JP2004109334A - 画像表示方法および画像表示装置 - Google Patents

画像表示方法および画像表示装置 Download PDF

Info

Publication number
JP2004109334A
JP2004109334A JP2002270042A JP2002270042A JP2004109334A JP 2004109334 A JP2004109334 A JP 2004109334A JP 2002270042 A JP2002270042 A JP 2002270042A JP 2002270042 A JP2002270042 A JP 2002270042A JP 2004109334 A JP2004109334 A JP 2004109334A
Authority
JP
Japan
Prior art keywords
image
optical path
image display
light
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002270042A
Other languages
English (en)
Inventor
Yasuyuki Takiguchi
滝口 康之
Kenji Kameyama
亀山 健司
Ikuo Kato
加藤 幾雄
Kazuya Miyagaki
宮垣 一也
Takeshi Namie
浪江 健史
Keishin Aisaka
逢坂 敬信
Hiroyuki Sugimoto
杉本 浩之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2002270042A priority Critical patent/JP2004109334A/ja
Publication of JP2004109334A publication Critical patent/JP2004109334A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】光路シフト素子を用いる画像表示方法および画像表示装置において、光路シフトに起因するよる各色画像のずれを防止もしくは軽減する。
【解決手段】2以上の色の画像光を合成して第1合成画像光とする第1色合成手段18と、第1色合成手段により合成された第1合成画像光と、残りの色の画像光とを合成し、結像手段7により結像させるべき第2合成画像光とする第2色合成手段17と、第1合成画像光の光路を進行方向と直交する所定方向へシフトさせる第1の光路シフト素子101と、残りの色の画像光の光路を進行方向と直交する所定方向へシフトさせる第2の光路シフト素子102とを有する。
【選択図】  図3

Description

【0001】
【発明の属する技術分野】
この発明は画像表示方法および画像表示装置に関する。
【0002】
【従来の技術】
液晶パネル等の小型の画像表示素子に表示された画像を、レンズ系を介して結像・拡大して表示する画像表示装置としては、装置本体を眼前に装着またはかざして拡大像を観察する「ヘッドマウントディスプレイ型」と呼ばれるものと、拡大像をスクリーンに投影して投影像を観察する「投射型」のものがある。
【0003】
一般に画像表示装置においては「画面の解像度」が、表示品質を決定する重要な因子となる。画面の解像度を上げる方法として、投射型の画像表示装置に関連して、画像表示素子とスクリーンの間に「結像光束の光路を光軸に直交する方向へシフトさせる光路シフト素子」を配置して光路シフトを行うことにより投影画像をスクリーン上でシフトさせ、観察者の観察する画像の解像度を見かけ上「高解像度化」する方法が知られている(非特許文献1参照)。
【0004】
非特許文献1記載の画像表示装置は、カラー画像を表示する装置で「3原色に色分解された光を用い、3枚の液晶パネルを互いに異なる色の光で照明し、各液晶パネルにより強度変調された画像光を合成して結像レンズによりスクリーン上に拡大・結像させるもの」であり、結像光束の光路をシフトする「光路シフト素子」は、単一の素子が「合成された画像光に対して共通」に設けられ、3色の画像光に対して光路シフトを行っている。
【0005】
光路シフト素子としては種々のものが知られているが、従来から知られたシフト素子は、光路シフト量が波長依存性を持ち、「カラー画像を形成するために合成された可視波長領域の光に対して共通に使用」した場合には、各色の画像光に対する光路シフト量に差異が生じ、スクリーン上に結像される各色画像にずれを生じ、上記差異が著しい場合には却って表示画像の解像度低下を招くことが、発明者らの研究により明らかになった。
【0006】
また、各画像表示素子から結像レンズへ向う画像光は一般に発散性であり、上記のように3色の画像光を合成した後に光路シフト素子に入射させる場合、各画像表示素子から光路シフト素子に至る光路長が長くなるため、光路シフト素子に入射する時点で「合成された画像光の光束径」が大きくなり、必然的に、光路シフト素子も大型のものが必要とされることになる。
【0007】
このような大型の光路シフト素子は高価であるし、画像表示装置を大型化する原因となる。また、可視波長領域にわたって光束シフト量の均一な光路シフト素子は低コストでの実現は困難である。
【0008】
【非特許文献1】
Journal of the SID 5/3,1997 p.299
【0009】
【発明が解決しようとする課題】
この発明は光路シフト素子を用いる画像表示方法および画像表示装置において、光路シフト素子による各色画像のずれを防止もしくは軽減して表示画像の解像度を高め、且つ、光路シフト素子の大型化、高コスト化を有効に軽減することを課題とする。
【0010】
【課題を解決するための手段】
この発明の画像表示装置は「3つもしくは4つの画像表示素子に画像を表示し、照明手段によりこれら画像表示素子を互いに異なる色の光で照明し、各画像表示素子により画像に応じて変調された各色の画像光を合成し、結像手段により結像表示する画像表示装置」である。この発明の画像表示装置は「ヘッドマウントディスプレイ型」のものにも「投射型」のものにも適用することができる。
【0011】
3つもしくは4つの画像表示素子には、カラー画像もしくは多色画像を合成的に表示するための画像が表示される。例えば、3つの画像表示素子を用いてカラー画像を表示する場合であれば、3つの画像表示素子には、カラー画像の赤成分画像・緑成分画像・青成分画像、あるいは、マゼンタ成分画像・イエロー成分画像・シアン成分画像が表示される。
【0012】
画像表示素子はライトバルブと呼ばれるものが好適であり、例えば、透過式もしくは反射式の液晶パネルを好適に使用することができる。
【0013】
請求項1記載の画像表示装置は以下の如き特徴を有する。
即ち、各画像表示素子により画像に応じて変調された各色の画像光は、色合成手段により合成されて「結像手段により結像させるべき合成画像光」となるが、各画像表示素子と色合成手段との間に「各画像表示素子に対応して、各画像光の光路を進行方向と直交する所定方向へシフトさせる光路シフト素子」が配設され、各光路シフト素子の光路シフト量が実質的に等しく設定される。
【0014】
即ち、光路シフト素子は「各画像光ごとに設けられる」ので、画像光の光路シフトは「画像光に応じた光路シフト素子」により行われ、その光路シフト量は光路シフト素子ごとに独立に設定できる。従って、上記光路シフト量を各光路シフト素子ごとに実質的に等しく設定することにより、表示画像を構成する各色の画像光の「結像間における光路シフト量の差に起因するずれ」がなくなり、解像度の高い画像を表示できる。
【0015】
請求項1記載の画像表示装置における「各画像表示素子に対応して配設される光路シフト素子の配設位置」は、色合成手段への入射位置側であることも(請求項2)、各画像表示素子に近接した位置である(請求項3)こともできる。
【0016】
各光路シフト素子の配置位置は「各画像表示素子と色合成手段」との間であるので、非特許文献1記載のもののように「色合成手段の下流側」に光路シフト素子を配置する場合に比して、光路シフト素子と画像表示素子との間隔が小さくなり、画像表示素子から光路シフト素子に至る間における画像光の光束径の増大が小さく、従って小型の光路シフト素子の使用が可能になる。特に、請求項3に記載の場合には、光路シフト素子の大きさを「画像表示素子と実質的に同大」にすることができる。
【0017】
請求項4記載の画像表示装置は、第1色合成手段と、第2色合成手段と、第1の光路シフト素子と、第2の光路シフト素子とを有する。
「第1色合成手段」は、2以上の色の画像光を合成して第1合成画像光とする色合成手段である。
【0018】
「第2色合成手段」は、この第1色合成手段により合成された第1合成画像光と、残りの色の画像光とを合成し、結像手段により結像させるべき第2合成画像光とする色合成手段である。
「第1の光路シフト素子」は、第1合成画像光が第2色合成手段へ入射する第1の入射光路中に配置され、第1合成画像光の光路を進行方向と直交する所定方向へシフトさせる。
【0019】
「第2の光路シフト素子」は、残りの色の画像光が、第1合成画像光と合成されるべく第2色合成手段へ入射する第2の入射光路中に配置され、残りの色の画像光の光路を進行方向と直交する所定方向へシフトさせる。
【0020】
即ち、請求項1ないし3記載の画像表示装置では、画像表示素子と同数個、即ち3個もしくは4個の光路シフト素子が用いられるのであるが、請求項4記載の画像表示装置では、画像表示素子が3であるか4であるかに拘わらず、2つの光路シフト素子で足りるのである。このように、光路シフト素子の個数が少なくなることにより、画像表示装置をさらに低コスト化・コンパクト化することが可能となる。
【0021】
請求項4記載の画像表示装置は、第2の光路シフト素子に入射する残りの色の画像光が「2つの画像光を合成したもの」であることができる(請求項5)。 即ち、請求項4記載の画像表示装置において、画像表示素子の個数が3である場合には、第1色合成手段は2色、例えば赤画像光と緑画像光とを合成して「第1合成画像光」とし、第2色合成手段は、この第1合成画像光と残りの青画像光とを合成して「第2合成画像光」とする。
【0022】
また、請求項4記載の画像表示装置で、画像表示素子の個数が4である場合には、第1色合成手段で3つの画像光を合成して第1合成画像光とし、この第1合成画像光と残りの1つの画像光を第2色合成手段により合成して第2合成画像光とすることもできるし、上記請求項4記載のように、第1色合成手段で2つの画像光を合成して第1合成画像光とし、この第1合成画像光と残りの2つの画像光を第2色合成手段により合成して第2合成画像光とするようにし、上記残りの2つの画像光を「第2色合成手段に入射する段階で予め合成しておく」こともできるのである。
【0023】
上記請求項4または5記載の画像表示装置において、2つの画像光が合成されて入射する光路シフト素子への入射光は、互いに波長領域が隣接する画像光の合成光であることが好ましい(請求項6)。
【0024】
また、請求項4または5または6記載の画像表示装置においては「第1および第2の光路シフト素子による光路シフト量が、各画像光間で略等しくなるように、第1および第2の光路シフト素子の光路シフト量を調整する」ことができる(請求項7)。
【0025】
前述したように、光路シフト素子の光路シフト量に波長依存性があると、可視領域の全域にわたって同じ光路シフト量を実現することはできない。しかし、請求項6の場合のように、2つの画像光が合成されて入射する光路シフト素子への入射光が「互いに波長領域が隣接する画像光の合成光」であるようにすると、波長領域が隣接しているために、これら画像光の光路シフト量の差異が小さくなり、請求項7記載の場合の如く「第1および第2の光路シフト素子による光路シフト量が、各画像光間で略等しくなるように、第1および第2の光路シフト素子の光路シフト量を調整する」ことができ、表示される画像における各色画像光の結像間の「光路シフト量の差」に起因するずれを小さくできる。
【0026】
上記請求項1ないし7の任意の1に記載の画像表示装置において用いる「光路シフト素子」は「画像光の光軸光線に対して傾斜した面を有する光学部材を備えた光学素子で、この光学素子の、材質の屈折率、もしくは傾斜した面の傾斜角、もしくは光学部材の厚さ、またはこれらの組み合わせを制御することにより光路シフト量を制御可能としたもの」であることができる(請求項8)。
【0027】
請求項1ないし7の任意の1に記載の画像表示装置において用いる「光路シフト素子」はまた「画像光の光軸光線に対して傾斜した1軸性光学異方体による光路変化を利用したもので、1軸性光学異方体の、傾斜角、または屈折率、または厚さ、またはこれらの組み合わせを制御することにより光路シフト量を制御可能としたもの」であることもできる(請求項9)。この場合において、「1軸性光学異方体」は、印加電圧によって配向の変化する液晶材料で、印加電圧の制御により実質的な屈折率を制御するものであることができる(請求項10)。
【0028】
請求項1ないし7の任意の1に記載の画像表示装置において用いる「光路シフト素子」は「少なくとも一方が1軸性光学異方体である少なくとも2つの材料によって形成され、画像光の光軸光線に対して傾斜した界面を有し、この界面の傾斜角、媒質の入射光線に対する実質的な屈折率、またはこれら双方を制御することで、光路シフト量を制御可能としたもの」であることができ(請求項11)、この場合「1軸性光学異方体」は、印加電圧によって配向の変化する液晶材料で、印加電圧の制御により実質的な屈折率を制御するものであることができる(請求項12)。
【0029】
上記請求項11または12記載の画像表示装置における「光路シフト素子」は「少なくとも一方が1軸性光学異方体である2つの媒質の、画像光の光軸光線に対して傾斜した界面を有する複数のシフト素子から構成され、これらシフト素子間の距離またはシフト素子の媒質の屈折率、またはこれら双方を制御することにより光路シフト素子の光路シフト量を制御可能としたもの」であることができる(請求項13)。
【0030】
前記請求項4ないし7の任意の1に記載の画像表示装置においては「第1色合成手段」をダイクロイックプリズム、「第2色合成手段」を偏光ビームスプリッタとすることも(請求項14)、「第1および第2色合成手段」を共に偏光ビームスプリッタとすることもできる(請求項15)。勿論、これら請求項14、15記載の画像表示装置においても、上記請求項8〜13の任意の1に記載された光路シフト素子を用いることができる。
【0031】
この発明の画像表示方法は「3つもしくは4つの画像表示素子に画像を表示し、照明手段によりこれら画像表示素子を互いに異なる色の光で照明し、各画像表示素子により画像に応じて変調された各色の画像光を合成し、結像手段により結像表示する画像表示方法」であって、請求項1ないし15の任意の1に記載の画像表示装置を用い、1画像フレームを複数のサブフレームに分割し、サブフレームの切り替えに応じて光路シフト素子による光路シフトを行い、画像が表示される位置をサブフレームごとに制御することにより、画像表示素子の画素数より大きい表示画素数を得ることを特徴とする(請求項16)。
【0032】
【発明の実施の形態】
以下、実施の形態を説明する。
図1は、請求項1、2記載の画像表示装置の実施の1形態を説明するための図である。
即ち、図1(a)に要部を略示する画像表示装置は「投影型」のものであり、3つの画像表示素子405r、405g、405bに画像を表示し、照明手段によりこれら画像表示素子を互いに異なる色の光で照明し、各画像表示素子405r、405g、405bにより画像に応じて変調された各色の画像光を合成し、結像手段407により結像表示する画像表示装置において、各画像表示素子と、これら画像表示素子により画像に応じて変調された各色の画像光を、結像手段407により結像させるべき合成画像光とする色合成手段414との間に、各画像表示素子に対応して、各画像光の光路を進行方向と直交する所定方向へシフトさせる光路シフト素子410r、410g、410bを配設し、各光路シフト素子の光路シフト量を実質的に等しく設定したこともの(請求項1)であり、各画像表示素子405r、405g、405bに対応して配設される光路シフト素子410r、410g、410bの配設位置が、色合成手段414への入射位置側である(請求項2)。
【0033】
若干詳しく説明すると、光源401を出た白色光はフライアイレンズ402、403による「インテグレータ光学系」を介して画像表示素子405r、405g、405bを照明する。符号409はフィールドレンズ、符号417はリレーレンズを示す。
【0034】
インテグレータ光学系からの光はフィールドレンズ409を介してダイクロイックミラー415bgに入射する。ダイクロイックミラー415bgは、入射する白色光のうち緑色成分光と青色成分光とを反射し、赤色成分光を透過させる。ダイクロイックミラー415bgにより反射された光はダイクロイックミラー415bに入射し、緑色成分光が反射される。反射された緑色性分光は偏光ビームスプリッタ417gに入射し、同スプリッタ417gに反射されたS偏光成分が照明光として画像表示素子405gを照明する。
【0035】
ダイクロイックミラー415bに入射し、これを透過した青色成分光は偏光ビームスプリッタ417bに入射し、同スプリッタ417bに反射されたS偏光成分が照明光として画像表示素子405bを照明する。
【0036】
ダイクロイックミラー415bgを透過した赤色性分光は、リレーレンズ417を介してミラー416により光路を折り曲げられ、偏光ビームスプリッタ417rに入射し、同スプリッタ417rに反射されたS偏光成分が照明光として画像表示素子405rを照明する。
【0037】
即ち、光源1とフライアイレンズ402、403、フィールドレンズ409、ダイクロイックミラー415bg、415g、リレーレンズ417、ミラー416は「照明手段」を構成する。
【0038】
画像表示素子405r、405g、405bは、この実施の形態において反射形の液晶パネルであり、これらに画像を表示すると、表示された画像に応じた反射光部分に偏光面の旋回が生じる。
【0039】
画像表示素子405gを例に取ると、画像表示素子405gにはカラー画像を構成する3原色成分のうちの緑成分画像が表示される。この緑成分画像を表示された画像表示素子405gが緑色成分光で照明されると、反射光は緑成分画像に応じて偏光面の旋回が生じ、このように偏光面の旋回を生じた成分のみが偏光ビームスプリッタ417gを透過してダイクロイックプリズム414に入射し、同プリズム414を結像手段である結像レンズ407側へ透過する。
【0040】
従って、ダイクロイックプリズム414へ入射する緑色成分光は「緑成分画像に応じて変調された緑画像光」である。
【0041】
同様に、赤成分画像を表示された画像表示素子405rによる赤色反射光は赤画像光となって偏光ビームスプリッタ417rを透過し、ダイクロイックプリズム414により結像レンズ407側へ反射される。青成分画像を表示された画像表示素子405bによる青色反射光は青画像光となって偏光ビームスプリッタ417bを透過し、ダイクロイックプリズム414により結像レンズ407側へ反射される。
【0042】
このようにして、赤・緑・青画像光が「色合成手段」としてのダイクロイックプリズム414により、結像レンズ407により結像させるべき合成画像光として色合成される。このようにして合成された合成画像光は、結像レンズ407により図示されないスクリーン上にカラーの拡大画像として結像される。
【0043】
光路シフト素子410r、410g、410bは合成される以前の各色画像光の光路を「進行方向と直交する所定方向」へシフトさせる。各光路シフト素子410r、410g、410bの光路シフト量は実質的に等しく設定される。
【0044】
画像表示が行われる際、1画像フレームは複数のサブフレームに分割され、サブフレームの切り替えに応じて光路シフト素子410r、410g、410bによる光路シフトが行われ、画像が表示される位置がサブフレームごとに制御され、画像表示素子405r、405g、405bの画素数より大きい表示画素数が得られる。
【0045】
即ち、図1(a)の画像表示装置により「3つの画像表示素子405r、405g、405bに画像を表示し、照明手段によりこれら画像表示素子を互いに異なる色の光で照明し、各画像表示素子により画像に応じて変調された各色の画像光を合成し、結像手段407により結像表示する画像表示方法であって、請求項1、2記載の画像表示装置を用い、1画像フレームを複数のサブフレームに分割し、サブフレームの切り替えに応じて光路シフト素子410r、410g、410bによる光路シフトを行い、画像が表示される位置をサブフレームごとに制御することにより、画像表示素子405r、405g、405bの画素数より大きい表示画素数を得る画像表示方法(請求項16)」が実施される。
【0046】
なお、図1に示す実施の形態に用いられる照明手段においては、十分な光量を得るため、放電型のランプおよび反射鏡が光源401として用いられる。このとき、ランプの発光部は点光源であることがより均一な発散角分布を得るために理想であるが、現実にはランプの寿命や発光効率などを勘案して、発光部のアーク長は1mm前後に設定される。
【0047】
このようなサイズの発光部に対してより均一な発散角分布を持たせるため、反射鏡としては略50mm以上の径を有するものが用いられる。一方、画像表示素子405r等は「小さければ小さいほど低コストで製造できる」ため対角長:0.5インチ(約13mm)〜1.3インチ(約33mm)のものが一般に用いられる。
【0048】
図1(b)は、図1(a)に示した実施の形態におけるフライアイレンズ402、403とフィールドレンズ409の照明作用を、画像表示素子405gの照明の場合を例にとって示す説明図である。
【0049】
フィールドレンズ409は、照明光を縮小して画像表示素子405gを照明するよう作用する。図1(b)の左方からフライアイレンズ402に入射した光はフライアイレンズ402の各フライアイ(フライアイレンズを構成する個々の微小レンズ)により、フライアイレンズ403の対応するフライアイに集光する。フライアイレンズ402の各フライアイと、画像表示素子405gは共役の関係にあり、フライアイレンズ403の各フライアイに集光された光が、各々画像表示素子405gの全面を照明する。
【0050】
このとき一般に、照明光の光束幅は画像表示素子405gの位置で最小となり、それ以降は拡大する。このため、光路シフト素子410r、410g、410bの大きさが大きくならないようにするには、光路シフト素子を対応する画像表示素子になるべく近接して配置することが好ましい。図1(a)の実施の形態では、画像表示素子と対応する光路シフト素子との間の距離が「両者間に介在する偏光ビームスプリッタの大きさ」と略等しいので、この距離は然程大きくならず、光路シフト素子410r等の大きさも然程大きくはならない。
【0051】
図2は、請求項1、3記載の画像表示装置の実施の1形態を示している。繁雑を避けるため、混同の虞がないと思われるものについては、図1(a)におけると同一の符号を付した。従って、図1(a)におけると同一の符号の部分は、図1におけると同様のものであるので、これらについての詳細な説明は省略する。
【0052】
図2に示す実施の形態が、図1(a)に示す実施の形態と異なる点は、各画像表示素子405r、405g、405bに対応して配設される光路シフト素子410r’、410g’、410b’の配置位置が、各画像表示素子405r、405g、405bに近接した位置であること(請求項3)にある。
【0053】
このようにすると、光路シフト素子410r’、410g’、410b’が対応する画像表示素子のすぐ近傍になるので、各光路シフト素子のサイズを実質的に画像表示素子のサイズと同一にできる。しかし反面、光が光路シフト素子を往復透過するため、図1(a)の場合と比して光利用効率が低くなるので、図1の実施の形態よりも強力な照明手段を必要とする。
【0054】
図2に実施の形態を示す画像表示装置においても、図1のものと同様に請求項16記載の画像表示方法を実施できる。
【0055】
図1、図2に示す実施の形態においては、個々の画像表示素子により変調された画像光に対し、光路シフト素子による光路シフトを個別的に行うので、各光路シフト素子による各画像光の光路シフト量を相互に「実質的に等しく」設定でき、スクリーン上に結像される各色画像にずれが生じないので、解像度の高い表示画像を表示できる。
【0056】
図3は、請求項4以下に記載の画像表示装置の実施の形態を説明するための図である。
図3において、光源11を出た白色光はフライアイレンズ12、13によるインテグレータ照明系およびフィールドレンズ19によって、画像表示素子5R、5G、5Bを照明する。画像表示素子5R、5G、5Bは、先に図1、図2に示した実施の形態におけると同様の「反射型の液晶パネル」である。
【0057】
符号14で示す偏光変換素子は、光源11からのランダム偏光を一方向に振動する直線偏光に変換する作用を有するものであり「必要に応じて設け」られる。この実施の形態においては、偏光変換素子14は、照明光の偏光方向を図面に直交する方向に揃えるようになっている。
【0058】
符号20で示す「波長選択性偏光面旋回手段(以下、単に偏光面旋回手段という)」は「特定波長域の光の偏光方向」を、他の色の光に対して90度旋回させる機能をもつ光学素子であり、例えば、カラーリンク社から市販されている積層型の位相板である「カラーセレクト(商品名)」を用いることができる。
【0059】
偏光面旋回手段20は、説明中の実施の形態においては「赤色成分光の偏光方向を図面に平行な方向に旋回」させる。偏光面旋回手段20を透過した光は偏光ビームスプリッタ17に入射し、P偏向は直進して画像表示素子5Rを照明光として照射する。即ち、ビームスプリッタ17を透過した赤色成分光は光路シフト素子102を透過し、光路長バランス用のキュービックガラス21を透過して画像表示素子5Rを照射する。
【0060】
一方、偏光面旋回手段20により偏光面の旋回を受けなかった透過光である緑色成分光と青色成分光とは、偏光ビームスプリッタ17にS偏光として入射し、同スプリッタ17により反射され、光路シフト素子101を透過してダイクロイックプリズム18に入射する。青色成分光はダイクロイックプリズム18を透過して画像表示素子5Bを照射し、緑色性分光はダイクロイックプリズム18により反射されて画像表示素子5Gを照射する。
【0061】
上記キュービックガラス21は、ダイクロイックプリズム18を介して照明される画像表示素子5G、5Bに対して、画像表示素子5Rの光路長をバランスさせるために用いられている。
【0062】
画像表示素子5R、5G、5Bにそれぞれ赤、緑、青成分画像を表示すると、これら画像表示素子による反射光は画像に応じて変調され(変調された部分の偏光面が旋回する)画像光となる。画像表示素子5Bで変調された青画像光、画像変調素子5Gで変調された緑画像光はダイクロイックプリズム18により合成され、光路シフト素子101を介して偏光ビームスプリッタ17に入射し、偏光面を旋回された成分は偏光ビームスプリッタ17を透過して結像レンズ7へ向う。
【0063】
一方、画像表示素子5Rで変調された赤画像光は、キュービックガラス21と光路シフト素子102を透過して偏光ビームスプリッタ17に入射し、同スプリッタ17に反射されて結像レンズ7に向う。このようにして、各画像表示素子からの画像光が合成されて結像レンズ7に入射し、結像レンズ7により図示されないスクリーン上に拡大カラー画像として結像・投影される。
【0064】
光路シフト素子101、102は、画像光の光軸光線(結像レンズ7の光軸に平行となる光線)を、これに直交する所定の方向へ能動的にずらすように作用する。光路シフト素子101、102による光路シフト量は「各画像光間で略等しくなる」ように調整される。
【0065】
即ち、光路シフト素子101、102の作用状態に応じて光軸光線のシフト量が、例えば「画素ピッチの1/2」シフトするようにする。
【0066】
このとき、画像データの1フレームを「シフト位置に対応する2つのサブフレーム」に分割し、順次画像表示素子に表示する。この画像切り替えに応じ、光路シフト素子101、102の作用状態を切り替えることにより「実質2倍の画像情報を表示」できる。
【0067】
光路シフト素子によるシフトの方向を「互いに直交する2方向」に対して行うことで4倍の画像情報を表示することもできる。シフトレベルを3以上に多値化することでさらに大きな画像情報を表示することも可能である。
【0068】
即ち、図3に実施の形態を示した画像表示装置は、3つの画像表示素子5R、5G、5Bに画像を表示し、照明手段によりこれら画像表示素子を互いに異なる色の光で照明し、各画像表示素子により画像に応じて変調された各色の画像光を合成し、結像手段により結像表示する画像表示装置において、2以上の色の画像光を合成して第1合成画像光とする第1色合成手段18と、この第1色合成手段18により合成された第1合成画像光(青画像光と緑画像光)と、残りの色の画像光(赤画像光)を合成し、結像手段7により結像させるべき第2合成画像光とする第2色合成手段17と、第1合成画像光が第2色合成手段17へ入射する第1の入射光路中に配置され、第1合成画像光の光路を進行方向と直交する所定方向へシフトさせる第1の光路シフト素子101と、残りの色の画像光(赤画像光)が、第1合成画像光と合成されるべく第2色合成手段17へ入射する第2の入射光路中に配置され、残りの色の画像光の光路を進行方向と直交する所定方向へシフトさせる第2の光路シフト素子102とを有するもの(請求項4)である。
【0069】
また、第1および第2の光路シフト素子101、102による光路シフト量は「各画像光間で略等しくなる」ように調整される(請求項7)。
【0070】
このような構成により、図3の画像表示装置は、図1、図2に画像表示装置において3個必要であった光路シフト素子を2個に抑えることができる。すなわち、2個の光路シフト素子のうち1個(光路シフト素子101)を、2つの異なる色の合成光(緑画像光と青画像光を合成した「第1合成画像光」)に対して作用させることで光路シフト素子数を低減している。
【0071】
図3から分かるように、各画像表示素子と光路シフト素子との間の光路長は、ダイクロイックプリズム18およびキュービックガラス21の厚み分でよく、画像表示素子と光路シフト素子との間における光束の広がりが少ないので、光路シフト素子101、102は小型のものを用いることができる。
【0072】
また、図3の画像表示装置において、第1色合成手段がダイクロイックプリズム18で、第2色合成手段17が偏光ビームスプリッタである(請求項14)。
【0073】
上記の如く、図3の画像表示装置を用いると、3つの画像表示素子5R、5G、5Bに画像を表示し、照明手段によりこれら画像表示素子を互いに異なる色の光で照明し、各画像表示素子により画像に応じて変調された各色の画像光を合成し、結像手段により結像表示する画像表示方法であって、請求項4記載の画像表示装置を用い、1画像フレームを複数のサブフレームに分割し、サブフレームの切り替えに応じて光路シフト素子101、102による光路シフトを行い、画像が表示される位置をサブフレームごとに制御することにより、画像表示素子の画素数より大きい表示画素数を得る画像表示方法(請求項16)を実施できる。
【0074】
図4は、請求項4記載の画像表示装置の実施の別形態を示している。
繁雑を避けるべく、混同の虞がないと思われるものについては、図3におけると同一の符号を用いた。
光源1からフィールドレンズ19に至る「照明手段」は、図3のものと同じである。光源手段からの白色光は偏光面旋回手段201に入射する。この段階において白色光は、偏光変換素子14により偏光方向を「図面に直交する方向」に揃えられている。
【0075】
偏光面旋回手段201(例えば前述の「商品名:カラーセレクト」)は、入射する白色光のうち、赤色成分光と緑色成分光との偏光面を90度旋回させて図面に平行な方向とする。従って、偏光面旋回手段201を透過した赤色成分光と青色成分光とは偏光ビームスプリッタ171にP偏光として入射し、同スプリッタ171を透過する。青色成分光は偏光ビームスプリッタ171に対してS偏光として入射し、同スプリッタ171に反射される。
【0076】
偏光ビームスプリッタ171を透過した光は、第2の偏光面旋回手段202に入射して透過すると、赤色光成分が選択的に偏光面を旋回される。偏光面旋回手段202を透過した緑色成分光は偏光ビームスプリッタ172をP偏光として透過し、画像表示素子5Gを照明する。赤色成分光は偏光ビームスプリッタ1722より反射されて画像表示素子5Rを照射する。
【0077】
偏光ビームスプリッタ171により反射された青色光成分は、偏光ビームスプリッタ173にS偏光として入射して反射され、画像表示素子5Bを照射する。
【0078】
画像表示素子5R、5G、5Bにより変調された反射光は、それぞれ赤画像光、緑画像光、青画像光となる。
【0079】
赤画像光と緑画像光とは偏光ビームスプリッタ172により合成されて「第1合成画像光」となり、第3の偏光面旋回手段203と光路シフト素子101とを介して偏光ビームスプリッタ174に入射する。偏光面旋回手段203(例えば前述の「商品名:カラーセレクト」)は、赤画像光の偏光面を90度旋回させて偏光ビームスプリッタ174に対してS偏光とする。このようにして偏光ビームスプリッタ174に入射する第1合成画像光(赤画像光、緑画像光)は偏光ビームスプリッタ174に対してS偏光となり、偏光ビームスプリッタ174に反射されて図示されない結像手段(結像レンズ等)へ向う。
【0080】
青画像光は偏光ビームスプリッタ173をP偏光として透過し、光路シフト素子102を透過し、偏光ビームスプリッタ174をP偏光として透過し、上記第1合成画像光と合成される。このようにして、赤・緑・青画像光が合成されて第2合成画像光となり、図示されない結像手段により、図示されないスクリーン上に拡大カラー画像として結像・表示される。その際、光路シフト素子101、102による光路シフトが行われる。
【0081】
図4の画像表示装置では、第1および第2色合成手段が共に偏光ビームスプリッタである(請求項15)。即ち、偏光ビームスプリッタ172は赤画像光と緑画像光を合成する「第1色合成手段」であり、偏光ビームスプリッタ174は、偏光ビームスプリッタ172により合成された「第1合成画像光」に対して、残りの青画像光を合成する「第2色合成手段」である。
【0082】
図3に示した実施の形態においては、各色の光は照明光として1回、変調された画像光として1回、合計2回光路シフト素子を透過しているが、図4の実施の形態においては、光路シフト素子101、102を透過する光は変調された画像光のみであり、照明光は別の光路で各画像表示素子を照明するため、図3の実施の形態に比して「光路シフト素子101、102による光量低下」を低減することができる。
【0083】
各画像表示素子5R、5Gと光路シフト素子101との間の光路長は偏光ビームスプリッタ172の厚み分でよく、画像表示素子5Bと光路シフト素子102との間の光路長は偏光ビームスプリッタ173の厚み分でよい。このため、画像表示素子と光路シフト素子との間における光束の広がりが少なく、光路シフト素子101、102は小型のものを用いることができる。
【0084】
図4の実施の形態では、赤色成分光および緑色成分光をP偏光、青色成分光をS偏光としたが、逆に構成し、偏光ビームスプリッタ173の側に赤、緑色成分光用の画像表示素子、偏光ビームスプリッタ172の側に青色成分光用の画像表示素子を設け、偏光面旋回手段203を偏光ビームスプリッタ173と174の間に配する構成とすることもできる。
【0085】
また、第1合成画像光と単独光の組み合わせは「赤+緑(第1合成画像光)と青」以外にも「緑+青(第1合成画像光)と赤」、「赤+青(第1合成画像光)と緑」も可能である。
【0086】
図4において、偏光ビームスプリッタ173の側に、さらに「別の画像表示素子」を追加して設け、偏光ビームスプリッタ171と173の間、および偏光ビームスプリッタ173と174の間に第3の偏光面旋回手段を設けることで画像表示素子を4つ用いる構成とすることも可能である。
【0087】
図3、図4に示した画像表示装置では、画像表示素子5R、5G、5Bとして反射型の液晶パネルを用いたが、これに限らず、透過型の画像表示素子を用いることもできる。
【0088】
図3の画像表示装置の変形例として、画像表示素子5R、5G、5Bに代えて、透過型の画像表示素子51R、51G、51Bを用いた実施の形態を図5に示す。図3と同一の符号を付したものは図3におけると同一のものである。
【0089】
図4の画像表示装置の変形例として、画像表示素子5R、5G、5Bに代えて、透過型の画像表示素子51R、51G、51Bを用いた実施の形態を図6に示す。図4と同一の符号を付したものは図4におけると同一のものである。
【0090】
図5、図6においては、照明手段を省略したが、照明手段としては例えば図1や図2に示したものと同様のものを用いればよい。図1や図2に示した実施の形態においても、反射型の画像表示素子に代えて、透過型の画像表示素子を用い得ることは勿論である。
【0091】
図3〜図6に示した画像表示素子においては、合成すべき画像光が3つあるのに対し光路シフト素子を2個用い、光路シフト素子のうちの1つは、2つの画像光に共通化している。これら光路シフト素子101、102は、各色画像光の光路シフト量が略等しくなるように調整されるのであるが、2つの色の画像光に共用される光路シフト素子においては、光路シフト量の波長依存性を0にはできないから、この場合、2つの色の画像光に光路シフト量の差が生じてしまう。
【0092】
図3の実施の形態では、第1合成画像光として合成されるのが緑画像光と青画像光であるが、この場合のように、光路シフト素子に入射する第1合成画像光が「隣接する波長帯域の光の合成光」であることが好ましい(請求項6)。従って、別の色の組み合わせとして、赤画像光と緑画像光を第1合成画像光として組合わせ、他の画像光を青画像光とすることも好ましい。
【0093】
前述の如く、光路シフト素子の作用を「可視域全般に対して同等に作用させ」ることは光路シフト量の波長依存性により困難であるが、上記の如く「隣接した波長帯域」間では波長依存性に起因する光路シフト量の差も大きくはなく、スクリーン上における各成分画像のずれを有効に軽減して実用上十分な解像度を得ることができる。
【0094】
一般に、光路シフト素子では「材料の屈折率の波長分散」が波長特性(波長依存性)に大きく影響する。可視域が透明である材料では、波長分散は長波長側で少なく、短波長側で大きくなる特性を有する。このような傾向を考慮すると、3色の画像光の場合には第1合成画像光は「赤画像光と緑画像光の合成光」とすることがより好ましい。
【0095】
以下には、光路シフト素子について説明する。
この発明の画像表示装置に用いることのできる光路シフト素子としては、
(1)光軸光線に対して傾斜した面を有する光学部材を備えたもの
(2)光軸光線に対して傾斜した1軸性光学異方体による光路変化を利用するもの
(3)少なくとも一方が1軸性の光学異方体である2つの媒質からなる光軸光線に対して傾斜した界面を有するもの
を好ましい例として挙げることができる。
【0096】
以下、これらの光路シフト素子を説明する。
図7に示すものは、光軸光線ALに対して傾斜面を有する光学素子2011の傾斜面の傾斜角を変化させて屈折角を制御し、光路シフトを行うものである。この方式の光路シフト素子の光路シフト量は、光学素子2011の「屈折率、傾斜角および厚さ」で決定されるため、これらを単独または他のものと組み合わせて制御することで光路シフト素子の光路シフト量を制御できる(請求項8)。
【0097】
図8(a)に示すものは、水晶やニオブ酸リチウムなどの1軸性光学結晶ないし同様の光学特性を有する1軸性光学異方体からなる光学素子2021からなり、結晶軸または主光軸(光学素子2021内部の「斜め線」)が入射光軸光線ALに斜めに配置された光学素子である。
【0098】
このような光学素子2021に「直線偏光」を入射させた場合、入射光の偏光方向と「主光軸の傾斜方向」が一致している場合(図の上側の光線AL1)には、複屈折効果によって光路シフトを生じ、傾斜方向と偏光方向が直交している場合(図の下側の光線AL2)にはシフトを受けない。
【0099】
このような光学素子2021を能動的に用いるには、従来公知のように、図8の(b)に示すような偏光面を変調可能な素子2031を設け、光学素子2021に入射する偏光の方向を制御する構成が考えられる。「偏光面を変調可能な素子」としては、ツイステッドネマティック型の液晶、ネマティック液晶の複屈折変化を利用した各種方式、水平配向させた強誘電性液晶を用いた方式等「液晶の電気光学効果を用いた方式のもの」を用いることができる。
【0100】
1軸性光学異方体による光路シフト量は、主光軸の傾斜角、屈折率およびその異方性、厚さによって制御されるので、これらを単独または組み合わせて制御することで光路シフト素子の偏向特性を制御することができる(請求項9)。
【0101】
但し、この方式では「光路シフト素子を出射する光の振動方向が偏光変調素子の動作状態に依存して変化してしまう」ため、色合成に偏光ビームスプリッタを用いる場合には問題がある。
【0102】
そこで、この場合には、偏光変調手段2031を用いずに光路シフトを行わせる構成が好ましい。このような構成例の模式断面図を図9に示す。
液晶層213は、基板211、212に挟まれている。液晶層213は「電場などの外場」によって、液晶分子の傾斜角(図中の角:θ)が変化するように構成されている。
【0103】
液晶分子が基板211、212に対して垂直または水平に配向していると、入射光Lの光路は図中の「a」のように変化を受けないが、図のように基板211側から212側へ向って「右上がりに傾斜」していると、液晶分子の複屈折率、傾斜角:θ、厚さ:dで定まるシフトを受け、「b」のようになる。逆に、液晶分子が基板211側から212側へ「右下がりに傾斜」している場合にはシフトの向きが逆になり、図中の「b’」のようになる。
【0104】
この方式では、入射光Lの偏光方向を制御する手段を必要とせず、液晶素子のみで光路シフトを行わせることができ、射出光の偏光状態がシフト状態に依存しないので、図3に示す画像表示装置のように、光路シフト素子を「照明光と投射光の共通光路中に配置する」場合に特に好適である。
【0105】
なかでも「垂直配向させた強誘電性液晶を用いた光路シフト素子」は、光路シフトを高速で行えるので特に好適である(請求項10)。
図10は、「垂直配向させた強誘電性液晶を用いた光路シフト素子」の構成を説明するための図である。(a)に示すように、1対の透明基板3の間に液晶層1が挟持されている。透明基板3の「液晶と接する面」には「液晶を基板に対して垂直に配向させる」ための配向膜2がそれぞれ形成されている。電極4は、透明基板3の基板面に平行な方向に電界を印加する。
【0106】
図10(b)は光路シフト素子の動作を説明する図である。符号1Aは、液晶層1における「模式化されて描かれた液晶分子」を示している。電極4に電圧を印加すると、強誘電性液晶の自発分極(矢印)が(Y軸の+方向)に配向し、液晶分子1Aは図のように基板面に対し傾斜して配向する。印加電界の極性を反転させると、自発分極は逆向き(Y軸の−方向)に再配向し、液晶分子は逆方向に傾斜して配向することになる。
【0107】
このような動作により、図9における傾き角:θの状態として「+θと―θに傾いた2つの状態」を電圧の極性切り替えで実現できる。
【0108】
この方式の光路シフト素子では、先に1軸性光学異方体に即して説明したように、光路シフト量は「主光軸すなわち液晶の傾斜角、屈折率およびその異方性、厚さ」によって制御されるので、これらを単独または組み合わせて制御することで光路シフト素子の光路シフト量を制御できる。また、傾斜角を電界で制御できるので、印加電圧の大きさによっても光路シフト量を制御できる。
【0109】
図11は、「少なくとも一方が1軸性の光学異方体である2つの媒質からなり、光軸光線ALに対して傾斜した界面を有する光路シフト素子(請求項11)」の構成例を示す。
【0110】
図11(a)において、透光性基板11A、12Aの間に、これら基板とは屈折率の異なる媒体30が挟持されており、両者の界面は光軸光線ALに対して傾斜して構成されている。入射光は「界面の傾き角度および両者の屈折率によって定まる角度」だけ屈折され、図のように光路がシフトされる。屈折率の異なる媒体30としては「屈折率異方性を有する液晶」を用いることが好ましい。
【0111】
図11の例においては、媒体30として「ホモジニアス配向した液晶」が用いられている。このような構成により「入射光の偏光方向と液晶30の配向方向の組み合わせ」によって「偏光が受ける実効的な屈折率」を変化させ、シフト量を制御できる。
【0112】
用いる液晶30が「電場等の外場で配向変化を起こす場合」、外場の制御によりシフト量を制御可能である。高速でかつ「大きな屈折率変化」を得るためには、液晶30が基板面に平行な面内で、図11(b)に示すような「液晶分子31の配向変化」をとることが最も好ましい。この例では「コーン角」が90°である強誘電性液晶30を用いることでこのような効果を発現させている。
【0113】
液晶30の両側に透明電極40が形成され、ホモジニアス配向している液晶ダイレクタに直交する方向、即ち「液晶ダイレクタの自発分極方向」に電界が印加される構成となっている。さらに、この構成においては、液晶30の層が光の入射方向に対して傾き角:φをなしている。
【0114】
図11(b)の液晶層の断面図(A−A’断面図)に示されたように、液晶ダイレクタ31は電極4からの電界方向に対応して2方向に配向される。
【0115】
この構成においては、液晶配向を「略直交する方向」に規制することで効率良く光路シフトさせることが可能である。即ち、図11において、入射光の直線偏光面をXZ面になるよう入射光を操作してこの光路シフト素子に入射させたとき、液晶ダイレクタ31がY軸方向を向くように電界を印加すると、入射光は常光として振るまいシフトすることなく透過する。
【0116】
電界印加方向を反転させ液晶ダイレクタ31がZ方向を向くようにすると、直線偏光は異常光として振る舞いシフトされる(請求項12)。
【0117】
液晶ダイレクト31の配向を「互いに直交する方向」に規制するため、両基板11A、12Aの表面に形成される配向膜に対して、液晶配向に対応する方向にラビング処理等の配向処理を行うことが好ましい。
【0118】
図12は「強誘電性液晶を用いた光路シフト素子」の別の構成例を示す。図12において液晶110に接する透明基板111の境界面は、図12(b)に示すように「所定角:ψ(≠0)」だけ傾斜している。
【0119】
液晶110は、図11の場合と同様に「ホモジニアス配向」しており、液晶110と両側の基板111、121との両界面付近に形成された図示されない透明電極により、図11におけると同様の配向制御が行われる。傾斜角:ψを保持した状態で透明基板111、121間のギャップを所望の範囲に収めるため、図12(a)に示すように、境界面の傾斜部を「ある間隔で鋸刃状に形成する」ことが好ましい。このように形成する方法としては、ガラスによる透明基板111をエッチングしたり、透明プラスチック材料を射出成形等により加工して透明基板111とすればよい。
【0120】
この構成の特徴は「入射光に対する出射光が、液晶ダイレクタ110A(図12(b))の制御により回転移動可能」である点にある。また、光路シフト素子と受光部との距離を適切に選ぶことで所望のシフト量を得ることができる。
【0121】
図12の光路シフト素子を2つ、図13のように組合せ、液晶部110から液晶部210までの距離を適切に選ぶことにより、入射光と射出光を平行に保ったまま必要な光路シフト量を得ることができる。これによって光路シフト量を容易に調整でき、利便性に優れたシステムを構成できる。また光路シフト量が一定であれば中間基板を介して1つの素子内に液晶を2層設けても良い。
【0122】
この方式は、偏光変調手段等の「別のスイッチング素子」を必要とせず、簡単な構成で所望の光路シフト量を実現でき、また低電圧で動作可能で、射出偏光の偏光状態がシフト状態に依存しないので、図1の画像表示装置におけるように照明光と投射光の共通光路中に配置するのに好適である。
【0123】
この光路シフト素子においては「界面の傾斜角、媒質の入射光線に対する実質的な屈折率またはこれらの両方」を制御することで、光路シフト素子の光路シフト量を制御できる。また、図13のように複数の光路シフト素子を備えた構成ではさらに、光路シフト素子間の距離または光路シフト素子間の媒質の屈折率、またはこれらの両方を制御することで2つの光路シフト素子の光路シフト量を制御可能である。
【0124】
前述したように、この発明の画像表示装置では、1画像フレームを光路シフト素子のシフトレベル数に応じた複数のサブフレームに分割し、サブフレームの切り替えに応じて光路シフト素子を動作させるとともに、光路シフト素子のシフト位置に対応した画像情報を画像表示素子に表示させる。即ち、光路シフト素子のシフトレベルが2であれば2つのサブフレームに分割する。
【0125】
光路シフト素子の構成によっては、直交する二つの方向にシフトさせることもでき、それぞれの方向に対してnレベルおよびmレベルの光路シフトレベルであれば「m・nのサブフレーム」に分割することで、m・n倍の画素数を実現できる。たとえば、図8〜13に即して説明したような「シフト方向に偏向依存のある光路シフト素子を用いる」場合は、図14に示すように、互いに直交するx、y方向に光路シフトを行わせる2個の光路シフト素子101x、101yを組み合わせるとともに、中間に偏光面を90°回転させる素子、例えば1/2波長板やライトガイドのような素子を設けることにより、所望の光路シフト素子を実現できる。
【0126】
なお、光路シフト素子からの出射光は、色合成手段である偏光ビームスプリッタで反射光として結像手段に導かれる場合にはS偏向に、透過光である場合にはP偏向として偏光ビームスプリッタに入射するように構成する必要があるが、これは、必要に応じて偏光制御用の1/2波長板やライトガイドのような素子を偏光ビームスプリッタを含む光路中に設けたり、図4の構成では偏光面旋回手段203の射出偏光の方向を設定することで実現できる。
【0127】
【実施例】
以下、請求項4記載の画像表示装置に関する具体的な実施例を挙げる。
【0128】
実施例1
図3に示した投写型の画像表示装置と同様のものを以下の如く作成した。
光源として120Wの高圧水銀灯を用い、その反射鏡として口径:60mmの回転放物面反射鏡を用いた。インテグレータのフライアイレンズには「55mm×55mmで6×8個のフライアイレンズ」を用い、フィールドレンズを組み合わせることで反射型の画像表示素子を照明した。
【0129】
照明系のF値は4.0とし、画像表示素子としては「画素数:1024×768、対角長:0.9インチで反射型強誘電性液晶の液晶表示素子(画素ピッチ17.9μm、有効サイズ13.7mm×18.3mm)」を用いた。この液晶表示素子には、入射側のガラス基板に、画素に対応させてマイクロレンズアレイを設けてあり、これによって照明光を各画素に縮小照明する。
【0130】
偏光面旋回手段としては、カラーリンク社製のカラーセレクト(商品名)を用い、偏光ビームスプリッタへの入射光が、赤色成分光と青色成分光はS偏向となり、緑色成分光はP偏向となるよう構成した。ダイクロイックプリズムには赤色成分光反射、青色成分光透過の特性を有するものを用いた。
【0131】
緑用の画像表示素子と偏光ビームスプリッタの間には、光路長調整用にダイクロイックプリズムと同じ光路長のキュービックガラスを設けた。ダイクロイックプリズムと偏光ビームスプリッタの間、ダイクロイックプリズムとキュービックガラスの間には、垂直配向させた強誘電性液晶(コーン角:22.5°、n0(常光線屈折率)=1.61(450nm)、1.60(550nm)、1.59(650nm)、ne(異常光線屈折率)=1.83(450nm)、1.80(550nm)、1.78(650nm))による光路シフト素子を、液晶の傾斜方向が結像光の偏光方向と一致するように設けた。
【0132】
液晶層の厚さは53μmとした。この光路シフト素子は、電圧印加によって±4.5μmの光路シフト量を生ずる。光路シフトの方向は「画像表示素子の短辺方向」とした。各プリズムおよびキュービックガラスの屈折率は1.65とし、サイズは35mm角とした。ダイクロイックプリズムの出射側にはFNo.2.0の結像レンズを投射レンズとして設け、スクリーン位置における投射カラー画像を、CCDカメラを用いて評価した。
【0133】
この実施例において「ケラレ」なしに光路シフトを行わせるための光路シフト素子のサイズは20mm×26mmであり、偏光ビームスプリッタと結像レンズとの間における偏光ビームスプリッタ直後の位置に配置した場合の必要サイズ:26mm×35mmに対し57%の面積であった。
【0134】
光路シフト素子を動作させることで、1024×1536の画素数の表示を行うことができた。光路シフト量は画像表示素子の画素サイズに対して、青、緑、赤の各画像光に対し、それぞれ4.75、4.50、4.40μm相当であり、色による誤差は8%であった。
【0135】
ここに「色による誤差」は、光路シフト量:A<B<Cとするとき、「{(C−A)/B}×100で定義される。
【0136】
実施例2
上記実施例1において、偏光面旋回手段として「波長選択特性の異なるもの」を用い、偏光ビームスプリッタへの入射光が、緑色成分光と青色成分光に対しては偏光ビームスプリッタに対してS偏向、赤色成分光に対してはP偏向となるように構成した。
【0137】
ダイクロイックプリズムとしては青色成分光を反射し、緑色成分光を透過させるものを用いた。赤用の画像表示素子と偏光ビームスプリッタの間には、光路長調整用にダイクロイックプリズムと同じ光路長のキュービックガラスを設けた。
【0138】
光路シフト素子の液晶層の厚さは、緑画像光と青画像光に対して53μm、赤画像光に対して55μmとした。
【0139】
この装置においても実施例1と同様、小型の光路シフト素子が用いることができることを確認できた。光路シフト量は、表示素子の画素サイズに対して青、緑、赤の各画像光に対しそれぞれ4.75、4.50、4.56μm相当であり、色による誤差は実施例1における8%から5%に改善された。
【0140】
実施例3
実施例1において、偏光面旋回手段として「波長選択特性の異なるもの」を用いることで、偏光ビームスプリッタへの入射光が、赤色成分光と緑色成分光に対してはS偏向となるよう、青色成分光に対してはP偏向となるよう構成した。ダイクロイックプリズムには赤色成分光を反射し、緑色成分光を透過させるものを用いた。
【0141】
青用の画像表示素子と偏光ビームスプリッタの間には、光路長調整用にダイクロイックプリズムと同じ光路長のキュービックガラスを設けた。
【0142】
光路シフト素子の液晶層の厚さは、緑画像光と赤画像光に対して53μm、青画像光に対して50μmとした。
【0143】
この装置においても実施例1と同様、小型の光路シフト素子が用いることができることを確認できた。光路シフト量は、画像表示素子の画素サイズに対して青、緑、赤の各画像光に対し、それぞれ4.48、4.50、4.40μm相当であり、色による誤差は2%に改善された。
【0144】
実施例4
図4に示した投写型の画像表示装置と同様の構成のものを作製した。
光源として120Wの高圧水銀灯をランプに用い、反射鏡として口径:60mmの回転放物面反射鏡を用いた。インテグレータのフライアイレンズには「55mm×55mmで6×8個のフライアイレンズ」を用い、フィールドレンズを組み合わせることで反射型の画像表示素子を照明した。
【0145】
照明系のF値は4.0とし、画像表示素子として「画素数:1024×768、対角長:0.9インチの反射型強誘電性液晶の液晶表示素子(画素ピッチ:17.9μm、有効サイズ:13.7mm×18.3mm)」を用いた。
【0146】
この液晶表示素子は、入射側のガラス基板に、画素に対応させてマイクロレンズアレイを設けてあり、これによって照明光を各画素に縮小照明する。偏光面旋回手段201としてカラーリンク社製のカラーセレクトを用い、偏光ビームスプリッタ171への入射光が、赤色成分光と青色成分光はP偏向、緑色成分光はS偏向となるよう構成した。
【0147】
偏光ビームスプリッタ171と172の間に、2色の照明光をそれぞれP偏向、S偏向に変換するためのカラーセレクト202を設けた。偏光ビームスプリッタ172の射出側には、射出光の偏光方向を揃えるためのカラーセレクト203を配した。カラーセレクト203と偏光ビームスプリッタ174の間、および、偏光ビームスプリッタ173と174の間には、垂直配向させた強誘電性液晶(コーン角:22.5°、n0=1.61(450nm)、1.60(550nm)、1.59(650nm)、ne=1.83(450nm)、1.80(550nm)、1.78(650nm))からなる光路シフト素子102を、液晶の傾斜方向が投射光の偏光方向と一致するように設けた。液晶層の厚さは53μmとした。この光路シフト素子は電圧印加によって±4.5μmの光路シフトを生ずる。光路シフトの方向は画像表示素子の短辺方向とした。
【0148】
各偏光ビームスプリッタの屈折率は1.65とし、サイズは35mm角とした。偏光ビームスプリッタ174の射出側にはFNo.2.0の投射レンズを設け、スクリーン位置における投射カラー画像をCCDカメラを用いて評価した。
【0149】
この実施例の構成において、「ケラレ」なしに光路シフトを行わせるための光路シフト素子101、102のサイズは20mm×27mmで、偏光ビームスプリッタ174の射出側の直後に配置した場合の必要サイズ:26mm×35mmの57%の面積であった。
【0150】
光路シフト素子を動作させることで、1024×1536の画素数の表示を行うことができた。光路シフト量は、画像表示素子の画素サイズに対して青、緑、赤の各画像光に対し、それぞれ4.75,4.50,4.40μm相当であり、色による誤差は8%であった。
【0151】
また、スクリーン輝度は実施例1に比して7%向上した。
【0152】
実施例5
実施例4において、偏光ビームスプリッタ171への入射光が、緑色成分光と青色成分光はP偏向、赤色成分光はS偏向となるよう構成した。
光路シフト素子101、102には、実施例2と同じ組み合わせのものを用いた。この実施例装置では、各素子サイズ、輝度に対して実施例4と同等の性能が得られ、色によるシフト誤差は実施例2と同様に5%に改善された。
【0153】
実施例6
実施例4において、偏光ビームスプリッタ171への入射光が、緑と赤に対してはP偏向、青に対してはS偏向となるよう構成した。ダイクロイックプリズムは「赤反射、緑透過の特性を有するもの」を用いた。
光路シフト素子には実施例3と同じ組み合わせのものを用いた。この装置は、素子サイズ、輝度に対しては実施例4と同等の性能が得られ、色によるシフト誤差は実施例3と同様に2%に改善されていた。
【0154】
実施例7
実施例1において、光路シフト素子として図13に即して説明したものを用いた。1対の素子はそれぞれ、傾斜角:1°で100μmピッチの鋸刃構造を片側基板111、212に有し、コーン角が90°である強誘電性液晶をホモジニアス配向させた素子であり、これらを前後に配列して平行シフトを行わせるものとした。
【0155】
用いた液晶は、屈折率:n0=1.61(450nm)、1.60(550nm)、1.59(650nm)、ne=1.83(450nm)、1.80(550nm)、1.78(650nm))のもので、電圧印加の正逆による液晶の2つの配向方向は、偏光ビームスプリッタに対するP偏向とS偏向の振動方向に一致させた。鋸刃構造の「くさびの向き」は、画像表示素子の短辺と一致させた。液晶層の厚さは平均で2μmとした。2個の素子間は(図13における基板121と211を一体化させて)屈折率:1.6のガラスとし、対向する基板の屈折率も1.6とした。
【0156】
この光路シフト素子は、電圧印加によって約9μm(550nm)の光路シフトを生ずる。各プリズムおよびキュービックガラスの屈折率は1.65とし、サイズは35mm角とした。ダイクロイックプリズムの射出側にはFN0.2.0の投射レンズを設け、スクリーン位置における投射カラー画像をCCDカメラを用いて評価した。
【0157】
この実施例構成において、「ケラレ」なしに光路シフトを行わせるための光路シフト素子のサイズは20mm×26mmであり、偏光ビームスプリッタの射出側直後に配置した場合の必要サイズ26mm×35mmに対し57%の面積であった。
【0158】
光路シフト素子を動作させることで、1024×1536の画素数の表示を行うことができた。シフト量は、画像表示素子の画素サイズに対して青、緑、赤の各画像光に対しそれぞれ8.3、8.9、1.0μm相当であり、色による誤差は21%であった。
【0159】
実施例8〜11
上記実施例7において、偏光ビームスプリッタで分離する偏光の組み合わせ及びダイクロイックプリズムの分離特性を変え、光路シフト素子における鋸刃構造の傾斜角、1対の素子間の透明基板厚を種々に変えて装置を作成した結果、光路シフト素子のサイズ、表示カラー画像の輝度に対しては実施例7と同等の性能が得られ、色によるシフト誤差も実用上十分であった。以下、一覧として示す。
【0160】
一覧において「偏光分離」は、偏光ビームスプリッタによる偏光分離特性であり、「S」は、光路シフト素子101側に反射される色成分光、「P」は、光路シフト素子102側へ透過する色成分光、「色分離」は、ダイクロイックプリズムによる色の分離で「透」は透過、「反」は反射を意味する。「傾斜角」は、実施例7において用いた型の光路シフト素子における鋸刃構造の傾斜角(度)、「中間基板厚」は、図13における基板121と211を一体化させた屈折率:1.6のガラス板の厚さ(mm)であり、「a」は光路シフト素子101、「b」は光路シフト素子102である。「シフト誤差」は、前述の「色によるシフト誤差(%)」である。
【0161】
Figure 2004109334
【0162】
実施例12〜16
前記実施例4において、光路シフト素子として上記実施例7〜11と同じものを用い、偏光面旋回手段201、202、203の偏光分離特性を、色成分光の分配に応じて変えることで5種類の装置(実施例12〜16)を作製した。これらの装置においても、光路シフト素子のサイズ、表示されたカラー画像の輝度については実施例7と同等の性能が得られた。
【0163】
また波長域が隣接する色成分光が同じ光路シフト素子で光路シフトされるように分光方法を選択し、光路シフト素子の鋸刃構造の傾斜角および上記中間基板厚を調整し、色によるシフト誤差を改善できた。以下に一覧として示す。
【0164】
「偏光分離」、「S」、「P」、「傾斜角」、「中間基板厚」、「a」、「b」、「シフト誤差」の意味するところは上記実施例8〜11におけると同様である。
【0165】
Figure 2004109334
【0166】
【発明の効果】
以上に説明したように、この発明によれば画像表示方法および画像表示装置を実現できる。この発明の請求項1〜3に記載の画像表示装置は、表示されるべき画像を構成する画像光ごとに光路シフト素子による光路シフトを行い、各光路シフト量を実質的に同一とするので、各画像光の結像相互のずれがない。
【0167】
また、請求項4以下の画像表示装置は、各画像光の結像相互のずれが少なく、光路シフト素子が2個ですむ。
【0168】
従って、これらの画像表示装置を用いて行うこの発明の画像表示方法により、解像度の高い良好な画像を表示することができる。
【図面の簡単な説明】
【図1】画像表示装置の実施の1形態を説明するための図である。
【図2】画像表示装置の実施の別形態を説明するための図である。
【図3】画像表示装置の実施の他の形態を説明するための図である。
【図4】画像表示装置の実施の他の形態を説明するための図である。
【図5】画像表示装置の実施の他の形態を要部のみ示す図である。
【図6】画像表示装置の実施の他の形態を要部のみ示す図である。
【図7】この発明の画像表示装置に使用できる光路シフト素子の1例を説明するための図である。
【図8】この発明の画像表示装置に使用できる光路シフト素子の別例を説明するための図である。
【図9】この発明の画像表示装置に使用できる光路シフト素子の他の例を説明するための図である。
【図10】この発明の画像表示装置に使用できる光路シフト素子の他の例を説明するための図である。
【図11】この発明の画像表示装置に使用できる光路シフト素子の他の例を説明するための図である。
【図12】この発明の画像表示装置に使用できる光路シフト素子の他の例を説明するための図である。
【図13】この発明の画像表示装置に使用できる光路シフト素子の他の例を説明するための図である。
【図14】この発明の画像表示装置に使用できる光路シフト素子の他の例を説明するための図である。
【符号の説明】
11         光源
12、13      フライアイレンズ
19         フィールドレンズ
20         波長選択性偏光面旋回手段(偏光面旋回手段)
17         偏光ビームスプリッタ
18         ダイクロイックプリズム
5R、5G、5B   画像表示素子
101、102    光路シフト素子
7          結像レンズ

Claims (16)

  1. 3つもしくは4つの画像表示素子に画像を表示し、照明手段によりこれら画像表示素子を互いに異なる色の光で照明し、上記各画像表示素子により画像に応じて変調された各色の画像光を合成し、結像手段により結像表示する画像表示装置において、
    各画像表示素子と、これら画像表示素子により画像に応じて変調された各色の画像光を、結像手段により結像させるべき合成画像光とする色合成手段との間に、各画像表示素子に対応して、各画像光の光路を進行方向と直交する所定方向へシフトさせる光路シフト素子を配設し、
    各光路シフト素子の光路シフト量を実質的に等しく設定したことを特徴とする画像表示装置。
  2. 請求項1記載の画像表示装置において、
    各画像表示素子に対応して配設される光路シフト素子の配設位置が、色合成手段への入射位置側であることを特徴とする画像表示装置。
  3. 請求項1記載の画像表示装置において、
    各画像表示素子に対応して配設される光路シフト素子の配置位置が、各画像表示素子に近接した位置であることを特徴とする画像表示装置。
  4. 3つもしくは4つの画像表示素子に画像を表示し、照明手段によりこれら画像表示素子を互いに異なる色の光で照明し、上記各画像表示素子により画像に応じて変調された各色の画像光を合成し、結像手段により結像表示する画像表示装置において、
    2以上の色の画像光を合成して第1合成画像光とする第1色合成手段と、
    この第1色合成手段により合成された上記第1合成画像光と、残りの色の画像光とを合成し、結像手段により結像させるべき第2合成画像光とする第2色合成手段と、
    上記第1合成画像光が第2色合成手段へ入射する第1の入射光路中に配置され、上記第1合成画像光の光路を進行方向と直交する所定方向へシフトさせる第1の光路シフト素子と、
    上記残りの色の画像光が、上記第1合成画像光と合成されるべく上記第2色合成手段へ入射する第2の入射光路中に配置され、上記残りの色の画像光の光路を進行方向と直交する所定方向へシフトさせる第2の光路シフト素子とを有することを特徴とする画像表示装置。
  5. 請求項4記載の画像表示装置において、
    第2の光路シフト素子に入射する残りの色の画像光が、2つの画像光を合成したものであることを特徴とする画像表示装置。
  6. 請求項4または5記載の画像表示装置において、
    2つの画像光が合成されて入射する光路シフト素子への入射光は、互いに波長領域が隣接する画像光の合成光であることを特徴とする画像表示装置。
  7. 請求項4または5または6記載の画像表示装置において、
    第1および第2の光路シフト素子による光路シフト量が、各画像光間で略等しくなるように、上記第1および第2の光路シフト素子の光路シフト量を調整したことを特徴とする画像表示装置。
  8. 請求項1ないし7の任意の1に記載の画像表示装置において、
    光路シフト素子が、画像光の光軸光線に対して傾斜した面を有する光学部材を備えた光学素子であり、この光学素子の、材質の屈折率、もしくは上記傾斜した面の傾斜角、もしくは上記光学素子の厚さ、またはこれらの組み合わせを制御することにより光路シフト量を制御可能としたものであることを特徴とする画像表示装置。
  9. 請求項1ないし7の任意の1に記載の画像表示装置において、
    光路シフト素子が、画像光の光軸光線に対して傾斜した1軸性光学異方体による光路変化を利用したものであり、上記1軸性光学異方体の、傾斜角、または屈折率、または厚さ、またはこれらの組み合わせを制御することにより光路シフト量を制御可能としたものであることを特徴とする画像表示装置。
  10. 請求項9記載の画像表示装置において、
    1軸性光学異方体が、印加電圧によって配向の変化する液晶材料で、印加電圧の制御により実質的な屈折率を制御するものであることを特徴とする画像表示装置。
  11. 請求項1ないし7の任意の1に記載の画像表示装置において、
    光路シフト素子が、少なくとも一方が1軸性光学異方体である少なくとも2つの材料によって形成され、画像光の光軸光線に対して傾斜した界面を有し、該界面の傾斜角、媒質の入射光線に対する実質的な屈折率、またはこれら双方を制御することで、光路シフト量を制御可能としたものであることを特徴とする画像表示装置。
  12. 請求項11記載の画像表示装置において、
    1軸性光学異方体が、印加電圧によって配向の変化する液晶材料で、印加電圧の制御により実質的な屈折率を制御するものであることを特徴とする画像表示装置。
  13. 請求項11または12記載の画像表示装置において、
    光路シフト素子が、少なくとも一方が1軸性光学異方体である2つの媒質の、画像光の光軸光線に対して傾斜した界面を有する複数のシフト素子から構成され、これらシフト素子間の距離またはシフト素子の媒質の屈折率、またはこれら双方を制御することにより光路シフト素子の光路シフト量を制御可能としたものであることを特徴とする画像表示装置。
  14. 請求項4ないし7の任意の1に記載の画像表示装置において、
    第1色合成手段がダイクロイックプリズムで、第2色合成手段が偏光ビームスプリッタであることを特徴とする画像表示装置。
  15. 請求項4ないし7の任意の1に記載の画像表示装置において、
    第1および第2色合成手段が偏光ビームスプリッタであることを特徴とする画像表示装置。
  16. 3つもしくは4つの画像表示素子に画像を表示し、照明手段によりこれら画像表示素子を互いに異なる色の光で照明し、上記各画像表示素子により画像に応じて変調された各色の画像光を合成し、結像手段により結像表示する画像表示方法であって、
    請求項1ないし15の任意の1に記載の画像表示装置を用い、
    1画像フレームを複数のサブフレームに分割し、サブフレームの切り替えに応じて光路シフト素子による光路シフトを行い、画像が表示される位置をサブフレームごとに制御することにより、画像表示素子の画素数より大きい表示画素数を得ることを特徴とする画像表示方法。
JP2002270042A 2002-09-17 2002-09-17 画像表示方法および画像表示装置 Pending JP2004109334A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002270042A JP2004109334A (ja) 2002-09-17 2002-09-17 画像表示方法および画像表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002270042A JP2004109334A (ja) 2002-09-17 2002-09-17 画像表示方法および画像表示装置

Publications (1)

Publication Number Publication Date
JP2004109334A true JP2004109334A (ja) 2004-04-08

Family

ID=32267798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002270042A Pending JP2004109334A (ja) 2002-09-17 2002-09-17 画像表示方法および画像表示装置

Country Status (1)

Country Link
JP (1) JP2004109334A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292725A (ja) * 2007-05-24 2008-12-04 Sanyo Electric Co Ltd 照明装置および投写型映像表示装置
US20220043268A1 (en) * 2020-08-05 2022-02-10 Samsung Display Co., Ltd. Display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292725A (ja) * 2007-05-24 2008-12-04 Sanyo Electric Co Ltd 照明装置および投写型映像表示装置
US20220043268A1 (en) * 2020-08-05 2022-02-10 Samsung Display Co., Ltd. Display device
US11630313B2 (en) * 2020-08-05 2023-04-18 Samsung Display Co., Ltd. Display device

Similar Documents

Publication Publication Date Title
US7042535B2 (en) Optical display system and optical shifter
US7202917B2 (en) Projection type image display device
JP2007121893A (ja) 偏光スイッチング液晶素子、およびこれを備える画像表示装置
JPH1115074A (ja) 投影型画像表示装置
US9075300B2 (en) Projector
JP3784279B2 (ja) 投影型画像表示装置
US7106389B2 (en) Optical shifter and projection type optical display system
JP2004078159A (ja) 投写型表示装置
JP2002311408A (ja) 多重反射型空間光を使用する高分解能画像を印刷する方法及び装置
KR100785559B1 (ko) 프로젝터
US20110222022A1 (en) Image display device
JP2003207747A (ja) 画像表示用光学ユニット、画像表示装置及び画像表示方法
US6817718B2 (en) Projection type optical display system
JP3890926B2 (ja) 投射型液晶表示装置
JPH10186544A (ja) 投射型カラー液晶表示装置
JP2002139792A (ja) 画像表示装置
JP2004109334A (ja) 画像表示方法および画像表示装置
JP2003005132A (ja) 画像投射装置
JPH10221673A (ja) 投射型カラー画像表示装置
JP4913291B2 (ja) 表示装置および画像投射装置
JP2004004502A (ja) 光学装置および表示装置
JP2006065334A (ja) 投影型画像表示装置
JP2795618B2 (ja) 投射型表示装置
JP4141813B2 (ja) 投射型表示装置
JP2003121793A (ja) 投影型画像表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080513