JP2004093368A - X線透視検査装置のx線マスク作製方法 - Google Patents

X線透視検査装置のx線マスク作製方法 Download PDF

Info

Publication number
JP2004093368A
JP2004093368A JP2002255194A JP2002255194A JP2004093368A JP 2004093368 A JP2004093368 A JP 2004093368A JP 2002255194 A JP2002255194 A JP 2002255194A JP 2002255194 A JP2002255194 A JP 2002255194A JP 2004093368 A JP2004093368 A JP 2004093368A
Authority
JP
Japan
Prior art keywords
ray
image
mask
grid
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002255194A
Other languages
English (en)
Inventor
Kiichiro Uyama
宇山 喜一郎
Tamihiko Kamiyama
神山 民彦
Kazuyoshi Otomo
大友 一由
Shoji Tsuru
ツル 祥司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba IT and Control Systems Corp
Original Assignee
Toshiba IT and Control Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba IT and Control Systems Corp filed Critical Toshiba IT and Control Systems Corp
Priority to JP2002255194A priority Critical patent/JP2004093368A/ja
Publication of JP2004093368A publication Critical patent/JP2004093368A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】X線透視検査装置に備えられるX線マスクを容易に作製するX線マスクの作製方法を提供する。
【解決手段】被検体4を配置しない状態で、X線発生器1と本来X線マスク5が配置される位置にグリッド板を配置してこのグリッド板にX線2を照射しグリッド画像を得る工程と、被検体4を配置して、輪郭が判明する低エネルギーのX線2を被検体4に照射し被検体4の輪郭画像を得る工程と、グリッド画像と輪郭画像を合成してグリッド付輪郭画像を得る工程とを有することで、被検体4の輪郭画像にグリッド画像を合成したグリッド付輪郭画像を得ることができるので、このグリッドを基準に被検体の輪郭外部を覆うX線マスクを作製することができ、更に、グリッド板をX線マスク5位置に位置決めしてグリッド画像を得ているので合成されたグリッド位置の精度がよく画像歪の影響なども受けずに正確かつ容易にX線マスクを作製することができる。
【選択図】   図1

Description

【0001】
【発明の属する技術分野】
本発明は非破壊検査装置の内のX線透視検査装置に関し、特にX線透視検査装置でX線ビーム内に挿入して用いられる映像補正ユニットであるX線マスクの作製方法に関する。
【0002】
【従来の技術】
図9は、従来のX線透視検査装置の構成を示す図である。X線透視検査装置は、X線ビーム102を発生するX線発生器101と、X線ビーム102を2次元の分解能で検出するX線検出器103と、X線発生器101とX線検出器103の間に配置される被検体104と、X線検出器103で得られた被検体104の透過画像を表示する表示部(モニタ)(図示せず)を主な構成要素としている。
【0003】
X線検出器103は、通常、X線ビーム102が透過した像を可視像に変換するX線I.I.(Image Intensifier)112と、この可視像を撮影するテレビカメラ113とを具備している。なおここで、図9に示した被検体104は、被検体104断面図である。
【0004】
X線発生器101は、図示しないX線管と高電圧発生器を備えており、X線管の管電圧と管電流を変更することで被検体に適合したX線条件が選択できるようになっている。これにより管電圧を上げると発生するX線(フォトン)のエネルギーが上り、これに合わせて透過能力が上がる。また、管電流を上げると発生するX線(フォトン)の数が多くなる。
【0005】
一方、テーブル107上に治具108で固定された被検体104は、機構部109の稼動により回転、傾斜あるいは移動されることで拡大率や透視方向が変えられた透視画像が撮像される。
【0006】
このX線透視検査装置では、標準品の内部欠陥の検査等を行う際に被検体104の種類ごとに、または、透視方向ごとに、これに適合したX線マスク105をマスクホルダ110に挿入し、X線検出器103に入射するX線ビーム102が均質になるようにしている。
【0007】
ここでX線マスク105とは、場所ごとに材質や厚さをかえた板であり、被検体104の種類や透視方向、X線条件などに合わせて作製されたものである。
【0008】
X線透視検査装置は、被検体104が平板のような均一な厚みを持ったものであれば、即時モニタで内部欠陥(ピンホール等)を確認できる。しかし自動車部品のように複雑形状の鋳物などの被検体104の場合は、厚い部分の透過画像を鮮明に得ようとすると、X線エネルギーを上げることになり、この時、被検体輪郭の外部や肉厚が薄い部分が明るくなりすぎ、ここからハレーション(画像上で明部が周囲に侵食する現象)が起こり、肉厚が厚い部分の画像まで壊してしまう。複雑な形状の被検体104の場合でも、形状に合わせたX線マスク105を挿入することにより、X線検出器103に入射するX線量を均一にでき、透過厚(肉厚)が厚い部分の欠陥検査が可能になる。
【0009】
ここで、従来のX線マスク105の作製手順を説明する。
【0010】
まず初めに、被検体104の透視方向と透視拡大率を決める。これは目的とする内部欠陥の位置を予め予測して行なう。次に、被検体104の輪郭の外側を遮蔽鉛板で覆い、輪郭の外側からのハレーションをなくすための外周マスクを作らなければならない。
【0011】
外周マスクを作製するには、X線検出器103のX線入射面に設けたフィルムホルダ111にX線撮影用フィルム106を挿入し、X線発生器101より被検体104の輪郭が判明する低エネルギーのX線ビーム102を照射させ、被検体104の輪郭図形を撮影する。続いて、フィルム106の輪郭図形を縮小コピーしてX線マスク105位置での実寸の輪郭図形を作る。この輪郭図形の形状より数mm内側で鉛板を切り抜き被検体104の外周マスクを作る。この外周マスクをX線マスク105とすることで、被検体104の輪郭外部からのハレーションはなくなる。更に続いて、被検体104とX線マスク105(外周マスク)をX線ビーム102内に挿入位置決めして被検体104を透視できる高いエネルギーのX線を照射し、モニタに映し出される透過画像のハレーション部分を記憶して、外したX線マスク105の対応部分に目測で銅板や鉛板を貼る(内部マスク)。再びX線マスク105をX線ビーム102内に挿入し、モニタに映し出し、ハレーションが無くなるまで貼り直す。ハレーションが無くなったら、X線エネルギーを少し上げる。再びハレーションが出たら、銅板や鉛板をハレーション対応部分に貼る。全体の画像が鮮明になるまでこの作業を繰り返し行うことでX線マスク105を作製する。
【0012】
【発明が解決しようとする課題】
外周マスクの作製においては、被検体104の撮影やフィルム106の現像、現像された写真の縮小率の合わせ、フィルムホルダ111とX線マスク105位置の位置関係の合わせなどが非常に面倒である。
【0013】
また、内部マスクの作製においては、画像上の位置をマスク上の位置に目測で合わせる難しさ、銅板や鉛板の厚さや形の選択、および繰返しの面倒さなどで、非常に経験と忍耐を要する作業である。
【0014】
また、検査する被検体4や透視方向が変わるだけで最初からこの作業をやり直すことが必要があることから、非常に面倒で厄介な作業であるばかりでなく、X線マスク105自体の品質も作業者の資質、体調や経験に左右され、不安定なものであるという問題もあった。
【0015】
本発明は、上記に鑑みてなされたもので、その目的は、X線透視検査装置において、容易に作製することができるX線マスクの作製方法を提供することにある。
【0016】
【課題を解決するための手段】
請求項1記載の本発明は、X線を出力するX線発生器と前記X線を検出するX線検出器との間に被検体とX線検出器に入射するX線量を均一にするためのX線マスクを配置して、前記X線発生器から出力されたX線を前記X線マスクと該被検体を透過させ、前記X線検出器で検出して該被検体の透過画像を得るX線透視検査装置のX線マスクの作製方法であって、被検体を配置しない状態で、前記X線マスクが配置されるべき配置位置に格子状にX線透過率が変化している板であるグリッド板を配置して、X線検出器で検出された該グリッド板の透過画像であるグリッド画像を得る工程と、被検体を配置した状態で、被検体の輪郭が判明する低エネルギーのX線を該被検体に照射してこのときの被検体の透過画像である輪郭画像を得る工程と、前記グリッド画像と前記輪郭画像とを合成してグリッド付輪郭画像を得る工程と、前記グリッド付輪郭画像に基づいて、被検体の輪郭外部領域のX線を遮蔽するX線マスクを作製する工程とを有することを要旨とする。
【0017】
本発明にあっては、これら工程によるX線マスクの作製において被検体の輪郭画像にグリッド画像を合成したグリッド付輪郭画像を得ることができるので、グリッドを基準に容易に被検体の輪郭の外部を覆うX線マスクを作製することができる。また、グリッド板をX線マスク位置に位置決めしてグリッド画像を得ているので合成されたグリッド位置の精度がよく、画像歪の影響なども受けることなく、正確なX線マスクが容易に作製できる。
【0018】
請求項2記載の本発明は、X線を出力するX線発生器と前記X線を検出するX線検出器との間に被検体とX線検出器に入射するX線量を均一にするためのX線マスクを配置して、前記X線発生器から出力されたX線を前記X線マスクと、該被検体を透過させ、前記X線検出器で検出して該被検体の透過画像を得るX線透視検査装置のX線マスクの作製方法であって、被検体を配置しない状態で、前記X線マスクが配置されるべき配置位置に格子状にX線透過率が変化している板であるグリッド板を配置して、該グリッド板の透過画像であるグリッド画像を得る工程と、被検体を配置した状態で、X線を被検体に照射して被検体の透過画像を得る工程と、前記被検体の透過画像を等高線で表示して等高線表示画像を得る工程と、前記グリッド画像と前記等高線表示画像を合成してグリッド付等高線表示画像を得る工程と、前記グリッド付等高線表示画像に基づいて、等高線領域内のX線を遮蔽するX線マスクを作製する工程とを有することを要旨とする。
【0019】
本発明にあっては、これらの工程によるX線マスクの作製において、被検体内部の透過画像を等高線表示した画像が得られ、しかもグリッド画像が合成されたグリッド付き等高線表示画像が得られるので、等高線とグリッドを基準に遮蔽材を等高線の形に切り抜くことで容易にX線マスクを作製することができる。また、グリッド板をX線マスク位置に位置決めしてグリッド画像を得ているので合成されたグリッド位置の精度がよく、画像歪の影響なども受けることなく、正確なX線マスクが容易に作製できる。
【0020】
請求項3記載の本発明は、請求項2記載のX線透視検査装置のX線マスク作製方法において、前記等高線表示画像は前記被検体の透過画像を画素毎に基準透過量値と比較して、該基準透過量値を境に異なる所定演算を加えることで該基準透過量値での等高線が階差表示されることを要旨とする。
【0021】
本発明にあっては、被検体内部の透過画像に基準透過量値を境に異なる演算(一定値を乗算あるいは加算)をして段差を得るので、簡単な処理で等高線が段差として表示できる。また、マスク画像は濃淡情報も残るので(等高線が混んだ時など)判別しやすくなる。
【0022】
【発明の実施の形態】
(第1の実施の形態の構成)
以下、実施の形態を図面に基づいて説明する。
【0023】
図1は、第1の実施の形態に係るX線透視検査装置の構成を示す図である。X線透視検査装置は、X線ビーム2を発生するX線発生器1と、X線発生器1に対向して配置されX線ビーム2を2次元の分解能で検出するX線検出器3と、X線発生器1とX線検出器3の間に配置される被検体4と、X線ビーム2内に被検体4を載置して位置決めするテーブル7と、同一形状の被検体4(量産品)を同じ位置に載置するための治具8と、テーブル7を回転、傾斜あるいは移動させ透視画像の拡大率や透視方向を変える機構部9と、マスクホルダ10と、このマスクホルダ10に挿入することでX線ビーム2内に位置決めされるX線マスク5とを備え、これら各機能部を収納し、かつ被検体4を出し入れする扉(図示せず)と、内部を観察するための鉛ガラス窓(図示せず)とを備えたX線遮蔽箱30より構成される。
【0024】
また、X線遮蔽箱30の外には、X線検出器3の出力である被検体4の透過画像を処理する計算機22と、この透過画像や計算機22の出力をそれぞれ表示及び印刷するためのそれぞれ表示部(モニタ)20とプリンタ21と、計算機22からの指令を受けて機構部9とX線発生器1をそれぞれ制御する機構制御部23とX線制御部24とを備えている。
【0025】
治具8とテーブル7は、X線ビーム2を透過し易くするため、プラスチックやカーボンで作られる。治具8は、被検体4の形状に合ったものをテーブル7に固定して用いる。
【0026】
X線検出器3は、X線ビーム2が透過した像を可視像に変換するX線I.I.(Image Intensifier)12と、可視像を撮影するテレビカメラ13とを備えている。X線発生器1は、図示しないX線管と高電圧発生器を備えており、X線管の管電圧と管電流を変更することで、被検体4に適合したX線条件が選択できるようになっている。
【0027】
計算機22は、通常のパーソナルコンピュータであり、図示しないキーボード、マウスや磁気ディスク等を有している。また計算機22は、画像処理部28を備えており、この画像処理部28には少なくとも画像メモリ25と、ソフトウエアの機能ブロックとしてグリッド合成処理部26及び等高線処理部27が備えられている。X線検出器3に備えられるテレビカメラ13から送られた透過画像は、計算機22内部のビデオキャプチャーボード(図示せず)でデジタル画像に変換されて画像メモリ25に記憶されるとともにリアルタイムで表示部20に表示される。表示部20は、画像処理部28で画像処理した透過画像の結果を表示することもできる。
【0028】
グリッド合成処理部26は、透過画像とグリッド(格子)を合成する処理を行なう機能部である。
【0029】
等高線処理部27は、操作者がX線マスク5材の材質(例えば、銅又は鉛)と厚さtを入力すると、この入力値からX線マスク5材の形を決める濃度レベルを自動計算し、対象透過画像にその濃度レベルの等高線を重ねて表示する処理を行なう機能部である。
【0030】
図2は、グリッド板32の外形を示す図である。グリッド板32は、X線マスク5を作製するときに用いる板であり、大きさはX線マスク5と同じである。グリッド板32は、X線マスク5の代りにマスクホルダ10に挿入することができる。またグリッド板32は、厚さ1mmの鉄板で10mmおきに格子状に穴33(φ1.5mm)が形成され、更に5つおきに大きな穴34(φ3mm)が形成されている。板の中央は大きな穴の中央穴35が形成されており、更に識別用穴36を中央穴35の上近傍と右上近傍に設けることで、他の穴と見分け易くしている。この識別用穴36は、グリッド板32の透過画像の左右、上下方向を見分ける目印となるとともに、中央穴35を見分けるためのものである。
【0031】
X軸マスク5は、厚さ1mmのアルミ板の上に外周マスクと内部マスクを貼り合わせてなる構造を有している。X線マスク5の詳細については後述する。
【0032】
(第1の実施の形態の作用)
次に、第1の実施の形態に係るX線マスク5の作製手順を説明する。
【0033】
図3(a)は被検体4の断面図であり、(b)〜(f)は、外周マスクの作製手順を説明する図である。以下、図1と併せて説明する。
【0034】
まず、第1工程として、被検体4をテーブル7上の治具8で固定載置して、X線マスク5が無い状態で、モニタ20で透過画像を観察しながら機構制御部23の制御により機構部9でテーブル7を動かして、被検体4の透視方向と透視拡大率を決める。この時はハレーションを避けるため、管電圧、管電流が上げられないので欠陥は見えないが、目的とする内部欠陥の位置を予測して最適位置決めを行なう。
【0035】
第2工程として、モニタ20で透過画像を観察しながら管電圧を徐々に変え、被検体4の輪郭が判明する管電圧(低エネルギーのX線)を選択して、被検体4の底面方向からX線を照射して輪郭画像40を撮影する(図3(c))。撮影された輪郭画像40は、画像メモリ25に記憶される。
【0036】
第3工程として、被検体4を治具8から外し、マスクホルダ10にグリッド板32を挿入し、モニタ20の透過画像で穴位置が良く観察できる低管電圧を選択し、グリッド画像41を撮影する(図3(b))。撮影されたグリッド画像41は、画像メモリ25に記憶される。
【0037】
第4工程として、操作者は、計算機22に指令入力し、グリッド合成処理部26により輪郭画像40とグリッド画像41とを合成したグリッド付輪郭画像42を得る(図3(d))。得られたグリッド付輪郭画像42は、モニタ20およびプリンタ21に出力される。なお、グリッド合成処理部26の詳細な作用については後述するのでここでは説明を省略する。
【0038】
第5工程として、グリッド付輪郭画像42を参照して、被検体4の輪郭の外部を覆う外周マスク5を作製する(図3(e)、(f))。例えば厚さ2mmの鉛板に方眼紙を貼り、この鉛板にグリッド付輪郭画像42を参照しながら被検体4の輪郭ラインを描き込み、ラインにそって鉛板を切断し、外周マスク44を作製する。この外周マスク44をベース板43(厚さ1mmのアルミ板)に貼り付けて最初のX線マスク5ができる。ここで輪郭のラインを描くときは、実際の輪郭ラインよりも数ミリほど内側に描くようにする。これにより管電圧を上げたときでも輪郭部のハレーションを防ぐことができる。
【0039】
図4は、内部マスクの作製手順を説明する図である。図4(a)は被検体4の断面図であり、(b)〜(f)は、内部マスクの作製手順を説明する図である。以下、図1と併せて説明する。
【0041】
第6工程として、被検体4を治具8に載置し、X線マスク5(外周マスク44付)をマスクホルダ10に挿入する。モニタ20で透過画像を観察しながら管電圧を変える。外周マスク44付きX線マスク5が配置され被検体4の輪郭外側のハレーションが防止されているので、被検体4の内部を透視できる管電圧まで上て被検体4内部の透過画像を得ることができる。最明部が飽和しない程度の管電圧を選択して、被検体4の透過画像(被検体内部画像50)を撮影する。撮影された被検体内部画像50は、画像メモリ25に記憶される。被検体4の中央部は窪んでいるため被検体内部画像50は、図4(b)に示すように中央部が明るい画像となる。
【0042】
第7工程として、計算機22にマスク材の材質(銅か鉛)と厚さtを入力して、等高線処理部27により内部画像50の等高線表示画像であるマスク画像51を得る。等高線処理部27の作用は後述する。マスク画像51は、図4(c)に示すように被検体内部画像50に段差52をつけた画像であり、段差52を等高線表示と同じように見ることができる。
【0043】
第8工程として、操作者は計算機22に指令入力し、グリッド合成処理部26によりグリッド画像41とマスク画像51を合成したグリッド付マスク画像53を得る(図4(d))。得られたグリッド付マスク画像53はモニタ20およびプリンタ21に出力される。
【0044】
第9工程として、X線マスク5をマスクホルダ10から外し、グリッド付マスク画像53を参照して、外周マスク44に加え内部マスク54も貼り付けることでX線マスク5を完成する(図4(e)、(f))。具体的には、ベース板43に目盛を付け、グリッド付マスク画像53を参照して、等高線(段差52)の形に切り抜いたマスク材(入力した材質と厚さのもの)を貼り付ける。これによりX線マスク5(外周マスク44+内部マスク54)ができる。
【0045】
次に、さらに、作製されたX線マスク5を用いて、第6乃至第9の工程を何回か繰り返して、管電圧を徐々に上げ、また、内部マスクを次々に追加修正していくことで、X線マスク5を高品質に作製することができる。
【0046】
(グリッド合成処理部26の作用)
図5は、グリッド合成処理の手順を示すフローチャートである。
【0047】
まずステップS1で、グリッド合成処理部26は、グリッド画像41を2値化して各画素を128倍する。これにより、グリッド穴(33,34,35)部分が「128」で他の部分が「0」の画像ができる。
【0048】
次にステップS2で、画像処理後のグリッド画像41と、8ビット画像である透過画像(輪郭画像40あるいはマスク画像51)とを加算してグリッド付透過画像(グリッド付き輪郭画像42あるいはグリッド付きマスク画像53)を得る。
【0049】
透過画像は8ビット画像(真黒「0」ないし真白「255」)であるが、グリッド付透過画像はグリッド点部分に8ビット演算で128が加算されるため、グリッド点は周囲から最も隔たった濃度になり、どの点でもグリッド点が良く識別できる。例えば128の加算で、黒「0」は灰「128」に、灰「128」は黒「0」に、白「255」は灰「127」になる。
【0050】
ここで「128」は、ちょうど「128」である必要はなく、他画素と識別可能であれば「128」に限定するものでないことは容易にわかる。また8ビット画像でない場合への応用も容易に推察できる。
【0051】
(等高線処理部27の作用)
図6は、等高線処理の手順を示すフローチャートである。
【0052】
まずステップS10で、以下の入力を行なう。操作者はモニタ20に表示された透過画像を参照してマウスを使って透視画像上の最明部を指定する。次にマスクの材質として銅か鉛かを選択入力する。次に、マスク材の厚さtを入力する。なお管電圧vは計算機22により透過画像に添付されている付帯情報から自動的に読み取られるものであるが、操作者が入力するようにしてもよい。
【0053】
続いてステップS11で、等高線レベルIrの計算を行なう。計算式は、
Imax=最明部の画素値             …式(1)
k=exp(−μ(v)・t)           …式(2)
Ir=Imax・k                …式(3)
である。ここでμ(v)は、管電圧vに対するマスク材のX線吸収係数を指しており、管電圧vとX線吸収係数の関係は各材質ごとに予めテーブルで記憶されている値を用いる。ここで「k」は、マスク材による減衰を示している。
【0054】
ステップS12で、全画素(i,j)ループに入り、全画素でステップS13、S14の計算を行なう。
【0055】
ステップS13で、画素値I(i,j)がレベルIrより大きいかを判定し、大きい(明るい)場合は、S14で式(4)、
I(i,j)=I(i,j)・k          …式(4)
で画素値を変更する。
【0056】
これにより、レベルIrの等高線位置で段差52(図4(c))ができ、等高線レベルIr以上の画素でマスク材による減衰kが乗算されて、あたかも等高線の形状をもったマスク材による減衰シミュレーション画像のような画像が得られる。作製すべきマスクの形状が段差52(等高線)で現れた画像であるので、これをマスク画像51と名づける。
【0057】
最明部の指定は自動化することもできる。しかし、明るいピークが2個所以上できる場合など、手動指定のほうが、指定と処理を繰返すことでピークごとにマスク画像51を得ることができるという利点がある。
【0058】
(第1の実施の形態の効果)
外周マスク44の作製においては、被検体4の撮影やフィルム6の現像、現像された写真の縮小率の合わせ、フィルムホルダ11とマスク5位置の位置関係の合わせなどが不要である。つまりグリッド合成処理部26により輪郭画像40にグリッド画像41が合成されたグリッド付輪郭画像42を得ることができるのでグリッド(33,34,35)を基準に容易に外周マスク44を作製することができる。
【0059】
内部マスク54の作製においては、画像上の位置をマスク5上の位置に目測で合わせる難しさや、銅板や鉛板の厚さや形の選択の難しさがなくなる。被検体4の内部画像50から、マスクの材質と厚さ等を指定するだけで自動的にマスクの形状を段差(等高線)52表示したマスク画像51が得られ、しかも、グリッド画像41が合成されたグリッド付マスク画像53が得られるので、等高線52とグリッド(33,34,35)を基準に容易に内部マスク54を作製することができる。
【0060】
X線マスク5としては、グリッド板32をX線マスク5位置に位置決めしてグリッド画像41を得ているので合成されたグリッド位置の精度がよく、画像歪の影響なども受けることなく、正確なX線マスク5が容易に作製できる。
【0061】
グリッド付輪郭画像42を作製するグリッド合成処理においては、グリッド点(33,34,35)に対し8ビット演算で「128」が加算されるため、濃淡画像上のグリッド点は周囲から最も隔たった濃度になり、どの点でもグリッド点(33,34,35)が良く識別できる。
【0062】
マスク画像51を作製する等高線処理においては、等高線を描画することなく、所定レベルを超えた画素に一定値を乗算するという簡単な処理で等高線52を表示でき、作製が容易でメンテナンス性がよい処理ソフトとなる。マスク画像51は濃淡情報も記憶されるので等高線が混んだ時など(線のどちら側が高側かよくわかり)判別しやすくなる。また、等高線表示だけでなく、マスクによる減衰シミュレーション画像としての利用性も有しているので、マスクの効果を画像で確認することができる。また、確認しながら入力を繰返して、マスク材の材質や厚さを調整することもできる。
【0063】
以上のように第一の実施の形態においては、X線マスク5の製作が容易となり、マスクの品質も作業者の資質、体調や経験に左右せず安定させることができる効果がある。
【0064】
(第1の実施の形態の変形)
第1の実施の形態の等高線処理は透過画像IがX線量に比例したリニアな画像の場合であるが、等高線処理はリニア画像の処理に限られるわけではない。例えば以下に透過画像Iが対数変換されている場合を示す。この場合は式(2),(3),(4)をそれぞれ、
τ=μ(v)・t                 …式(2a)
Ir=Imax−τ                …式(3a)
I(i,j)=I(i,j)−τ          …式(4a)
と交換して用いればよい。これは透過画像Iの縦軸(濃淡)に伸縮と並行移動が加わっただけで、内容は何も変化していない。
【0065】
等高線処理の他の変形の特徴は、等高線の数を2本以上にすることにある。図7は、等高線処理(変形)の手順を示すフローチャートである。本実施の形態の変形例は、等高線3本の場合であり、以下順に説明する。
【0066】
まずステップS20で、変形なしの場合と同様に各所定項目の入力を行なうが、マスク材の厚さは3つ、つまり「t1」、「t2」、「t3」を入力する。材質はそれぞれ指定(銅か鉛)し、場合によっては混在させてもよい。つまり、厚さt1のマスク材は銅板、厚さt2のマスク材は鉛板、厚さt3のマスク材は銅板というようにである。
【0067】
ステップS21で、等高線レベルIr1、Ir2、Ir3を計算する。計算式は、
Imax=最明部の画素値             …式(5)
k1=exp(−μ(v)・t1)         …式(6)
k2=exp(−μ(v)・t2)         …式(7)
k3=exp(−μ(v)・t3)         …式(8)
Ir1=Imax・k1              …式(9)
Ir2=Imax・k1・k2           …式(10)
Ir3=Imax・k1・k2・k3        …式(11)
である。ここでk1、k2、k3は、それぞれマスク厚t1,t2,t3による減衰である。また、等高線レベルIr1はt1による減衰レベル、等高線レベルIr2はt1とt2による減衰レベル、等高線レベルIr3はt1、t2、t3による減衰レベルである。
【0068】
ステップS22で、全画素(i,j)ループに入り、全画素でステップS23,S24,S25を行なう。
【0069】
ステップS23で、画素値I(i,j)が等高線レベルIr1より大きいかを判定し、大きい場合は式(12)、
I(i,j)=I(i,j)・k1・k2・k3   …式(12)
で画素値を変更する。S24で、同様に、画素値I(i,j)がレベルIr2より大きいかを判定し、大きい場合は式(13)、
I(i,j)=I(i,j)・k2・k3      …式(13)
で画素値を変更し、S25で、画素値I(i,j)がレベルIr3より大きいかを判定し、大きい場合は式(14)、
I(i,j)=I(i,j)・k3         …式(14)
で画素値を変更する。
【0070】
これにより、各レベルIr1、Ir2、Ir3の等高線位置で段差ができたマスク画像ができる。
【0071】
図8にマスク画像61(変形)及び内部マスク62(変形)を示す。内部画像60に対し、等高線レベルIr1以上の部分はt1,t2,t3による減衰、等高線レベルIr1とIr2の間はt2,t3による減衰、そして、レベルIr2とIr3の間はt3による減衰を乗算してマスク画像61が計算される。
【0072】
従って、等高線レベルIr1,Ir2,Ir3の等高線それぞれで厚さt1、t2、t3のマスク材を切り抜き、図8に示すように重ねて内部マスク62を作製して使用すればマスク画像61のような内部画像となることがわかる。
【0073】
言い換えれば、マスク画像61は、マスク材による減衰シミュレーション画像と言える。内部マスク62はさらに、破線のように面とりを行えば、内部マスク62使用後の内部画像はマスク画像61の鋸歯形状(ギザギザ)のない破線で示すような画像となり、画質向上できる。
【0074】
このほか、等高線の数は何本でもよく、入力時に操作者が選択するようにしてもよい。
【0075】
また、X線検出器3は、X線I.I.12とテレビカメラ13よりなるものに限られることはない。例えばフラットパネルディテクタと呼ばれているX線検出器などでも同様の効果がある。グリッド板32も鉄板に穴を開けたものでなく、格子状にX線吸収率が変化していればよい。たとえばプラスチック板にスチールボールを埋め込んでもよい。
【0076】
また、第1の実施の形態の作用において、第2、第4、第5の手順は省略することも可能である。この場合は第1の被検体位置決めと第3のグリッド画像41の撮影を行ない、次に、第6ないし第9の手順で内部マスク54を作製する。そして第6ないし第9の手順を繰返して、内部マスク54を追加修正する。この手順によれば、外周マスク44も内部マスクと同じものととらえられ、同じ手順で外周マスク44と内部マスク54をいっしょに作製することができる。
【0077】
【発明の効果】
本発明によれば、X線透視検査装置において、X線マスクの作製を容易にすることができる。
【図面の簡単な説明】
【図1】第1の実施の形態に係るX線透視検査装置の構成を示す図である。
【図2】グリッド板の外形を示す図である。
【図3】(a)は被検体の断面図であり、(b)〜(f)は外周マスクの作製手順を説明する図である。
【図4】(a)は被検体の断面図であり、(b)〜(f)は内部マスクの作製手順及び断面プロフィールを説明する図である。
【図5】グリッド合成処理の手順を示すフローチャートである。
【図6】等高線処理の手順を示すフローチャートである。
【図7】等高線処理(変形)の手順を示すフローチャートである。
【図8】第1の実施の形態の変形例に係るマスク画像(変形)及び内部マスク(変形)を示す図である。
【図9】従来のX線透視検査装置の構成を示す図である。
【符号の説明】
1,101 X線発生器
2,102 X線ビーム
3,103 X線検出器
4,104 被検体
5,105 X線マスク
6,106 フィルム
7,107 テーブル
8,108 治具
9,109 機構部
10,110 マスクホルダ
11,111 フィルムホルダ
12,112 X線I.I.
13,113 テレビカメラ
20 表示部
21 プリンタ
22 計算機
23 機構制御部
24 X線制御部
25 画像メモリ
26 グリッド合成処理部
27 等高線処理部
28 画像処理部
32 グリッド板
33 穴
34 大きな穴
35 中央穴
36 識別用穴
40 輪郭画像
41 グリッド画像
42 グリッド付輪郭画像
43 ベース板
44 外周マスク
50,60 内部画像
51,61 マスク画像
52 段差
53 グリッド付マスク画像
54,62 内部マスク

Claims (3)

  1. X線を出力するX線発生器と前記X線を検出するX線検出器との間に被検体とX線検出器に入射するX線量を均一にするためのX線マスクを配置して、前記X線発生器から出力されたX線を前記X線マスクと該被検体を透過させ、前記X線検出器で検出して該被検体の透過画像を得るX線透視検査装置のX線マスクの作製方法であって、
    被検体を配置しない状態で、前記X線マスクが配置されるべき配置位置に格子状にX線透過率が変化している板であるグリッド板を配置して、X線検出器で検出された該グリッド板の透過画像であるグリッド画像を得る工程と、
    被検体を配置した状態で、被検体の輪郭が判明する低エネルギーのX線を該被検体に照射してこのときの被検体の透過画像である輪郭画像を得る工程と、
    前記グリッド画像と前記輪郭画像とを合成してグリッド付輪郭画像を得る工程と、
    前記グリッド付輪郭画像に基づいて、被検体の輪郭外部領域のX線を遮蔽するX線マスクを作製する工程と、
    を有することを特徴とするX線透視検査装置のX線マスク作製方法。
  2. X線を出力するX線発生器と前記X線を検出するX線検出器との間に被検体とX線検出器に入射するX線量を均一にするためのX線マスクを配置して、前記X線発生器から出力されたX線を前記X線マスクと、該被検体を透過させ、前記X線検出器で検出して該被検体の透過画像を得るX線透視検査装置のX線マスクの作製方法であって、
    被検体を配置しない状態で、前記X線マスクが配置されるべき配置位置に格子状にX線透過率が変化している板であるグリッド板を配置して、該グリッド板の透過画像であるグリッド画像を得る工程と、
    被検体を配置した状態で、X線を被検体に照射して被検体の透過画像を得る工程と、
    前記被検体の透過画像を等高線で表示して等高線表示画像を得る工程と、
    前記グリッド画像と前記等高線表示画像を合成してグリッド付等高線表示画像を得る工程と、
    前記グリッド付等高線表示画像に基づいて、等高線領域内のX線を遮蔽するX線マスクを作製する工程と、
    を有することを特徴とするX線透視検査装置のX線マスク作製方法。
  3. 前記等高線表示画像は前記被検体の透過画像を画素毎に基準透過量値と比較して、該基準透過量値を境に異なる所定演算を加えることで該基準透過量値での等高線が階差表示されることを特徴とする請求項2記載のX線透視検査装置のX線マスク作製方法。
JP2002255194A 2002-08-30 2002-08-30 X線透視検査装置のx線マスク作製方法 Pending JP2004093368A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002255194A JP2004093368A (ja) 2002-08-30 2002-08-30 X線透視検査装置のx線マスク作製方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002255194A JP2004093368A (ja) 2002-08-30 2002-08-30 X線透視検査装置のx線マスク作製方法

Publications (1)

Publication Number Publication Date
JP2004093368A true JP2004093368A (ja) 2004-03-25

Family

ID=32060772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002255194A Pending JP2004093368A (ja) 2002-08-30 2002-08-30 X線透視検査装置のx線マスク作製方法

Country Status (1)

Country Link
JP (1) JP2004093368A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009180647A (ja) * 2008-01-31 2009-08-13 Sumitomo Chemical Co Ltd 溶接部の放射線透過試験方法
JP2016225059A (ja) * 2015-05-28 2016-12-28 凸版印刷株式会社 燃料電池電極の塗布欠陥の検査装置、及び検査方法
US10839972B2 (en) 2017-03-14 2020-11-17 Joseph T. Young High resolution X-Ray imaging system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009180647A (ja) * 2008-01-31 2009-08-13 Sumitomo Chemical Co Ltd 溶接部の放射線透過試験方法
JP2016225059A (ja) * 2015-05-28 2016-12-28 凸版印刷株式会社 燃料電池電極の塗布欠陥の検査装置、及び検査方法
US10839972B2 (en) 2017-03-14 2020-11-17 Joseph T. Young High resolution X-Ray imaging system

Similar Documents

Publication Publication Date Title
US7555100B2 (en) Long length imaging using digital radiography
US5008947A (en) Method and apparatus for correcting extension rates of images
JP5384521B2 (ja) 放射線撮像装置
JP3862681B2 (ja) X線画像撮影装置
JP6363573B2 (ja) 線源画像面間距離取得装置、方法およびプログラム、並びに放射線画像処理装置、方法およびプログラム
JP2011019707A (ja) X線撮影装置、x線撮影装置の制御方法、及びプログラム
JP2006334046A (ja) X線撮影装置及び撮影方法
JP3863963B2 (ja) X線撮影画像のデジタルデータ補正、保存方法及びその装置
JP2000230911A (ja) 断層映像撮影装置及び方法
JPH0616169B2 (ja) 画像輪郭線デ−タ作成装置
JPH11146277A (ja) X線診断装置
JP2004093368A (ja) X線透視検査装置のx線マスク作製方法
JP2005031323A (ja) 放射線画像取得装置
JP4072420B2 (ja) X線透視検査装置の較正方法
JP2021162523A (ja) 検査装置
JPH07265286A (ja) X線診断装置
KR100423967B1 (ko) 엑스선 촬영장치의 3차원 영상 구현 방법
JP3876765B2 (ja) 分析装置
TW200302919A (en) X-ray inspection apparatus, and the control method and adjust method of the same
JPH1097983A (ja) 位置検出方法
JPH0674920A (ja) X線・中性子線併用非破壊検査装置の画像表示方法
JP3356356B2 (ja) X線撮影装置
JP3197568B2 (ja) 缶巻締め部のx線検査装置
JP2853854B2 (ja) 検査装置
JP6576519B2 (ja) 放射線画像処理装置、方法およびプログラム