JP2000252523A - Formation of led - Google Patents

Formation of led

Info

Publication number
JP2000252523A
JP2000252523A JP4746799A JP4746799A JP2000252523A JP 2000252523 A JP2000252523 A JP 2000252523A JP 4746799 A JP4746799 A JP 4746799A JP 4746799 A JP4746799 A JP 4746799A JP 2000252523 A JP2000252523 A JP 2000252523A
Authority
JP
Japan
Prior art keywords
light
phosphor
emitting diode
resin
led chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4746799A
Other languages
Japanese (ja)
Other versions
JP3604298B2 (en
Inventor
Hiroaki Tamemoto
広昭 為本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP4746799A priority Critical patent/JP3604298B2/en
Publication of JP2000252523A publication Critical patent/JP2000252523A/en
Application granted granted Critical
Publication of JP3604298B2 publication Critical patent/JP3604298B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce color tone variations, etc., caused by uneven filling of the resin containing phosphor by forming a two-stepped recessed section and filling the the resin at least over the upper surface of the lower recessed part. SOLUTION: In a housing of a chip LED, a gallium nitride semiconductor is so formed as to have a lower recessed part 11 for disposing an LED chip 12 and an edge for obtaining the uniformity in the shape of the sealing resin. In other words, the housing is a package formed with a two-stepped recessed section 11, 15. Epoxy resin wherein the phosphor is dispersed is filled into the lower recessed part 11 wherein the LED chip 12 is disposed and then is hardened. The quantity of the resin containing the phosphor is larger than the volume of the lower recessed part 11. When power is supplied to such an LED, the LED chip 12 emits light. By this method, an LED which can emit while light by the mixture of light emitted from the LED chip 12 and light emitted from the phosphor excited by the light emission from the LED chip 12 can be formed with good productivity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、パッケージ内に配
置したLEDチップを蛍光体を利用して封止してなる発
光ダイオードの形成方法に係わり、特に、発光ダイオー
ドの発光方位、蛍光体量の製造過程における変化などに
よる色調むらや発光むらをより少なくするために改善し
た発光ダイオードの形成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a light emitting diode in which an LED chip disposed in a package is sealed using a phosphor, and more particularly, to a method for determining a light emitting direction of a light emitting diode and an amount of a phosphor. The present invention relates to a method for forming a light emitting diode, which is improved in order to reduce uneven color tone and light emission due to a change in a manufacturing process.

【0002】[0002]

【従来の技術】発光ダイオード(以下、LEDとも呼
ぶ。)は、小型で効率が良く鮮やかな色の発光をする。
また、半導体素子であるため球切れなどの心配がない。
初期駆動特性が優れ、振動やON/OFF点灯の繰り返しに
強いという特徴を有する。そのため各種インジケータや
種々の光源として利用されている。しかしながら、LE
Dは優れた単色性ピーク波長を有するが故に効率を向上
させようとすると白色系などの混色発光を行うことがで
きない。そこで、本願出願人は、青色発光ダイオードと
蛍光体により、青色発光ダイオードからの発光を蛍光体
によって色変換させる発光ダイオードを開発した。蛍光
体を利用した発光ダイオードはその特性ゆえに色むらや
輝度むらが発生しやすい傾向にある。
2. Description of the Related Art Light-emitting diodes (hereinafter, also referred to as LEDs) are small, efficient, and emit bright colors.
In addition, since it is a semiconductor element, there is no fear of breaking the ball.
It has excellent initial drive characteristics and is resistant to vibration and ON / OFF lighting. Therefore, it is used as various indicators and various light sources. However, LE
Since D has an excellent monochromatic peak wavelength, it is not possible to perform mixed color light emission such as white light in order to improve the efficiency. Therefore, the applicant of the present application has developed a light emitting diode in which light emitted from the blue light emitting diode is color-converted by the phosphor using the blue light emitting diode and the phosphor. Light-emitting diodes using phosphors tend to cause uneven color and uneven brightness due to their characteristics.

【0003】具体的には、青色LEDチップからの光
と、その光を吸収してより長波長の蛍光を出す蛍光体か
らの光、との混色光を発光させる発光ダイオードなので
あるが、この場合、青色LEDチップの光が多すぎて
も、蛍光体からの光が多すぎても混色光は色むらなどが
生ずる。特に、LEDチップ上に蛍光体を配置させる場
合、蛍光体を透過する青色LEDチップの光の行路長が
部分によって違うと、発光観測面上の部分的な色むらが
生ずることとなる。
Specifically, a light emitting diode emits mixed light of light from a blue LED chip and light from a phosphor that absorbs the light and emits longer-wavelength fluorescent light. Even if there is too much light from the blue LED chip or too much light from the phosphor, the mixed color light may cause color unevenness. In particular, when arranging a phosphor on the LED chip, if the path length of light of the blue LED chip that passes through the phosphor differs depending on the portion, partial color unevenness on the emission observation surface will occur.

【0004】このような部分的な色むらを解消し、所望
の指向角を得るために本出願人は、特開平10−107
325号公報に記載された発光ダイオードを開発した。
図3に示す如き、LEDチップからの光路長差が小さく
なるようカップの底面に、さらに窪みを形成させる。カ
ップ内部よりも狭い窪み内にLEDチップとこのLED
チップを被覆する蛍光体含有の樹脂を流し込むことによ
って、窪みから放出されるLEDチップからの光の行路
長差を小さくさせる。これによって、LEDチップから
放出された光が蛍光体含有の樹脂中を透過する距離の差
が小さくなり、実質的に均質な発光とすることができ
る。
In order to eliminate such partial color unevenness and obtain a desired directional angle, the present applicant has disclosed in Japanese Patent Laid-Open No. 10-107.
No. 325 has developed a light emitting diode.
As shown in FIG. 3, a depression is further formed on the bottom surface of the cup so as to reduce the difference in optical path length from the LED chip. LED chip and this LED in the recess narrower than the inside of the cup
By pouring the phosphor-containing resin that covers the chip, the difference in the path length of the light emitted from the LED chip from the recess is reduced. As a result, the difference in the distance that the light emitted from the LED chip passes through the resin containing the phosphor is reduced, and substantially uniform light emission can be achieved.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、蛍光体
を利用した発光ダイオードの使用分野の広がりと共に複
数個同時に使用されるなど、より色むらや輝度むらに対
して厳しい条件が課せられる現在においては十分ではな
く更なる改良が求められている。特に、人間の色調感覚
は、白色において特に敏感である。そのため、わずかな
色調差でも赤ぽい白、緑色ぽい白、黄色っぽい白等と感
じる。更に、この様な色むらなどは見ばえばかりでなく
センサーなど特定用途に合わせて色調などを選択して形
成させた発光ダイオードにおいては、使用できなくなる
場合もある。そのため、歩留まりが大きく低下すること
となる。本出願人は上記問題を解決してより色調むら、
輝度むらの少ない発光ダイオードを歩留まりよく形成さ
せることができる発光ダイオードの形成方法を提供する
ことにある。
However, at present, strict conditions are imposed on color unevenness and luminance unevenness, for example, as a plurality of light emitting diodes using phosphors are used at the same time as the field of use expands. Instead, further improvements are required. In particular, human tone perception is particularly sensitive in white. Therefore, even a slight difference in color tone is perceived as reddish white, greenish white, yellowish white, or the like. Further, such color unevenness is not only visible, but may not be used in a light emitting diode formed by selecting a color tone or the like according to a specific use such as a sensor. As a result, the yield is greatly reduced. The present applicant has solved the above-mentioned problem and has more uneven color tone,
It is an object of the present invention to provide a method for forming a light-emitting diode which can form a light-emitting diode with less luminance unevenness with a high yield.

【0006】[0006]

【課題を解決するための手段】本願発明は、表面に凹部
を有する基体底面上に配置されたLEDチップと、LE
Dチップからの波長をより長波長の光に変換する蛍光体
を含有するモールド樹脂とを有する発光ダイオードの形
成方法であって、前記凹部は2段状凹部であって、前記
モールド樹脂を少なくとも下段凹部の上面を越える量ま
で充填することを特徴とし、また前記LEDチップが可
視光を放射すると共に、該可視光と蛍光体からの蛍光の
混色光を放射する発光ダイオードの形成方法に係わるも
のである。
According to the present invention, there is provided an LED chip disposed on a bottom surface of a base having a concave portion on the surface thereof, and an LED chip disposed on the base.
A mold resin containing a phosphor that converts the wavelength from the D-chip into light of a longer wavelength, wherein the recess is a two-step recess, and the mold resin is disposed at least in the lower step. The present invention relates to a method for forming a light emitting diode in which the LED chip emits visible light and emits mixed color light of the visible light and the fluorescent light from the phosphor while the LED chip emits visible light. is there.

【0007】これによって、蛍光体が含有された樹脂の
流し込みの不均一によって生ずる、色調むらなどを低減
させることができる。
[0007] This makes it possible to reduce uneven color tone and the like, which are caused by non-uniform pouring of the resin containing the phosphor.

【0008】[0008]

【発明の実施の形態】本発明者は種々の実験の結果、蛍
光体を有するモールド部材をLEDチップを配置させた
カップ内に特定量形成させることにより、発光ダイオー
ドの色調むらを改善し歩留まりの高い発光ダイオードと
できることを見出し、本発明を成すに到った。
DETAILED DESCRIPTION OF THE INVENTION As a result of various experiments, the present inventor has found that by forming a specific amount of a mold member having a phosphor in a cup in which LED chips are arranged, it is possible to improve the color tone unevenness of the light emitting diode and improve the yield. The present inventors have found that a high-priced light emitting diode can be used, and have accomplished the present invention.

【0009】本発明と比較のために示す発光ダイオード
の部分拡大図、図2(A)の如く、LEDチップから放
出された発光が蛍光体を透過する距離は、蛍光放射によ
りその光路長に差が生ずることになり、蛍光体により変
換される光量が異なる。特に、LEDチップから放出さ
せる光を絞り込み色調むらや発光むらを抑制すべく、カ
ップ内部に窪みを設けその窪み内にLEDチップ及び蛍
光体含有の樹脂を形成させた場合、製造条件の経時的変
化に伴う蛍光体量の変動がLEDチップから放出される
光の行路長に顕著に影響する。特に、蛍光体を含有させ
た樹脂を細管から窪み内に流し込む場合は、約0.5μ
l程度の極めて少量であり、その量を調整しながら量産
性よく形成させることは極めて難しい。また、細管中を
蛍光体含有の樹脂で流すためには樹脂は3000CPS
程度の比較的低粘度のものを利用しなければならない。
しかしながら、連続的に量産させている設備の中におい
ては最初に用いられた蛍光体含有樹脂と、量産中におい
て時間的に経過した後の蛍光体含有樹脂とにおいてはそ
の粘度が微妙に異なる。そのため、同様に発光ダイオー
ドを形成させたとしても、初めに形成された発光ダイオ
ードに用いられた蛍光体含有樹脂と、後に形成されたも
のに用いられた蛍光体含有樹脂と、の量が異なることと
なる。このような蛍光体含有樹脂の量の差は、窪みが小
さいゆえに、LEDチップから放出される光が樹脂中を
透過する距離に顕著な差を生じさせてしまう。そこで、
今度は正確に蛍光体量を調整しようとすると量産性が低
下してしまい、つまりは、これまでは発光ダイオードの
色のばらつき低減と量産性とは、トードオフの関係にあ
った。特に上述の如く、色のばらつきの低減を優先させ
ることは極めて困難であった。
As shown in FIG. 2A, which is a partially enlarged view of a light emitting diode for comparison with the present invention, the distance that light emitted from an LED chip passes through a phosphor differs in the optical path length due to fluorescent radiation. And the amount of light converted by the phosphor differs. In particular, when the light emitted from the LED chip is narrowed down to suppress color tone unevenness and light emission unevenness, when a recess is provided inside the cup and the LED chip and the phosphor-containing resin are formed in the recess, the manufacturing conditions change over time. The change in the amount of phosphor accompanying the influence significantly affects the path length of light emitted from the LED chip. In particular, when the resin containing the phosphor is poured from the thin tube into the depression, about 0.5 μm
It is a very small amount of about l, and it is extremely difficult to form it with good mass productivity while adjusting the amount. In addition, in order to flow the inside of the thin tube with a resin containing a phosphor, the resin is 3000 CPS.
A relatively low viscosity of the order must be used.
However, the viscosity of the phosphor-containing resin used first in equipment that is continuously mass-produced and that of the phosphor-containing resin after a lapse of time during mass production are slightly different. Therefore, even if a light emitting diode is formed in the same manner, the amount of the phosphor containing resin used for the light emitting diode formed first and the amount of the phosphor containing resin used for the light emitting diode formed later are different. Becomes Such a difference in the amount of the phosphor-containing resin causes a remarkable difference in the distance that the light emitted from the LED chip passes through the resin because the recess is small. Therefore,
In this case, if the amount of the phosphor is adjusted accurately, the mass productivity is reduced. That is, in the past, the reduction in color variation of the light emitting diode and the mass productivity had a relationship of toad-off. In particular, as described above, it was extremely difficult to give priority to the reduction of color variations.

【0010】本発明は、図2(B)の断面図でも示すと
おり、パッケージ内部のLEDチップを搭載させる凹部
の上部に、例えば外側へと向かって広がる縁部分を設
け、即ち少なくとも2段状の凹部を有する発光ダイオー
ドにおいて、その広がった部分即ち上段の凹部内に蛍光
体含有樹脂が到達するように、該樹脂の流し込み量を設
定させる。これによって、蛍光体含有の樹脂量が変動し
たとしても、該上段凹部のような比較的体積の大きいカ
ップ内では、図2(A)に見られるような比較的体積の
小さい窪み内よりも樹脂厚の変動が少ない。
According to the present invention, as shown in the cross-sectional view of FIG. 2B, an edge portion extending outward, for example, is provided at the upper portion of the concave portion for mounting the LED chip inside the package, that is, at least two steps. In the light emitting diode having the concave portion, the amount of the resin is set so that the phosphor-containing resin reaches the widened portion, that is, the upper concave portion. As a result, even if the amount of the resin containing the phosphor fluctuates, the inside of the cup having a relatively large volume such as the upper concave portion is smaller than the inside of the recess having a relatively small volume as shown in FIG. There is little variation in thickness.

【0011】というのは具体的には、図2(A)、
(B)において、それぞれの樹脂注入設定値、から
両者ともに同体積の樹脂量の増減があった場合を考える
と分かりやすい。まず同体積の樹脂量が増加してしまっ
た場合、図2(A)では樹脂表面がまで達し、図2
(B)ではまでしか達しなかった。次に同体積の樹脂
量が減少してしまった場合、図2(A)では樹脂表面は
まで下がり、図2(B)ではまでしか下がらなかっ
た。このように図2にみられる如く、同じだけの体積の
樹脂が変動したのにも関わらず、それによる樹脂表面位
置の上下への変動は図2(B)の方が小さい。即ち樹脂
厚の変動が小さくてすむ。結果として、LEDチップか
ら放出された光の行路長差の変動が少なく、所望の色調
を持った発光ダイオードを歩留まりよく形成させること
ができる。
Specifically, FIG. 2 (A)
In (B), it is easy to understand if the amount of resin having the same volume is increased or decreased in each case from the respective resin injection set values. First, when the amount of resin of the same volume increases, the resin surface reaches as far as in FIG.
In (B), it was only reached. Next, when the amount of resin of the same volume is reduced, the resin surface is lowered in FIG. 2A and only lowered in FIG. 2B. As shown in FIG. 2, as shown in FIG. 2, although the resin having the same volume fluctuates, the vertical fluctuation of the resin surface position due to the fluctuation is smaller in FIG. 2B. That is, the change in the resin thickness is small. As a result, the variation in the path length difference of the light emitted from the LED chip is small, and a light emitting diode having a desired color tone can be formed with a high yield.

【0012】本発明による具体的な発光ダイオードの一
例として、チップタイプLEDを図1に示す。チップタ
イプLEDの筐体内は、窒化ガリウム系半導体を用いた
LEDチップが配される下段凹部と、封止樹脂の形状を
均一にする縁部分を備え、即ち2段状凹部を形成したパ
ッケージとなっている。下段凹部の内部にはLEDチッ
プをエポキシ樹脂などを用いて固定させてある。導電性
ワイヤーとして金線を用い、LEDチップの各電極と筐
体に設けられた各電極とをそれぞれ電気的に接続させて
ある。(RE1-xSmx3(Al1-yGay512:Ce
蛍光体をエポキシ樹脂中に混合分散させたものをLED
チップが配された下部凹部に流し込み硬化形成させる。
蛍光体含有の樹脂は下段凹部よりも多い量を流し込むよ
うに設定させてある。このような発光ダイオードに電力
を供給させることによってLEDチップを発光させる。
LEDチップからの発光と、その発光によって励起され
た蛍光体からの発光光との混色により白色系などが発光
可能な発光ダイオードを量産性よく形成させることがで
きる。
FIG. 1 shows a chip type LED as an example of a specific light emitting diode according to the present invention. The package of the chip type LED is provided with a lower recess in which an LED chip using a gallium nitride-based semiconductor is arranged and an edge portion for making the shape of the sealing resin uniform, that is, a package in which a two-stage recess is formed. ing. An LED chip is fixed in the lower recess using an epoxy resin or the like. A gold wire is used as the conductive wire, and each electrode of the LED chip is electrically connected to each electrode provided on the housing. (RE 1-x Sm x) 3 (Al 1-y Ga y) 5 O 12: Ce
LED with phosphor mixed and dispersed in epoxy resin
It is poured into the lower concave portion where the chip is arranged to be hardened and formed.
The phosphor-containing resin is set so as to flow in a larger amount than the lower recess. By supplying power to such a light emitting diode, the LED chip emits light.
A light-emitting diode capable of emitting white light or the like by mixing colors of light emitted from the LED chip and light emitted from the phosphor excited by the light emission can be formed with high mass productivity.

【0013】以下、さらに具体的に本発明の発光ダイオ
ードの形成方法について詳述するが、これのみに限られ
ないことはいうまでもない。発光素子として主発光ピー
クが470nmのGaInN半導体を用いた。LED素
子は、洗浄させたサファイヤ基板上にTMG(トリメチ
ルガリウム)ガス、TMI(トリメチルインジュウム)
ガス、窒素ガス及びドーパントガスをキャリアガスと共
に流し、MOCVD法で窒化ガリウム系化合物半導体を
成膜させることにより形成させた。ドーパントガスとし
てSiH4とCp2Mgと、を切り替えることによってn
型導電性を有する窒化ガリウム系半導体とp型導電性を
有する窒化ガリウム系半導体を形成しpn接合を形成さ
せた。(なお、p型半導体は、成膜後400℃以上でア
ニールさせてある。) エッチングによりpn各半導体表面を露出させた後、ス
パッタリング法により各電極をそれぞれ形成させた。こ
うして出来上がった半導体ウエハーをスクライブライン
を引いた後、外力により分割させ発光素子として250
μm角のLED素子を形成させた。
Hereinafter, the method for forming the light emitting diode of the present invention will be described in more detail, but it goes without saying that the present invention is not limited to this. A GaInN semiconductor having a main emission peak of 470 nm was used as a light emitting element. The LED element is composed of TMG (trimethyl gallium) gas and TMI (trimethyl indium) on a cleaned sapphire substrate.
A gas, a nitrogen gas, and a dopant gas were flowed together with a carrier gas, and a gallium nitride-based compound semiconductor was formed by MOCVD. By switching between SiH 4 and Cp 2 Mg as the dopant gas, n
A gallium nitride-based semiconductor having p-type conductivity and a gallium nitride-based semiconductor having p-type conductivity were formed to form a pn junction. (Note that the p-type semiconductor was annealed at 400 ° C. or higher after the film formation.) After exposing the surface of each pn semiconductor by etching, each electrode was formed by sputtering. After a scribe line is drawn on the semiconductor wafer thus completed, the wafer is divided by an external force to obtain a light-emitting device.
A μm square LED element was formed.

【0014】一方、金型内にリード電極となる金属片を
配置させた後、液晶ポリマーを注入させインサート形成
し、冷却後金型から取り出すことによりパッケージ部材
を形成させた。該パッケージは、中央部に開口部が設け
られており、該開口部底面にはさらに、LED素子及び
モールド封止部材を収納する凹部を設けた。つまり凹部
が2段状に形成されている。下段凹部内には、LED素
子をエポキシ樹脂でダイボンディングした。LED素子
の各電極と外部電極とをそれぞれ金線でワイヤーボンデ
ィングし電気的導通を取った。
On the other hand, after placing a metal piece serving as a lead electrode in a mold, a liquid crystal polymer was injected to form an insert, and after cooling, the package was removed from the mold to form a package member. The package was provided with an opening in the center, and a recess for accommodating the LED element and the mold sealing member was further provided on the bottom of the opening. That is, the concave portions are formed in two steps. An LED element was die-bonded with an epoxy resin in the lower recess. Each electrode of the LED element and the external electrode were wire-bonded with a gold wire to establish electrical continuity.

【0015】また、モールド部材に含ませる蛍光体は、
Y、Gd、Ceの希土類元素を化学量論比で酸に溶解し
た溶解液を蓚酸で共沈させた。これを焼成して得られる
共沈酸化物と、酸化アルミニウムと混合して混合原料を
得る。これにフラックスとしてフッ化アンモニウムを混
合して坩堝に詰め、空気中1400°Cの温度で3時間
焼成して焼成品を得た。焼成品を水中でボールミルし
て、洗浄、分離、乾燥、最後に篩を通して形成させた。
The phosphor contained in the mold member is
A solution obtained by dissolving rare earth elements of Y, Gd, and Ce in an stoichiometric ratio in an acid was coprecipitated with oxalic acid. This is mixed with a coprecipitated oxide obtained by calcination and aluminum oxide to obtain a mixed raw material. This was mixed with ammonium fluoride as a flux, packed in a crucible, and fired in air at a temperature of 1400 ° C. for 3 hours to obtain a fired product. The calcined product was ball milled in water, washed, separated, dried, and finally formed through a sieve.

【0016】形成された(Y0.4Gd0.63Al512
Ce蛍光体80重量部、透光性エポキシ樹脂100重量
部をよく混合して封止部材とした。封止部材を細管から
LED素子が配置されたパッケージ内の2段状の凹部内
に注入させた。注入量は最下段の凹部内を十分に満たす
と共にその上の段に当たる凹部まで満たすように設定さ
せてある。モールド封止部材は、注入後150℃5時間
にて硬化させ、図1の如き発光ダイオードを形成させ
た。
(Y 0.4 Gd 0.6 ) 3 Al 5 O 12 formed :
80 parts by weight of the Ce phosphor and 100 parts by weight of the translucent epoxy resin were mixed well to form a sealing member. The sealing member was injected from the thin tube into the two-step concave portion in the package in which the LED elements were arranged. The injection amount is set so as to sufficiently fill the inside of the lowermost concave portion and to fill the uppermost concave portion. The mold sealing member was cured at 150 ° C. for 5 hours after injection to form a light emitting diode as shown in FIG.

【0017】次に、図1に基づいて本発明の発光ダイオ
ードの各構成部材について詳述する。 (凹部11、15)本発明による少なくとも2段状であ
る凹部のうち、下段凹部11はLED素子12を収納さ
せるためのものであり、上段凹部15は注入されたモー
ルド封止部材の形状を均一化し、かつ該封止部材の注入
量の変化による樹脂厚を低減させる。こうしてLED素
子12からの光の行路長差を低減させ、LED素子12
からの光と蛍光体からの光とを十分混色させられるので
ある。即ち、LED素子12の光が蛍光体によって変換
される光の行路長差が実質的に少ない、或いは極めて小
さいものとできる。
Next, each component of the light emitting diode of the present invention will be described in detail with reference to FIG. (Recesses 11, 15) Of the at least two-stage recesses according to the present invention, the lower recess 11 is for accommodating the LED element 12, and the upper recess 15 has a uniform shape of the injected mold sealing member. And reducing the resin thickness due to a change in the injection amount of the sealing member. Thus, the difference in the path length of the light from the LED element 12 is reduced, and the LED element 12
The light from the phosphor and the light from the phosphor can be sufficiently mixed. That is, the difference in the path length of the light converted from the light of the LED element 12 by the phosphor can be substantially small or extremely small.

【0018】LED素子12と下段凹部11との接着は
熱硬化性樹脂などによって行うことができる。具体的に
は、エポキシ樹脂、アクリル樹脂やイミド樹脂などが挙
げられる。LED素子と凹部11との接続部は、LED
素子から放出された光や紫外線などが蛍光体などによっ
ても反射され凹部11内においても特に高密度になる。
そのため、接続部の樹脂劣化による黄変などにより発光
効率が低下することが考えられる。このような接続部の
劣化防止のために、紫外線などによる劣化を防ぐ、或い
は紫外線吸収を少なくする目的でガラスや紫外線吸収剤
を含有させた樹脂などを使用することがより好ましい。
The bonding between the LED element 12 and the lower recess 11 can be performed with a thermosetting resin or the like. Specifically, an epoxy resin, an acrylic resin, an imide resin, and the like can be given. The connection between the LED element and the recess 11 is an LED.
Light, ultraviolet light, and the like emitted from the element are also reflected by the fluorescent material and the like, and the density becomes particularly high even in the concave portion 11.
For this reason, it is conceivable that the luminous efficiency is reduced due to yellowing or the like due to deterioration of the resin at the connection portion. In order to prevent such deterioration of the connection portion, it is more preferable to use glass, a resin containing an ultraviolet absorber, or the like for the purpose of preventing deterioration due to ultraviolet rays or the like, or reducing ultraviolet absorption.

【0019】さらに、発光ダイオードの光利用効率を向
上させるためにLED素子が配置される下段凹部11
と、上段凹部15の表面を鏡面状とし、表面に反射機能
を持たせても良い。該凹部の材料として具体的には、反
射率の高い銀や金をメッキさせたもの、銅、鉄入り銅、
錫入り銅、アルミ合金、メタライズパターン付きセラミ
ック等が挙げられる。
Further, the lower recess 11 in which the LED elements are arranged in order to improve the light use efficiency of the light emitting diode.
Alternatively, the surface of the upper recess 15 may be mirror-like, and the surface may have a reflection function. Specifically, as the material of the concave portion, one plated with silver or gold having a high reflectance, copper, copper containing iron,
Examples include tin-containing copper, aluminum alloys, and ceramics with a metallized pattern.

【0020】(蛍光体)次に、凹部11、15内に充填
された封止部材に含まれる蛍光体について述べる。本発
明に用いられる蛍光体としては、少なくとも半導体発光
層から発光された可視光で励起されて発光する蛍光体を
いう。窒化ガリウム系化合物半導体を用いたLED素子
12から発光した光と、蛍光体から発光する光が補色関
係などにある場合やLED素子12からの光とそれによ
って励起され発光する蛍光体の光がそれぞれ光の3原色
(赤色系、緑色系、青色系)に相当する場合、LED素
子からの発光と、蛍光体からの発光と、を混色表示させ
ると白色系の発光色表示を行うことができる。そのため
発光ダイオードの外部には、LED素子12からの発光
と蛍光体からの発光とがモールド封止部材を透過する必
要がある。蛍光体と樹脂などとの比率や塗布、充填量を
種々調整すること及び発光素子の発光波長を選択するこ
とにより、白色を含め電球色など任意の色調を提供する
ことができる。
(Phosphor) Next, the phosphor contained in the sealing member filled in the recesses 11 and 15 will be described. The phosphor used in the present invention refers to a phosphor that emits light when excited by at least visible light emitted from a semiconductor light emitting layer. When the light emitted from the LED element 12 using the gallium nitride-based compound semiconductor and the light emitted from the phosphor are in a complementary color relationship or the like, the light from the LED element 12 and the light of the phosphor excited and emitted by the light are respectively When the light corresponds to the three primary colors of light (red, green, and blue), white light emission can be displayed by mixing and displaying light emission from the LED element and light emission from the phosphor. Therefore, it is necessary that light emitted from the LED element 12 and light emitted from the phosphor pass through the mold sealing member outside the light emitting diode. By variously adjusting the ratio of the phosphor to the resin, the application and the filling amount, and by selecting the emission wavelength of the light emitting element, it is possible to provide an arbitrary color tone such as a light bulb color including white.

【0021】半導体発光層によって励起される蛍光体
は、無機蛍光体、有機蛍光体、蛍光染料、蛍光顔料など
種々のものが挙げられる。具体的な蛍光体としては、ペ
リレン系の誘導体や(RE1-xSmx3(Al1-y
y512:Ce(0≦x<1、0≦y≦1、但し、R
Eは、Y,Gd,Laからなる群より選択される少なく
とも一種の元素である。)などが挙げられる。蛍光体と
して特に(RE1-xSmx3(Al1-yGay512:C
eを用いた場合には、LED素子と接する或いは近接し
て配置され、放射照度として(Ee)=3W・cm-2
上10W・cm-2以下においても高効率に十分な耐光性
を有する発光ダイオードとすることができる。
As the phosphor excited by the semiconductor light emitting layer, various substances such as an inorganic phosphor, an organic phosphor, a fluorescent dye, a fluorescent pigment and the like can be mentioned. Specific phosphor, derivatives of perylene and (RE 1-x Sm x) 3 (Al 1-y G
a y ) 5 O 12 : Ce (0 ≦ x <1, 0 ≦ y ≦ 1, provided that R
E is at least one element selected from the group consisting of Y, Gd, and La. ). Particularly phosphor (RE 1-x Sm x) 3 (Al 1-y Ga y) 5 O 12: C
When e is used, it is disposed in contact with or close to the LED element, and has high efficiency and sufficient light resistance even when the irradiance is (Ee) = 3 W · cm −2 or more and 10 W · cm −2 or less. It can be a diode.

【0022】(RE1-xSmx3(Al1-yGay
512:Ce蛍光体は、ガーネット構造のため、熱、光
及び水分に強く、励起スペクトルのピークが470nm
付近などにさせることができる。また、発光ピークも5
30nm付近にあり720nmまで裾を引くブロードな
発光スペクトルを持たせることができる。しかも、組成
のAlの一部をGaで置換することで発光波長が短波長
にシフトし、また組成のYの一部をGdで置換すること
で、発光波長が長波長へシフトする。このように組成を
変化することで発光色を連続的に調節することが可能で
ある。したがって、長波長側の強度がGdの組成比で連
続的に変えられるなど窒化物半導体の青色系発光を利用
して白色系発光に変換するための理想条件を備えてい
る。
(RE 1-x Sm x ) 3 (Al 1-y G ay )
Since the 5 O 12 : Ce phosphor has a garnet structure, it is resistant to heat, light and moisture, and has a peak of an excitation spectrum of 470 nm.
It can be made nearby. The emission peak is 5
A broad emission spectrum that is near 30 nm and extends down to 720 nm can be provided. In addition, the emission wavelength shifts to a short wavelength by substituting a part of the Al in the composition with Ga, and the emission wavelength shifts to a long wavelength by substituting a part of the Y in the composition with Gd. By changing the composition in this way, the emission color can be continuously adjusted. Therefore, there is provided an ideal condition for converting the blue light emission of the nitride semiconductor to white light emission such that the intensity on the long wavelength side can be continuously changed by the composition ratio of Gd.

【0023】また、窒化ガリウム系半導体を用いたLE
D素子と、セリウムで付活されたイットリウム・アルミ
ニウム・ガーネット蛍光体(YAG)に希土類元素のサ
マリウム(Sm)を含有させた蛍光体と、を有する発光
ダイオードについては、さらに光効率を向上させること
もできる。このような蛍光体は、Y、Gd、Ce、S
m、Al、La及びGaの原料として酸化物、又は高温
で容易に酸化物になる化合物を使用し、それらを化学量
論比で十分に混合して原料を得る。又は、Y、Gd、C
e、Smの希土類元素を化学量論比で酸に溶解した溶解
液を、蓚酸で共沈し、それを焼成して得られる共沈酸化
物と、酸化アルミニウム、酸化ガリウムとを混合して混
合原料を得る。これにフラックスとしてフッ化アンモニ
ウム等のフッ化物を適量混合して坩堝に詰め、空気中1
350〜1450°Cの温度範囲で2〜5時間焼成して
焼成品を得、次に焼成品を水中でボールミルして、洗
浄、分離、乾燥、最後に篩を通すことで得ることができ
る。
Also, LE using a gallium nitride based semiconductor
For a light-emitting diode having a D element and a phosphor obtained by adding a rare earth element samarium (Sm) to a yttrium aluminum garnet phosphor (YAG) activated with cerium, the light efficiency is further improved. Can also. Such phosphors include Y, Gd, Ce, S
An oxide or a compound which easily becomes an oxide at a high temperature is used as a raw material of m, Al, La and Ga, and these are sufficiently mixed in a stoichiometric ratio to obtain a raw material. Or Y, Gd, C
e, A solution obtained by dissolving a rare earth element of Sm in an acid at a stoichiometric ratio is coprecipitated with oxalic acid, and a coprecipitated oxide obtained by calcining the mixture is mixed with aluminum oxide and gallium oxide. Get the raw materials. An appropriate amount of a fluoride such as ammonium fluoride is mixed as a flux with the mixture, and the mixture is placed in a crucible.
It can be obtained by calcining in a temperature range of 350 to 1450 ° C. for 2 to 5 hours to obtain a calcined product, then ball-milling the calcined product in water, washing, separating, drying and finally passing through a sieve.

【0024】(Y1-p-q-rGdpCeqSmr3Al512
蛍光体は、結晶中にGdを含有することにより、特に4
60nm以上の長波長域の励起発光効率を高くすること
ができる。ガドリニウムの含有量の増加により、発光ピ
ーク波長が、530nmから570nmまで長波長に移
動し、全体の発光波長も長波長側にシフトする。赤みの
強い発光色が必要な場合、Gdの置換量を多くすること
で達成できる。一方、Gdが増加すると共に、青色光に
よるの発光輝度は徐々に低下する。したがって、pは
0.8以下であることが好ましく、0.7以下であるこ
とがより好ましい。さらに好ましくは0.6以下であ
る。
[0024] (Y 1-pqr Gd p Ce q Sm r) 3 Al 5 O 12
Phosphors, in particular, contain Gd in their crystals, so
Excitation emission efficiency in a long wavelength region of 60 nm or more can be increased. Due to the increase in the content of gadolinium, the emission peak wavelength shifts to a longer wavelength from 530 nm to 570 nm, and the entire emission wavelength shifts to the longer wavelength side. When a reddish luminescent color is required, it can be achieved by increasing the substitution amount of Gd. On the other hand, as Gd increases, the emission luminance of blue light gradually decreases. Therefore, p is preferably 0.8 or less, and more preferably 0.7 or less. More preferably, it is 0.6 or less.

【0025】Smを含有する(Y1-p-q-rGdpCeq
r3Al512蛍光体は、Gdの含有量の増加にかか
わらず温度特性の低下が少ない。このようにSmを含有
させることにより、高温度における蛍光体の発光輝度は
大幅に改善される。その改善される程度はGdの含有量
が高くなるほど大きくなる。すなわち、Gdを増加して
蛍光体の発光色調に赤みを付与した組成ほどSmの含有
による温度特性改善に効果的であることが分かった。
(なお、ここでの温度特性とは、450nmの青色光に
よる常温(25°C)における励起発光輝度に対する、
同蛍光体の高温(200°C)における発光輝度の相対
値(%)で表している。) Smの含有量は0.0003≦r≦0.08の範囲で温
度特性が60%以上となり好ましい。この範囲よりrが
小さいと、温度特性改良の効果が小さくなる。また、こ
の範囲よりrが大きくなると温度特性は逆に低下してく
る。0.0007≦r≦0.02の範囲では温度特性は
80%以上となり最も好ましい。
Containing Sm (Y 1-pqr Gd p Ce q S
The m r ) 3 Al 5 O 12 phosphor has a small decrease in temperature characteristics regardless of an increase in the Gd content. By including Sm in this manner, the emission luminance of the phosphor at a high temperature is greatly improved. The degree of the improvement increases as the content of Gd increases. That is, it was found that a composition in which Gd was increased and the emission color tone of the phosphor was imparted with reddish color was more effective in improving the temperature characteristics by including Sm.
(Note that the temperature characteristic here refers to the excitation light emission luminance at room temperature (25 ° C.) of 450 nm blue light.
It is expressed as a relative value (%) of the emission luminance of the phosphor at a high temperature (200 ° C.). If the content of Sm is in the range of 0.0003 ≦ r ≦ 0.08, the temperature characteristic is preferably 60% or more. When r is smaller than this range, the effect of improving the temperature characteristics is reduced. When r is larger than this range, the temperature characteristic is deteriorated. In the range of 0.0007 ≦ r ≦ 0.02, the temperature characteristic is most preferably 80% or more.

【0026】Ceは0.003≦q≦0.2の範囲で相
対発光輝度が70%以上となる。qが0.003以下で
は、Ceによるの励起発光中心の数が減少することで輝
度低下し、逆に、0.2より大きくなると濃度消光が生
ずる。具体的には、(Y0.39Gd0.57Ce0.03
0.013Al512蛍光体等が挙げられる。本発明の発
光ダイオードにおいて、蛍光体は、2種類以上の蛍光体
を混合させてもよい。即ち、Al、Ga、Y、La及び
GdやSmの含有量が異なる2種類以上の(RE1-x
x3(Al1-yGay512:Ce蛍光体を混合させ
てRGBの波長成分を増やすことができる。これに、カ
ラーフィルターを用いることによりフルカラー液晶表示
装置用としても利用できる。
Ce has a relative light emission luminance of 70% or more in the range of 0.003 ≦ q ≦ 0.2. When q is 0.003 or less, the luminance decreases due to the decrease in the number of excitation and emission centers by Ce, and conversely, when it exceeds 0.2, concentration quenching occurs. Specifically, (Y 0.39 Gd 0.57 Ce 0.03 S
m 0.01 ) 3 Al 5 O 12 phosphor. In the light emitting diode of the present invention, the phosphor may be a mixture of two or more phosphors. That is, two or more kinds of (RE 1-x S S) having different contents of Al, Ga, Y, La, Gd and Sm.
m x) 3 (Al 1- y Ga y) 5 O 12: Ce phosphor are mixed can increase the RGB wavelength components. By using a color filter, it can be used for a full-color liquid crystal display device.

【0027】(LED素子12)本発明に用いられるL
ED素子12とは、蛍光体を効率良く励起できる比較的
短波長な光、を効率よく発光可能な窒化物系化合物半導
体などが挙げられる。発光素子であるLED素子は、M
OCVD法等により基板上にInGaN等の半導体を発
光層として形成させる。半導体の構造としては、MIS
接合、PIN接合やpn接合などを有するホモ構造、ヘ
テロ構造あるいはダブルへテロ構成のものが挙げられ
る。半導体層の材料やその混晶度によって発光波長を種
々選択することができる。また、半導体活性層を量子効
果が生ずる薄膜に形成させた単一量子井戸構造や多重量
子井戸構造とすることもできる。
(LED element 12) L used in the present invention
Examples of the ED element 12 include a nitride-based compound semiconductor capable of efficiently emitting relatively short wavelength light capable of efficiently exciting a phosphor. The LED element which is a light emitting element has M
A semiconductor such as InGaN is formed as a light emitting layer on a substrate by an OCVD method or the like. The structure of the semiconductor is MIS
A homo-structure, hetero-structure or double-hetero structure having a junction, PIN junction, pn junction, or the like can be given. Various emission wavelengths can be selected depending on the material of the semiconductor layer and the degree of mixed crystal thereof. Also, a single quantum well structure or a multiple quantum well structure in which the semiconductor active layer is formed as a thin film in which a quantum effect occurs can be used.

【0028】窒化ガリウム系化合物半導体を使用した場
合、半導体基板にはサファイヤ、スピネル、SiC、S
i、ZnO等の材料が用いられる。結晶性の良い窒化ガ
リウムを形成させるためにはサファイヤ基板を用いるこ
とが好ましい。このサファイヤ基板上にGaN、AlN
等のバッファー層を形成しその上にpn接合を有する窒
化ガリウム半導体を形成させる。窒化ガリウム系半導体
は、不純物をドープしない状態でn型導電性を示す。発
光効率を向上させるなど所望のn型窒化ガリウム半導体
を形成させる場合は、n型ドーパントとしてSi、G
e、Se、Te、C等を適宜導入することが好ましい。
一方、p型窒化ガリウム半導体を形成させる場合は、p
型ドーパンドであるZn、Mg、Be、Ca、Sr、B
a等をドープさせる。
When a gallium nitride compound semiconductor is used, sapphire, spinel, SiC, S
Materials such as i and ZnO are used. In order to form gallium nitride having good crystallinity, a sapphire substrate is preferably used. GaN, AlN on this sapphire substrate
And the like, and a gallium nitride semiconductor having a pn junction is formed thereon. Gallium nitride-based semiconductors exhibit n-type conductivity without being doped with impurities. When a desired n-type gallium nitride semiconductor is formed, for example, to improve luminous efficiency, Si, G
It is preferable to appropriately introduce e, Se, Te, C, and the like.
On the other hand, when forming a p-type gallium nitride semiconductor,
Type dopants Zn, Mg, Be, Ca, Sr, B
a and the like are doped.

【0029】窒化ガリウム系化合物半導体は、p型ドー
パントをドープしただけではp型化しにくいためp型ド
ーパント導入後に、炉による加熱、低速電子線照射やプ
ラズマ照射等により低抵抗化させることが好ましい。エ
ッチングなどによりp型半導体及びn型半導体の露出面
を形成させた後、半導体層上にスパッタリング法や真空
蒸着法などを用いて所望の形状の各電極を形成させる。
Since the gallium nitride-based compound semiconductor is difficult to become p-type only by doping it with a p-type dopant, it is preferable to lower the resistance by introducing a p-type dopant, by heating in a furnace, irradiating a low-speed electron beam, irradiating plasma, or the like. After the exposed surfaces of the p-type semiconductor and the n-type semiconductor are formed by etching or the like, each electrode having a desired shape is formed on the semiconductor layer by a sputtering method, a vacuum evaporation method, or the like.

【0030】次に、形成された半導体ウエハー等をダイ
ヤモンド製の刃先を有するブレードが回転するダイシン
グソーにより直接フルカットするか、又は刃先幅よりも
広い幅の溝を切り込んだ後(ハーフカット)、外力によ
って半導体ウエハーを割る。あるいは、先端のダイヤモ
ンド針が往復直線運動するスクライバーにより半導体ウ
エハーに極めて細いスクライブライン(経線)を例えば
碁盤目状に引いた後、外力によってウエハーを割り半導
体ウエハーからチップ状にカットする。このようにして
窒化ガリウム系化合物半導体であるLED素子12を形
成させることができる。
Next, the formed semiconductor wafer or the like is directly full-cut by a dicing saw in which a blade having a diamond cutting edge is rotated, or after a groove having a width wider than the cutting edge width is cut (half cut). The semiconductor wafer is broken by external force. Alternatively, an extremely thin scribe line (meridian) is drawn on the semiconductor wafer, for example, in a checkerboard pattern by a scriber in which a diamond needle at the tip reciprocates linearly, and then the wafer is cut by an external force and cut into chips from the semiconductor wafer. Thus, the LED element 12 which is a gallium nitride-based compound semiconductor can be formed.

【0031】本発明の発光ダイオードにおいて白色系を
発光させる場合は、蛍光体との補色等を考慮して発光素
子の主発光波長は400nm以上530nm以下が好ま
しく、420nm以上490nm以下がより好ましい。
LED素子と蛍光体との効率をそれぞれより向上させる
ためには、450nm以上475nm以下がさらに好ま
しい。
When the light emitting diode of the present invention emits white light, the main emission wavelength of the light emitting device is preferably 400 nm or more and 530 nm or less, more preferably 420 nm or more and 490 nm or less in consideration of the complementary color with the phosphor.
In order to further improve the efficiency of the LED element and the efficiency of the phosphor, the thickness is more preferably 450 nm or more and 475 nm or less.

【0032】(導電性ワイヤー13)導電性ワイヤー1
3としては、LED素子12の電極とのオーミック性、
機械的接続性、電気伝導性及び熱伝導性がよいものが求
められる。熱伝導度としては0.01cal/cm2
cm/℃以上が好ましく、より好ましくは0.5cal
/cm2/cm/℃以上である。また、作業性などを考
慮して導電性ワイヤーの直径は、好ましくは、Φ10μ
m以上、Φ45μm以下である。このような導電性ワイ
ヤーとして具体的には、金、銅、白金、アルミニウム等
の金属及びそれらの合金を用いた導電性ワイヤーが挙げ
られる。
(Conductive Wire 13) Conductive Wire 1
3, ohmic properties with the electrodes of the LED element 12;
Good mechanical connectivity, electrical conductivity and thermal conductivity are required. The thermal conductivity is 0.01 cal / cm 2 /
cm / ° C. or higher, more preferably 0.5 cal
/ Cm 2 / cm / ° C. or more. In consideration of workability, the diameter of the conductive wire is preferably Φ10 μm.
m or more and Φ45 μm or less. Specific examples of such conductive wires include conductive wires using metals such as gold, copper, platinum, and aluminum and alloys thereof.

【0033】(モールド封止部材)凹部11、15に充
填するモールド部材は、発光ダイオードの使用用途に応
じてLED素子12、導電性ワイヤー13などを外部か
ら保護するためである。モールド部材は、各種樹脂や硝
子などを用いて形成させることができる。またその充填
量は、色調むら、輝度むらの少ない発光ダイオードとす
るため、少なくともパッケージ内の下段凹部上面を超え
る量に、予め設定されている。
(Mold Sealing Member) The molding member filled in the concave portions 11 and 15 is for protecting the LED element 12, the conductive wire 13 and the like from the outside according to the application of the light emitting diode. The mold member can be formed using various resins, glass, or the like. In addition, the filling amount is set in advance to an amount at least exceeding the upper surface of the lower concave portion in the package in order to obtain a light emitting diode with less color tone unevenness and brightness unevenness.

【0034】モールド部材の具体的材料としては、主と
してエポキシ樹脂、ユリア樹脂、シリコーンなどの耐候
性に優れた透明樹脂や硝子などが好適に用いられる。ま
た、モールド部材に拡散剤を含有させることによってL
ED素子からの指向性を緩和させ視野角を増やすことも
できる。拡散剤の具体的材料としては、チタン酸バリウ
ム、酸化チタン、酸化アルミニウム、酸化珪素等が好適
に用いられる。
As a specific material of the molding member, a transparent resin having excellent weather resistance, such as an epoxy resin, a urea resin, or silicone, or glass is preferably used. Also, by incorporating a diffusing agent into the mold member, L
The viewing angle can be increased by relaxing the directivity from the ED element. As a specific material of the diffusing agent, barium titanate, titanium oxide, aluminum oxide, silicon oxide, or the like is suitably used.

【0035】(リード電極14)リード電極としては、
凹部内に配置されたLED素子をパッケージ外部と電気
的に接続させるものであるため、電気伝導性に優れたも
のが好ましい。具体的材料としては、ニッケル等のメタ
ライズあるいはリン青銅等の電気良導体を挙げることが
できる。またこのような材料の表面に銀あるいは金等の
平滑なメッキを施し、電極部材であると共にLED素子
からの光を効率よく外部に放出させるように、その表面
を光反射部材として利用することもできる。
(Lead Electrode 14) As the lead electrode,
Since the LED element disposed in the concave portion is electrically connected to the outside of the package, a device having excellent electric conductivity is preferable. Specific examples of the material include metallized nickel or the like or an electric conductor such as phosphor bronze. In addition, the surface of such a material may be plated with silver or gold or the like, and the surface may be used as a light reflecting member so that the light from the LED element as well as the electrode member is efficiently emitted to the outside. it can.

【0036】以下、本発明による発光ダイオードの効果
を確認するため、図3の如き発光ダイオードを形成さ
せ、本発明による発光ダイオードとの比較実験を行っ
た。図3の発光ダイオードは、蛍光体含有の樹脂注入量
の設定値を2段の凹部における最下段表面に設定した以
外は、本発明のものと同様にして形成させた。こうして
形成させた発光ダイオード1200個と、本発明による
発光ダイオード1200個との光色のばらつきを観測し
た。本発明の方法において形成された各発光ダイオード
の許容範囲内のばらつきは、図3の各発光ダイオードの
約21%にも満たなかった。
Hereinafter, in order to confirm the effect of the light emitting diode according to the present invention, a light emitting diode as shown in FIG. 3 was formed, and a comparative experiment was performed with the light emitting diode according to the present invention. The light emitting diode of FIG. 3 was formed in the same manner as that of the present invention except that the set value of the amount of the resin containing the phosphor was set on the lowermost surface of the two-step concave portion. Variations in light color between the 1200 light emitting diodes thus formed and 1200 light emitting diodes according to the present invention were observed. The variation within the tolerance of each light emitting diode formed in the method of the present invention was less than about 21% of each light emitting diode of FIG.

【0037】図3の発光ダイオード1200個のうち、
特に光色のばらつきが目立ったものを調べたところ、蛍
光体含有の樹脂が2段状の凹部における下段凹部31の
表面よりも下であった。1200個の量産を行ったため
に樹脂注入量の設定値を制御しきれなかったためであ
る。設定値よりも樹脂量が増えてしまった場合には、図
3の発光ダイオードでも本発明のものと同等の効果を発
揮するが、このように少なくなってしまった場合には、
図3のものでは2段状凹部31、35を設けた効果がな
くなってくる。
Of the 1200 light emitting diodes shown in FIG.
In particular, when the light color variation was conspicuous, the phosphor-containing resin was lower than the surface of the lower recess 31 in the two-stage recess. This is because the set value of the resin injection amount could not be controlled because 1200 pieces were mass-produced. When the amount of resin is larger than the set value, the light emitting diode of FIG. 3 also exerts the same effect as that of the present invention.
3, the effect of providing the two-step concave portions 31 and 35 is lost.

【0038】一方、本発明の発光ダイオードのように、
少なくとも2段状の凹部を設け、かつ注入樹脂量の設定
値を予め下段凹部を超える量に設定しておけば、注入樹
脂量に多少ばらつきが起こって樹脂量が少なくなってし
まった場合でも、下段凹部表面よりも樹脂が下回るとい
うことがなるべく避けられるので、図3の発光ダイオー
ドにみられるような問題は極力回避できる。
On the other hand, like the light emitting diode of the present invention,
If at least a two-step concave portion is provided, and the set value of the injected resin amount is set in advance to an amount exceeding the lower concave portion, even if the injected resin amount is slightly varied and the resin amount is reduced, Since the resin is prevented from being lower than the surface of the lower concave portion as much as possible, the problem seen in the light emitting diode of FIG. 3 can be avoided as much as possible.

【0039】[0039]

【発明の効果】本発明の、少なくとも2段状の凹部を設
け、かつ蛍光体含有の樹脂注入量を下段凹部上面を超え
る量に設定させた発光ダイオードとすることにより、蛍
光体を含んだ封止部材の注入量が多少増減しても、色調
ずれ、色むら、輝度むらが極めて少ない発光ダイオード
を量産性よく形成させることができる。
According to the present invention, a light emitting diode having at least a two-step recess is provided and the amount of the resin containing the phosphor is set to an amount exceeding the upper surface of the lower recess, whereby the sealing containing the phosphor is achieved. Even if the injection amount of the stop member slightly increases or decreases, it is possible to form a light emitting diode with extremely small color tone deviation, color unevenness, and luminance unevenness with good mass productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の発光ダイオード例であるチッ
プタイプLEDの模式的断面図である。
FIG. 1 is a schematic sectional view of a chip type LED which is an example of a light emitting diode of the present invention.

【図2】図2は本発明の効果を説明するための模式図で
あり、図2(A)は、比較のために示した発光ダイオー
ドの部分拡大図である。図2(B)は、2段状凹部を有
する本発明の発光ダイオードの部分拡大図である。
FIG. 2 is a schematic view for explaining an effect of the present invention, and FIG. 2A is a partially enlarged view of a light emitting diode shown for comparison. FIG. 2B is a partially enlarged view of the light emitting diode of the present invention having a two-step concave portion.

【図3】図3は、本発明と比較のために示す発光ダイオ
ードの模式的断面図である。
FIG. 3 is a schematic sectional view of a light emitting diode shown for comparison with the present invention.

【符号の説明】[Explanation of symbols]

11、31・・・段状凹部のうち、下段凹部 12、32・・・LED素子 13、33・・・導電性ワイヤー 14、34・・・リード電極 15、35・・・段状凹部のうち、上段凹部 11, 31: the lower concave portion of the stepped concave portion 12, 32: the LED element 13, 33: the conductive wire 14, 34: the lead electrode 15, 35: the stepped concave portion , Upper recess

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 表面に凹部を有する基体底面上に配置さ
れたLEDチップと、LEDチップからの波長をより長
波長の光に変換する蛍光体を含有するモールド樹脂と、
を有する発光ダイオードの形成方法であって、 前記凹部上部には外側へと向かって広がる縁状部分を有
し、それは少なくとも2段状の凹部であって、前記モー
ルド樹脂を少なくとも最下段凹部の上面を越える量まで
充填することを特徴とする発光ダイオードの形成方法。
1. An LED chip disposed on a bottom surface of a base having a concave portion on a surface, a mold resin containing a phosphor for converting a wavelength from the LED chip into light of a longer wavelength,
A method of forming a light-emitting diode, comprising: an upper edge of an upper portion of the concave portion, the upper portion having an edge-shaped portion extending outward, the at least two-step-shaped concave portion, A method for forming a light-emitting diode, characterized in that the amount of light-emitting diode is filled up to an amount exceeding.
【請求項2】 前記LEDチップが可視光を放射すると
共に、発光ダイオードはLEDチップからの可視光と蛍
光体からの蛍光の混色光を放射する請求項1に記載の発
光ダイオードの形成方法。
2. The method according to claim 1, wherein the LED chip emits visible light, and the light emitting diode emits mixed color light of visible light from the LED chip and fluorescent light from a phosphor.
JP4746799A 1999-02-25 1999-02-25 Method of forming light emitting diode Expired - Lifetime JP3604298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4746799A JP3604298B2 (en) 1999-02-25 1999-02-25 Method of forming light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4746799A JP3604298B2 (en) 1999-02-25 1999-02-25 Method of forming light emitting diode

Publications (2)

Publication Number Publication Date
JP2000252523A true JP2000252523A (en) 2000-09-14
JP3604298B2 JP3604298B2 (en) 2004-12-22

Family

ID=12775967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4746799A Expired - Lifetime JP3604298B2 (en) 1999-02-25 1999-02-25 Method of forming light emitting diode

Country Status (1)

Country Link
JP (1) JP3604298B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314142A (en) * 2001-04-09 2002-10-25 Toyoda Gosei Co Ltd Light emitting device
JP2006013265A (en) * 2004-06-28 2006-01-12 Kyocera Corp Light emitting device and lighting device using the same
JP2006140197A (en) * 2004-11-10 2006-06-01 Stanley Electric Co Ltd Method of manufacturing led
JP2007201392A (en) * 2005-04-27 2007-08-09 Kyocera Corp Light emitting element mounting substrate and light emitting device using the same
JP2007294587A (en) * 2006-04-24 2007-11-08 Ngk Spark Plug Co Ltd Package for storing light emitting element
JP2009200534A (en) * 2009-06-12 2009-09-03 Stanley Electric Co Ltd Semiconductor light emitting device
US7939842B2 (en) 2005-01-27 2011-05-10 Cree, Inc. Light emitting device packages, light emitting diode (LED) packages and related methods
JP2012009682A (en) * 2010-06-25 2012-01-12 Kyocera Corp Light emitting device
US8941134B2 (en) 2006-07-13 2015-01-27 Cree, Inc. Leadframe-based packages for solid state light emitting devices having heat dissipating regions in packaging

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7517728B2 (en) 2004-03-31 2009-04-14 Cree, Inc. Semiconductor light emitting devices including a luminescent conversion element
US7279346B2 (en) 2004-03-31 2007-10-09 Cree, Inc. Method for packaging a light emitting device by one dispense then cure step followed by another
US7326583B2 (en) 2004-03-31 2008-02-05 Cree, Inc. Methods for packaging of a semiconductor light emitting device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314142A (en) * 2001-04-09 2002-10-25 Toyoda Gosei Co Ltd Light emitting device
JP2006013265A (en) * 2004-06-28 2006-01-12 Kyocera Corp Light emitting device and lighting device using the same
JP4574248B2 (en) * 2004-06-28 2010-11-04 京セラ株式会社 LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP2006140197A (en) * 2004-11-10 2006-06-01 Stanley Electric Co Ltd Method of manufacturing led
JP4627177B2 (en) * 2004-11-10 2011-02-09 スタンレー電気株式会社 LED manufacturing method
US7939842B2 (en) 2005-01-27 2011-05-10 Cree, Inc. Light emitting device packages, light emitting diode (LED) packages and related methods
JP2007201392A (en) * 2005-04-27 2007-08-09 Kyocera Corp Light emitting element mounting substrate and light emitting device using the same
JP2007294587A (en) * 2006-04-24 2007-11-08 Ngk Spark Plug Co Ltd Package for storing light emitting element
US8941134B2 (en) 2006-07-13 2015-01-27 Cree, Inc. Leadframe-based packages for solid state light emitting devices having heat dissipating regions in packaging
JP2009200534A (en) * 2009-06-12 2009-09-03 Stanley Electric Co Ltd Semiconductor light emitting device
JP2012009682A (en) * 2010-06-25 2012-01-12 Kyocera Corp Light emitting device

Also Published As

Publication number Publication date
JP3604298B2 (en) 2004-12-22

Similar Documents

Publication Publication Date Title
JP3246386B2 (en) Light emitting diode and color conversion mold member for light emitting diode
JP3065258B2 (en) Light emitting device and display device using the same
JP5177317B2 (en) Light emitting device and display device
JP2927279B2 (en) Light emitting diode
JP3809760B2 (en) Light emitting diode
JP3065263B2 (en) Light emitting device and LED display using the same
JP3541709B2 (en) Method of forming light emitting diode
JP3617587B2 (en) Light emitting diode and method for forming the same
JP3407608B2 (en) Light emitting diode and method for forming the same
JP4932078B2 (en) Light emitting device and manufacturing method thereof
JP3618221B2 (en) Light emitting device
EP1528604A2 (en) Semiconductor light emitting devices with enhanced luminous efficiency
JP3367096B2 (en) Method of forming light emitting diode
JP3729001B2 (en) Light emitting device, bullet-type light emitting diode, chip type LED
JPH1131845A (en) Formation of light emitting diode
JP2003101081A (en) Light-emitting diode
JP3604298B2 (en) Method of forming light emitting diode
JP5077282B2 (en) Light emitting element mounting package and light emitting device
JP3858829B2 (en) Method for forming light emitting diode
JP2002050800A (en) Light-emitting device and forming method therefor
JP3775268B2 (en) Method for forming light emitting device
JP2000315826A (en) Light emitting device, formation thereof, gun type light emitting diode, chip type led
JP2003224307A5 (en)
JPH11243232A (en) Led display device
JPH10233533A (en) Method and device for forming light emitting device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040928

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071008

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term