LEDと組み合わせてなる半導体発光素子が記載されている。 The semiconductor light emitting device comprising in combination with a near ultraviolet LED that emits 70nm around the light. また、特開平11 In addition, JP-A-11
−246857号公報には、前記赤色蛍光体と、他の青色、緑色蛍光体とを適正に組み合わせることにより、任意の色温度を有する白色光を放つ半導体発光素子に関する発明が開示されている。 The -246857 discloses the red phosphor and the other blue, by combining properly the green phosphor, the invention discloses a semiconductor light emitting device that emits white light having an arbitrary color temperature. 【0006】特開2000−183408号公報には、 [0006] Japanese Unexamined Patent Application Publication No. 2000-183408,
窒化ガリウム系化合物半導体で構成した発光層を有し、 A light-emitting layer made of a gallium nitride-based compound semiconductor,
370nm付近に発光ピークを有する紫外光を放つ紫外LEDチップと、前記紫外光を吸収して青色光を発光する青色蛍光体を含む第1の蛍光体層と、前記青色光を吸収して黄橙色光を発光する黄橙色蛍光体を含む第2の蛍光体層とを具備する半導体発光素子が記載されている。 And ultraviolet LED chip which emits ultraviolet light having an emission peak around 370 nm, a first phosphor layer containing a blue phosphor emitting blue light by absorbing the ultraviolet light, yellowish orange by absorbing the blue light the semiconductor light-emitting element and a second phosphor layer comprising a yellow-orange phosphor emitting the light.
ここで青色蛍光体としては、下記の(1)〜(3)から選ばれる少なくとも1種からなる青色蛍光体が用いられている。 Examples of the blue phosphor, and blue phosphor is used consisting of at least one selected from the following (1) to (3). (1)一般式(M1,Eu) 10 (PO 46 Cl 2 (式中、M1はMg、Ca、SrおよびBaから選ばれる少なくとも一つの元素を表す)で実質的に表される2価のユーロピウム付活ハロ燐酸塩蛍光体。 (1) In formula (M1, Eu) 10 (PO 4) 6 Cl 2 ( wherein, M1 is Mg, Ca, at least represents one element selected from Sr and Ba) 2 divalent substantially represented by europium-activated halophosphate phosphor. (2)一般式a(M2,Eu)O・bAl 23 (式中、 (2) General formula a (M2, Eu) O · bAl 2 O 3 ( in the formula,
M2はMg、Ca、Sr、Ba、Zn、Li、RbおよびCsから選ばれる少なくとも一つの元素を示し、aおよびbはa>0、b>0、0.2≦a/b≦1.5を満足する数値である)で実質的に表される2価のユーロピウム付活アルミン酸塩蛍光体。 M2 is Mg, Ca, Sr, Ba, Zn, Li, represents at least one element selected from Rb and Cs, a and b are a> 0, b> 0,0.2 ≦ a / b ≦ 1.5 divalent europium-activated aluminate phosphor substantially represented by a numerical value satisfying a) a. (3)一般式a(M2,Eu v ,Mn w )O・bAl 23 (3) General formula a (M2, Eu v, Mn w) O · bAl 2 O 3
(式中、M2はMg、Ca、Sr、Ba、Zn、Li、 (Wherein, M2 is Mg, Ca, Sr, Ba, Zn, Li,
RbおよびCsから選ばれる少なくとも一つの元素を示し、a、b、vおよびwはa>0、b>0、0.2≦a Represents at least one element selected from Rb and Cs, a, b, v and w are a> 0, b> 0,0.2 ≦ a
/b≦1.5、0.001≦w/v≦0.6を満足する数値である)で実質的に表される2価のユーロピウムおよびマンガン付活アルミン酸塩蛍光体。 Divalent europium and manganese activated aluminate phosphor substantially represented by a is) numbers satisfying /B≦1.5,0.001≦W/v≦0.6. 【0007】また、黄橙色蛍光体としては、一般式(Y [0007] As the yellow-orange phosphor, the general formula (Y
1-xy Gd x Ce y3 Al 512 (式中、xおよびyは0.1≦x≦0.55、0.01≦y≦0.4を満足する数。)で実質的に表される3価のセリウム付活アルミン酸塩蛍光体(以後、YAG系蛍光体という)が用いられている。 1-xy Gd x Ce y) 3 Al 5 O 12 ( number in the formula, x and y satisfy the 0.1 ≦ x ≦ 0.55,0.01 ≦ y ≦ 0.4.) Substantially in trivalent cerium-activated aluminate phosphor represented (hereinafter, referred to as YAG phosphor) has been used. 【0008】また、特表2000−509912号公報には、300nm以上370nm以下の波長領域に発光ピークを有する紫外LEDと、430nm以上490n Further, JP-T-2000-509912, the ultraviolet LED having an emission peak in a wavelength region 300nm or 370 nm, 430 nm or more 490n
m以下の波長領域に発光ピークを有する青色蛍光体と、 A blue phosphor having an emission peak in a wavelength region m,
520nm以上570nm以下の波長領域に発光ピークを有する緑色蛍光体と、590nm以上630nm以下の波長領域に発光ピークを有する赤色蛍光体とを組み合わせてなる半導体発光素子が開示されている。 A green phosphor having an emission peak in 570nm or less wavelength region above 520 nm, the semiconductor light-emitting device comprising a combination of a red phosphor having an emission peak in 630nm or less in a wavelength region above 590nm is disclosed. この半導体発光素子では、青色蛍光体として、BaMgAl 10 In this semiconductor light-emitting device, as a blue phosphor, BaMgAl 10 O
17 :Eu、Sr 5 (PO 43 Cl:Eu、ZnS:Ag 17: Eu, Sr 5 (PO 4) 3 Cl: Eu, ZnS: Ag
(いずれも発光ピーク波長は450nm)が、緑色蛍光体として、ZnS:Cu(発光ピーク波長550nm) (Both emission peak wavelength 450 nm) is, as a green phosphor, ZnS: Cu (emission peak wavelength 550 nm)
やBaMgAl 1017 :Eu,Mn(発光ピーク波長5 And BaMgAl 10 O 17: Eu, Mn ( peak emission wavelength 5
15nm)が、赤色蛍光体としては、Y 22 S:Eu 3+ 15 nm) is, as the red phosphor, Y 2 O 2 S: Eu 3+
(発光ピーク波長628nm)、YVO 4 :Eu 3+ (発光ピーク波長620nm)、Y(V,P,B)O 4 :E (Emission peak wavelength 628nm), YVO 4: Eu 3+ ( emission peak wavelength 620nm), Y (V, P , B) O 4: E
3+ (発光ピーク波長615nm)、YNbO 4 :Eu u 3+ (emission peak wavelength 615nm), YNbO 4: Eu
3+ (発光ピーク波長615nm)、YTaO 4 :Eu 3+ 3+ (emission peak wavelength 615nm), YTaO 4: Eu 3+
(発光ピーク波長615nm)、[Eu(acac) (Emission peak wavelength 615nm), [Eu (acac)
3 (phen)] (発光ピーク波長611nm)が用いられている。 3 (phen)] (emission peak wavelength 611 nm) is used. 【0009】一方、特開2001−143869号公報には、有機材料を発光層とし、430nm以下の青紫〜 On the other hand, JP-A-2001-143869, an organic material as a light emitting layer, 430 nm or less violet ~
近紫外の波長範囲に発光ピークを有する有機LED、または、無機材料を発光層とし、上記青紫〜近紫外の波長範囲に発光ピークを有する無機LEDと、青色蛍光体、 The organic LED in the wavelength range of the near UV, or an inorganic material as a light emitting layer, an inorganic LED and a blue phosphor having an emission peak in a wavelength range outside the blue-violet-near-ultraviolet,
緑色蛍光体および赤色蛍光体を組み合わせてなる半導体発光素子が記載されている。 Green phosphor and a semiconductor light-emitting device comprising a combination of red phosphors are described. この半導体発光素子では、 In this semiconductor light-emitting device,
青色蛍光体としては、Sr 227 :Sn 4+ 、Sr 4 Al The blue phosphor, Sr 2 P 2 O 7: Sn 4+, Sr 4 Al
1425 :Eu 2+ 、BaMgAl 1017 :Eu 2+ 、SrG 14 O 25: Eu 2+, BaMgAl 10 O 17: Eu 2+, SrG
24 :Ce 3+ 、CaGa 24 :Ce 3+ 、(Ba,S a 2 S 4: Ce 3+, CaGa 2 S 4: Ce 3+, (Ba, S
r)(Mg,Mn)Al 1017 :Eu 2+ 、(Sr,C r) (Mg, Mn) Al 10 O 17: Eu 2+, (Sr, C
a,Ba,Mg) 10 (PO 46 Cl 2 :Eu 2 + 、BaA a, Ba, Mg) 10 ( PO 4) 6 Cl 2: Eu 2 +, BaA
2 SiO 8 :Eu 2+ 、Sr 227 :Eu 2+ 、Sr 5 (P l 2 SiO 8: Eu 2+, Sr 2 P 2 O 7: Eu 2+, Sr 5 (P
43 Cl:Eu 2+ 、(Sr,Ca,Ba) 5 (PO 4 O 4) 3 Cl: Eu 2+ , (Sr, Ca, Ba) 5 (PO 4)
3 Cl:Eu 2+ 、BaMg 2 Al 1627 :Eu 2+ 、(B 3 Cl: Eu 2+, BaMg 2 Al 16 O 27: Eu 2+, (B
a,Ca) 5 (PO 43 Cl:Eu 2+ 、Ba 3 MgSi 2 a, Ca) 5 (PO 4 ) 3 Cl: Eu 2+, Ba 3 MgSi 2
8 :Eu O 8: Eu 2+ 、Sr 3 MgSi 28 :Eu 2+が用いられ、 2+, Sr 3 MgSi 2 O 8 : Eu 2+ is used,
緑色蛍光体としては、(BaMg)Al 1627 :E The green phosphor, (BaMg) Al 16 O 27 : E
2+ ,Mn 2+ 、Sr 4 Al 1425 :Eu 2+ 、(SrB u 2+, Mn 2+, Sr 4 Al 14 O 25: Eu 2+, (SrB
a)Al 2 Si 28 :Eu 2+ 、(BaMg) 2 SiO 4 a) Al 2 Si 2 O 8 : Eu 2+, (BaMg) 2 SiO 4:
Eu 2+ 、Y 2 SiO 5 :Ce 3+ ,Tb Eu 2+, Y 2 SiO 5: Ce 3+, Tb 3+ 、Sr 227 3+, Sr 2 P 2 O 7 -
Sr 227 :Eu 2+ 、(BaCaMg) 5 (PO 43 Sr 2 B 2 O 7: Eu 2+, (BaCaMg) 5 (PO 4) 3 C
l:Eu 2+ 、Sr 2 Si 38 −2SrCl 2 :Eu 2+ 、Z l: Eu 2+, Sr 2 Si 3 O 8 -2SrCl 2: Eu 2+, Z
2 SiO 4 −MgAl 1119 :Ce 3+ ,Tb 3+ 、Ba 2 r 2 SiO 4 -MgAl 11 O 19 : Ce 3+, Tb 3+, Ba 2
SiO 4 :Eu 2+ 、Sr 2 SiO 4 :Eu 2+ 、(BaS SiO 4: Eu 2+, Sr 2 SiO 4: Eu 2+, (BaS
r)SiO 4 :Eu 2+が用いられ、赤色蛍光体としては、Y 22 S:Eu 3+ 、YAlO 3 :Eu 3+ 、Ca 22 r) SiO 4: Eu 2+ is used as the red phosphor, Y 2 O 2 S: Eu 3+, YAlO 3: Eu 3+, Ca 2 Y 2
(SiO 46 :Eu 3+ 、LiY 9 (SiO 462 :Eu (SiO 4) 6: Eu 3+ , LiY 9 (SiO 4) 6 O 2: Eu
3+ 、YVO 4 :Eu 3+ 、CaS:Eu 2+ 、Gd 23 :E 3+, YVO 4: Eu 3+, CaS: Eu 2+, Gd 2 O 3: E
3+ 、Gd 22 S:Eu 3+ 、Y(P,V)O 4 :Eu 3+ u 3+, Gd 2 O 2 S : Eu 3+, Y (P, V) O 4: Eu 3+
が用いられている。 It has been used. 【0010】このように、従来の白色系光を放つ半導体発光素子では、青色系蛍光体と緑色系蛍光体と赤色系蛍光体が放つ発光の混色、または、青色系蛍光体と黄色系蛍光体が放つ発光の混色によって白色系光が得られている。 [0010] Thus, in the semiconductor light emitting element that emits a conventional white-based light, emitting mixed color emitted by the blue phosphor and a green phosphor and a red phosphor, or blue phosphor and yellow phosphor white light is obtained by the light emission of the mixed color emitted by the. 【0011】なお、青色系蛍光体と黄色系蛍光体が放つ発光の混色によって白色系光を得る方式の従来の半導体発光素子では、黄色系蛍光体として、上記YAG系蛍光体が用いられている。 [0011] In the conventional semiconductor light-emitting element method for obtaining a white light by emitting a mixed color emitted by the blue phosphor and the yellow phosphor as a yellow phosphor, the YAG-based phosphor is used . また、上記YAG系蛍光体が、3 Further, the YAG-based phosphor, 3
50nmを超え410nm以下の波長領域、特に窒化ガリウム系化合物半導体で構成した発光層を有する近紫外LEDが放つ360nm以上410nm以下の近紫外光の励起によってほとんど発光せず、410nm以上53 A wavelength region 410nm exceeded 50 nm, no particular almost light by excitation of near-ultraviolet light below 360nm or 410nm emitted by the near-ultraviolet LED having a light emitting layer made of a gallium nitride-based compound semiconductor, 410nm or more 53
0nm以下の青色系光の励起下で黄色光を高効率で放つ蛍光体であるために、YAG系蛍光体を用いた従来の半導体発光素子では、青色系蛍光体を必須とし、この青色系蛍光体が放つ青色光によって黄色系蛍光体を励起して白色系光を得ている。 To be a phosphor which emits yellow light at high efficiency under excitation of 0nm following blue light, in the conventional semiconductor light emitting device using the YAG-based phosphor, an essential blue phosphor, the blue phosphor by exciting a yellow phosphor to obtain a white-based light by blue light body emits. 【0012】このような白色系光を放つ半導体発光素子は、照明装置や表示装置などの発光装置用として需要の多い半導体発光素子として知られるものである。 [0012] The semiconductor light emitting device that emits such a white-based light is what is known as many semiconductor light emitting devices demand as a light emitting device such as a lighting device or a display device. 【0013】一方、YAG系蛍光体以外の無機化合物蛍光体をLEDと組み合わせた半導体発光素子も従来公知である。 Meanwhile, the semiconductor light emitting device that combines an inorganic compound phosphor other than YAG phosphor and LED is also known conventionally. 前述した特開2001−143869号公報には、Ba 2 SiO 4 :Eu 2+ 、Sr 2 SiO 4 :Eu 2+ 、M The aforementioned JP 2001-143869 discloses, Ba 2 SiO 4: Eu 2+ , Sr 2 SiO 4: Eu 2+, M
2 SiO 4 :Eu 2+ 、(BaSr) 2 SiO 4 :Eu 2+ g 2 SiO 4: Eu 2+, (BaSr) 2 SiO 4: Eu 2+,
(BaMg) 2 SiO 4 :Eu 2+珪酸塩蛍光体を用いた半導体発光素子が記載されている。 (BaMg) 2 SiO 4: semiconductor light emitting device using Eu 2+ silicate phosphor is described. 【0014】しかしながら、この特開2001−143 [0014] However, this JP-2001-143
869号公報に記載の半導体発光素子では、いずれの珪酸塩蛍光体も緑色系蛍光体としての応用であり、黄色系蛍光体としての応用ではない。 The semiconductor light emitting device according to 869 JP, any silicate phosphor is also applied as a green phosphor, it is not applicable as the yellow phosphor. また、無機化合物からなる無機LEDよりも有機LEDを用いることが発光効率の点から好ましいともされている。 Moreover, the use of the organic LED than inorganic LED made of an inorganic compound is also preferred from the viewpoint of luminous efficiency. すなわち、この公開公報に記載の発明は、近紫外LED、好ましくは有機L That is, the invention described in this publication is, near-ultraviolet LED, preferably an organic L
EDと、青色系、緑色系、赤色系蛍光体の3種類の無機化合物の蛍光体とを組み合わせてなる半導体発光素子に関するものである。 And ED, blue, greenish, to a semiconductor light-emitting device comprising a combination of phosphors of three kinds of inorganic compounds of the red phosphor. 【0015】なお、本発明者らの実験の限りでは、この特開2001−143869号公報に記載されるSr 2 [0015] Incidentally, as long as the experiment of the present inventors, Sr 2 that is described in this Japanese Patent 2001-143869 JP
SiO 4 :Eu 2+珪酸塩蛍光体は、二つの結晶相(斜方晶と単斜晶)を持ち得る蛍光体であり、少なくとも実用的に用いられるEu 2+発光中心添加量(=Eu原子の数/(Sr原子の数+Eu原子の数):x)が、0.01 SiO 4: Eu 2+ silicate phosphor is a phosphor which can have two crystalline phases (orthorhombic and monoclinic), at least practically Eu 2+ luminescent center added amount used (= Eu atoms of number / (number of number + Eu atom of Sr atom): x) is, 0.01
≦x≦0.05の範囲内では、斜方晶Sr 2 SiO 4 :E ≦ x ≦ In 0.05 within the range of, orthorhombic Sr 2 SiO 4: E
2+ (α'−Sr 2 SiO 4 :Eu 2+ )は、波長560〜 u 2+ (α'-Sr 2 SiO 4: Eu 2+) , the wavelength 560
575nm付近に発光ピークを有する黄色光を放つ黄色系蛍光体であり、単斜晶Sr 2 SiO 4 :Eu 2+ (β−S A yellow phosphor that emits yellow light having an emission peak around 575 nm, monoclinic Sr 2 SiO 4: Eu 2+ ( β-S
2 SiO 4 :Eu 2+ )は、波長545nm付近に発光ピークを有する緑色光を放つ緑色系蛍光体である。 r 2 SiO 4: Eu 2+) is a green phosphor that emits green light having an emission peak in the vicinity of a wavelength of 545 nm. したがって、特開2001−143869号公報に記載のSr Accordingly, Sr described in JP-A-2001-143869
2 SiO 4 :Eu 2+緑色蛍光体は、単斜晶Sr 2 SiO 4 2 SiO 4: Eu 2+ green phosphor monoclinic Sr 2 SiO 4:
Eu 2+蛍光体と見なすことができる。 It can be regarded as Eu 2+ phosphor. 【0016】ここで、前記珪酸塩蛍光体について説明すると、従来から、(Sr 1-a3-b3-x Ba a3 Ca b3 Eu x [0016] Here, to describe the silicate phosphor, conventionally, (Sr 1-a3-b3 -x Ba a3 Ca b3 Eu x)
2 SiO 4の化学式で表される珪酸塩蛍光体(ただし、a Silicate phosphor represented by the chemical formula 2 SiO 4 (where, a
3、b3、xは、各々、0≦a3≦1、0≦b3≦1、 3, b3, x, respectively, 0 ≦ a3 ≦ 1,0 ≦ b3 ≦ 1,
0<x<1を満足する数値)が知られている。 0 <number that satisfies x <1) is known. 上記珪酸塩蛍光体は、蛍光ランプ用の蛍光体として検討がなされた蛍光体であり、Ba−Sr−Caの組成を変えることによって、発光のピーク波長が505nm以上598n The silicate phosphor is a phosphor study was made as a phosphor for fluorescent lamps, by changing the composition of Ba-Sr-Ca, the peak wavelength of the emission is more than 505 nm 598N
m以下程度の範囲内で変化する蛍光体であることが知られている。 It is known to be a phosphor which varies within a range of degree less m. さらに、170〜350nmの範囲内の光照射の下で比較的高効率の発光を示す蛍光体であることも知られている(J.Electrochemical Furthermore, it is also known that a phosphor exhibiting relatively high efficiency of light emission under irradiation of light in the range of 170~350nm (J.Electrochemical
Soc. Soc. Vol. Vol. 115、No. 115, No. 11(1968)p 11 (1968) p
p. p. 1181−1184参照)。 See 1181-1184). 【0017】しかしながら、上記文献には、上記珪酸塩蛍光体が、350nmを超える長い波長領域の、近紫外光励起条件下において高効率の発光を示すことに関する記載は無い。 [0017] However, the above references, the silicate phosphor, the long wavelength region exceeding 350 nm, there is no description about showing a high-efficiency light emission in the near ultraviolet excitation conditions. このため、上記珪酸塩蛍光体が、上記35 Therefore, the silicate phosphor, the 35
0nmを超え410nm以下の近紫外の波長領域、とりわけ窒化ガリウム系化合物半導体で構成した発光層を有する近紫外LEDが放つ370〜390nm付近の近紫外光励起によって、高効率の、550nm以上600n 410nm following near ultraviolet wavelength region beyond the 0 nm, especially by near ultraviolet excitation near 370~390nm emitted by the near-ultraviolet LED having a light emitting layer composed of gallium nitride-based compound semiconductor, high-efficiency, 550 nm or more 600n
m未満の黄色系発光を放つ蛍光体であることは、これまで知られていなかった。 It is a fluorescent substance that emits yellow light emitting less than m has not been known so far. 【0018】近紫外LEDと複数の蛍光体を含む蛍光体層とを組み合わせてなる半導体発光素子を用いた従来の発光装置にあっては、青色系蛍光体と緑色系蛍光体と赤色系蛍光体が放つ発光の混色、または、青色系蛍光体が放つ青色系光とこの青色系光を吸収してYAG系蛍光体が放つ黄色系光の混色によって白色系光を得る方式の半導体発光素子を用いて発光装置を構成していた。 [0018] In the conventional light emitting device using a semiconductor light emitting device comprising a combination of a phosphor layer containing a near-ultraviolet LED and a plurality of phosphors, blue phosphors and green phosphor and a red phosphor a semiconductor light-emitting device of the system to obtain a white light by emitting a mixed color, or color mixing of blue yellow light phosphor emitting absorbs the blue light the blue light emitted by the YAG-based phosphor is emitting It constituted the light-emitting device Te. 【0019】なお、本明細書では、半導体発光素子を用いた各種表示装置(例えばLED情報表示端末、LED [0019] In this specification, various display devices using semiconductor light emitting element (e.g. LED information display terminal, LED
交通信号灯、自動車のLEDストップランプやLED方向指示灯など)や各種照明装置(LED屋内外照明灯、 Traffic lights, such as an LED stop lamp or LED directional light of the automobile), various illumination devices (LED indoor and outdoor lighting,
車内LED灯、LED非常灯、LED面発光源など)を広く発光装置と定義している。 Interior LED lamp, LED emergency lights, is defined as LED surface sources, etc.) widely emitting device. 【0020】 【発明が解決しようとする課題】ところで、近紫外LE [0020] The object of the invention is to be Solved by the way, near-ultraviolet LE
Dと複数の蛍光体を含む蛍光体層とを組み合わせた、従来の白色系半導体発光素子にあっては、半導体発光素子が放つ白色系光の光束が低かった。 A combination of a phosphor layer containing a D and a plurality of phosphors, in the conventional white-based semiconductor light-emitting device, the light beam of the white-based light emitting semiconductor light-emitting element is low. これは、350nm This is, 350nm
を超え410nm未満の近紫外光励起の下で、高い発光効率を示す蛍光体の開発がこれまで十分なされていないために、青色系蛍光体、緑色系蛍光体、赤色系蛍光体のすべてにおいて、白色系半導体発光素子用として使用し得る蛍光体の種類が少なく、比較的高い発光効率を示す青色系、緑色系、赤色系の各蛍光体が少数に限定されるだけでなく、白色系光の発光スペクトルの形状が限定されることに起因する。 Under near-ultraviolet excitation below 410nm exceeded, in order to develop phosphors hitherto not enough exhibiting high luminous efficiency, a blue phosphor, a green phosphor, in all of the red phosphor, white system type of phosphor is small which can be used as a semiconductor light-emitting device, blue exhibit a relatively high emission efficiency, a green system, not only the red each phosphor is limited to a small number, emission of white light due to the shape of the spectrum is limited. また、青色系、緑色系、赤色系の三種類の蛍光体が放つ光の混色、または、青色系蛍光体が放つ青色系光とこの青色系光を吸収して波長変換された黄色系光の混色によって白色系光を得ていることにも起因する。 Also, blue, greenish, reddish three types of light phosphor emits mixed color, or blue phosphor emitting a blue light and the blue absorbs light wavelength-converted yellow light also due to the fact that to obtain a white light by color mixing. 【0021】本発明は、これらの問題を解決するためになされたものであり、近紫外LEDと蛍光体層とを組み合わせてなる、高光束の白色系光を放つ半導体発光素子および半導体発光装置を提供することを目的とする。 [0021] The present invention has been made to solve these problems, comprising a combination of a near-ultraviolet LED and the phosphor layer, the semiconductor light emitting element and a semiconductor light-emitting device emitting white light of high luminous flux an object of the present invention is to provide. 【0022】 【課題を解決するための手段】上記課題を解決するために、本発明の請求項1に係る半導体発光素子は、350 [0022] In order to solve the above object, according to an aspect of the semiconductor light emitting device according to claim 1 of the present invention, 350
nmを超え410nm以下の波長領域に発光ピークを有する発光を放つ近紫外LEDと、前記近紫外LEDが放つ近紫外光を吸収して、380nm以上780nm以下の可視波長領域に発光ピークを有する蛍光を放つ複数の蛍光体を含む蛍光体層とを組み合わせ、CIE色度図における発光色度点(x,y)が、0.21≦x≦0.4 A near ultraviolet LED that emits light with an emission peak in a wavelength region 410nm exceeded nm, the absorbing near-ultraviolet light emitted by the near-ultraviolet LED, the phosphor having emission peak in 780nm or less in the visible wavelength region of 380nm combining a phosphor layer comprising a plurality of phosphors emitting light-emitting chromaticity point in the CIE chromaticity diagram (x, y) is, 0.21 ≦ x ≦ 0.4
8、0.19≦y≦0.45の範囲にある白色系光を放つ半導体発光素子であって、前記蛍光体層が、波長38 A semiconductor light emitting device that emits white light in the range of 8,0.19 ≦ y ≦ 0.45, said phosphor layer, wavelength 38
0nmおよびその付近の波長領域の近紫外光照射の下で、550nm以上600nm未満の波長領域に発光ピークを有する黄色系の蛍光を放つ黄色系蛍光体と400 Under 0nm and near-ultraviolet light irradiation in the wavelength range of near the yellow phosphor and 400 that emits yellow fluorescence system having an emission peak in 600nm below the wavelength region of 550nm
nm以上500nm未満の波長領域に発光ピークを有する青色系の蛍光を放つ青色系蛍光体の二種類の蛍光体を含むことを特徴とする半導体発光素子である。 A semiconductor light emitting element characterized in that it comprises two kinds of phosphors of the blue-based phosphor that emits fluorescence of blue having an emission peak in a wavelength region of less than nm or 500 nm. 【0023】ここで、前記近紫外LEDは、紫外LED [0023] In this case, the near-ultraviolet LED, the ultraviolet LED
を含む250nm以上410nm以下の波長領域に発光ピークを有する発光を放つLEDであれば特に限定されないが、入手の容易さ、製造の容易さ、コスト、発光強度などの観点から、好ましいLEDは300nm以上4 Is not particularly limited as long as the LED emits light with an emission peak in 410nm or less in a wavelength region above 250nm including, easy availability, ease of manufacture, cost, from the viewpoint of emission intensity, preferably the LED or 300nm 4
10nm以下の波長領域に発光ピークを有する発光を放つ近紫外LED、より好ましくは、350nmを超え4 Near-ultraviolet LED that emits light with an emission peak in a wavelength region 10 nm, more preferably, 4 exceed 350nm
10nm以下の波長領域に発光ピークを有する発光を放つ近紫外LED、さらに好ましくは350nmを超え4 Near-ultraviolet LED that emits light with an emission peak in a wavelength region 10 nm, more preferably 4 exceed 350nm
00nm未満の波長領域に発光ピークを有する発光を放つ近紫外LEDである。 In the wavelength region of less than 00nm is a near-ultraviolet LED that emits light with an emission peak. 【0024】また、前記青色蛍光体は、好ましくは41 Further, the blue phosphor is preferably 41
0nm以上480nm以下、さらに好ましくは420n 0nm above 480nm or less, more preferably 420n
m以上460nm以下の波長領域に発光ピークを有する青色系蛍光体であることが望ましく、また、前記黄色系蛍光体は、好ましくは570nm以上590nm以下、 It is desirable to 460nm or less in the wavelength region above m is a blue phosphor having an emission peak, also the yellow phosphor is preferably 570nm or more 590nm or less,
さらに好ましくは570nmを超え590nm未満の波長領域に発光ピークを有する黄色系蛍光体であることが望ましい。 Still more preferably a yellow phosphor having an emission peak in a wavelength region of less than 590nm exceeded 570 nm. 【0025】このような蛍光体層にすると、上記の黄色系蛍光体と青色系蛍光体の両方が、近紫外LEDが放つ前記波長領域に発光ピークを有する近紫外光を吸収し、 [0025] With such a phosphor layer, both of the yellow phosphor and the blue phosphor absorbs near-ultraviolet light having an emission peak in the wavelength region emitted by the near-ultraviolet LED,
効率良く、各々黄色系光と青色系光に波長変換するので、半導体発光素子が、400nm以上500nm未満の青色系発光と、550nm以上600nm未満の黄色系発光の、2種類の光色を有する発光を高効率に放つようになり、この2種類の光色の混色によって、白色系光を放つようになる。 Since efficiently, each yellow light and blue light wavelength conversion, a semiconductor light emitting element, emission having a blue emitting less 500nm above 400 nm, less than 550 nm 600 nm for yellow emitting, two kinds of light color the now shoot high efficiency, by the two types of light color mixing of so emit white light. 【0026】また、上記白色系光の演色性を高めるために、下記の化学式で表される化合物を主体にしてなる酸硫化物蛍光体などの赤色系蛍光体を配合してもよい。 Further, in order to enhance the color rendering properties of the white-based light, it may be blended red phosphor such as oxysulfide phosphor obtained by mainly a compound represented by the following chemical formula. 【0027】(Ln 1-x Eu x )O 2 S ただし、Lnは、Sc、Y、La、Gdから選ばれる少なくとも一つの希土類元素、xは0<x<1を満足する数値である。 [0027] (Ln 1-x Eu x) O 2 S , however, Ln is, Sc, Y, La, at least one rare earth element selected from Gd, x is a numerical value satisfying 0 <x <1. 【0028】本発明の請求項2に係る半導体発光素子は、請求項1の半導体発光素子において、黄色系蛍光体を好ましい態様にしたものであり、黄色系蛍光体を、下記の化学式で表される化合物を主体にしてなる珪酸塩蛍光体としたものである。 The semiconductor light emitting device according to claim 2 of the present invention, in the semiconductor light emitting device according to claim 1, which has the preferred embodiment the yellow phosphor, the yellow phosphor is represented by the following chemical formula: that compound is obtained by the silicate phosphor obtained by the mainly. 【0029】 (Sr 1-a1-b1-x Ba a1 Ca b1 Eu x2 SiO 4ただし、a1、b1、xは、各々、0≦a1≦0.3、 [0029] (Sr 1-a1-b1- x Ba a1 Ca b1 Eu x) 2 SiO 4 , however, a1, b1, x, respectively, 0 ≦ a1 ≦ 0.3,
0≦b1≦0.8、0<x<1を満足する数値である。 0 ≦ b1 ≦ 0.8, 0 is a numerical value satisfying <x <1. 【0030】ここで、前記化学式におけるa1、b1、 [0030] In this case, a1 in the formula, b1,
xの数値は、蛍光体の熱に対する結晶の安定性、耐温度消光特性、黄色系発光の発光強度、および光色の観点から好ましくは、各々、0<a1≦0.2、0≦b1≦ Figures x, the stability of the crystal with respect to the heat of the phosphor, temperature resistance extinction characteristic, preferably the emission intensity of the yellow light emitting, and in terms of light color, respectively, 0 <a1 ≦ 0.2,0 ≦ b1 ≦
0.7、0.005≦x≦0.1、さらに好ましくは、 0.7,0.005 ≦ x ≦ 0.1, more preferably,
各々、0<a1≦0.15、0≦b1≦0.6、0.0 Each, 0 <a1 ≦ 0.15,0 ≦ b1 ≦ 0.6,0.0
1≦x≦0.05を満足する数値であることが望ましい。 Is preferably a numerical value satisfying 1 ≦ x ≦ 0.05. 【0031】なお、上記珪酸塩蛍光体は、図4に励起スペクトルと発光スペクトルの一例を示すように、250 [0031] Note that the silicate phosphor is, as an example of the emission spectrum and the excitation spectrum in FIG. 4, 250
〜300nm付近に励起ピークを有し、100〜500 Has an excitation peak around to 300 nm, 100 to 500
nmの広い波長範囲内の光を吸収して、550〜600 To absorb the light in the wide wavelength range of nm, 550~600
nmの黄緑〜黄〜橙の波長領域に発光ピークを有する黄色系の蛍光を放つ黄色系蛍光体である。 In the wavelength region of nm yellow green - yellow-orange is a yellow phosphor that emits yellow fluorescence system having an emission peak. したがって、上記珪酸塩蛍光体は、YAG系蛍光体のように、近紫外光を青色光に変換する青色系蛍光体が無くとも、近紫外L Therefore, the silicate phosphor, such as the YAG-based phosphor, without the blue phosphor that converts near-ultraviolet light to blue light, near-ultraviolet L
EDが放つ近紫外光を照射すると比較的高効率の黄色系発光を放つことになるので、近紫外光の黄色系光への変換効率がYAG系蛍光体よりも実質的に高く、発光効率の面で好ましいものとなる。 Since ED is to emit yellow light emitting relatively high efficiency when irradiated with near-ultraviolet light emitting efficiency of conversion into yellow light in the near-ultraviolet light is substantially higher than the YAG-based phosphor, the luminous efficiency of which is preferable in view. 【0032】なお、上記a1とb1が、いずれも0に近い場合には、斜方晶と単斜晶が混在した珪酸塩蛍光体になりやすくなり、上記数値範囲よりも大きい場合には結晶場が弱くなって、いずれの場合でも、緑味を帯びた蛍光体になって黄色の色純度が悪い発光になる。 [0032] Incidentally, the a1 and b1 is the case both close to zero, which is likely to cause silicate phosphor orthorhombic and monoclinic crystals are mixed, crystal field is larger than the numerical range and becomes weak, in any case, the yellow color purity becomes bad light emitting become a phosphor tinged greenish. また、x In addition, x
が上記数値範囲よりも小さい場合には、Eu 2+発光中心濃度が低いために珪酸塩蛍光体の発光強度が弱くなるし、大きい場合には、珪酸塩蛍光体の周囲温度の上昇とともに発光強度が低下する温度消光の問題が顕著になる。 There is smaller than the numerical range, to the emission intensity of the silicate phosphor has a low Eu 2+ luminescence center concentration becomes weak, if it is larger, the emission intensity with increasing ambient temperature silicate phosphor There becomes noticeable temperature quenching problems decrease. 【0033】本発明の請求項3に係る半導体発光素子は、請求項2の半導体発光素子において、珪酸塩蛍光体をさらに好ましい態様にしたものであり、珪酸塩蛍光体を、下記の化学式で表される化合物を主体にしてなり、 The semiconductor light emitting device according to claim 3 of the present invention, the table in the semiconductor light emitting device according to claim 2, which has a more preferred embodiment the silicate phosphor, a silicate phosphor, the chemical formula it was mainly the compound,
かつ、斜方晶の結晶構造を有する珪酸塩蛍光体としたものである。 And it is obtained by a silicate phosphor having a crystal structure of orthorhombic. 【0034】 (Sr 1-a1-b2-x Ba a1 Ca b2 Eu x2 SiO 4ただし、a1、b2、xは、各々、0≦a1≦0.3、 [0034] (Sr 1-a1-b2- x Ba a1 Ca b2 Eu x) 2 SiO 4 , however, a1, b2, x, respectively, 0 ≦ a1 ≦ 0.3,
0≦b2≦0.6、0<x<1を満足する数値であり、 0 ≦ b2 ≦ 0.6,0 <is a numerical value satisfying x <1,
請求項2の場合と同じ観点から、好ましくは、各々、0 From the same viewpoint as in claim 2, preferably, each 0
<a1≦0.2、0≦b2≦0.4、0.005≦x≦ <A1 ≦ 0.2,0 ≦ b2 ≦ 0.4,0.005 ≦ x ≦
0.1、さらに好ましくは、各々、0<a1≦0.1 0.1, more preferably, each, 0 <a1 ≦ 0.1
5、0≦b2≦0.3、0.01≦x≦0.05を満足する数値であることが望ましい。 It is preferably a numerical value satisfying 5,0 ≦ b2 ≦ 0.3,0.01 ≦ x ≦ 0.05. 【0035】本発明の請求項4に係る半導体発光素子は、請求項1〜3のいずれかの半導体発光素子にあって、青色系蛍光体を下記の(1)または(2)のいずれかの青色系蛍光体としたものである。 The semiconductor light emitting device according to claim 4 of the present invention, in the one of the semiconductor light emitting device according to claim 1 to 3, the blue phosphor of the following (1) or any of (2) it is obtained by the blue phosphor. (1)下記の化学式で表される化合物を主体にしてなるハロ燐酸塩蛍光体(M1 1-x Eu x10 (PO 46 Cl 2ただし、M1は、Ba、Sr、Ca、Mgから選ばれる少なくとも一つのアルカリ土類金属元素、xは、0<x (1) halophosphate phosphor formed by mainly a compound represented by the following chemical formula: (M1 1-x Eu x) 10 (PO 4) 6 Cl 2 However, M1 is, Ba, Sr, Ca, and Mg at least one alkaline earth metal element selected, x is, 0 <x
<1を満足する数値である。 <Is a numerical value that satisfies the 1. (2)下記の化学式で表される化合物を主体にしてなるアルミン酸塩蛍光体(M2 1-x Eu x )(M3 1-y1 Mn y1 )Al 1017ただし、M2は、Ba、Sr、Caから選ばれる少なくとも一つのアルカリ土類金属元素、M3は、Mg、Zn (2) the following Chemical Formula compound represented by the aluminate phosphor obtained by the principal (M2 1-x Eu x) (M3 1-y1 Mn y1) Al 10 O 17 , however, M2 is, Ba, Sr, at least one alkaline earth metal element selected from Ca, M3 is, Mg, Zn
から選ばれる少なくとも一つの元素、x、y1は、各々、0<x<1、0≦y1<0.05を満足する数値である。 At least one element selected from, x, y1, respectively, is a numerical value satisfying 0 <x <1,0 ≦ y1 <0.05. 【0036】上記の青色系蛍光体は、近紫外光の励起によって強い光を放つ高効率蛍光体であるので、このような蛍光体の組み合わせにすると、前記蛍光体層が発光強度の大きな白色系光を放つようになる。 The blue luminescent material described above, since a high-efficiency phosphor that emits intense light by the excitation of near-ultraviolet light, when the combination of such a phosphor, a large white of the phosphor layer is luminous intensity so that gives off light. 【0037】本発明の請求項5に係る半導体発光素子は、請求項1〜4のいずれかの半導体発光素子において、近紫外LEDを、窒化ガリウム系化合物半導体で構成した発光層を有する近紫外LEDとしたものである。 The semiconductor light emitting device according to claim 5 of the present invention, in any one of the semiconductor light emitting device according to claim 1 to 4, a near-ultraviolet LED having a light emitting layer near ultraviolet LED, was composed of a gallium nitride-based compound semiconductor it is obtained by the. 【0038】窒化ガリウム系化合物半導体で構成した発光層を有する近紫外LEDは、高い発光効率を示し、長期連続動作も可能であるので、このような近紫外LED The near-ultraviolet LED having a light emitting layer composed of gallium nitride compound semiconductor exhibits a high luminous efficiency, because it is long-term continuous operation possible, such near-ultraviolet LED
を用いることにより、長期連続動作が可能で、しかも、 By using, can long-term continuous operation, moreover,
高光束の白色系光を放つ半導体発光素子が得られる。 The semiconductor light emitting device that emits white light of high luminous flux is obtained. 【0039】本発明の請求項6に係る半導体発光装置は、上記の請求項1〜5のいずれかに記載の半導体発光素子を用いて構成した半導体発光装置である。 The semiconductor light emitting device according to claim 6 of the present invention is a semiconductor light emitting apparatus using the semiconductor light-emitting device according to any one of claims 1 to 5. 【0040】本発明の請求項1〜5に記載の半導体発光素子は、高光束白色系光を放つので、本発明に係る半導体発光素子を用いて発光装置を構成すると、高光束の白色系光を放つ半導体発光装置が得られる。 The semiconductor light emitting device according to claim 1 to 5 of the present invention, since off a high luminous flux white light, when forming the light emitting device using a semiconductor light emitting device according to the present invention, white light high luminous flux the semiconductor light emitting device that emits obtained. ここで、半導体発光装置の具体例としては、LED情報表示端末、L Here, specific examples of the semiconductor light emitting device, LED information display terminal, L
ED交通信号灯、自動車のLEDストップランプ、LE ED traffic lights, automotive LED stop lamp, LE
D方向指示灯などの各種表示装置や、LED屋内外照明灯、車内LED灯、LED非常灯、LED面発光源などの各種照明装置を挙げることができる。 Various display devices such as D direction indicators, LED indoor and outdoor lighting, interior LED lamp, LED emergency lamp, and various lighting devices such as LED plane light emitting source. 【0041】なお、本発明における近紫外LEDに代えて、同じ波長領域に発光ピークを有する発光を主発光成分として放つ発光素子(半導体発光素子に限定されない)を用いても、同様の作用効果が得られ、同様の白色系発光素子が得られることはいうまでもない。 [0041] Instead of the near-ultraviolet LED according to the present invention, even using the light-emitting element emits light with an emission peak in the same wavelength region as the primary emission component (not limited to the semiconductor light-emitting device), the same effect the resulting, are of course obtained similar white light-emitting element. 【0042】 【発明の実施の形態】(実施の形態1)以下、本発明の半導体発光素子の実施の形態を、図面を用いて説明する。 [0042] PREFERRED EMBODIMENTS (Embodiment 1) Hereinafter, embodiments of the semiconductor light-emitting device of the present invention will be described with reference to the drawings. 図1〜図3はそれぞれ形式の異なる半導体発光素子の縦断面図である。 1 to 3 is a longitudinal sectional view of a different semiconductor light-emitting element form respectively. 【0043】半導体発光素子の代表的な例として、図1 [0043] Representative examples of the semiconductor light-emitting element, FIG. 1
に、サブマウント素子5の上にフリップチップ型の近紫外LED1を導通搭載するとともに、青色系蛍光体粒子3と珪酸塩蛍光体の粒子を含む黄色系蛍光体粒子4を内在し蛍光体層2を兼ねる樹脂のパッケージによって、近紫外LED1を封止した構造の半導体発光素子を示し、 To, as well as conducting mounted near ultraviolet LED1 flip chip type on the submount 5, inherent yellow phosphor particles 4 comprising particles of blue phosphor particles 3 and silicate phosphors phosphor layer 2 a resin package which also serves as a shows a semiconductor light-emitting device having a structure that seals near UV LED1,
図2に、リードフレーム6のマウント・リードに設けたカップ7に近紫外LED1を導通搭載するとともに、カップ7内に青色系蛍光体粒子3と珪酸塩蛍光体の粒子を含む黄色系蛍光体粒子4を内在した蛍光体層2を設け、 2, with conductive mounting near ultraviolet LED1 cup 7 provided in the mount lead of a lead frame 6, the yellow phosphor particles comprising particles of a blue phosphor particles 3 and silicate phosphors in the cup 7 4 a phosphor layer 2 inherent provided,
全体を封止樹脂8で封止した構造の半導体発光素子を示し、図3に、筐体9内に近紫外LED1を配置するとともに、筐体9内に青色系蛍光体粒子3と珪酸塩蛍光体の粒子を含む黄色系蛍光体粒子4を内在する樹脂で形成した蛍光体層2を設けた構造のチップタイプの半導体発光素子を示している。 The whole shows a semiconductor light-emitting device of the sealed structure with a sealing resin 8, in FIG. 3, with arranging the near ultraviolet LED1 in the housing 9, the blue phosphor particles 3 and silicate phosphors in the housing 9 shows a semiconductor light-emitting element chip type structure in which a phosphor layer 2 formed of a resin inherent yellow phosphor particles 4 comprising a body of particles. 【0044】図1〜図3において、近紫外LED1は、 [0044] 1 to 3, near ultraviolet LED1 is
350nmを超え410nm以下、好ましくは350n 410nm beyond the 350nm or less, preferably 350n
mを超え400nm未満の波長領域に発光ピークを有する近紫外光を得るためのものであり、窒化ガリウム系化合物半導体、炭化シリコン系化合物半導体、セレン化亜鉛系化合物半導体、硫化亜鉛系化合物半導体などの無機化合物や、有機化合物で構成した発光層を有する光電変換素子(いわゆる、LED、無機エレクトロルミネッセンス(EL)素子、有機EL素子)である。 It is for obtaining a near-ultraviolet light having an emission peak in a wavelength region of less than 400nm exceed m, the gallium nitride-based compound semiconductor, silicon carbide-based compound semiconductor, a zinc selenide-based compound semiconductor, such as zinc sulfide-based compound semiconductor inorganic compounds and a photoelectric conversion device having a light emitting layer composed of an organic compound (so-called, LED, inorganic electroluminescence (EL) element, an organic EL element). 【0045】ここで、大きな近紫外光出力を長期間安定して得るためには、近紫外LED1は無機化合物で構成した無機LEDが好ましく、その中でも、窒化ガリウム系化合物半導体で構成した発光層を有する近紫外LED [0045] Here, in order to get a large near-ultraviolet light output stably for a long time, the inorganic LED is preferably constructed in the near-ultraviolet LED1 inorganic compounds, among them, the light-emitting layer made of a gallium nitride-based compound semiconductor near-ultraviolet LED with
が、発光強度が大きいのでより好ましい。 But more preferable because emission intensity is high. 【0046】蛍光体層2は、近紫外LED1が放つ近紫外光を吸収して、CIE色度図における発光色度点(x,y)が、0.21≦x≦0.48、0.19≦y The phosphor layer 2 absorbs near-ultraviolet light emitted by the near ultraviolet LED1, emission chromaticity point in the CIE chromaticity diagram (x, y) is, 0.21 ≦ x ≦ 0.48,0. 19 ≦ y
≦0.45の範囲にある白色系光に変換するためのものであり、近紫外LED1が放つ近紫外光を吸収して40 ≦ 0.45 is for converting the white light in the range of 40 absorbs near-ultraviolet light emitted by the near UV LED1
0nm以上500nm未満の波長領域に発光ピークを有する青色系の蛍光を放つ青色系蛍光体粒子3と、近紫外LED1が放つ近紫外光、とりわけ波長380nm付近の近紫外光を吸収して550nm以上600nm未満の波長領域に発光ピークを有する黄色系の蛍光を放つ黄色系蛍光体粒子4を含む。 The blue phosphor particles 3 which emits fluorescence of blue having an emission peak in 500nm below the wavelength region of 0 nm, near-ultraviolet light emitted by the near UV LED1, especially 550nm or absorbs near-ultraviolet light near a wavelength of 380 nm 600 nm containing yellow phosphor particles 4 that emits yellow fluorescence system having an emission peak in less than a wavelength region. 【0047】本発明の半導体発光素子にあっては、蛍光体層2は、青色系蛍光体粒子3と黄色系蛍光体粒子4を含む蛍光体を母材中に分散させて形成する。 [0047] In the semiconductor light-emitting device of the present invention, the phosphor layer 2, a phosphor containing a blue phosphor particles 3 and the yellow phosphor particles 4 formed by dispersing in the matrix. 母材としては、エポキシ樹脂、アクリル樹脂、ポリイミド樹脂、ユリア樹脂、シリコン樹脂などの樹脂を用いることができ、入手と取り扱いが容易でしかも安価な点でエポキシ樹脂またはシリコン樹脂が好ましい。 The base material, an epoxy resin, an acrylic resin, a polyimide resin, a urea resin, it is possible to use a resin such as silicon resin, epoxy resin or a silicone resin in terms availability and is easy inexpensively handle is preferred. 蛍光体層2の実質厚みは、10μm以上1mm以下、好ましくは100μ Substantial thickness of the phosphor layer 2, 10 [mu] m to 1mm, preferably 100μ
m以上700μm以下である。 m more than 700μm is less than or equal to. 【0048】蛍光体層2中の青色系蛍光体粒子3は、近紫外LED1が放つ近紫外光を吸収して、400nm以上500nm未満の波長領域に発光ピークを有する青色系の蛍光を放つ蛍光体であれば、無機材料であっても有機材料(例えば蛍光色素)であっても使用することができるが、望ましくは、下記の(1)または(2)のいずれかの蛍光体とするのがよい。 The blue phosphor particles 3 in the phosphor layer 2 absorbs near-ultraviolet light emitted by the near ultraviolet LED1, phosphors emitting fluorescence of blue having an emission peak in a wavelength region of less than 400 nm 500 nm if, although an organic material be inorganic materials (e.g., fluorescent dye) may be used, desirably, it is to either of the phosphor of the following (1) or (2) good. (1)以下の化学式で表される化合物を主体にしてなるハロ燐酸塩蛍光体(M1 1-x Eu x10 (PO 46 Cl 2ただし、M1は、Ba、Sr、Ca、Mgから選ばれる少なくとも一つのアルカリ土類金属元素、xは、0<x (1) The following formula is formed by mainly a compound represented by the halophosphate phosphor (M1 1-x Eu x) 10 (PO 4) 6 Cl 2 However, M1 is, Ba, Sr, Ca, and Mg at least one alkaline earth metal element selected, x is, 0 <x
<1を満足する数値である。 <Is a numerical value that satisfies the 1. (2)以下の化学式で表される化合物を主体にしてなるアルミン酸塩蛍光体(M2 1-x Eu x )(M3 1-y1 Mn y1 )Al 1017ただし、M2は、Ba、Sr、Caから選ばれる少なくとも一つのアルカリ土類金属元素、M3は、Mg、Zn (2) The following Formula is formed by a compound mainly aluminate phosphor (M2 1-x Eu x) (M3 1-y1 Mn y1) Al 10 O 17 , however, M2 is, Ba, Sr, at least one alkaline earth metal element selected from Ca, M3 is, Mg, Zn
から選ばれる少なくとも一つの元素、x、y1は、各々、0<x<1、0≦y1<0.05を満足する数値である。 At least one element selected from, x, y1, respectively, is a numerical value satisfying 0 <x <1,0 ≦ y1 <0.05. 【0049】なお、上記望ましい青色系蛍光体の具体例としては、BaMgAl 1017 :Eu 2+ 、(Ba,S [0049] As specific examples of the desirable blue phosphor, BaMgAl 10 O 17: Eu 2+ , (Ba, S
r)(Mg,Mn)Al 1017 :Eu 2+ 、(Sr,C r) (Mg, Mn) Al 10 O 17: Eu 2+, (Sr, C
a,Ba,Mg) 10 (PO 46 Cl 2 :Eu 2+ 、Sr a, Ba, Mg) 10 ( PO 4) 6 Cl 2: Eu 2+, Sr
5 (PO 43 Cl:Eu 2+ 、(Sr,Ca,Ba) 5 (P 5 (PO 4) 3 Cl: Eu 2+, (Sr, Ca, Ba) 5 (P
43 Cl:Eu 2+ 、BaMg 2 Al 1627 :Eu 2+ O 4) 3 Cl: Eu 2+ , BaMg 2 Al 16 O 27: Eu 2+,
(Ba,Ca) 5 (PO 43 Cl:Eu 2+などを挙げることができる。 (Ba, Ca) 5 (PO 4) 3 Cl: Eu 2+ and the like. 【0050】蛍光体層2中の黄色系蛍光体粒子4としては、製造の容易さや発光性能の良好さ(高輝度、高黄色純度)の点から、下記の化学式で表される化合物を主体にしてなる珪酸塩蛍光体が望ましい。 [0050] As the phosphor layer 2 in yellow phosphor particles 4, and ease and good of the emission performance of the production (high brightness, high yellow purity) in terms of, mainly a compound represented by the following chemical formula comprising Te silicate phosphor is desirable. 【0051】 (Sr 1-a1-b1-x Ba a1 Ca b1 Eu x2 SiO 4ただし、a1、b1、xは、各々、0≦a1≦0.3、 [0051] (Sr 1-a1-b1- x Ba a1 Ca b1 Eu x) 2 SiO 4 , however, a1, b1, x, respectively, 0 ≦ a1 ≦ 0.3,
0≦b1≦0.8、0<x<1を満足する数値、好ましくは、0<a1≦0.2、0≦b1≦0.7、0.00 0 ≦ b1 ≦ 0.8,0 <x <numbers satisfying 1, preferably, 0 <a1 ≦ 0.2,0 ≦ b1 ≦ 0.7,0.00
5≦x≦0.1、さらに好ましくは、0<a1≦0.1 5 ≦ x ≦ 0.1, more preferably, 0 <a1 ≦ 0.1
5、0≦b1≦0.6、0.01≦x≦0.05である。 It is a 5,0 ≦ b1 ≦ 0.6,0.01 ≦ x ≦ 0.05. 【0052】このような黄色系蛍光体としては、下記の(1)または(2)に記載のいずれかの珪酸塩蛍光体がある。 [0052] As such a yellow phosphor, there are any silicate phosphor according to the following (1) or (2). (1)斜方晶の結晶構造を有する、下記の組成の珪酸塩蛍光体(Sr 1-a1-b2-x Ba a1 Ca b2 Eu x2 SiO 4ただし、a1、b2、xは、各々、0≦a1≦0.3、 (1) having an orthorhombic crystal structure, silicate phosphor having the following composition (Sr 1-a1-b2- x Ba a1 Ca b2 Eu x) 2 SiO 4 , however, a1, b2, x, respectively, 0 ≦ a1 ≦ 0.3,
0≦b2≦0.6、0<x<1、好ましくは、各々、0 0 ≦ b2 ≦ 0.6,0 <x <1, preferably, each 0
<a1≦0.2、0≦b2≦0.4、0.005≦x≦ <A1 ≦ 0.2,0 ≦ b2 ≦ 0.4,0.005 ≦ x ≦
0.1、さらに好ましくは、各々、0<a1≦0.1 0.1, more preferably, each, 0 <a1 ≦ 0.1
5、0≦b2≦0.3、0.01≦x≦0.05を満足する数値である。 Is a numerical value satisfying 5,0 ≦ b2 ≦ 0.3,0.01 ≦ x ≦ 0.05. (2)単斜晶の結晶構造を有する、下記の組成の珪酸塩蛍光体(Sr 1-a2-b1-x Ba a2 Ca b1 Eu x2 SiO 4ただし、a2、b1、xは、各々、0≦a2≦0.2、 (2) having a crystal structure of monoclinic silicate phosphor having the following composition (Sr 1-a2-b1- x Ba a2 Ca b1 Eu x) 2 SiO 4 , however, a2, b1, x, respectively, 0 ≦ a2 ≦ 0.2,
0≦b1≦0.8、0<x<1、好ましくは、各々、0 0 ≦ b1 ≦ 0.8,0 <x <1, preferably, each 0
≦a2≦0.15、0<b1≦0.7、0.005≦x ≦ a2 ≦ 0.15,0 <b1 ≦ 0.7,0.005 ≦ x
≦0.1、さらに好ましくは、各々、0≦a2≦0. ≦ 0.1, more preferably, each, 0 ≦ a2 ≦ 0.
1、0<b1≦0.6、0.01≦x≦0.05を満足する数値である。 1,0 <is a numerical value satisfying b1 ≦ 0.6,0.01 ≦ x ≦ 0.05. 【0053】a1、a2、b1、b2の数値が上記範囲内よりも小さい数値の組成では、珪酸塩蛍光体の結晶構造が不安定になりやすく、動作温度によって発光特性が変化する問題が生じる。 [0053] a1, a2, b1, with b2 figures the composition of a lower number than the above range is liable to become unstable crystal structure of the silicate phosphor, there is a problem that light emission characteristics by the operation temperature changes. 一方、上記範囲内よりも大きい数値の組成では、発光が緑味を帯びたものとなり、良好な黄色系蛍光体にはならず、緑色系蛍光体となるために、青系の蛍光体と組み合わせても、高光束、白色系光を放つ半導体発光素子にはならない。 On the other hand, the composition of a number greater than the above range, it is assumed that light emission was tinged greenish, not for good yellow phosphor, in order to become a green phosphor, a phosphor and a combination of bluish even, high flux, not a semiconductor light-emitting device that emits white light. また、Eu添加量xが上記範囲内よりも小さい数値の組成では発光強度が弱く、大きい数値の組成では、周囲温度の上昇とともに発光強度が低下する温度消光の問題が顕著に生じる。 Moreover, weak emission intensity in composition numbers Eu amount x is smaller than the above range, the composition of the large numbers, the temperature quenching of the problems emission intensity decreases with increasing ambient temperature occurs significantly. 【0054】本発明の半導体発光素子において用いる黄色系蛍光体としては、珪酸塩蛍光体が放つ黄色系光の色純度が優れる理由で、上記斜方晶の結晶構造を有する珪酸塩蛍光体を用いるのが好ましい。 [0054] as a yellow-based phosphor used in the semiconductor light-emitting device of the present invention, because the color purity of the yellow light silicate phosphor emits excellent, used silicate phosphor having a crystal structure of the orthorhombic preference is. また、珪酸塩蛍光体の結晶構造を安定化したり、発光強度を高める目的で、 Further, to stabilize the crystal structure of the silicate phosphor, in order to increase the luminous intensity,
Sr、Ba、Caの一部をMgやZnで置き換えることもできる。 Sr, it may be replaced Ba, a part of Ca with Mg or Zn. 【0055】さらに、珪酸塩蛍光体の発光色を制御する目的で、Siの一部をGeで置き換えることもできる。 [0055] Further, for the purpose of controlling the emission color of the silicate phosphor, it is also possible to replace part of Si with Ge.
すなわち、黄色系蛍光体として下記の化学式で表される化合物を主体にしてなる珪酸塩蛍光体を用いることができる。 That is, it is possible to use a silicate phosphor obtained by mainly a compound represented by the following formula as a yellow phosphor. 【0056】(Sr 1-a1-b1-x Ba a1 Ca b1 Eu x [0056] (Sr 1-a1-b1- x Ba a1 Ca b1 Eu x)
2 (Si 1-z Ge z )O 4ただし、a1、b1、x、zは、各々、0≦a1≦0. 2 (Si 1-z Ge z ) O 4 , however, a1, b1, x, z are each, 0 ≦ a1 ≦ 0.
3、0≦b1≦0.8、0<x<1、0≦z<1を満足する数値である。 3,0 ≦ b1 ≦ 0.8,0 <is a numerical value satisfying x <1,0 ≦ z <1. 【0057】上記珪酸塩蛍光体は、レーザー回折・散乱式粒度分布測定器(例えばLMS−30:株式会社セイシン企業製)による粒度分布評価で、中心粒径が0.1 [0057] The silicate phosphor, a laser diffraction and diffusion particle size distribution measuring instrument (e.g., LMS-30: Seishin Ltd. company) in particle size distribution evaluated by, the center particle size of 0.1
μm以上100μm以下のものであれば足りるが、蛍光体の合成の容易さ、入手の容易さ、蛍光体層の形成の容易さなどの理由で、中心粒径が1μm以上20μm以下が好ましく、2μm以上10μm以下がさらに好ましい。 Although sufficient as long as the μm or 100μm or less, the ease of synthesis of the phosphor, easy availability, for reasons such as ease of formation of the phosphor layer, the center particle size is preferably 1μm or more 20μm or less, 2 [mu] m more than 10μm or less is more preferable. 粒度分布については、0.01μm未満および10 For particle size distribution, 0.01 [mu] m and less than 10
00μmを超える粒子を含まなければよいが、中心粒径と同じ理由で、1μm以上50μm以下の範囲内で正規分布に近似した分布を有する珪酸塩蛍光体が好ましい。 Although it not contain particles of greater than 00Myuemu, for the same reason as center particle size, silicate phosphor preferably has a distribution similar to normal distribution in the range of 1μm or more 50μm or less. 【0058】なお、上記の珪酸塩蛍光体は、例えば、前記文献(J.Electrochemical So [0058] The above silicate phosphors, for example, the literature (J.Electrochemical So
c. c. Vol. Vol. 115、No. 115, No. 11(1968)pp. 11 (1968) pp. 1
181−1184)に記載の合成方法によって製造することができる。 It can be prepared by synthetic methods described in 181-1184). 【0059】以下、上記珪酸塩蛍光体の特性をさらに具体的に説明する。 [0059] Hereinafter, a more detailed description of the characteristics of the silicate phosphor. 【0060】図4は、上記珪酸塩蛍光体の励起スペクトルおよび発光スペクトルの例を示す図である。 [0060] Figure 4 is a diagram showing an example of the excitation spectrum and emission spectrum of the silicate phosphor. 同図には比較のために、従来のYAG系蛍光体の励起スペクトルおよび発光スペクトルの例もまとめて示している。 For comparison, the figure shows also collectively example of the excitation spectrum and emission spectrum of a conventional YAG phosphor. 【0061】図4からわかるように、YAG系蛍光体が100nm〜300nm付近、300nm〜360nm [0061] As can be seen from Figure 4, near the YAG-based phosphor is 100 nm to 300 nm, 300Nm~360nm
付近、400nm〜550nm付近の三カ所に励起帯を有し、これら各々の狭い波長範囲内の光を吸収して、5 Near, has excitation band in three places in the vicinity of 400 nm to 550 nm, absorbs light within a narrow wavelength range of these each 5
50〜580nmの黄緑〜黄の波長領域に発光ピークを有する黄色系の蛍光を放つ蛍光体であるのに対して、本発明において使用する珪酸塩蛍光体は、250〜300 Whereas a phosphor that emits yellow fluorescence system having yellow-green-emitting peak in a wavelength region of yellow 50~580Nm, silicate phosphor used in the present invention, 250 to 300
nm付近に励起ピークを有し、100〜500nmの広い波長範囲内の光を吸収して、550〜600nmの黄緑〜黄〜橙の波長領域に発光ピークを有する黄色系の蛍光を放つ黄色系蛍光体である。 nm has an excitation peak around absorbs light in the wide wavelength range of 100 to 500 nm, yellow emitting yellow fluorescence system having an emission peak in a wavelength region of yellow-green-yellow-orange of 550~600nm a phosphor. また、350nmを超え400nm未満の近紫外光の励起下では、YAG系蛍光体をはるかに凌ぐ高効率の蛍光体であることもわかる。 Further, the excitation of a near-ultraviolet light of less than 400nm exceeded 350 nm, can also be seen that a phosphor with high efficiency surpasses far the YAG phosphor.
特に、波長領域が370〜390nmの近紫外光の励起下では、従来のYAG系蛍光体が実質的に発光しないのに対して、珪酸塩蛍光体は高効率の黄色系光を放つことがわかる。 In particular, the wavelength region in the excitation of a near-ultraviolet light of 370~390Nm, whereas conventional YAG-based phosphor is not substantially emit light, silicate phosphor is seen that emits yellow light of high efficiency . 【0062】したがって、上記珪酸塩蛍光体を黄色系蛍光体粒子4として蛍光体層2に含めることによって、蛍光体層2が近紫外光の励起下で強い黄色系光を発光成分として放つようになる。 [0062] Thus, to emit the silicate phosphor by including the phosphor layer 2 as a yellow-based phosphor particles 4, the phosphor layer 2 is strong yellow light under the excitation of near-ultraviolet light as a light emitting component Become. 【0063】なお、上記したa1、a2、b1、b2、 [0063] In addition, the above a1, a2, b1, b2,
x、zの数値範囲内の組成の珪酸塩蛍光体であれば、励起および発光スペクトルは、図4に例示した珪酸塩蛍光体のスペクトルに類似したものとなる。 x, if silicate phosphor composition within the numerical range of z, excitation and emission spectra, becomes similar to the spectrum of the silicate phosphor illustrated in FIG. 【0064】また、上記の青色系蛍光体粒子3と黄色系蛍光体粒子4のほかに、白色系光の演色性を高めるために、下記の化学式で表される化合物を主体にしてなる酸硫化物蛍光体などの赤色系蛍光体粒子を配合してもよい。 [0064] In addition to the above-mentioned blue phosphor particles 3 and the yellow phosphor particles 4, in order to improve color rendering in a white-based light, oxysulfide obtained by mainly a compound represented by the following chemical formula the red phosphor particles, such as object phosphors may be blended. 【0065】(Ln 1-x Eu x )O 2 S ただし、Lnは、Sc、Y、La、Gdから選ばれる少なくとも一つの希土類元素、xは0<x<1を満足する数値である。 [0065] (Ln 1-x Eu x) O 2 S , however, Ln is, Sc, Y, La, at least one rare earth element selected from Gd, x is a numerical value satisfying 0 <x <1. 【0066】(実施の形態2)以下、本発明の半導体発光装置の実施の形態を図面を用いて説明する。 [0066] (Embodiment 2) Hereinafter, an embodiment of the semiconductor light-emitting device of the present invention with reference to the drawings. 図5〜図7は本発明に係る半導体発光装置の例を示す図である。 5-7 is a diagram showing an example of a semiconductor light-emitting device according to the present invention. 【0067】図5は本発明の半導体発光素子を用いたスタンド型の照明装置を示し、図6は本発明の半導体発光素子を用いた画像表示用の表示装置を示し、図7は本発明の半導体発光素子を用いた数字表示用の表示装置を示している。 [0067] Figure 5 illustrates a semiconductor light emitting device stand type lighting device using the present invention, FIG. 6 shows an image display device for display using a semiconductor light-emitting device of the present invention, FIG. 7 of the present invention It shows a display device for numerical display using semiconductor light-emitting element. 【0068】図5ないし図7において、半導体発光素子10は実施の形態1で説明した本発明の半導体発光素子である。 [0068] In FIGS. 5 through 7, the semiconductor light emitting element 10 is a semiconductor light-emitting device of the present invention described in the first embodiment. 【0069】図5において、11は半導体発光素子10 [0069] In FIG. 5, 11 is a semiconductor light emitting element 10
を点灯させるためのスイッチであり、スイッチ11をO A switch for turning on and the switch 11 O
Nすると、半導体発光素子10が通電して発光を放つようになる。 N Then, the semiconductor light emitting device 10 comes to emit light by energizing. 【0070】なお、図5の照明装置は好ましい一例として示したもので、本発明に係る半導体発光装置はこの実施形態に限定されるものではなく、本発明の半導体発光素子10のほかに例えば、青、緑、黄、赤などの光を放つLEDと組み合わせたものであってもよい。 [0070] The illumination device of FIG. 5 is an illustration as a preferred example, the semiconductor light-emitting device according to the present invention is not limited to this embodiment, for example, in addition to the semiconductor light-emitting device 10 of the present invention, blue, green, yellow, or may be combined with the LED that emits light, such as red. また、半導体発光素子10の発光色、大きさ、数、発光部分の形状なども特に限定されるものではない。 Also, emission color of the semiconductor light emitting element 10, the size, number, is not particularly limited, such as the shape of the light-emitting portion. 【0071】また、この例の照明装置において、好ましい色温度は2000K以上12000K以下、好ましくは3000K以上10000K以下、さらに好ましくは3500K以上8000K以下であるが、本発明に係る半導体発光装置としての照明装置は前記色温度に限定されるものではない。 [0071] Further, in the illumination device of this embodiment, the preferred color temperature 2000K or 12000K less, preferably 3000K or 10000K less, but more preferably not more than 8000K or 3500K, the illumination device as a semiconductor light-emitting device according to the present invention not to be limited to the color temperature. 【0072】図6と図7には、本発明に係る半導体発光装置としての表示装置の例として画像表示装置と数字表示装置を示したが、本発明に係る半導体発光装置はこれらに限定されるものではない。 [0072] Figure 6 and Figure 7, but illustrating an image display device and the digital display device as an example of a display device as a semiconductor light-emitting device according to the present invention, a semiconductor light-emitting device according to the present invention is limited to not. 【0073】半導体発光装置の一例としての表示装置は、上記照明装置の場合と同様に、実施の形態1で説明した半導体発光素子10を用いて構成しておればよく、 [0073] The display device as an example of a semiconductor light emitting device, as in the case of the illumination device, it is sufficient to constitute with the semiconductor light-emitting device 10 described in the first embodiment,
また、半導体発光素子10以外の半導体発光素子、例えば、青、緑、黄、赤などの光を放つLEDと組み合わせていてもよい。 Also, the semiconductor light emitting element 10 than the semiconductor light emitting element, for example, blue, green, yellow, may be combined with LED that emits light, such as red. また、半導体発光素子10の発光色、大きさ、数、発光部分の形状や半導体発光素子の配置の仕方なども特に限定されるものではないし、外観形状も特に限定されるものではない。 Also, emission color of the semiconductor light emitting element 10, the size, number, to is not particularly limited, such as how the arrangement of shapes and semiconductor light emitting elements of the light emitting portion, the external shape is also not particularly limited. 【0074】画像表示装置としての寸法は幅1cm以上10m以下、高さ1cm以上10m以下、奥行き5mm [0074] The dimensions of the image display apparatus inclusive width 1cm 10 m, below the height 1cm above 10 m, depth 5mm
以上5m以下の範囲で任意に製作することができ、この寸法に応じて半導体発光素子の個数を設定することができる。 Above 5m can be fabricated in any of the following ranges, it is possible to set the number of semiconductor light-emitting device according to this dimension. 【0075】図6に示す数字表示装置において、10が実施の形態1で説明した半導体発光素子である。 [0075] In the numerical display device shown in FIG. 6, 10 is a semiconductor light-emitting element described in Embodiment 1. この数字表示装置においても、画像表示装置の場合と同様に、 In this numerical display device, as in the case of the image display device,
半導体発光素子10の発光色、大きさ、数、画素の形状などは限定されるものではない。 Emission color of the semiconductor light emitting element 10, the size, number, not including the shape of the pixels is limited. また、表示文字は数字に限定されるものではなく、漢字、カタカナ、アルファベット、ギリシア文字などであっても構わない。 In addition, the display character is not intended to be limited in number, may kanji, katakana, alphabet, even in such as Greek characters. 【0076】なお、図5〜図7に示したような半導体発光装置にあっては、一種類のLEDチップだけを用いた複数個の半導体発光素子10を用いて構成した発光装置にすると、全く同じ駆動電圧や注入電流での各半導体発光素子の動作が可能になるとともに、周囲温度などの外部要因による発光素子の特性変動もほぼ同一にできるようになり、電圧変化や温度変化に対する発光素子の発光強度や色調の変化率を少なくできるとともに、発光装置の回路構成をシンプルにできる。 [0076] Incidentally, in the semiconductor light-emitting device as shown in FIGS. 5 to 7, when the light emitting apparatus constituted by using a plurality of semiconductor light-emitting device 10 using only one type of LED chips, quite work with is possible the semiconductor light-emitting elements at the same driving voltage and injection current, will be able to substantially the same the characteristics variation of the light-emitting element due to external factors such as ambient temperature, the light-emitting element with respect to the voltage change and temperature change it is possible to reduce the variation rate of the emission intensity and color tone, can simplify the circuit configuration of a light emitting device. 【0077】また、画素面が平坦な半導体発光素子を用いて半導体発光装置を構成すると、表示面が平坦な表示装置や面発光する照明装置など、発光面の平坦な発光装置を提供でき、良好な画質を有する画像表示装置や、デザイン性に優れる照明装置を提供できる。 [0077] Further, the pixel surface is a semiconductor light emitting device using a flat semiconductor light emitting devices, lighting devices display surface of a flat display device or a surface-emitting, to provide a flat light-emitting device of the light emitting surface, good an image display device and having a picture quality, can provide a lighting apparatus excellent in design. 【0078】本発明に係る半導体発光装置は、実施の形態1に記載した、高光束の白色系光が得られる半導体発光素子を用いて発光装置を構成することによって、高光束の発光装置となる。 [0078] The semiconductor light emitting device according to the present invention have been described in the first embodiment, by constituting the light emitting device using a semiconductor light emitting device white light is obtained in the high luminous flux, a light-emitting device of high luminous flux . 【0079】 【実施例】(実施例1)青色系蛍光体を(M2 1-x [0079] [Example] (Example 1) a blue-based phosphor (M2 1-x E
x )(M3 1-y1 Mn y1 )Al 1017 (ただし、M2 u x) (M3 1-y1 Mn y1) Al 10 O 17 ( provided that, M2
は、Ba、Sr、Caから選ばれる少なくとも一つのアルカリ土類金属元素、M3は、Mg、Znから選ばれる少なくとも一つの元素、x、y1は、各々、0<x< Is Ba, Sr, at least one alkaline earth metal element selected from Ca, M3 is, Mg, at least one element selected from Zn, x, y1, respectively, 0 <x <
1、0≦y1<0.05を満足する数値である。 Is a numerical value satisfying 1,0 ≦ y1 <0.05. )の化学式で表される、(Ba,Sr)MgAl 1017 :Eu ) Represented by the formula, (Ba, Sr) MgAl 10 O 17: Eu
2+ ,Mn 2+アルミン酸塩青色蛍光体(M2=0.9Ba 2+, Mn 2+ aluminate blue phosphor (M2 = 0.9Ba
+0.1Sr、x=0.1、y=0.015)とし、黄色系蛍光体を(Sr 1-a1-b1-x Ba a1 Ca b1 Eu x2 + 0.1Sr, x = 0.1, y = 0.015) and to the yellow phosphor (Sr 1-a1-b1- x Ba a1 Ca b1 Eu x) 2 S
iO 4 (ただし、a1、b1、xは、各々、0≦a1≦ iO 4 (however, a1, b1, x, respectively, 0 ≦ a1 ≦
0.3、0≦b1≦0.8、0<x<1を満足する数値である。 0.3,0 ≦ b1 ≦ 0.8,0 <is a numerical value satisfying x <1. )の化学式で表され、斜方晶の結晶構造を有する、(Sr,Ba) 2 SiO 4 :Eu 2+珪酸塩黄色蛍光体(a1=0.1、b1=0、x=0.02)とし、この青色蛍光体と黄色蛍光体の混合重量割合を35:15、 ) Represented by the chemical formula, having an orthorhombic crystal structure, (Sr, Ba) 2 SiO 4: Eu 2+ silicate yellow phosphor (a1 = 0.1, b1 = 0 , x = 0.02) and then, the mixing weight ratio of the blue phosphor and a yellow phosphor 35:15,
エポキシ樹脂と混合蛍光体との重量割合を120:5 The weight ratio of the epoxy resin and the mixed phosphor 120: 5
0、蛍光体層の実質厚みを約600μmとして半導体発光素子(実施例1)を製作した。 0, was manufactured semiconductor light-emitting device (Example 1) a substantial thickness of the phosphor layer as about 600 .mu.m. 【0080】半導体発光素子の構造は、図2に示したような、マウント・リードに設けたカップに近紫外LED [0080] The semiconductor structure of the light-emitting element, as shown in FIG. 2, near-ultraviolet LED in a cup provided on the mount lead
を導通搭載するとともに、カップ内に蛍光体粒子が内在するエポキシ樹脂で形成した蛍光体層を設けた構造の半導体発光素子とした。 With conductive mounting the phosphor particles are the semiconductor light emitting device having a structure in which a phosphor layer formed by an epoxy resin inherent in the cup. また、近紫外LEDは、窒化ガリウム系化合物半導体で構成した発光層を有し、波長38 Also, near-ultraviolet LED has a light emitting layer composed of gallium nitride-based compound semiconductor, the wavelength 38
0nmに発光ピークを有する、InGaN系の近紫外L Having an emission peak at 0 nm, the near ultraviolet L InGaN-based
EDとした。 Was the ED. 【0081】この近紫外LEDからの波長380nmの近紫外光励起下での、青色系蛍光体の発光スペクトルを図8の(a)に、黄色蛍光体の発光スペクトルを同図の(b)に示した。 [0081] in the near ultraviolet excitation of a wavelength 380nm from the near-ultraviolet LED, an emission spectrum of the blue phosphor in (a) of FIG. 8 shows the emission spectrum of the yellow phosphor in the same figure (b) It was. 【0082】比較のために、前記(Ba,Sr)MgA [0082] For comparison, the (Ba, Sr) MgA
1017 :Eu 2+ ,Mn 2+アルミン酸塩青色蛍光体を青色系蛍光体、BaMgAl 1017 :Eu 2+ 、Mn 2+ (B l 10 O 17: Eu 2+, blue phosphor Mn 2+ aluminate blue phosphor, BaMgAl 10 O 17: Eu 2+ , Mn 2+ (B
0. 9 Eu 0.1 Mg 0.7 Mn 0.3 Al 1017 )アルミン酸塩緑色蛍光体を緑色系蛍光体、LaO 2 S:Eu 3+ (La a 0. 9 Eu 0.1 Mg 0.7 Mn 0.3 Al 10 O 17) green phosphor aluminates green phosphor, LaO 2 S: Eu 3+ ( La
0.9 Eu 0.12 S)酸硫化物赤色蛍光体を赤色系蛍光体とし、蛍光体層中に黄色系蛍光体を含まない、上記と同様の半導体発光素子(比較例1)を製作した。 The 0.9 Eu 0.1 O 2 S) oxysulfide red phosphor and a red phosphor, does not include a yellow phosphor in the phosphor layer was produced similar to the above semiconductor light-emitting element (comparative example 1). 比較例1 Comparative Example 1
の半導体発光素子でのアルミン酸塩青色蛍光体、アルミン酸塩緑色蛍光体、酸硫化物赤色蛍光体の混合重量割合は7:13:40であり、エポキシ樹脂と混合蛍光体との重量割合と蛍光体層の実質厚みは実施例1の半導体発光素子と同じである。 Aluminate blue phosphor in the semiconductor light-emitting device, aluminate green phosphor, the mixing weight ratio of oxysulfide red phosphor is 7:13:40, and the weight ratio of the epoxy resin and the mixed phosphor substantial thickness of the phosphor layer is the same as the semiconductor light-emitting device of example 1. 【0083】上記半導体発光素子の近紫外LEDに10 [0083] 10 to near-ultraviolet LED of the semiconductor light-emitting element
mAを通電して、近紫外LEDを動作させ、半導体発光素子からの白色系光のCIE色度図における(x,y) mA energized and operates the near ultraviolet LED, in the CIE chromaticity diagram of the white-based light from the semiconductor light emitting element (x, y)
値、光束の相対値を、瞬間マルチ測光システム(MCP Value, the relative value of the luminous flux, measured by an instantaneous multi photometric system (MCP
D−7000:大塚電子株式会社製)を用いて評価した。 D-7000: was evaluated using the Otsuka Electronics Co., Ltd.). この結果を表1に示す。 The results are shown in Table 1. 表1からわかるように、ほぼ同じ色度の白色系光のもとでは、本発明にかかる半導体発光素子(実施例1)の方が、高い光束(約3.7 As can be seen from Table 1, in almost original white light of the same chromaticity, towards the semiconductor light-emitting device according to the present invention (Example 1), high light flux (about 3.7
倍)が得られた。 Times) was obtained. 【0084】 【表1】 [0084] [Table 1] 【0085】 【発明の効果】本発明の半導体発光素子は、近紫外LE [0085] The semiconductor light-emitting device of the present invention exhibits, near ultraviolet LE
Dと、この近紫外LEDが放つ350〜410nm付近の近紫外光を吸収して400nm以上500nm未満の波長領域に発光ピークを有する青色系蛍光体と、前記近紫外光を吸収して550nm以上600nm未満の波長領域に発光ピークを有する黄色系蛍光体を含む蛍光体層とを組み合わせたことにより、高光束の白色系光を放つ半導体発光素子を得ることができる。 D and, 600 nm and a blue phosphor, the 550nm or absorbs near-ultraviolet light having an emission peak absorbs near-ultraviolet light in the wavelength region of less than 500nm or 400nm in the vicinity of 350~410nm for the near ultraviolet LED is emitting by combining the phosphor layer containing a yellow phosphor having an emission peak in less than a wavelength region, it is possible to obtain a semiconductor light emitting device that emits white light of high luminous flux. 特に黄色系蛍光体として珪酸塩蛍光体を用いることにより、YAG系蛍光体を用いた従来の半導体発光素子をはるかに凌ぐ高効率の半導体発光素子となる。 In particular, by using a silicate phosphor as a yellow phosphor, a high efficiency of the semiconductor light emitting device far surpasses conventional semiconductor light emitting device using the YAG-based phosphor. 【0086】また、本発明の発光装置は、近紫外光励起の下で効率良く発光する青色系蛍光体と黄色系蛍光体の2種類の蛍光体を含む蛍光体層を有し、高光束の前記半導体発光素子を用いて発光装置を構成することにより、 [0086] The light-emitting device of the present invention has a phosphor layer comprising two phosphors of the blue phosphor and a yellow phosphor which emits light efficiently under near-ultraviolet excitation, said high flux by constituting the light emitting device using a semiconductor light emitting element,
高光束の白色系光を放つ発光装置とすることができる。 It can be a light emitting device that emits white light of high luminous flux.

【図面の簡単な説明】 【図1】本発明の実施形態である半導体発光素子の縦断面図【図2】本発明の実施形態である半導体発光素子の縦断面図【図3】本発明の実施形態である半導体発光素子の縦断面図【図4】珪酸塩蛍光体とYAG系蛍光体の発光および励起スペクトルの例を示す図【図5】本発明の実施形態である発光装置の斜視図【図6】本発明の実施形態である発光装置の斜視図【図7】本発明の実施形態である発光装置の斜視図【図8】(a)は、青色系蛍光体の発光スペクトルを示す図(b)は、黄色系蛍光体の発光スペクトルを示す図【符号の説明】 1 近紫外LED 2 蛍光体層3 青色系蛍光体粒子4 黄色系蛍光体粒子5 サブマウント素子6 リードフレーム7 カップ8 封止樹脂9 筐体10 半導体発光素子11 スイッチ Longitudinal sectional view of a semiconductor light emitting device according to an embodiment of the BRIEF DESCRIPTION OF THE DRAWINGS [Figure 1] The present invention longitudinal sectional view of a semiconductor light emitting device according to an embodiment of the present invention; FIG 3 shows the present invention longitudinal section perspective view of FIG. 4 the light emitting device is an embodiment of Figure 5 shows the present invention showing an example of emission and excitation spectra of silicate phosphors and YAG phosphor of the semiconductor light-emitting device according to an embodiment perspective view of a light-emitting device according to an embodiment of the invention; FIG perspective view of an embodiment in which the light-emitting device of the present invention; FIG 8 (a) shows the emission spectrum of the blue phosphor Figure (b) is a diagram [Reference numerals] 1 near ultraviolet LED 2 phosphor layer 3 blue phosphor particles 4 yellow phosphor particles 5 submount 6 lead frame 7 cups showing an emission spectrum of a yellow phosphor 8 sealing resin 9 the housing 10 semiconductor light-emitting element 11 switches

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl. 7識別記号 FI テーマコート゛(参考) C09K 11/59 CPX C09K 11/59 CPX 11/64 11/64 11/73 11/73 (72)発明者 岩間 克昭 大阪府門真市大字門真1006番地 松下電器 産業株式会社内(72)発明者 北原 博実 大阪府門真市大字門真1006番地 松下電器 産業株式会社内(72)発明者 池田 忠昭 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Fターム(参考) 4H001 CA02 CA04 CA05 XA08 XA12 XA14 XA15 XA17 XA20 XA30 XA38 XA56 YA25 YA63 5F041 AA11 CA34 CA40 DA18 DA19 DA44 DA46 EE25 ────────────────────────────────────────────────── ─── of the front page continued (51) Int.Cl. 7 identification mark FI theme Court Bu (reference) C09K 11/59 CPX C09K 11/59 CPX 11/64 11/64 11/73 11/73 (72) inventor Katsuaki Iwama Osaka Prefecture Kadoma Oaza Kadoma 1006 address Matsushita Electric industrial Co., Ltd. in the (72) inventor Hiromi Kitahara Osaka Prefecture Kadoma Oaza Kadoma 1006 address Matsushita Electric industrial Co., Ltd. in the (72) inventor Tadaaki Ikeda Osaka Prefecture Kadoma Oaza Kadoma 1006 address Matsushita Electric industrial Co., Ltd. in the F-term (reference) 4H001 CA02 CA04 CA05 XA08 XA12 XA14 XA15 XA17 XA20 XA30 XA38 XA56 YA25 YA63 5F041 AA11 CA34 CA40 DA18 DA19 DA44 DA46 EE25

Claims (1)

  1. 【特許請求の範囲】 【請求項1】 350nmを超え410nm以下の波長領域に発光ピークを有する発光を放つ近紫外発光ダイオードと、前記近紫外発光ダイオードが放つ近紫外光を吸収して、380nm以上780nm以下の可視波長領域に発光ピークを有する蛍光を放つ複数の蛍光体を含む蛍光体層とを組み合わせ、CIE色度図における発光色度点(x,y)が、0.21≦x≦0.48、0.19≦ And Claims 1. A near-ultraviolet light-emitting diode that emits light with an emission peak 350nm to 410nm or less in a wavelength region beyond the said absorbs near-ultraviolet light emitted by the near-ultraviolet light-emitting diodes, or 380nm combining a phosphor layer comprising a plurality of phosphors that emit fluorescence having an emission peak in the visible wavelength region 780 nm, emission chromaticity point in the CIE chromaticity diagram (x, y) is, 0.21 ≦ x ≦ 0 .48,0.19 ≦
    y≦0.45の範囲にある白色系光を放つ半導体発光素子であって、前記蛍光体層が、波長380nmおよびその付近の波長領域の近紫外光照射の下で、550nm以上600nm未満の波長領域に発光ピークを有する黄色系の蛍光を放つ黄色系蛍光体と400nm以上500n A semiconductor light emitting device that emits white light in the range of y ≦ 0.45, said phosphor layer, under the near-ultraviolet light irradiation of a wavelength 380nm and a wavelength region near the wavelength of less than 550 nm 600 nm yellow phosphor that emits yellow fluorescence system having an emission peak in the region and 400nm or more 500n
    m未満の波長領域に発光ピークを有する青色系の蛍光を放つ青色系蛍光体の二種類の蛍光体を含むことを特徴とする半導体発光素子。 The semiconductor light emitting device characterized in that it comprises two kinds of phosphors of the blue-based phosphor that emits fluorescence of blue having an emission peak in a wavelength region of less than m. 【請求項2】 前記黄色系蛍光体が、下記の化学式で表される化合物を主体にしてなる珪酸塩蛍光体である請求項1記載の半導体発光素子。 Wherein said yellow phosphor, the semiconductor light emitting device according to claim 1, wherein the silicate phosphor obtained by mainly a compound represented by the following chemical formula. (Sr 1-a1-b1-x Ba a1 Ca b1 Eu x2 SiO 4ただし、a1、b1、xは、各々、0≦a1≦0.3、 (Sr 1-a1-b1- x Ba a1 Ca b1 Eu x) 2 SiO 4 , however, a1, b1, x, respectively, 0 ≦ a1 ≦ 0.3,
    0≦b1≦0.8、0<x<1を満足する数値である。 0 ≦ b1 ≦ 0.8, 0 is a numerical value satisfying <x <1. 【請求項3】 前記珪酸塩蛍光体が、斜方晶の結晶構造を有し下記の化学式で表される化合物を主体にしてなる珪酸塩蛍光体である請求項2記載の半導体発光素子。 Wherein the silicate phosphor, the semiconductor light emitting device according to claim 2, wherein the silicate phosphor obtained by the mainly orthorhombic have a crystalline structure compound represented by the following chemical formula:. (Sr 1-a1-b2-x Ba a1 Ca b2 Eu x2 SiO 4ただし、a1、b2、xは、各々、0≦a1≦0.3、 (Sr 1-a1-b2- x Ba a1 Ca b2 Eu x) 2 SiO 4 , however, a1, b2, x, respectively, 0 ≦ a1 ≦ 0.3,
    0≦b2≦0.6、0<x<1を満足する数値である。 0 ≦ b2 ≦ 0.6, 0 is a numerical value satisfying <x <1. 【請求項4】 前記青色系蛍光体が、下記の(1)または(2)のいずれかの青色系蛍光体である請求項1〜3 Wherein said blue phosphor, claims 1 to 3 which is one of blue phosphors of the following (1) or (2)
    のいずれかに記載の半導体発光素子。 The semiconductor light emitting device according to any one of. (1)下記の化学式で表される化合物を主体にしてなるハロ燐酸塩蛍光体(M1 1-x Eu x10 (PO 46 Cl 2ただし、M1は、Ba、Sr、Ca、Mgから選ばれる少なくとも一つのアルカリ土類金属元素、xは、0<x (1) halophosphate phosphor formed by mainly a compound represented by the following chemical formula: (M1 1-x Eu x) 10 (PO 4) 6 Cl 2 However, M1 is, Ba, Sr, Ca, and Mg at least one alkaline earth metal element selected, x is, 0 <x
    <1を満足する数値である。 <Is a numerical value that satisfies the 1. (2)下記の化学式で表される化合物を主体にしてなるアルミン酸塩蛍光体(M2 1-x Eu x )(M3 1-y1 Mn y1 )Al 1017ただし、M2は、Ba、Sr、Caから選ばれる少なくとも一つのアルカリ土類金属元素、M3は、Mg、Zn (2) the following Chemical Formula compound represented by the aluminate phosphor obtained by the principal (M2 1-x Eu x) (M3 1-y1 Mn y1) Al 10 O 17 , however, M2 is, Ba, Sr, at least one alkaline earth metal element selected from Ca, M3 is, Mg, Zn
    から選ばれる少なくとも一つの元素、x、y1は、各々、0<x<1、0≦y1<0.05を満足する数値である。 At least one element selected from, x, y1, respectively, is a numerical value satisfying 0 <x <1,0 ≦ y1 <0.05. 【請求項5】 前記近紫外発光ダイオードが、窒化ガリウム系化合物半導体で構成した発光層を有する近紫外発光ダイオードである請求項1〜4のいずれかに記載の半導体発光素子。 Wherein said near-ultraviolet light-emitting diodes, semiconductor light-emitting device according to claim 1 is a near-ultraviolet light-emitting diode having a light emitting layer composed of gallium nitride-based compound semiconductor. 【請求項6】 請求項1〜5のいずれかに記載の半導体発光素子を用いて構成したことを特徴とする半導体発光装置。 6. The semiconductor light emitting device, characterized in that constructed by using the semiconductor light-emitting device according to any one of claims 1 to 5.
JP2001305031A 2001-10-01 2001-10-01 The semiconductor light emitting device and a light emitting apparatus using the same Expired - Fee Related JP3985486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001305031A JP3985486B2 (en) 2001-10-01 2001-10-01 The semiconductor light emitting device and a light emitting apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001305031A JP3985486B2 (en) 2001-10-01 2001-10-01 The semiconductor light emitting device and a light emitting apparatus using the same

Publications (2)

Publication Number Publication Date
JP2003110150A true JP2003110150A (en) 2003-04-11
JP3985486B2 JP3985486B2 (en) 2007-10-03

Family

ID=19124882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001305031A Expired - Fee Related JP3985486B2 (en) 2001-10-01 2001-10-01 The semiconductor light emitting device and a light emitting apparatus using the same

Country Status (1)

Country Link
JP (1) JP3985486B2 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005039284A (en) * 2003-06-30 2005-02-10 Nichia Chem Ind Ltd Semiconductor light emitting element and light emitting device employing it
JP2005064272A (en) * 2003-08-13 2005-03-10 Mitsubishi Chemicals Corp Light emitting device, illumination device, and image display apparatus
JP2005109289A (en) * 2003-10-01 2005-04-21 Nichia Chem Ind Ltd Light-emitting device
JP2005235847A (en) * 2004-02-17 2005-09-02 Toyoda Gosei Co Ltd Light emitting device
JP2005243699A (en) * 2004-02-24 2005-09-08 Mitsubishi Chemicals Corp Light emitting element, image display device, and lighting device
WO2006043747A1 (en) * 2004-10-18 2006-04-27 Lg Innotek Co., Ltd Phosphor, light emitting device by using the same and manufacturing method of the same
JP2006324410A (en) * 2005-05-18 2006-11-30 Showa Denko Kk Resin composition for sealing light emitting diode
JP2006351773A (en) * 2005-06-15 2006-12-28 Rohm Co Ltd Semiconductor light-emitting apparatus
WO2007018260A1 (en) * 2005-08-10 2007-02-15 Mitsubishi Chemical Corporation Phosphor and light-emitting device using same
JP2007039517A (en) * 2005-08-02 2007-02-15 Sharp Corp Blue light-emitting phosphor and light emitter using the same
JP2007506264A (en) * 2003-09-15 2007-03-15 コニンクリユケ フィリップス エレクトロニクス エヌ.ブイ. White light emitting illumination systems
US7201858B2 (en) 2004-10-18 2007-04-10 Kabushiki Kaisha Toshiba Fluorescent substance, method of manufacturing fluorescent substance, and light emitting device using the fluorescent substance
US7224000B2 (en) 2002-08-30 2007-05-29 Lumination, Llc Light emitting diode component
JP2007150309A (en) * 2005-11-23 2007-06-14 Visteon Global Technologies Inc Light emitting diode device having shield and/or filter
JP2007158298A (en) * 2005-11-08 2007-06-21 Sharp Corp Light-emitting device
JP2007191680A (en) * 2005-09-01 2007-08-02 Sharp Corp Light-emitting device
JP2007528606A (en) * 2004-03-10 2007-10-11 ゲルコアー リミテッド ライアビリティ カンパニー Phosphors and mixtures thereof for use in Led
JP2007533149A (en) * 2004-04-16 2007-11-15 ロディア・シミ White light emitting diode
US7391060B2 (en) 2004-04-27 2008-06-24 Matsushita Electric Industrial Co., Ltd. Phosphor composition and method for producing the same, and light-emitting device using the same
DE102008017039A1 (en) 2007-04-05 2008-10-09 Koito Manufacturing Co., Ltd. fluorescent
EP2015614A2 (en) 2007-07-12 2009-01-14 Koito Manufacturing Co., Ltd. Light emitting device
JP2009038348A (en) * 2007-07-12 2009-02-19 Koito Mfg Co Ltd Light emitting device
JP2010050438A (en) * 2008-08-22 2010-03-04 National Taiwan Univ Of Science & Technology White light-emitting diode
WO2010058961A3 (en) * 2008-11-21 2010-08-12 Lg Innotek Co., Ltd Light emitting apparatus and display apparatus using the same
US7842960B2 (en) 2006-09-06 2010-11-30 Lumination Llc Light emitting packages and methods of making same
JP2011018934A (en) * 2004-08-04 2011-01-27 Intematix Corp New phosphor system for white light emitting diode
US7911127B2 (en) 2005-03-30 2011-03-22 Samsung Led Co., Ltd. Phosphor blend for wavelength conversion and white light emitting device using the same
WO2011108194A1 (en) * 2010-03-03 2011-09-09 株式会社小糸製作所 Light emitting device
JP2012190744A (en) * 2011-03-14 2012-10-04 Koito Mfg Co Ltd Fluorescent lamp type led lamp
US8513872B2 (en) 2010-08-05 2013-08-20 Sharp Kabushiki Kaisha Light emitting apparatus and method for manufacturing thereof
US8663498B2 (en) 2006-11-24 2014-03-04 Sharp Kabushiki Kaisha Phosphor, method of producing the same, and light emitting apparatus
US8729788B2 (en) 2005-05-30 2014-05-20 Sharp Kabushiki Kaisha Light emitting device provided with a wavelength conversion unit incorporating plural kinds of phosphors
US9146453B2 (en) 2012-06-21 2015-09-29 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device and projection apparatus
US9841175B2 (en) 2012-05-04 2017-12-12 GE Lighting Solutions, LLC Optics system for solid state lighting apparatus
US9951938B2 (en) 2009-10-02 2018-04-24 GE Lighting Solutions, LLC LED lamp
US10340424B2 (en) 2002-08-30 2019-07-02 GE Lighting Solutions, LLC Light emitting diode component

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3527878A1 (en) 2016-10-11 2019-08-21 Kabushiki Kaisha Toshiba Fluorescent body and production method therefor, and light-emitting device

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10340424B2 (en) 2002-08-30 2019-07-02 GE Lighting Solutions, LLC Light emitting diode component
US7224000B2 (en) 2002-08-30 2007-05-29 Lumination, Llc Light emitting diode component
JP2005039284A (en) * 2003-06-30 2005-02-10 Nichia Chem Ind Ltd Semiconductor light emitting element and light emitting device employing it
JP4581540B2 (en) * 2003-06-30 2010-11-17 日亜化学工業株式会社 The semiconductor light emitting element and the light-emitting device using the same
JP2005064272A (en) * 2003-08-13 2005-03-10 Mitsubishi Chemicals Corp Light emitting device, illumination device, and image display apparatus
JP4561064B2 (en) * 2003-08-13 2010-10-13 三菱化学株式会社 Emitting device and an illumination device and an image display device
JP2007506264A (en) * 2003-09-15 2007-03-15 コニンクリユケ フィリップス エレクトロニクス エヌ.ブイ. White light emitting illumination systems
JP2005109289A (en) * 2003-10-01 2005-04-21 Nichia Chem Ind Ltd Light-emitting device
JP2005235847A (en) * 2004-02-17 2005-09-02 Toyoda Gosei Co Ltd Light emitting device
JP4534513B2 (en) * 2004-02-17 2010-09-01 豊田合成株式会社 The light-emitting device
JP2005243699A (en) * 2004-02-24 2005-09-08 Mitsubishi Chemicals Corp Light emitting element, image display device, and lighting device
JP2007528606A (en) * 2004-03-10 2007-10-11 ゲルコアー リミテッド ライアビリティ カンパニー Phosphors and mixtures thereof for use in Led
US7968005B2 (en) 2004-04-16 2011-06-28 Rhodia Chimie White light emitting diode
JP2007533149A (en) * 2004-04-16 2007-11-15 ロディア・シミ White light emitting diode
JP4799549B2 (en) * 2004-04-16 2011-10-26 ロディア・シミ White light emitting diode
US7615797B2 (en) 2004-04-27 2009-11-10 Panasonic Corporation Phosphor composition and method for producing the same, and light-emitting device using the same
US7811472B2 (en) 2004-04-27 2010-10-12 Panasonic Corporation Phosphor composition and method for producing the same, and light-emitting device using the same
US7892453B2 (en) 2004-04-27 2011-02-22 Panasonic Corporation Phosphor composition and method for producing the same, and light-emitting device using the same
US8551362B2 (en) 2004-04-27 2013-10-08 Panasonic Corporation Phosphor composition and method for producing the same, and light-emitting device using the same
US7391060B2 (en) 2004-04-27 2008-06-24 Matsushita Electric Industrial Co., Ltd. Phosphor composition and method for producing the same, and light-emitting device using the same
US7651634B2 (en) 2004-04-27 2010-01-26 Panasonic Corporation Phosphor composition and method for producing the same, and light-emitting device using the same
US8221649B2 (en) 2004-04-27 2012-07-17 Panasonic Corporation Phosphor composition and method for producing the same, and light-emitting device using the same
US8226853B2 (en) 2004-04-27 2012-07-24 Panasonic Corporation Phosphor composition and method for producing the same, and light-emitting device using the same
US7507354B2 (en) 2004-04-27 2009-03-24 Panasonic Corporation Phosphor composition and method for producing the same, and light-emitting device using the same
US8419975B2 (en) 2004-04-27 2013-04-16 Panasonic Corporation Phosphor composition and method for producing the same, and light-emitting device using the same
JP2011018934A (en) * 2004-08-04 2011-01-27 Intematix Corp New phosphor system for white light emitting diode
JP4833212B2 (en) * 2004-08-04 2011-12-07 インテマティックス・コーポレーションIntematix Corporation A new phosphor system for white light emitting diodes
US7201858B2 (en) 2004-10-18 2007-04-10 Kabushiki Kaisha Toshiba Fluorescent substance, method of manufacturing fluorescent substance, and light emitting device using the fluorescent substance
JP2008517458A (en) * 2004-10-18 2008-05-22 エルジー イノテック カンパニー リミテッド Phosphor, the light emitting elements utilizing phosphor, and a manufacturing method thereof phosphor {Phosphor, lightemittingdevicebyusingthesameandmanufacturingmethodofthesame}
WO2006043747A1 (en) * 2004-10-18 2006-04-27 Lg Innotek Co., Ltd Phosphor, light emitting device by using the same and manufacturing method of the same
US7911127B2 (en) 2005-03-30 2011-03-22 Samsung Led Co., Ltd. Phosphor blend for wavelength conversion and white light emitting device using the same
JP2006324410A (en) * 2005-05-18 2006-11-30 Showa Denko Kk Resin composition for sealing light emitting diode
US9722149B2 (en) 2005-05-30 2017-08-01 Sharp Kabushiki Kaisha Light emitting device and fabricating method thereof
US8729788B2 (en) 2005-05-30 2014-05-20 Sharp Kabushiki Kaisha Light emitting device provided with a wavelength conversion unit incorporating plural kinds of phosphors
US10008644B2 (en) 2005-05-30 2018-06-26 Sharp Kabushiki Kaisha Light emitting device and fabricating method thereof
US9281456B2 (en) 2005-05-30 2016-03-08 Sharp Kabushiki Kaisha Light emitting device and fabricating method thereof
JP2006351773A (en) * 2005-06-15 2006-12-28 Rohm Co Ltd Semiconductor light-emitting apparatus
JP2007039517A (en) * 2005-08-02 2007-02-15 Sharp Corp Blue light-emitting phosphor and light emitter using the same
WO2007018260A1 (en) * 2005-08-10 2007-02-15 Mitsubishi Chemical Corporation Phosphor and light-emitting device using same
US8277687B2 (en) 2005-08-10 2012-10-02 Mitsubishi Chemical Corporation Phosphor and light-emitting device using same
JP2007191680A (en) * 2005-09-01 2007-08-02 Sharp Corp Light-emitting device
JP2007158298A (en) * 2005-11-08 2007-06-21 Sharp Corp Light-emitting device
JP2007150309A (en) * 2005-11-23 2007-06-14 Visteon Global Technologies Inc Light emitting diode device having shield and/or filter
US7842960B2 (en) 2006-09-06 2010-11-30 Lumination Llc Light emitting packages and methods of making same
US9624427B2 (en) 2006-11-24 2017-04-18 Ge Phosphors Technology, Llc Phosphor, method of producing the same, and light emitting apparatus
US10259997B2 (en) 2006-11-24 2019-04-16 Ge Phosphors Technology, Llc Phosphor, method of producing the same, and light emitting apparatus
US9884990B2 (en) 2006-11-24 2018-02-06 Ge Phosphors Technology, Llc Phosphor, method of producing the same, and light emitting apparatus
US8663498B2 (en) 2006-11-24 2014-03-04 Sharp Kabushiki Kaisha Phosphor, method of producing the same, and light emitting apparatus
DE102008017039A1 (en) 2007-04-05 2008-10-09 Koito Manufacturing Co., Ltd. fluorescent
US7704411B2 (en) 2007-04-05 2010-04-27 Koito Manufacturing Co., Ltd. Phosphor
EP2015614A2 (en) 2007-07-12 2009-01-14 Koito Manufacturing Co., Ltd. Light emitting device
JP2009038348A (en) * 2007-07-12 2009-02-19 Koito Mfg Co Ltd Light emitting device
US8187495B2 (en) * 2007-07-12 2012-05-29 Koito Manufacturing Co., Ltd. Light emitting device
JP2010050438A (en) * 2008-08-22 2010-03-04 National Taiwan Univ Of Science & Technology White light-emitting diode
KR101081246B1 (en) 2008-11-21 2011-11-08 엘지이노텍 주식회사 Light emitting apparatus and fabrication method thereof
US8913213B2 (en) 2008-11-21 2014-12-16 Lg Innotek Co., Ltd. Light emitting apparatus and display apparatus using the same
WO2010058961A3 (en) * 2008-11-21 2010-08-12 Lg Innotek Co., Ltd Light emitting apparatus and display apparatus using the same
CN102007612A (en) * 2008-11-21 2011-04-06 Lg伊诺特有限公司 Light emitting apparatus and display apparatus using the same
US9951938B2 (en) 2009-10-02 2018-04-24 GE Lighting Solutions, LLC LED lamp
US8754432B2 (en) 2010-03-03 2014-06-17 Koito Manufacturing Co., Ltd. Light emitting device
WO2011108194A1 (en) * 2010-03-03 2011-09-09 株式会社小糸製作所 Light emitting device
US8513872B2 (en) 2010-08-05 2013-08-20 Sharp Kabushiki Kaisha Light emitting apparatus and method for manufacturing thereof
JP2012190744A (en) * 2011-03-14 2012-10-04 Koito Mfg Co Ltd Fluorescent lamp type led lamp
US9841175B2 (en) 2012-05-04 2017-12-12 GE Lighting Solutions, LLC Optics system for solid state lighting apparatus
US10139095B2 (en) 2012-05-04 2018-11-27 GE Lighting Solutions, LLC Reflector and lamp comprised thereof
US9146453B2 (en) 2012-06-21 2015-09-29 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device and projection apparatus

Also Published As

Publication number Publication date
JP3985486B2 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
JP5151002B2 (en) Light emitting device
US6850002B2 (en) Light emitting device for generating specific colored light, including white light
US6255670B1 (en) Phosphors for light generation from light emitting semiconductors
JP5138145B2 (en) Phosphor laminate structure and light source using the same
KR100777501B1 (en) Phosphor composition and method for producing the same, and light-emitting device using the same
CN101243158B (en) Aluminate-based blue phosphors
JP5414957B2 (en) White light emitting phosphor blend for LED elements
EP1411558B1 (en) Phosphor converted light emitting device
JP4889656B2 (en) A novel green phosphor based on aluminate
US7183706B2 (en) Led-based illumination unit
JP4418758B2 (en) Illumination system with a radiation source and a light emitting element
US7432642B2 (en) Semiconductor light emitting device provided with a light conversion element using a haloborate phosphor composition
US7648649B2 (en) Red line emitting phosphors for use in led applications
US7573072B2 (en) Phosphor and blends thereof for use in LEDs
US20060022582A1 (en) White LEDs with tunable CRI
JP5592602B2 (en) Phosphor and light emitting device using the same
JP4838727B2 (en) Phosphor and light source having such phosphor
US6469322B1 (en) Green emitting phosphor for use in UV light emitting diodes
US7094362B2 (en) Garnet phosphor materials having enhanced spectral characteristics
US8038905B2 (en) Illumination system comprising a radiation source and a fluorescent material
US20080093979A1 (en) Illumination System Comprising a Radiation Source and a Luminescent Material
US7329371B2 (en) Red phosphor for LED based lighting
US7229573B2 (en) Ce3+ and Eu2+ doped phosphors for light generation
CN100386888C (en) Light emitting element and light emitting device using this
US7274045B2 (en) Borate phosphor materials for use in lighting applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040702

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees