JP2004111843A - Wiring board with pin, and electronic device using it - Google Patents

Wiring board with pin, and electronic device using it Download PDF

Info

Publication number
JP2004111843A
JP2004111843A JP2002275699A JP2002275699A JP2004111843A JP 2004111843 A JP2004111843 A JP 2004111843A JP 2002275699 A JP2002275699 A JP 2002275699A JP 2002275699 A JP2002275699 A JP 2002275699A JP 2004111843 A JP2004111843 A JP 2004111843A
Authority
JP
Japan
Prior art keywords
lead pin
pins
wiring board
solder
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002275699A
Other languages
Japanese (ja)
Inventor
Yuji Tanaka
田中 祐二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002275699A priority Critical patent/JP2004111843A/en
Publication of JP2004111843A publication Critical patent/JP2004111843A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Lead Frames For Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring board with pins which can connect a mounted electronic component to an external electric circuit normally without easy drop-off of a lead pin, and an electronic device. <P>SOLUTION: A pinned pad 2b electrically connected to a wiring conductor 2 is provided on the lower surface of an organic material based insulating board 1 with the wiring conductor 2. A lead pin 3, wherein an almost disc-like large diameter part 3a is formed in an upper end of an almost columnar shaft part 3b, is erected and fixed to the pinned pad 2b by soldering to form a reservoir of solder between the large diameter part and the pinned pad 2b. In the lead pin 3, the Vickers' hardness of the shaft part 3a is 125 to 150 Hv and the Vickers' hardness of the large diameter part 3b is at least 1.2 times the Vickers' hardness of the shaft part 3a. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子等の電子部品を搭載するために用いられるピン付き配線基板およびこのピン付き配線基板上に半導体素子等の電子部品を搭載して成る電子装置に関するものである。
【0002】
【従来の技術】
近時、半導体素子等の電子部品を搭載するために用いられるピン付き配線基板として、例えばガラス−エポキシ板等から成る絶縁板やエポキシ樹脂等から成る絶縁層を複数層積層して成る絶縁基板の上面から下面にかけて銅箔から成る複数の配線導体を設けるとともにこれらの配線導体の絶縁基板下面に導出した部位に複数のピン付けパッドを形成し、これらのピン付けパッドに上端部に円板状の径大部を有する略円柱状のリードピンをその上端を突き当てて半田付けすることにより立設して成る有機材料系のピン付き配線基板が採用されるようになってきている。このような有機材料系のピン付き配線基板は、セラミック材料系のピン付き配線基板と比較して軽量であり、かつ配線導体の電気抵抗が小さいという有利な面を有している。そして、このような有機材料系のピン付き配線基板においては絶縁基板の上面に電子部品を搭載するとともに電子部品の電極と配線導体とを半田バンプやボンディングワイヤ等を介して電気的に接続した後、電子部品を金属やセラミックから成る蓋体やポッティング樹脂等から成る封止部材により封止することによって製品としての電子装置となり、この電子装置においては、絶縁基板下面のリードピンを外部電気回路基板の配線導体にソケットや半田等を介して接続することにより外部電気回路基板上に実装されるとともに搭載する電子部品が外部電気回路に電気的に接続されることとなる。
【0003】
なお、このような配線基板におけるリードピンとしては、樹脂製の絶縁基体と熱膨張係数が近い銅合金製のリードピンが使用されるようになってきており、またリードピンとピン付けパッドとを半田付けする半田としては、樹脂製の絶縁基体に半田付け時の熱によるダメージを与えないために、さらに外部リードピンに外力が印加された際等に外部リードピンからの応力が半田を介して半田付けパッドに大きく印加されて半田付けパッドが剥離するのを防止するために例えば鉛−錫−アンチモン合金等の融点が270℃以下で弾性率が50GPa以下の半田が使用されるようになってきている。
【0004】
【発明が解決しようとする課題】
しかしながら、この従来の有機材料系のピン付き配線基板およびこれを用いた電子装置によると、リードピンは、通常、これを製作する際にその加工性を良好とするために約700℃程度の温度で熱処理を受けており、それによりビッカース硬度が約80Hv程度となるように大きく軟化されていること、およびこのリードピンとピン付けパッドとを接合する鉛−錫−アンチモン合金等から成る半田の降伏応力が小さいことから、リードピンを例えば30N程度の力で垂直あるいは斜め方向に引っ張ると、その力によりリードピンの径大部が過度に変形してしまい、それによりリードピンの径大部を介してリードピンとピン付けパッドとを接合する鉛−錫−アンチモン合金等から成る半田の表面や内部の一部に大きな応力が集中して作用し、その結果、降伏応力が小さい半田に破断が発生してリードピンが絶縁基板から取れてしまい、そのようにリードピンが絶縁基板から取れてしまうと搭載する電子部品を外部電気回路に正常に接続することができなくなってしまうという問題点を有していた。
【0005】
本発明はかかる従来の問題点に鑑み完成されたものであり、その目的は、50N程度の力でリードピンを引っ張ったとしてもリードピンが取れることがなく、搭載する電子部品を外部電気回路に正常に接続することができる信頼性の高いピン付き配線基板および電子装置を提供することにある。
【0006】
【課題を解決するための手段】
本発明のピン付き配線基板は、配線導体を有する有機材料系の絶縁基板の下面に配線導体と電気的に接続されたピン付けパッドを設けるとともにこのピン付けパッドに、略円柱状の軸部の上端に略円板状の径大部を形成したリードピンをその径大部と前記ピン付けパッドとの間に半田の溜まりを形成するように半田付け立設して成るピン付き配線基板であって、前記リードピンは、前記軸部のビッカース硬度が125乃至150Hvであり、かつ前記径大部のビッカース硬度が前記軸部のビッカース硬度の1.2倍以上であることを特徴とするものである。
【0007】
また、本発明の電子装置は、上記の配線基板に電子部品を搭載するとともに該電子部品の電極と前記配線導体とを電気的に接続して成るものである。
【0008】
本発明のピン付き配線基板およびこれを用いた電子装置によれば、リードピンの軸部のビッカース硬度が125乃至150Hvであり、かつ径大部のビッカース硬度が軸部のビッカース硬度の1.2倍以上であることから、リードピンにこれを引っ張る力が印加された際、軸部および径大部が適度に変形するため、リードピンを引っ張る力による応力はリードピンの軸部および径大部が適度に変形することにより良好に分散されて半田の表面や内部の一部に大きく集中して作用することを有効に防止することができる。
【0009】
【発明の実施の形態】
つぎに、本発明を添付の図面に基づき詳細に説明する。図1は、本発明を半導体素子を搭載するためのピン付き配線基板およびこれに半導体素子を搭載した電子装置に適用した場合の実施の形態の一例を示す断面図であり、1は絶縁基板、2は配線導体、3はリードピンである。この絶縁基板1と配線導体2とリードピン3とで本発明のピン付き配線基板が構成され、これに電子部品としての半導体素子4を搭載することにより本発明の電子装置が形成される。
【0010】
絶縁基板1は、例えばガラス繊維を縦横に織り込んだガラス織物にエポキシ樹脂やビスマレイミドトリアジン樹脂等の熱硬化性樹脂を含浸させて成る板状の芯体1aの上下面にエポキシ樹脂やビスマレイミドトリアジン樹脂等の熱硬化性樹脂から成る絶縁層1bをそれぞれ複数層ずつ積層して成る有機材料系の多層板であり、その上面から下面にかけては銅箔や銅めっき膜等から成る複数の配線導体2が形成されている。
【0011】
絶縁基板1を構成する芯体1aは、厚みが0.3〜1.5mm程度であり、その上面から下面にかけて直径が0.1〜1.0mm程度の複数の貫通孔5を有している。そして、その上下面および各貫通孔5の内壁には配線導体2の一部が被着されており、上下面の配線導体2が貫通孔5を介して電気的に接続されている。
【0012】
このような芯体1aは、ガラス織物に未硬化の熱硬化性樹脂を含浸させたシートを熱硬化させた後、これに上面から下面にかけてドリル加工を施すことにより製作される。なお、芯体1a上下面の配線導体2は、芯体1a用のシートの上下全面に厚みが3〜50μm程度の銅箔を貼着しておくとともにこの銅箔をシートの硬化後にエッチング加工することにより所定のパターンに形成される。また、貫通孔5内壁の配線導体2は、芯体1aに貫通孔5を設けた後に、この貫通孔5内壁に無電解めっき法および電解めっき法により厚みが3〜50μm程度の銅めっき膜を析出させることにより形成される。
【0013】
さらに、芯体1aは、その貫通孔5の内部にエポキシ樹脂やビスマレイミドトリアジン樹脂等の熱硬化性樹脂から成る樹脂柱6が充填されている。樹脂柱6は、貫通孔5を塞ぐことにより貫通孔5の直上および直下に絶縁層1bを形成可能とするためのものであり、未硬化のペースト状の熱硬化性樹脂を貫通孔5内にスクリーン印刷法により充填し、これを熱硬化させた後、その上下面を略平坦に研磨することにより形成される。そして、この樹脂柱6を含む芯体1aの上下面に絶縁層1bが積層されている。
【0014】
芯体1aの上下面に積層された絶縁層1bは、それぞれの厚みが20〜60μm程度であり、各層の上面から下面にかけて直径が30〜100μm程度の複数の貫通孔7を有している。これらの絶縁層1bは、配線導体2を高密度に配線するための絶縁間隔を提供するためのものである。そして、上層の配線導体2と下層の配線導体2とを貫通孔7を介して電気的に接続することにより高密度配線を立体的に形成可能としている。このような絶縁層1bは、厚みが20〜60μm程度の未硬化の熱硬化性樹脂のフィルムを芯体1a上下面に貼着し、これを熱硬化させるとともにレーザー加工により貫通孔7を穿孔し、さらにその上に同様にして次の絶縁層1bを順次積み重ねることによって形成される。なお、各絶縁層1b表面および貫通孔7内に被着された配線導体2は、各絶縁層1bを形成する毎に各絶縁層1bの表面および貫通孔7内に5〜50μm程度の厚みの銅めっき膜を公知のセミアディティブ法やサブトラクティブ法等のパターン形成法により所定のパターンに被着させることによって形成される。
【0015】
絶縁基板1の上面から下面にかけて形成された配線導体2は、半導体素子4の各電極を外部電気回路基板に接続するための導電路として機能し、絶縁基板1の上面に設けられた部位の一部が半導体素子4の各電極に例えば鉛−錫共晶合金から成る半田バンプ8を介して接合される電子部品接続パッド2aを、絶縁基板1の下面に露出した部位の一部が外部接続端子としてのリードピン3を接合するためのピン付けパッド2bを形成しており、ピン付けパッド2bにはリードピン3が鉛−錫−アンチモン合金等の半田9を介して立設されている。このような電子部品接続パッド2aおよびピン付けパッド2bは、図2に要部拡大平面図で示すように、配線導体2に接続された略円形のパターンの外周部をソルダーレジストと呼ばれる最外層の絶縁層1bにより15〜150μm程度の幅で被覆してその外周縁を画定することによりその直径φが、電子部品接続パッド2aであれば略70〜200μm程度に、ピン付けパッド2bであれば略0.5〜2.5mm程度になるように形成されている。なお、このようなソルダーレジスト1bにより電子部品接続パッド2a同士あるいはピン付けパッド2b同士の半田8や9による電気的な短絡が有効に防止されるとともに電子部品接続パッド2aおよびピン付けパッド2bの絶縁基板1に対する接合強度が高いものとなっている。
【0016】
また、ピン付けパッド2bに接合されたリードピン3は搭載する電子部品4を外部電気回路に接続するための外部接続端子として機能する。
【0017】
そして、この配線基板においては、電子部品接続パッド2aに半導体素子4の各電極を半田バンプ8を介して接合して半導体素子4を搭載するとともにこの半導体素子4を図示しない蓋体やポッティング樹脂により封止することによって電子装置となり、この電子装置におけるリードピン3をソケットや半田を介して外部電気回路基板の配線導体に接続することにより本発明の電子装置が外部電気回路基板に実装されることとなる。
【0018】
なお、リードピン3は、図3に要部拡大断面図で示すように、例えば銅97.57質量%、鉄2.3質量%、亜鉛0.1質量%、リン0.03質量%を含有する銅合金から成り、直径が0.25〜0.5mm程度で長さが1〜3.5mm程度の略円柱状の軸部3aの上端に直径が0.45〜1.25mmで厚みが0.05〜0.3mm程度のネールヘッドと呼ばれる略円板状の径大部3bを形成して成る。そして、この径大部3bをピン付けパッド2bに例えば鉛82質量%、錫10質量%、アンチモン8質量%を含有する弾性率が50GPa以下の半田9を介して接合することによりリードピン3がピン付けパッド2bに立設されている。
【0019】
なお、このようなリードピン3は、軸部3aと実質的に同じ直径を有する銅合金から成る線材を準備するとともにこれに熱処理を施した後、この線材の一端部をプレスにより潰して径大部3bを形成することにより製作される。
【0020】
また、リードピン3をピン付けパッド2bに半田9を介して接合するには、ピン付けパッド2bに半田9用の半田ペーストを例えばメタルマスクを用いたスクリーン印刷法により所定量印刷塗布するとともにその上にリードピン3の径大部3bの上端面を突き当てて当接させ、これらを加熱して半田9を溶融させた後、常温に冷却する方法が採用される。
【0021】
さらに、本発明においては、リードピン3の軸部3aのビッカース硬度が125乃至150Hvであり、かつ径大部3bのビッカース硬度が軸部3aのビッカース硬度の1.2倍以上となっており、そのことが重要である。リードピン3の軸部3aのビッカース硬度が125乃至150Hvであり、かつ径大部3bのビッカース硬度が軸部3aのビッカース硬度の1.2倍以上となっていることから、リードピン3に引っ張りの力が印加されたときにその引っ張り応力をリードピン3の軸部3aと径大部3bとが適度に変形して良好に分散緩和して半田9に大きく印加されることを有効に防止することができる。したがって、本発明のピン付き配線基板およびこれを用いた電子装置によると、リードピン3の絶縁基板1に対する接合強度を例えば50N以上の大きなものとすることができる。
【0022】
なお、リードピン3の軸部3aのビッカース硬度が125Hv未満の場合、リードピン3に引っ張りの力が印加されたときに発生する引っ張り応力で、軸部3aが大きく変形して例えば30N程度の弱い力でもリードピン3が軸部3aで破断されてしまいやすい。他方、リードピン3の軸部3aのビッカース硬度が150Hvを超える場合、リードピン3を垂直あるいは斜めに引っ張ったときに、リードピン3を引っ張る力が径大部3bの外周部に大きく印加され、その結果、その力が径大部3b側面とピン付けパッド2bとの間に存在する半田9の表面に大きく集中して作用し、例えば30N程度の力でリードピン3を引っ張った場合であっても径大部3b側面とピン付けパッド2bとの間に存在する半田9の表面から半田9が破断してしまいやすくなる。したがって、リードピン3の軸部3aのビッカース硬度は125乃至150Hvの範囲に特定される。
【0023】
さらに、リードピン3の径大部3bのビッカース硬度が軸部3aのビッカース硬度の1.2倍未満の場合、リードピン3に引っ張りの力が印加された場合に径大部3bが大きく変形し、そのため径大部3b頂面とピン付けパッド2bとの間に存在する半田9に大きな応力が作用し、リードピン3を例えば30N程度の力で引っ張った場合であっても径大部3b頂面とピン付けパッド2bとの間に存在する半田9の内部から半田9が破断してしまいやすくなる。したがってリードピン3の径大部3bのピッカース硬度は軸部3aのビッカース硬度の1.2倍以上に特定される。
【0024】
なお、リードピン3の軸部3aのビッカース硬度を125乃至150Hvとするとともに径大部3bのビッカース硬度を軸部3aのビッカース硬度の1.2倍以上とするには、例えばリードピン3が銅97.57質量%、鉄2.3質量%、亜鉛0.1質量%、リン0.03質量%を含有する銅合金から成る場合であれば、リードピン3用の線材を予め350〜450℃の温度で5分間程度熱処理することにより線材のビッカース硬度を125乃至150とし、さらにその線材をプレスして径大部3bを形成する際に複数回プレスして加工硬化により径大部3bの硬度を高める方法が採用される。あるいは、ビッカース硬度が125乃至150の軸部3aの一端に径大部3bを形成するとともにその径大部3bにビッカース硬度がその軸部3aの1.2倍以上の金属を接合する方法が採用される。
【0025】
かくして、本発明のピン付き配線基板およびこれを用いた電子装置によれば、リードピン3を垂直あるいは斜めに50N程度の力で引っ張ったとしてもリードピン3が絶縁基板1から取れることがなく、搭載する電子部品を正常に作動させることが可能なピン付き配線基板および電子装置を提供することができる。
【0026】
なお、本発明は、上述の実施の形態の一例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更が可能であることはいうまでもない。
【0027】
【発明の効果】
本発明のピン付き配線基板およびこれを用いた電子装置によれば、リードピンの軸部のビッカース硬度が125乃至150Hvであり、かつ径大部のビッカース硬度が軸部のビッカース硬度の1.2倍以上であることから、リードピンにこれを引っ張る力が印加された際、軸部および径大部が適度に変形するため、リードピンを引っ張る力による応力はリードピンの軸部および径大部が適度に変形することにより良好に分散されて半田の表面や内部の一部に大きく集中して作用することを有効に防止することができる。その結果、リードピンを絶縁基板に強固に接合することができ、搭載する電子部品を外部電気回路に正常に接続することができる。
【図面の簡単な説明】
【図1】本発明のピン付き配線基板および電子装置の実施形態例の断面図である。
【図2】本発明のピン付き配線基板および電子装置の実施形態例の要部拡大平面図である。
【図3】本発明のピン付き配線基板および電子装置の実施形態例の要部拡大断面図である。
【符号の説明】
1・・・・・絶縁基板
2・・・・・配線導体
2b・・・ピン付けパッド
3・・・・・リードピン
3a・・・軸部
3b・・・径大部
4・・・・・電子部品としての半導体素子
9・・・・・半田
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wiring board with pins used for mounting an electronic component such as a semiconductor element, and an electronic device including an electronic component such as a semiconductor element mounted on the wiring board with pins.
[0002]
[Prior art]
Recently, as a wiring board with pins used for mounting electronic components such as semiconductor elements, for example, an insulating board formed by stacking a plurality of insulating layers made of an epoxy resin or the like or an insulating board made of a glass-epoxy plate or the like. A plurality of wiring conductors made of copper foil are provided from the upper surface to the lower surface, and a plurality of pinning pads are formed at portions of the wiring conductors led out to the lower surface of the insulating substrate. 2. Description of the Related Art A wiring board with pins made of an organic material based on a substantially cylindrical lead pin having a large diameter portion, which is erected by abutting an upper end thereof and soldering the lead pin, has come to be used. Such an organic material-based wiring board with pins is advantageous in that it is lighter in weight and has a smaller electric resistance of a wiring conductor than a wiring board with pins made of a ceramic material. In such an organic material-based wiring board with pins, the electronic component is mounted on the upper surface of the insulating substrate and the electrodes of the electronic component and the wiring conductor are electrically connected via solder bumps, bonding wires, or the like. By sealing the electronic components with a lid made of metal or ceramic or a sealing member made of potting resin or the like, an electronic device as a product is obtained. In this electronic device, the lead pins on the lower surface of the insulating substrate are connected to the external electric circuit board. By being connected to the wiring conductor via a socket, solder, or the like, the electronic component mounted on the external electric circuit board is electrically connected to the external electric circuit.
[0003]
As lead pins in such a wiring board, lead pins made of a copper alloy having a thermal expansion coefficient close to that of a resin insulating base have come to be used, and soldering the lead pins and the pinning pads is performed. In order to prevent the resin insulating substrate from being damaged by heat at the time of soldering, when an external force is applied to the external lead pins, the stress from the external lead pins is large on the soldering pads via the solder. In order to prevent the soldering pad from peeling off when applied, for example, a lead-tin-antimony alloy or the like having a melting point of 270 ° C. or less and an elastic modulus of 50 GPa or less has been used.
[0004]
[Problems to be solved by the invention]
However, according to the conventional organic material-based wiring board with pins and an electronic device using the same, the lead pins are usually heated at a temperature of about 700 ° C. in order to improve the workability when manufacturing them. The lead pin and the pinning pad are joined together with a lead-tin-antimony alloy, which has been subjected to heat treatment, and has been greatly softened so as to have a Vickers hardness of about 80 Hv. Because the lead pin is small, if the lead pin is pulled vertically or obliquely with a force of, for example, about 30N, the force causes the large diameter portion of the lead pin to be excessively deformed, thereby pinning the lead pin through the large diameter portion of the lead pin. A large stress concentrates on the surface and part of the inside of the solder made of lead-tin-antimony alloy etc. that joins the pad, As a result, the solder with low yield stress breaks and the lead pins are removed from the insulating substrate.If the lead pins are removed from the insulating substrate in such a way, the mounted electronic components can be normally connected to the external electric circuit. There was a problem that it became impossible.
[0005]
The present invention has been completed in view of such a conventional problem, and an object of the present invention is to remove a lead pin even if the lead pin is pulled with a force of about 50 N, and to normally mount an electronic component to be mounted on an external electric circuit. An object of the present invention is to provide a highly reliable wiring board with pins and an electronic device that can be connected.
[0006]
[Means for Solving the Problems]
The pinned wiring board of the present invention is provided with a pinning pad electrically connected to the wiring conductor on a lower surface of an organic material based insulating substrate having a wiring conductor, and the pinning pad has a substantially cylindrical shaft portion. What is claimed is: 1. A wiring board with pins, comprising: a lead pin having a substantially disk-shaped large-diameter portion formed at an upper end thereof and being soldered upright so as to form a pool of solder between the large-diameter portion and the pinning pad. The lead pin is characterized in that the Vickers hardness of the shaft portion is 125 to 150 Hv, and the Vickers hardness of the large diameter portion is 1.2 times or more the Vickers hardness of the shaft portion.
[0007]
Further, an electronic device according to the present invention includes an electronic component mounted on the wiring board and an electrode of the electronic component electrically connected to the wiring conductor.
[0008]
ADVANTAGE OF THE INVENTION According to the wiring board with a pin of this invention, and the electronic device using this, the Vickers hardness of the shaft part of a lead pin is 125-150Hv, and the Vickers hardness of a large diameter part is 1.2 times the Vickers hardness of a shaft part. As described above, when a force for pulling the lead pin is applied, the shaft portion and the large-diameter portion are appropriately deformed.Therefore, the stress caused by the force for pulling the lead pin is appropriately deformed for the shaft portion and the large-diameter portion of the lead pin. By doing so, it is possible to effectively prevent the particles from being dispersed well and acting largely on the surface or a part of the inside of the solder.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing an example of an embodiment in which the present invention is applied to a wiring board with pins for mounting a semiconductor element and an electronic device having the semiconductor element mounted thereon, where 1 is an insulating substrate; 2 is a wiring conductor and 3 is a lead pin. The wiring board with pins of the present invention is constituted by the insulating substrate 1, the wiring conductors 2, and the lead pins 3, and the electronic device of the present invention is formed by mounting the semiconductor element 4 as an electronic component on the wiring board.
[0010]
The insulating substrate 1 is formed by impregnating a thermosetting resin such as an epoxy resin or a bismaleimide triazine resin into a glass fabric in which glass fibers are woven vertically and horizontally. An organic material-based multi-layer board formed by laminating a plurality of insulating layers 1b each made of a thermosetting resin such as a resin, and a plurality of wiring conductors 2 made of a copper foil, a copper plating film or the like from the upper surface to the lower surface. Is formed.
[0011]
The core 1a constituting the insulating substrate 1 has a thickness of about 0.3 to 1.5 mm and has a plurality of through holes 5 with a diameter of about 0.1 to 1.0 mm from the upper surface to the lower surface. . A part of the wiring conductor 2 is attached to the upper and lower surfaces and the inner wall of each through hole 5, and the upper and lower wiring conductors 2 are electrically connected through the through hole 5.
[0012]
Such a core 1a is manufactured by thermally curing a sheet in which a glass fabric is impregnated with an uncured thermosetting resin, and then performing drilling from the upper surface to the lower surface. The wiring conductors 2 on the upper and lower surfaces of the core 1a are formed by attaching a copper foil having a thickness of about 3 to 50 μm to the entire upper and lower surfaces of the sheet for the core 1a and etching the copper foil after the sheet is cured. Thus, a predetermined pattern is formed. Further, the wiring conductor 2 on the inner wall of the through hole 5 is provided with a through hole 5 in the core body 1a, and then a copper plating film having a thickness of about 3 to 50 μm is formed on the inner wall of the through hole 5 by electroless plating and electrolytic plating. It is formed by precipitation.
[0013]
Further, the core 1a is filled with a resin column 6 made of a thermosetting resin such as an epoxy resin or a bismaleimide triazine resin inside the through hole 5. The resin pillar 6 is for enabling the insulating layer 1 b to be formed directly above and directly below the through hole 5 by closing the through hole 5, and the uncured paste-like thermosetting resin is placed in the through hole 5. It is formed by filling by a screen printing method, thermally curing the material, and then polishing the upper and lower surfaces thereof to be substantially flat. An insulating layer 1b is laminated on the upper and lower surfaces of the core 1a including the resin pillar 6.
[0014]
The insulating layer 1b laminated on the upper and lower surfaces of the core 1a has a thickness of about 20 to 60 μm, and has a plurality of through holes 7 having a diameter of about 30 to 100 μm from the upper surface to the lower surface of each layer. These insulating layers 1b are for providing an insulating interval for wiring the wiring conductors 2 at high density. By electrically connecting the upper layer wiring conductor 2 and the lower layer wiring conductor 2 through the through-hole 7, high-density wiring can be formed three-dimensionally. Such an insulating layer 1b is formed by attaching a film of an uncured thermosetting resin having a thickness of about 20 to 60 μm to the upper and lower surfaces of the core 1a, thermally curing the same, and forming the through holes 7 by laser processing. The insulating layer 1b is formed by successively stacking the next insulating layers 1b in a similar manner. The wiring conductor 2 attached to the surface of each insulating layer 1b and the inside of the through hole 7 has a thickness of about 5 to 50 μm on the surface of each insulating layer 1b and inside the through hole 7 every time the insulating layer 1b is formed. It is formed by applying a copper plating film to a predetermined pattern by a known pattern forming method such as a semi-additive method or a subtractive method.
[0015]
The wiring conductor 2 formed from the upper surface to the lower surface of the insulating substrate 1 functions as a conductive path for connecting each electrode of the semiconductor element 4 to an external electric circuit board, and serves as one of the portions provided on the upper surface of the insulating substrate 1. An electronic component connection pad 2a whose part is joined to each electrode of the semiconductor element 4 via a solder bump 8 made of, for example, a lead-tin eutectic alloy is partially connected to an external connection terminal at a portion exposed on the lower surface of the insulating substrate 1. A pinning pad 2b for joining the lead pin 3 is formed, and the lead pin 3 is erected on the pinning pad 2b via a solder 9 such as a lead-tin-antimony alloy. As shown in the enlarged plan view of the main part in FIG. 2, such an electronic component connection pad 2a and a pin attachment pad 2b have an outer peripheral portion of a substantially circular pattern connected to the wiring conductor 2 as an outermost layer called a solder resist. By covering the insulating layer 1b with a width of about 15 to 150 μm and defining its outer peripheral edge, the diameter φ is about 70 to 200 μm for the electronic component connection pad 2a, and is about 70 to 200 μm for the pinning pad 2b. It is formed to be about 0.5 to 2.5 mm. The solder resist 1b effectively prevents an electrical short circuit between the electronic component connection pads 2a or between the pin attachment pads 2b due to the solder 8 or 9, and insulates the electronic component connection pads 2a and the pin attachment pads 2b. The bonding strength to the substrate 1 is high.
[0016]
Further, the lead pins 3 joined to the pinning pads 2b function as external connection terminals for connecting the mounted electronic component 4 to an external electric circuit.
[0017]
In this wiring board, the electrodes of the semiconductor element 4 are joined to the electronic component connection pads 2a via the solder bumps 8 to mount the semiconductor element 4, and the semiconductor element 4 is mounted by a lid or potting resin (not shown). An electronic device is obtained by sealing, and the electronic device of the present invention is mounted on the external electric circuit board by connecting the lead pins 3 of the electronic device to the wiring conductors of the external electric circuit board via a socket or solder. Become.
[0018]
The lead pin 3 contains, for example, 97.57% by mass of copper, 2.3% by mass of iron, 0.1% by mass of zinc, and 0.03% by mass of phosphorus as shown in an enlarged sectional view of a main part in FIG. It is made of a copper alloy and has a diameter of 0.45 to 1.25 mm and a thickness of 0.4 mm at the upper end of a substantially cylindrical shaft portion 3a having a diameter of about 0.25 to 0.5 mm and a length of about 1 to 3.5 mm. It is formed by forming a substantially disk-shaped large-diameter portion 3b called a nail head having a size of about 0.05 to 0.3 mm. The large diameter portion 3b is joined to the pinning pad 2b via a solder 9 containing, for example, 82% by mass of lead, 10% by mass of tin, and 8% by mass of antimony and having a modulus of elasticity of 50 GPa or less. It is erected on the attachment pad 2b.
[0019]
For such a lead pin 3, after preparing a wire made of a copper alloy having substantially the same diameter as the shaft portion 3a and subjecting the wire to heat treatment, one end of the wire is crushed by pressing to increase the diameter of the wire. 3b.
[0020]
In order to join the lead pins 3 to the pinning pads 2b via the solder 9, a predetermined amount of solder paste for the solder 9 is printed and applied to the pinning pads 2b by, for example, a screen printing method using a metal mask. Then, the upper end surface of the large-diameter portion 3b of the lead pin 3 is brought into contact with and brought into contact with the lead pin 3 and heated to melt the solder 9 and then cooled to room temperature.
[0021]
Further, in the present invention, the Vickers hardness of the shaft portion 3a of the lead pin 3 is 125 to 150 Hv, and the Vickers hardness of the large-diameter portion 3b is 1.2 times or more the Vickers hardness of the shaft portion 3a. This is very important. Since the Vickers hardness of the shaft portion 3a of the lead pin 3 is 125 to 150 Hv and the Vickers hardness of the large-diameter portion 3b is 1.2 times or more the Vickers hardness of the shaft portion 3a, a pulling force is applied to the lead pin 3. When the tensile stress is applied, the shaft portion 3a and the large-diameter portion 3b of the lead pin 3 are appropriately deformed so as to be appropriately dispersed and relaxed, thereby effectively preventing large application to the solder 9. . Therefore, according to the wiring board with pins of the present invention and the electronic device using the same, the bonding strength of the lead pins 3 to the insulating substrate 1 can be increased to, for example, 50 N or more.
[0022]
When the Vickers hardness of the shaft portion 3a of the lead pin 3 is less than 125 Hv, the shaft portion 3a is greatly deformed due to the tensile stress generated when a tensile force is applied to the lead pin 3, and even a weak force of about 30N, for example. The lead pin 3 is easily broken at the shaft portion 3a. On the other hand, when the Vickers hardness of the shaft portion 3a of the lead pin 3 exceeds 150 Hv, when the lead pin 3 is pulled vertically or obliquely, a force for pulling the lead pin 3 is greatly applied to the outer peripheral portion of the large-diameter portion 3b. The force acts on the surface of the solder 9 existing between the side surface of the large-diameter portion 3b and the pinning pad 2b in a concentrated manner. For example, even when the lead pin 3 is pulled with a force of about 30N, the large-diameter portion is used. The solder 9 is easily broken from the surface of the solder 9 existing between the side surface 3b and the pinning pad 2b. Therefore, the Vickers hardness of the shaft portion 3a of the lead pin 3 is specified in the range of 125 to 150 Hv.
[0023]
Furthermore, when the Vickers hardness of the large diameter portion 3b of the lead pin 3 is less than 1.2 times the Vickers hardness of the shaft portion 3a, the large diameter portion 3b is greatly deformed when a pulling force is applied to the lead pin 3, so that A large stress acts on the solder 9 existing between the top surface of the large-diameter portion 3b and the pinning pad 2b, and even if the lead pin 3 is pulled with a force of, for example, about 30N, the top surface of the large-diameter portion 3b and the pin The solder 9 is easily broken from the inside of the solder 9 existing between the solder pad 9 and the attachment pad 2b. Therefore, the Pickers hardness of the large diameter portion 3b of the lead pin 3 is specified to be at least 1.2 times the Vickers hardness of the shaft portion 3a.
[0024]
In order to set the Vickers hardness of the shaft portion 3a of the lead pin 3 to 125 to 150 Hv and make the Vickers hardness of the large-diameter portion 3b 1.2 times or more the Vickers hardness of the shaft portion 3a, for example, the lead pin 3 is made of copper 97. In the case of a copper alloy containing 57% by mass, 2.3% by mass of iron, 0.1% by mass of zinc, and 0.03% by mass of phosphorus, the wire for the lead pin 3 is previously prepared at a temperature of 350 to 450 ° C. A method of increasing the hardness of the large-diameter portion 3b by work-hardening by pressing the wire several times to form the large-diameter portion 3b by pressing the wire to form a large-diameter portion 3b by heat-treating the wire for about 5 minutes to make the Vickers hardness of 125 to 150. Is adopted. Alternatively, a method is used in which a large-diameter portion 3b is formed at one end of a shaft portion 3a having a Vickers hardness of 125 to 150, and a metal having a Vickers hardness of 1.2 times or more the shaft portion 3a is bonded to the large-diameter portion 3b. Is done.
[0025]
Thus, according to the wiring board with pins of the present invention and the electronic device using the same, even if the lead pins 3 are pulled vertically or diagonally with a force of about 50 N, the lead pins 3 are not removed from the insulating substrate 1 and mounted. It is possible to provide a wiring board with pins and an electronic device that can normally operate an electronic component.
[0026]
It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the scope of the present invention.
[0027]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the wiring board with a pin of this invention, and the electronic device using this, the Vickers hardness of the shaft part of a lead pin is 125-150Hv, and the Vickers hardness of a large diameter part is 1.2 times the Vickers hardness of a shaft part. As described above, when a force for pulling the lead pin is applied, the shaft portion and the large-diameter portion are appropriately deformed.Therefore, the stress caused by the force for pulling the lead pin is appropriately deformed for the shaft portion and the large-diameter portion of the lead pin. By doing so, it is possible to effectively prevent the particles from being dispersed well and acting largely on the surface or a part of the inside of the solder. As a result, the lead pins can be firmly joined to the insulating substrate, and the mounted electronic components can be normally connected to the external electric circuit.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an embodiment of a wiring board with pins and an electronic device according to the present invention.
FIG. 2 is an enlarged plan view of a main part of a wiring board with pins and an electronic device according to an embodiment of the present invention.
FIG. 3 is an enlarged sectional view of a main part of an embodiment of a wiring board with pins and an electronic device according to the present invention.
[Explanation of symbols]
1, an insulating substrate 2, a wiring conductor 2b, a pinning pad 3, a lead pin 3a, a shaft portion 3b, a large-diameter portion 4,. Semiconductor element 9 as a component solder

Claims (2)

配線導体を有する有機材料系の絶縁基板の下面に前記配線導体と電気的に接続されたピン付けパッドを設けるとともに該ピン付けパッドに、略円柱状の軸部の上端に略円板状の径大部を形成したリードピンを前記径大部と前記ピン付けパッドとの間に半田の溜まりを形成するように半田付け立設して成るピン付き配線基板であって、前記リードピンは、前記軸部のビッカース硬度が125乃至150Hvであり、かつ前記径大部のビッカース硬度が前記軸部のビッカース硬度の1.2倍以上であることを特徴とするピン付き配線基板。A pinning pad electrically connected to the wiring conductor is provided on a lower surface of an organic material-based insulating substrate having a wiring conductor. A wiring board with pins comprising: a lead pin having a large portion formed by soldering so as to form a pool of solder between the large diameter portion and the pinning pad; Wherein the Vickers hardness of the large-diameter portion is at least 1.2 times the Vickers hardness of the shaft portion. 請求項1記載の配線基板に電子部品を搭載するとともに該電子部品の電極と前記配線導体とを電気的に接続して成る電子装置。An electronic device comprising an electronic component mounted on the wiring board according to claim 1 and electrically connecting electrodes of the electronic component and the wiring conductor.
JP2002275699A 2002-09-20 2002-09-20 Wiring board with pin, and electronic device using it Withdrawn JP2004111843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002275699A JP2004111843A (en) 2002-09-20 2002-09-20 Wiring board with pin, and electronic device using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002275699A JP2004111843A (en) 2002-09-20 2002-09-20 Wiring board with pin, and electronic device using it

Publications (1)

Publication Number Publication Date
JP2004111843A true JP2004111843A (en) 2004-04-08

Family

ID=32271821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002275699A Withdrawn JP2004111843A (en) 2002-09-20 2002-09-20 Wiring board with pin, and electronic device using it

Country Status (1)

Country Link
JP (1) JP2004111843A (en)

Similar Documents

Publication Publication Date Title
KR100232414B1 (en) Multilayer circuit board and manufacture method thereof
JP5879030B2 (en) Electronic component package and manufacturing method thereof
US8618669B2 (en) Combination substrate
US20110266666A1 (en) Circuit board with built-in semiconductor chip and method of manufacturing the same
JP2005191156A (en) Wiring plate containing electric component, and its manufacturing method
JPH09199635A (en) Multilayer film for forming circuit substrate, multilayer circuit substrate using it, and package for semiconductor device
JP3930222B2 (en) Manufacturing method of semiconductor device
JP5369875B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
JP2004327743A (en) Wiring board with solder bump and its producing process
JP2004111843A (en) Wiring board with pin, and electronic device using it
JPH10321750A (en) Semiconductor device and manufacture of wiring board having semiconductor chip mounted thereon
JP3324472B2 (en) Method for manufacturing TAB tape for BGA
JP2003017611A (en) Circuit board with pin and electronic device using the same
JP5601413B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
JP2004055958A (en) Wiring board with pin, and electronic device using same
JP2003046030A (en) Wiring board with pin, and electronic device using the same
JP2010062339A (en) Component built-in wiring board, and method of manufacturing component built-in wiring board
JP2003338574A (en) Wiring board with pin and electronic device using the same
JP2004172304A (en) Wiring board and its manufacturing method
JP2003068797A (en) Wiring substrate with pin and electronic device using it
JP2003017614A (en) Circuit board with pin and electronic device using the same
JP2003133469A (en) Wiring board with pins and electronic device employing it
JP2004119544A (en) Wiring board and its manufacturing method
JP2004165328A (en) Wiring board having solder bump and its manufacturing method
JP2002353394A (en) Wiring board with pin and electronic device using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060904

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20070703