JP2004095734A - Substrate for mounting electronic component - Google Patents

Substrate for mounting electronic component Download PDF

Info

Publication number
JP2004095734A
JP2004095734A JP2002253000A JP2002253000A JP2004095734A JP 2004095734 A JP2004095734 A JP 2004095734A JP 2002253000 A JP2002253000 A JP 2002253000A JP 2002253000 A JP2002253000 A JP 2002253000A JP 2004095734 A JP2004095734 A JP 2004095734A
Authority
JP
Japan
Prior art keywords
conductor
conductor layer
layer
land
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002253000A
Other languages
Japanese (ja)
Other versions
JP3935030B2 (en
Inventor
Ryuichi Imura
井村 隆一
Naotaka Ota
太田 尚孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002253000A priority Critical patent/JP3935030B2/en
Publication of JP2004095734A publication Critical patent/JP2004095734A/en
Application granted granted Critical
Publication of JP3935030B2 publication Critical patent/JP3935030B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve mechanical strength surrounding through conductors and to secure insulation between a laminated capacitor and a land. <P>SOLUTION: The substrate is provided with a first through conductor 10a formed from a wire conductor 5 to an electrode pad 11 through the laminated capacitor 7 inside a base body 1, and a second through conductor 10b for connecting the inner layer power source conductor layers with each other or inner layer ground conductor layers with each other of the laminated capacitor part 7. The first and the second through conductors 10a and 10b are provided with a land 12 consisting of a conductor layer independent from the inner layer power source conductor layers or the inner layer ground conductor layers, by a conductor non-forming part 13 coaxially surrounding a site of passing through the inner layer power source conductor layers or the inner layer ground conductor layers or connected to them; and an auxiliary conductor layer 14 opposing the land 12 and the conductor non-forming part 13 at a site of passing through adjacent inner layer power source conductor layers, or inner layer ground conductor layers or connected to them. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、積層コンデンサ部を内部に有する電子部品搭載用基板に関する。
【0002】
【従来の技術】
従来、積層コンデンサ部を内部に有する電子部品搭載用基板は、図5〜図7に示すように、絶縁基板の上面にIC,LSI等の電子部品42を搭載するための搭載領域43、電子部品42を半田44等により接続するための電極から成る搭載部46、および搭載部46より引き出された配線導体45が形成された基体41と、基体41の内部に形成された積層コンデンサ部47とから主に構成されている。
【0003】
積層コンデンサ部47は、内層電源導体層および内層接地導体層としての内層導体層49が絶縁層48を介して対向して積層されて成り、また積層コンデンサ部47を貫通する複数の貫通導体が形成されている。
【0004】
複数の貫通導体のうち、第一の貫通導体50aは、一端が配線導体45に接続され、他端が電極パッド51に接続されている。また、第二の貫通導体50bは、積層コンデンサ部47の内層電源導体層と内層接地導体層とを電気的に接続している。そして、貫通導体は、内層電源導体層または内層接地導体層を貫通する部位に、その部位を同心状に取り囲む導体非形成部53によって形成されたランド52が設けられている。
【0005】
なお、図6は、第二の貫通導体50bに設けられたランド52を示すものである。
【0006】
ランド52は、積層コンデンサ部47を形成する際に貫通導体の積層ずれ等による導通不良を防ぐためのものである。ランド52は図7に示すように、貫通導体の周りに円環状に形成されており、貫通導体に接続されて一体化している。ランド52の周囲には貫通導体を同心状に取り囲む導体非形成部53が形成されており、その周りは内層導体層49により囲まれている。
【0007】
各ランド52は直径が同じとされており、また、各ランド52の周りに設けられた導体非形成部53の幅Xも同じになっている。
【0008】
このような電子部品搭載用基板41では、積層コンデンサ部47において、絶縁層48を介して対向する内層導体層49間に電気的な容量成分が発生する。そして、電子部品42の電源電極と接地電極との間に積層コンデンサ部47で生じる容量成分が接続されるように電子部品42の各電極と配線導体45とを接続すると、電子部品42を電源電圧の変動に起因する電源ノイズから保護できる。すなわち、積層コンデンサ部47はデカップリングコンデンサとして機能する。
【0009】
近年、電子部品42は高性能化に伴って消費電力が大きくなってきている。このため、上記のような電子部品搭載用基板41に対して、積層コンデンサ部47の大容量化が要望されている。積層コンデンサ部47を大容量化するための構成としては、絶縁層48を薄くして多層化する構成が考えられる。
【0010】
【発明が解決しようとする課題】
しかしながら、上記従来の電子部品搭載用基板41において、積層コンデンサ部47を大容量化するために、絶縁層48をより薄くしようとすると、絶縁層48を形成するためのセラミックグリーンシートを薄くする必要があるため、セラミックグリーンシートが塑性変形しにくくなる。その結果、セラミックグリーンシートを積層して圧着する際に、セラミックグリーンシートに印刷した各導体層となる導電性ペースト層がセラミックグリーンシート中に十分に埋設しにくくなる。すると、セラミックグリーンシートに導電性ペースト層とそれが存在しない部位との間に段差が生じる。例えば、貫通導体のランド52の周囲の導体非形成部53の部分では、密着に必要な十分な圧力を加えることができず、セラミックグリーンシート同士が密着しにくくなり、セラミックグリーンシート積層体の焼成体において絶縁層48間に隙間が形成され易くなるという問題点があった。
【0011】
このような隙間が形成された積層コンデンサ部47は、貫通導体周囲の機械的強度が不十分であり、また、電流リークにより絶縁不良を生じ易い。さらに、露出する配線導体45をメッキ処理する際に、処理液が上記隙間に入りこむ恐れもある。隙間に入り込んだメッキ液は、ランド52や内層導体層49を腐食し、これらの間の絶縁性を低下させる原因となる。
【0012】
また、積層コンデンサ部47を多層化すると、絶縁層48間の隙間により絶縁層48間の十分な接合強度を得るのが困難となるので、絶縁層48と内層導体層49の間で剥離しやすくなるという問題点もあった。
【0013】
従って、本発明は上記従来の問題点に鑑み完成されたものであり、その目的は、積層コンデンサ部7を内部に有する電子部品搭載用基板において、貫通導体周囲の機械的強度を高めることができ、また積層コンデンサ部のランドと導体層間の絶縁性を確保できる電子部品搭載用基板を提供することである。
【0014】
【課題を解決するための手段】
本発明の電子部品搭載用基板は、複数の絶縁層が積層されて成る絶縁基板の上面に電子部品を搭載するための電極から成る搭載部および前記電極から引き出された配線導体が形成されているとともに前記絶縁基板の下面に電極パッドが形成されている基体と、該基体の内部に形成された内層電源導体層および内層接地導体層が前記絶縁層を介して対向するようにして交互に積層されて成る積層コンデンサ部と、前記積層コンデンサ部を貫通して前記配線導体から前記電極パッドにかけて形成された第一の貫通導体と、前記積層コンデンサ部の前記内層電源導体層同士または前記内層接地導体層同士を電気的に接続する第二の貫通導体とを具備しており、前記第一および第二の貫通導体は、前記内層電源導体層または前記内層接地導体層を貫通するかまたはそれらに接続する部位に、該部位を同心状に取り囲む導体非形成部によって前記内層電源導体層または前記内層接地導体層から独立した導体層から成るランドが設けられているとともに、隣接する前記内層接地導体層または前記内層電源導体層を貫通するかまたはそれらに接続する部位に、前記ランドおよび前記導体非形成部に対向する補助導体層が設けられていることを特徴とする。
【0015】
本発明の半導体素子搭載用基板は、第一および第二の貫通導体は、内層電源導体層または内層接地導体層を貫通するかまたはそれらに接続する部位に、その部位を同心状に取り囲む導体非形成部によって内層電源導体層または内層接地導体層から独立した導体層から成るランドが設けられているとともに、隣接する内層接地導体層または内層電源導体層を貫通するかまたはそれらに接続する部位に、ランドおよび導体非形成部に対向する補助導体層が設けられていることから、絶縁層となるセラミックグリーンシートを積層して圧着する際に、補助導体層が形成されている部位は局部的にセラミックグリーンシートの圧着力が高まるため、補助導体層に対向するランドの周囲の導体非形成部の部分に生じている段差を埋めることができる。その結果、セラミックグリーンシート同士の密着性が向上し、セラミックグリーンシート積層体の焼成体に絶縁層間の隙間が形成されるのを有効に防止することができる。従って、貫通導体周囲の機械的強度を高めることができ、また積層コンデンサ部のランドと内層接地導体層または内層電源導体層との間の絶縁性を確保できる。
【0016】
【発明の実施の形態】
本発明の電子部品搭載用基板について以下に詳細に説明する。図1,図2は本発明の実施の形態の一例を示す断面図および要部拡大断面図であり、これらの図において、1は基体、2は電子部品、3は搭載部、4は半田、5は配線導体、6は搭載領域である。
【0017】
本発明の電子部品搭載用基板は、複数の絶縁層が積層されて成る絶縁基板の上面に電子部品2を搭載するための電極から成る搭載部3および電極から引き出された配線導体5が形成されているとともに絶縁基板の下面に電極パッド11が形成されている基体1と、基体1の内部に形成された内層電源導体層および内層接地導体層が絶縁層8を介して対向するようにして交互に積層されて成る積層コンデンサ部7と、積層コンデンサ部7を貫通して配線導体5から電極パッド11にかけて形成された第一の貫通導体10と、積層コンデンサ部7の内層電源導体層同士または内層接地導体層同士を電気的に接続する第二の貫通導体10bとを具備し、第一および第二の貫通導体10a,10bは、内層電源導体層または内層接地導体層を貫通するかまたはそれらに接続する部位に、その部位を同心状に取り囲む導体非形成部13によって内層電源導体層または内層接地導体層から独立した導体層から成るランド12が設けられているとともに、隣接する内層接地導体層または内層電源導体層を貫通するかまたはそれらに接続する部位に、ランド12および導体非形成部13に対向する補助導体層14が設けられている構成である。
【0018】
本発明の基体1は、酸化アルミニウム質焼結体(酸化アルミニウムセラミックス),窒化アルミニウム質焼結体,ムライト質焼結体,炭化珪素質焼結体,窒化珪素質焼結体,ガラスセラミックス等の電気絶縁材料から成る略四角平板状の絶縁層を積層した絶縁基板から成る。
【0019】
基体1が酸化アルミニウム質焼結体から成る場合、以下のようにして作製される。酸化アルミニウム,酸化珪素,酸化マグネシウム,酸化カルシウム等のセラミック原料粉末に適当な有機バインダ,溶剤,可塑剤,分散剤を添加混合して泥漿状となし、これを従来周知のドクタブレード法でシート状に成形することにより、複数枚のセラミックグリーンシートを得る。次に、これらのセラミックグリーンシートに適当な打ち抜き加工,積層加工,切断加工を施すことにより、基体1となるセラミックグリーンシート成形体を得る。しかる後、このセラミックグリーンシート成形体を約1600℃の温度で焼成することにより製作される。
【0020】
基体1は、その上面に配線導体5が多数設けられており、それらの一端が電極から成る搭載部3となっており、他端が積層コンデンサ部7を貫通する第一の貫通導体10aに接続されている。この配線導体5は、タングステンやモリブデン,銅,銀等の金属のメタライズ層から成り、タングステン等の金属粉末に適当な有機バインダ,溶剤,可塑剤,分散剤等を添加混合して得た金属ペーストを、従来周知のスクリーン印刷法で基体1となるセラミックグリーンシートに所定のパターンに印刷塗布し、これを基体1となるセラミックグリーンシート成形体とともに焼成することによって、基体1の上面に所定のパターンで形成される。この配線導体5は、基体1の内部や下面にも形成されていてもよい。
【0021】
そして、配線導体5の露出表面には、配線導体5が酸化腐食するのを防止するとともに配線導体5と半田4等の接合を良好なものとするために、厚みが1〜10μm程度のニッケルめっき層と厚みが0.1〜3μm程度の金めっき層とが順次被着されている。
【0022】
また、基体1の内部には、内層電源導体層または内層接地導体層としての内層導体層9が絶縁層8を介して交互に配置された積層コンデンサ部7が形成されており、この積層コンデンサ7の複数の絶縁層8と複数の内層導体層9とを積層方向に貫通する複数の貫通導体を備えている。
【0023】
内層導体層9は配線導体5と同様の材料から成り、その厚さは1〜5μmに設定されている。また、絶縁層8は、基体1が例えば酸化アルミニウム質焼結体から成る場合、厚さは20〜30μm程度である。このように絶縁層8を薄型化して、絶縁層8を介して内層導体層9を交互に配置することにより、積層コンデンサ部7を大容量化している。そして、電子部品2の電源電極と接地電極との間に積層コンデンサ部7で生じる容量成分が接続されるように、電子部品2の各電極とその各電極に対応する各内層導体層9に接続されている各配線導体5を接続すると、電子部品2を電源電圧の変動に起因する電源ノイズから保護することができる。すなわち、積層コンデンサ部7はデカップリングコンデンサとして機能する。
【0024】
また、第一の貫通導体10aは、積層コンデンサ部7を貫通して、上端が配線導体5に電気的に接続され、下端が基体1の下面に形成された外部接続用の電極パッド11に接続されている。第一の貫通導体10aは2つあり、積層コンデンサ部7で生じる容量成分の入力部と出力部に相当する各内層導体層9に接続されている。第二の貫通導体10bは、積層コンデンサ部7の内層電源導体層同士または内層接地導体層同士を電気的に接続して、それらの電位を強化するものであり、2つ以上設けることができる。
【0025】
これらの貫通導体は、円柱状のものであり、打ち抜き加工によって各セラミックグリーンシートに貫通孔を形成し、この貫通孔に導電ペーストを充填することによって形成される。この導電ペーストは配線導体5および内層導体層9と同様の高融点金属から成る。
【0026】
また、貫通導体は、図2に示すように、内層導体層9を貫通するか接続する部位に内層導体層9と同じ面に延びる、内層導体層9から独立した導体層から成るランド12を有している。このランド12は、図7に示したように、貫通導体に同軸状に形成された円環状であり、配線導体5および内層導体層9と同様の高融点金属から成る。そして、ランド12の周囲には、幅X(0.01〜0.5mm程度)の導体非形成部13が形成されており、その周囲は内層導体層9により囲まれている。
ランド12は貫通導体に一体化して接続されている。
【0027】
さらに、第一の貫通導体10aが接続される、基体1の下面に形成された電極パッド11は、その表面にニッケルや金等の耐食性および導電性の良好なメッキ層が形成されている。このメッキ層は、電極パッド11が腐食するのを防止するとともに、電極パッド11と外部電気回路基板の電極等との接続強度を高めるためのものであり、メッキ層の厚みは1〜20μm程度である。
【0028】
そして、本発明の電子部品用基板は、ランド12が形成された内層導体層9に隣接する内層導体層9を貫通導体が貫通するかまたはそれらに接続する部位に、ランド12および導体非形成部13に対向する補助導体層14が設けられている。これにより、絶縁層8となるセラミックグリーンシートを積層して圧着する際に、補助導体層14が形成されている部位は局部的にセラミックグリーンシートの圧着力が高まるため、補助導体層14に対向するランド12の周囲の導体非形成部13の部分に生じている段差を埋めることができる。その結果、セラミックグリーンシート同士の密着性が向上し、セラミックグリーンシート積層体の焼成体に絶縁層8間の隙間が形成されるのを有効に防止することができる。従って、貫通導体周囲の機械的強度を高めることができ、また積層コンデンサ部7のランド12と内層導体層9との間の絶縁性を確保できる。
【0029】
補助導体層14は略円形のものであり、その直径はランド12および導体非形成部13を合わせた径よりも0.01〜0.5mm程度大きいことが好ましい。この場合、セラミックグリーンシート同士の積層ずれが発生したとしても、導体非形成部13の段差を補助導体層14の厚み分で埋められるため、密着に必要な圧力を加えることができ良好な密着性を付与することができる。この場合、0.01mm未満であると、セラミックグリーンシートの積層ずれにより補助導体層14の厚み分で導体非形成部13の段差を埋められなくなり密着に必要な圧力を加えられずに密着性が低下する傾向にある。他方0.5mmを超えると、導体非形成部13以外の内層導体層9と補助導体層14との重なり部分が大きくなり、密着のための圧力を加えるとセラミックグリーンシートが変形してしまい、セラミックグリーンシート間に隙間が発生して密着性が低下する傾向にある。
【0030】
補助導体層14の厚みは2〜15μmが好ましい。2μm未満では、導体非形成部13の段差を補助導体層14の厚み分で埋めて密着に必要な圧力を加えることが困難になる。15μmを超えると、密着に必要な圧力は十分に得られるが、補助導体層14の周囲に段差が形成され易くなる。
【0031】
さらに、図3,図4は、本発明の実施の形態の他の例を示す断面図,要部拡大断面図であり、ランド32の構成以外は図1,図2に示した構成の電子部品搭載用基板と同様である。この場合、ランド32と絶縁層8を挟んで積層方向に隣り合う内層導体層9の少なくとも一つには、貫通導体の中心軸を中心として導体非形成部13の幅より好ましい0.01〜0.5mm大きい幅を有する円環状の補助導体層34が導体非形成部13に対向するように形成されている。このため、セラミックグリーンシートを積層して圧着する際に、内層導体層9の表面に形成された補助導体層34の厚み分が貫通導体のランド12周囲の導体非形成部13の部分に生じている段差を埋めることができるように、密着に必要な圧力を加えることができる。その結果、セラミックグリーンシート同士の密着性を向上させ、セラミックグリーンシート積層体の焼成体において、絶縁層8間に隙間が形成されるのを有効に防止することができる。
【0032】
なお、補助導体層34の幅の大きさは導体非形成部13の幅より0.01〜0.5mm大きいことが好ましい。この場合、セラミックグリーンシート同士に積層ずれが発生しても、良好な密着性を付与することができる。0.01mm未満であると、積層ずれにより密着性が低下する傾向にあり、他方0.5mmを超えると、導体非形成部13周囲の内層導体層9と補助導体層34との重なり部分が大きくなり、密着のための圧力を加えるとセラミックグリーンシートが変形してしまい、セラミックグリーンシート間に隙間が発生して密着性が低下する傾向にある。
【0033】
かくして、本発明の電子部品搭載用基板によれば、電子部品2が半田4を介して搭載部6に固定され、電子部品2の各電極と配線導体5の電極とが半田4により接続される。これにより、電子部品2の電源電極および接地電極がそれぞれ内層導体層9に接続されている配線導体5に接続されることとなる。そして、電子部品2は例えば樹脂で覆われて封止された後、電極パッド11を外部電気回路基板上の電極等に半田等の導電性接合材にて固定される。
【0034】
なお、本発明は上記実施の形態に限定されず、本発明の要旨を逸脱しない範囲内で種々の変更を施すことは何等差し支えない。
【0035】
【発明の効果】
本発明の電子部品搭載用基板は、複数の絶縁層が積層されて成る絶縁基板の上面に電子部品を搭載するための電極から成る搭載部および電極から引き出された配線導体が形成されているとともに絶縁基板の下面に電極パッドが形成されている基体と、基体の内部に形成された内層電源導体層および内層接地導体層が絶縁層を介して対向するようにして交互に積層されて成る積層コンデンサ部と、積層コンデンサ部を貫通して配線導体から電極パッドにかけて形成された第一の貫通導体と、積層コンデンサ部の内層電源導体層同士または内層接地導体層同士を電気的に接続する第二の貫通導体とを具備し、第一および第二の貫通導体は、内層電源導体層または内層接地導体層を貫通するかまたはそれらに接続する部位に、その部位を同心状に取り囲む導体非形成部によって内層電源導体層または内層接地導体層から独立した導体層から成るランドが設けられているとともに、隣接する内層接地導体層または内層電源導体層を貫通するかまたはそれらに接続する部位に、ランドおよび導体非形成部に対向する補助導体層が設けられていることにより、絶縁層となるセラミックグリーンシートを積層して圧着する際に、補助導体層が形成されている部位は局部的にセラミックグリーンシートの圧着力が高まるため、補助導体層に対向するランドの周囲の導体非形成部の部分に生じている段差を埋めることができる。その結果、セラミックグリーンシート同士の密着性が向上し、セラミックグリーンシート積層体の焼成体に絶縁層間の隙間が形成されるのを有効に防止することができる。従って、貫通導体周囲の機械的強度を高めることができ、また積層コンデンサ部のランドと内層接地導体層または内層電源導体層との間の絶縁性を確保できる。
【図面の簡単な説明】
【図1】本発明の電子部品搭載用基板について実施の形態の一例を示す断面図である。
【図2】図1の電子部品搭載用基板の要部拡大断面図である。
【図3】本発明の電子部品搭載用基板について実施の形態の他の例を示す断面図である。
【図4】図3の電子部品搭載用基板の要部拡大断面図である。
【図5】従来の電子部品搭載用基板の一例を示す断面図である。
【図6】図5の電子部品搭載用基板の要部拡大断面図である。
【図7】電子部品搭載用基板の貫通導体に設けられたランドの部分を示す部分平面図である。
【符号の説明】
1:基体
2:電子部品
3:搭載部
4:半田
5:配線導体
7:積層コンデンサ部
8:絶縁層
9:内層導体層
10a:第一の貫通導体
10b:第二の貫通導体
11:電極パッド
12:ランド
13:導体非形成部
14:補助導体層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electronic component mounting board having a multilayer capacitor part therein.
[0002]
[Prior art]
Conventionally, as shown in FIGS. 5 to 7, a mounting area 43 for mounting an electronic component 42 such as an IC or an LSI on an upper surface of an insulating substrate includes an electronic component mounting substrate having a multilayer capacitor portion therein. A mounting portion 46 composed of electrodes for connecting 42 with solder 44 and the like, a base 41 on which a wiring conductor 45 drawn from the mounting portion 46 is formed, and a multilayer capacitor portion 47 formed inside the base 41 It is mainly composed.
[0003]
The multilayer capacitor unit 47 is formed by laminating an inner power conductor layer and an inner conductor layer 49 as an inner ground conductor layer facing each other with an insulating layer 48 interposed therebetween, and a plurality of through conductors penetrating the multilayer capacitor unit 47 are formed. Have been.
[0004]
Among the plurality of through conductors, the first through conductor 50 a has one end connected to the wiring conductor 45 and the other end connected to the electrode pad 51. In addition, the second through conductor 50b electrically connects the inner power supply conductor layer and the inner ground conductor layer of the multilayer capacitor unit 47. The through conductor has a land 52 formed by a conductor non-forming portion 53 concentrically surrounding the portion at a portion penetrating the inner power supply conductor layer or the inner ground conductor layer.
[0005]
FIG. 6 shows a land 52 provided on the second through conductor 50b.
[0006]
The lands 52 are used to prevent poor conduction due to misalignment of the through conductors when the multilayer capacitor portion 47 is formed. As shown in FIG. 7, the land 52 is formed in an annular shape around the through conductor, and is connected to and integrated with the through conductor. A conductor non-forming portion 53 surrounding the through conductor concentrically is formed around the land 52, and the periphery thereof is surrounded by the inner conductor layer 49.
[0007]
Each land 52 has the same diameter, and the width X of the conductor non-forming portion 53 provided around each land 52 is also the same.
[0008]
In such an electronic component mounting board 41, an electric capacitance component is generated between the inner conductor layers 49 facing each other via the insulating layer 48 in the multilayer capacitor portion 47. When each electrode of the electronic component 42 and the wiring conductor 45 are connected such that a capacitance component generated in the multilayer capacitor portion 47 is connected between the power supply electrode and the ground electrode of the electronic component 42, the electronic component 42 is connected to the power supply voltage. Can be protected from power supply noise caused by fluctuations in the power supply. That is, the multilayer capacitor unit 47 functions as a decoupling capacitor.
[0009]
In recent years, the power consumption of the electronic component 42 has been increasing with the improvement in performance. Therefore, there is a demand for the multilayer capacitor unit 47 to have a large capacity in the electronic component mounting board 41 as described above. As a configuration for increasing the capacity of the multilayer capacitor unit 47, a configuration in which the insulating layer 48 is thinned to form a multilayer structure is considered.
[0010]
[Problems to be solved by the invention]
However, in the conventional electronic component mounting board 41, if the insulating layer 48 is to be made thinner in order to increase the capacity of the multilayer capacitor part 47, it is necessary to make the ceramic green sheet for forming the insulating layer 48 thinner. Therefore, the ceramic green sheet is less likely to be plastically deformed. As a result, when the ceramic green sheets are stacked and pressed, it is difficult for the conductive paste layers to be the conductor layers printed on the ceramic green sheets to be sufficiently embedded in the ceramic green sheets. Then, a step is generated between the conductive paste layer and a portion where the conductive paste layer does not exist in the ceramic green sheet. For example, in a portion of the conductor non-forming portion 53 around the land 52 of the through conductor, a sufficient pressure necessary for close contact cannot be applied, and the ceramic green sheets are hardly adhered to each other. There is a problem that a gap is easily formed between the insulating layers 48 in the body.
[0011]
The multilayer capacitor portion 47 in which such a gap is formed has insufficient mechanical strength around the through conductor, and tends to cause insulation failure due to current leakage. Further, when the exposed wiring conductor 45 is plated, the processing liquid may enter the gap. The plating solution that has entered the gap corrodes the lands 52 and the inner conductor layer 49 and causes a reduction in insulation between them.
[0012]
Further, when the multilayer capacitor portion 47 is formed into a multilayer structure, it is difficult to obtain a sufficient bonding strength between the insulating layers 48 due to gaps between the insulating layers 48, and therefore, it is easy to peel off between the insulating layer 48 and the inner conductor layer 49. There was also a problem of becoming.
[0013]
Therefore, the present invention has been completed in view of the above-mentioned conventional problems, and an object of the present invention is to increase the mechanical strength around a through conductor in an electronic component mounting board having a multilayer capacitor portion 7 therein. Another object of the present invention is to provide an electronic component mounting board capable of securing insulation between a land of a multilayer capacitor portion and a conductor layer.
[0014]
[Means for Solving the Problems]
In the electronic component mounting board of the present invention, a mounting portion including an electrode for mounting an electronic component and a wiring conductor extracted from the electrode are formed on an upper surface of an insulating substrate formed by stacking a plurality of insulating layers. A base having electrode pads formed on the lower surface of the insulating substrate, and an inner power supply conductor layer and an inner ground conductor layer formed inside the base are alternately stacked so as to face each other with the insulating layer interposed therebetween. A multilayer capacitor portion, a first through conductor formed from the wiring conductor to the electrode pad through the multilayer capacitor portion, and the inner power conductor layers of the multilayer capacitor portion or the inner ground conductor layer. And a second through conductor electrically connecting the first through conductor and the second through conductor, wherein the first and second through conductors penetrate the inner power conductor layer or the inner ground conductor layer. Or a portion connected to them is provided with a land made of a conductor layer independent of the inner power supply conductor layer or the inner ground conductor layer by a conductor non-forming portion concentrically surrounding the portion, and is adjacent to the land. An auxiliary conductor layer facing the land and the non-conductor-formed portion is provided at a portion that penetrates or connects to the inner ground conductor layer or the inner power supply conductor layer.
[0015]
In the substrate for mounting a semiconductor element of the present invention, the first and second penetrating conductors may be provided at a portion penetrating or connecting to the inner power conductor layer or the inner ground conductor layer, and a conductor non-concentrically surrounding the portion. A land made of a conductor layer independent of the inner power conductor layer or the inner ground conductor layer is provided by the forming portion, and a portion penetrating or connecting to the adjacent inner ground conductor layer or the inner power conductor layer, Since the auxiliary conductor layer facing the land and the non-conductor-formed portion is provided, when the ceramic green sheets serving as the insulating layers are laminated and crimped, the portion where the auxiliary conductor layer is formed is locally ceramic. Since the pressing force of the green sheet is increased, it is possible to fill a step generated in a portion of the conductor non-formed portion around the land facing the auxiliary conductor layer. As a result, the adhesion between the ceramic green sheets is improved, and formation of a gap between the insulating layers in the fired body of the ceramic green sheet laminate can be effectively prevented. Therefore, the mechanical strength around the through conductor can be increased, and the insulation between the land of the multilayer capacitor portion and the inner ground conductor layer or the inner power supply conductor layer can be ensured.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The electronic component mounting board of the present invention will be described in detail below. 1 and 2 are a cross-sectional view and an enlarged cross-sectional view of a main part of an embodiment of the present invention. In these figures, 1 is a base, 2 is an electronic component, 3 is a mounting part, 4 is a solder, 5 is a wiring conductor, 6 is a mounting area.
[0017]
In the electronic component mounting board of the present invention, a mounting portion 3 including electrodes for mounting the electronic component 2 and a wiring conductor 5 drawn out from the electrodes are formed on the upper surface of an insulating substrate formed by laminating a plurality of insulating layers. And a base 1 having an electrode pad 11 formed on the lower surface of the insulating substrate, and an inner power supply conductor layer and an inner ground conductor layer formed inside the base 1 alternately facing each other with an insulating layer 8 interposed therebetween. , A first through conductor 10 penetrating through the multilayer capacitor portion 7 and extending from the wiring conductor 5 to the electrode pad 11, an inner power supply conductor layer of the multilayer capacitor portion 7, or between inner layers. A second through conductor that electrically connects the ground conductor layers to each other, wherein the first and second through conductors penetrate the inner power conductor layer or the inner ground conductor layer. Alternatively, a land 12 composed of a conductor layer independent of the inner power supply conductor layer or the inner ground conductor layer is provided by a conductor non-forming portion 13 concentrically surrounding the portion at a portion connected thereto, and the adjacent inner layer ground An auxiliary conductor layer 14 facing the land 12 and the non-conductor-formed portion 13 is provided at a portion penetrating or connecting to the conductor layer or the inner power supply conductor layer.
[0018]
The substrate 1 of the present invention is made of aluminum oxide sintered body (aluminum oxide ceramics), aluminum nitride sintered body, mullite sintered body, silicon carbide sintered body, silicon nitride sintered body, glass ceramics or the like. It consists of an insulating substrate on which a substantially rectangular flat insulating layer made of an electrically insulating material is laminated.
[0019]
When the base 1 is made of an aluminum oxide sintered body, it is manufactured as follows. An appropriate organic binder, a solvent, a plasticizer, and a dispersant are added to a ceramic raw material powder such as aluminum oxide, silicon oxide, magnesium oxide, and calcium oxide to form a slurry, which is formed into a sheet by a well-known doctor blade method. Thus, a plurality of ceramic green sheets are obtained. Next, these ceramic green sheets are subjected to appropriate punching, laminating, and cutting to obtain a ceramic green sheet molded body serving as the base 1. Thereafter, the ceramic green sheet molded body is manufactured by firing at a temperature of about 1600 ° C.
[0020]
The base 1 has a large number of wiring conductors 5 provided on its upper surface, one end of which is a mounting portion 3 made of an electrode, and the other end connected to a first through conductor 10 a penetrating the multilayer capacitor portion 7. Have been. The wiring conductor 5 is made of a metallized layer of a metal such as tungsten, molybdenum, copper, silver or the like, and is a metal paste obtained by adding an appropriate organic binder, solvent, plasticizer, dispersant, etc. to a metal powder such as tungsten. Is printed on a ceramic green sheet serving as the base 1 in a predetermined pattern by a conventionally known screen printing method, and is baked together with a ceramic green sheet molded body serving as the base 1, whereby a predetermined pattern is formed on the upper surface of the base 1. Is formed. The wiring conductor 5 may be formed inside or on the lower surface of the base 1.
[0021]
The exposed surface of the wiring conductor 5 is nickel-plated with a thickness of about 1 to 10 μm in order to prevent the wiring conductor 5 from being oxidized and corroded and to improve the bonding between the wiring conductor 5 and the solder 4. A layer and a gold plating layer having a thickness of about 0.1 to 3 μm are sequentially applied.
[0022]
Further, inside the base 1, a multilayer capacitor portion 7 in which inner conductor layers 9 as an inner power conductor layer or an inner ground conductor layer are alternately arranged via an insulating layer 8 is formed. And a plurality of through conductors penetrating the plurality of insulating layers 8 and the plurality of inner conductor layers 9 in the laminating direction.
[0023]
The inner conductor layer 9 is made of the same material as the wiring conductor 5, and has a thickness of 1 to 5 μm. When the base 1 is made of, for example, an aluminum oxide sintered body, the insulating layer 8 has a thickness of about 20 to 30 μm. As described above, by reducing the thickness of the insulating layer 8 and alternately arranging the inner conductor layers 9 via the insulating layer 8, the capacity of the multilayer capacitor unit 7 is increased. The electrodes of the electronic component 2 and the inner conductor layers 9 corresponding to the respective electrodes are connected so that the capacitance component generated in the multilayer capacitor unit 7 is connected between the power supply electrode and the ground electrode of the electronic component 2. When the respective wiring conductors 5 are connected, the electronic component 2 can be protected from power supply noise caused by fluctuations in the power supply voltage. That is, the multilayer capacitor unit 7 functions as a decoupling capacitor.
[0024]
Further, the first through conductor 10 a penetrates the multilayer capacitor portion 7, the upper end is electrically connected to the wiring conductor 5, and the lower end is connected to the external connection electrode pad 11 formed on the lower surface of the base 1. Have been. There are two first through conductors 10a, which are connected to the respective inner conductor layers 9 corresponding to the input part and the output part of the capacitance component generated in the multilayer capacitor unit 7. The second through conductors 10b electrically connect the inner power supply conductor layers or the inner ground conductor layers of the multilayer capacitor unit 7 to enhance their potential, and two or more second through conductors 10b can be provided.
[0025]
These through conductors are cylindrical, and are formed by forming through holes in each ceramic green sheet by punching and filling the through holes with a conductive paste. This conductive paste is made of the same high melting point metal as the wiring conductor 5 and the inner conductor layer 9.
[0026]
As shown in FIG. 2, the penetrating conductor has a land 12 formed of a conductor layer independent of the inner conductor layer 9 and extending on the same plane as the inner conductor layer 9 at a portion penetrating or connecting to the inner conductor layer 9. are doing. As shown in FIG. 7, the land 12 is an annular shape formed coaxially with the through conductor, and is made of the same high melting point metal as the wiring conductor 5 and the inner conductor layer 9. A non-conductor portion 13 having a width X (about 0.01 to 0.5 mm) is formed around the land 12, and is surrounded by the inner conductor layer 9.
The land 12 is integrally connected to the through conductor.
[0027]
Further, the electrode pad 11 formed on the lower surface of the base 1 to which the first through conductor 10a is connected has a plated layer having good corrosion resistance and conductivity such as nickel or gold formed on the surface thereof. This plating layer is for preventing the electrode pads 11 from being corroded and for increasing the connection strength between the electrode pads 11 and the electrodes of the external electric circuit board. The thickness of the plating layer is about 1 to 20 μm. is there.
[0028]
The electronic component substrate according to the present invention includes a land 12 and a conductor non-forming portion at a portion where a through conductor penetrates through or connects to the inner conductor layer 9 adjacent to the inner conductor layer 9 on which the land 12 is formed. An auxiliary conductor layer is provided opposite to the auxiliary conductor layer. Accordingly, when the ceramic green sheets serving as the insulating layers 8 are laminated and pressure-bonded, the portion where the auxiliary conductor layer 14 is formed locally increases the pressure-bonding force of the ceramic green sheet. The step generated in the portion of the conductor non-formed portion 13 around the land 12 to be formed can be filled. As a result, the adhesion between the ceramic green sheets is improved, and formation of a gap between the insulating layers 8 in the fired body of the ceramic green sheet laminate can be effectively prevented. Therefore, the mechanical strength around the through conductor can be increased, and the insulation between the land 12 of the multilayer capacitor portion 7 and the inner conductor layer 9 can be ensured.
[0029]
The auxiliary conductor layer 14 is substantially circular, and its diameter is preferably about 0.01 to 0.5 mm larger than the combined diameter of the land 12 and the non-conductor portion 13. In this case, even if the stacking deviation between the ceramic green sheets occurs, the step of the conductor non-formed portion 13 is filled with the thickness of the auxiliary conductor layer 14, so that the pressure necessary for the adhesion can be applied and the good adhesion can be obtained. Can be given. In this case, if the thickness is less than 0.01 mm, the difference in lamination of the ceramic green sheets makes it impossible to fill the steps of the conductor non-formed portion 13 by the thickness of the auxiliary conductor layer 14, so that the pressure required for adhesion cannot be applied, and the adhesion becomes poor. It tends to decrease. On the other hand, if it exceeds 0.5 mm, the overlapping portion between the inner conductor layer 9 and the auxiliary conductor layer 14 other than the conductor non-formed portion 13 becomes large, and when a pressure for adhesion is applied, the ceramic green sheet is deformed, and the ceramic green sheet is deformed. There is a tendency that a gap is generated between the green sheets and the adhesion is reduced.
[0030]
The thickness of the auxiliary conductor layer 14 is preferably 2 to 15 μm. If the thickness is less than 2 μm, it is difficult to fill the step of the non-conductor-formed portion 13 with the thickness of the auxiliary conductor layer 14 and apply a pressure required for close contact. If it exceeds 15 μm, the pressure required for close contact is sufficiently obtained, but a step is likely to be formed around the auxiliary conductor layer 14.
[0031]
FIGS. 3 and 4 are cross-sectional views and an enlarged cross-sectional view of a main part of another embodiment of the present invention. The electronic component has the configuration shown in FIGS. It is the same as the mounting substrate. In this case, at least one of the inner conductor layers 9 adjacent to each other in the stacking direction with the land 32 and the insulating layer 8 interposed therebetween has a width of 0.01 to 0, which is more preferably 0.01 to 0 than the width of the conductor non-formed portion 13 about the center axis of the through conductor. An annular auxiliary conductor layer 34 having a width larger by 0.5 mm is formed so as to face the non-conductor portion 13. Therefore, when the ceramic green sheets are stacked and pressed together, the thickness of the auxiliary conductor layer 34 formed on the surface of the inner conductor layer 9 is generated in the portion of the conductor non-formed portion 13 around the land 12 of the through conductor. The pressure required for close contact can be applied so that the existing step can be filled. As a result, the adhesion between the ceramic green sheets can be improved, and the formation of a gap between the insulating layers 8 in the fired body of the ceramic green sheet laminate can be effectively prevented.
[0032]
Preferably, the width of the auxiliary conductor layer 34 is larger by 0.01 to 0.5 mm than the width of the non-conductor portion 13. In this case, even if lamination misalignment occurs between the ceramic green sheets, good adhesion can be provided. If it is less than 0.01 mm, the adhesion tends to decrease due to lamination displacement, while if it exceeds 0.5 mm, the overlapping portion between the inner conductor layer 9 and the auxiliary conductor layer 34 around the conductor non-formed portion 13 becomes large. When a pressure for adhesion is applied, the ceramic green sheets are deformed, and a gap is generated between the ceramic green sheets, and the adhesion tends to be reduced.
[0033]
Thus, according to the electronic component mounting board of the present invention, the electronic component 2 is fixed to the mounting portion 6 via the solder 4, and each electrode of the electronic component 2 and the electrode of the wiring conductor 5 are connected by the solder 4. . As a result, the power supply electrode and the ground electrode of the electronic component 2 are connected to the wiring conductor 5 connected to the inner conductor layer 9, respectively. After the electronic component 2 is covered with, for example, a resin and sealed, the electrode pad 11 is fixed to an electrode or the like on the external electric circuit board by a conductive bonding material such as solder.
[0034]
It should be noted that the present invention is not limited to the above-described embodiment, and various changes may be made without departing from the spirit of the present invention.
[0035]
【The invention's effect】
The electronic component mounting board of the present invention has a mounting portion formed of an electrode for mounting an electronic component and a wiring conductor extending from the electrode formed on an upper surface of an insulating substrate formed by stacking a plurality of insulating layers. A multilayer capacitor in which a substrate having electrode pads formed on the lower surface of an insulating substrate, and an inner power supply conductor layer and an inner ground conductor layer formed inside the substrate are alternately laminated so as to face each other with an insulating layer interposed therebetween. Part, a first through conductor formed from the wiring conductor to the electrode pad through the multilayer capacitor part, and a second through-hole electrically connecting the inner power conductor layers or the inner ground conductor layers of the multilayer capacitor part. And a through conductor, wherein the first and second through conductors are concentrically provided at a portion penetrating or connecting to the inner power conductor layer or the inner ground conductor layer. A land made of a conductor layer independent of the inner power conductor layer or the inner ground conductor layer is provided by the surrounding conductor non-forming portion, and penetrates or connects to the adjacent inner ground conductor layer or the inner power conductor layer. Since the auxiliary conductor layer facing the land and the non-conductor-formed portion is provided at the portion, when the ceramic green sheets serving as the insulating layer are laminated and pressed, the portion where the auxiliary conductor layer is formed is locally localized. Since the pressing force of the ceramic green sheet is increased, the step formed in the portion where the conductor is not formed around the land facing the auxiliary conductor layer can be filled. As a result, the adhesion between the ceramic green sheets is improved, and formation of a gap between the insulating layers in the fired body of the ceramic green sheet laminate can be effectively prevented. Therefore, the mechanical strength around the through conductor can be increased, and the insulation between the land of the multilayer capacitor portion and the inner ground conductor layer or the inner power conductor layer can be ensured.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an embodiment of an electronic component mounting board of the present invention.
FIG. 2 is an enlarged sectional view of a main part of the electronic component mounting board of FIG. 1;
FIG. 3 is a cross-sectional view showing another example of the embodiment of the electronic component mounting board of the present invention.
FIG. 4 is an enlarged sectional view of a main part of the electronic component mounting board of FIG. 3;
FIG. 5 is a cross-sectional view showing an example of a conventional electronic component mounting substrate.
6 is an enlarged sectional view of a main part of the electronic component mounting board of FIG. 5;
FIG. 7 is a partial plan view showing a land provided on a through conductor of the electronic component mounting board.
[Explanation of symbols]
1: base 2: electronic component 3: mounting section 4: solder 5: wiring conductor 7: multilayer capacitor section 8: insulating layer 9: inner layer conductor layer 10a: first through conductor 10b: second through conductor 11: electrode pad 12: Land 13: Non-conductor portion 14: Auxiliary conductor layer

Claims (1)

複数の絶縁層が積層されて成る絶縁基板の上面に電子部品を搭載するための電極から成る搭載部および前記電極から引き出された配線導体が形成されているとともに前記絶縁基板の下面に電極パッドが形成されている基体と、該基体の内部に形成された内層電源導体層および内層接地導体層が前記絶縁層を介して対向するようにして交互に積層されて成る積層コンデンサ部と、前記積層コンデンサ部を貫通して前記配線導体から前記電極パッドにかけて形成された第一の貫通導体と、前記積層コンデンサ部の前記内層電源導体層同士または前記内層接地導体層同士を電気的に接続する第二の貫通導体とを具備しており、前記第一および第二の貫通導体は、前記内層電源導体層または前記内層接地導体層を貫通するかまたはそれらに接続する部位に、該部位を同心状に取り囲む導体非形成部によって前記内層電源導体層または前記内層接地導体層から独立した導体層から成るランドが設けられているとともに、隣接する前記内層接地導体層または前記内層電源導体層を貫通するかまたはそれらに接続する部位に、前記ランドおよび前記導体非形成部に対向する補助導体層が設けられていることを特徴とする電子部品搭載用基板。A mounting portion including electrodes for mounting electronic components and a wiring conductor extending from the electrodes are formed on an upper surface of an insulating substrate formed by stacking a plurality of insulating layers, and an electrode pad is formed on a lower surface of the insulating substrate. A multilayer capacitor portion in which a formed base, an inner power supply conductor layer and an inner ground conductor layer formed inside the base are alternately stacked so as to face each other via the insulating layer; and A first through conductor formed from the wiring conductor to the electrode pad through a portion, and a second electrically connecting the inner power conductor layers or the inner ground conductor layers of the multilayer capacitor section. A through conductor, wherein the first and second through conductors penetrate or connect to the inner power conductor layer or the inner ground conductor layer. A land made of a conductor layer independent of the inner power supply conductor layer or the inner ground conductor layer is provided by a conductor non-forming portion concentrically surrounding the portion, and the adjacent inner layer ground conductor layer or the inner layer An electronic component mounting board, wherein an auxiliary conductor layer facing the land and the non-conductor-formed portion is provided at a portion penetrating or connecting to the power supply conductor layer.
JP2002253000A 2002-08-30 2002-08-30 Electronic component mounting substrate and electronic component mounting structure Expired - Fee Related JP3935030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002253000A JP3935030B2 (en) 2002-08-30 2002-08-30 Electronic component mounting substrate and electronic component mounting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002253000A JP3935030B2 (en) 2002-08-30 2002-08-30 Electronic component mounting substrate and electronic component mounting structure

Publications (2)

Publication Number Publication Date
JP2004095734A true JP2004095734A (en) 2004-03-25
JP3935030B2 JP3935030B2 (en) 2007-06-20

Family

ID=32059128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002253000A Expired - Fee Related JP3935030B2 (en) 2002-08-30 2002-08-30 Electronic component mounting substrate and electronic component mounting structure

Country Status (1)

Country Link
JP (1) JP3935030B2 (en)

Also Published As

Publication number Publication date
JP3935030B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
EP1280393A2 (en) Multilayer circuit board and method for manufacturing multilayer circuit board
JP4965237B2 (en) Wiring board built-in capacitor and wiring board
JP6128209B2 (en) MULTILAYER WIRING BOARD, MANUFACTURING METHOD THEREOF, AND PROBE CARD BOARD
JP3911466B2 (en) Electronic component mounting substrate and electronic component mounting structure
JP3935030B2 (en) Electronic component mounting substrate and electronic component mounting structure
JP6250943B2 (en) Wiring board
JP2005268672A (en) Substrate
JP4388410B2 (en) Multiple wiring board
JP2004288660A (en) Wiring board
JP2004281470A (en) Wiring board
JP3466398B2 (en) Wiring board and its manufacturing method
JP2013165149A (en) Multilayer ceramic substrate and manufacturing method of the same
JP4623988B2 (en) Capacitor and its mounting structure
JP3025379B2 (en) Manufacturing method of multilayer capacitor
JP3909285B2 (en) Wiring board
JP5388677B2 (en) Capacitor, method for manufacturing the same, and wiring board
JP6010423B2 (en) Electronic component storage package and electronic device
JP4227477B2 (en) Electronic component mounting substrate, electronic device, and method of manufacturing electronic component mounting substrate
JP4405253B2 (en) Relay board, relay board with semiconductor element, board with relay board, structure comprising semiconductor element, relay board and board
JP2006041319A (en) Surface-mounted multiple capacitor and mounting structure thereof
JP2008288225A (en) Capacitor and manufacturing method thereof, and substrate with built-in capacitor and manufacturing method thereof
JP4423053B2 (en) Wiring board
JP3872402B2 (en) Wiring board
JP2004281471A (en) Wiring board
JP5524681B2 (en) Wiring board built-in capacitor and wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070316

R150 Certificate of patent or registration of utility model

Ref document number: 3935030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees