JP2004084588A - Valve timing control device for internal combustion engine - Google Patents

Valve timing control device for internal combustion engine Download PDF

Info

Publication number
JP2004084588A
JP2004084588A JP2002247985A JP2002247985A JP2004084588A JP 2004084588 A JP2004084588 A JP 2004084588A JP 2002247985 A JP2002247985 A JP 2002247985A JP 2002247985 A JP2002247985 A JP 2002247985A JP 2004084588 A JP2004084588 A JP 2004084588A
Authority
JP
Japan
Prior art keywords
braking force
internal combustion
control device
combustion engine
timing control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002247985A
Other languages
Japanese (ja)
Other versions
JP4076399B2 (en
Inventor
Katsunari Yoshida
吉田 克成
Masahiko Watanabe
渡辺 正彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Hitachi Unisia Automotive Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Unisia Automotive Ltd filed Critical Hitachi Unisia Automotive Ltd
Priority to JP2002247985A priority Critical patent/JP4076399B2/en
Publication of JP2004084588A publication Critical patent/JP2004084588A/en
Application granted granted Critical
Publication of JP4076399B2 publication Critical patent/JP4076399B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Valve Device For Special Equipments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stabilize the operating performance by constantly keeping the space or opposed attitude between the braking force generation part and braking force receiving part of an electromagnetic brake regardless of the fluctuation of the tip part of a camshaft. <P>SOLUTION: A magnetic induction member 22 and electromagnetic coil 25 that are the braking force generation part of a hysteresis brake 20 are fixed to a non-rotating member, and a hysteresis ring 26 and annular plate 33 that is the braking force receiving part of the hysteresis brake 20 are supported on the magnetic induction member 22 through bearings 34 and 35. A recessed part 37 is formed in the annular plate 33, a connecting pin 53 is protrusively provided on the intermediate rotator 18 of an assembling angle operating mechanism 4, and the tip of the pin 53 is fitted to the recessed part 37 through a rubber bush 38. The fluctuation of the intermediate rotor 18 is absorbed by the rubber bush 38, and the space between the magnetic induction member 22 and the hysteresis ring 26 is kept by the bearings 34 and 35. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この出願の発明は、内燃機関の吸気側または排気側の機関弁の開閉タイミングを運転状態に応じて可変制御する内燃機関のバルブタイミング制御装置に関する。
【0002】
【従来の技術】
この種のバルブタイミング制御装置として、特開2001−41013号公報に記載されるようなものがある。
【0003】
この装置は、クランクシャフトにタイミングチェーン等を介して連係されたハウジング(駆動回転体)がカムシャフトの端部に回動可能に組み付けられ、ハウジングの内側端面に形成された径方向ガイドに可動案内部が径方向に沿って摺動自在に係合支持されると共に、径方向外側に突出するレバーを有するレバー軸(従動回転体)がカムシャフトの端部にボルト結合され、可動案内部とレバー軸のレバーとがリンクによって枢支連結されている。そして、前記径方向ガイドに対向する位置には、渦巻き状ガイドを有する中間回転体がハウジングとレバー軸に対して相対回動可能に設けられ、前記可動案内部の軸方向の一方の端部に突設された略円弧状の複数の突条が前記渦巻き状ガイドに案内係合されている。また、中間回転体はハウジングに対して回転を進める側にゼンマイばねによって付勢されると共に、電磁ブレーキによって回転を遅らせる側の力を適宜受けるようになっている。
【0004】
この装置の場合、電磁ブレーキがOFF状態のときには、中間回転体がゼンマイばねの付勢力を受けハウジングに対して初期位置に位置されており、渦巻き状ガイドに突条でもって噛合う可動案内部は径方向外側に最大に変位し、リンクを引き起こしてハウジングとカムシャフトの組付角を最遅角位置または最進角位置に維持している。そして、この状態から電磁ブレーキがONにされると、中間回転体が減速されてハウジングに対して遅れ側に相対回転する結果、渦巻き状ガイドに噛合う可動案内部が径方向内側に変位し、今まで引き起こされていたリンクを次第に倒すようにしてハウジングとカムシャフトの組付角を最進角位置または最遅角位置に変更する。
【0005】
尚、電磁ブレーキは、電磁コイルと磁気誘導部材から成る制動力発生部がVTCカバー等の非回転部材に固定され、磁気誘導部材の端面に対峙する中間回転体が制動力を直接受ける制動力受部となっている。
【0006】
【発明が解決しようとする課題】
しかし、上記従来のバルブタイミング制御装置の場合、電磁ブレーキの制動力発生部(磁気誘導部材)と、制動力受部(中間回転体)の位置関係が相互に何等拘束されていないため、機関運転に伴なってカムシャフトの先端部が曲げ方向や回転方向に変動すると、その変動によって制動力発生部と制動力受部の間の間隔や対峙姿勢が変化し、所望の制動力が得られなくなる可能性がある。
【0007】
そこでこの出願の発明は、カムシャフトの先端部の変動に拘らず、制動力発生部と制動力受部の間の間隔や対峙姿勢を一定に維持できるようにして、常に安定した操作性能を得ることのできる内燃機関のバルブタイミング制御装置を提供しようとするものである。
【0008】
【課題を解決するための手段】
上述した課題を解決するための手段として、この出願の発明は、電磁ブレーキの制動力発生部を非回転部材に固定すると共に、電磁ブレーキの制動力受部を前記制動力発生部に軸受を介して相対回転自在に支持させ、前記制動力受部を、組付角操作機構の中間回転体に所定の遊びをもたせて連係させるようにした。
【0009】
この発明の場合、制動力受部は制動力発生部に軸受を介して支持されているため、外力の入力に拘らず両者の間隔は一定に維持される。また、制動力受部と中間回転体は所定の遊びを持たせて連係されているため、両者が所定距離以上に相対移動しない範囲では両者間に大きな荷重が伝達されない。このため、カムシャフトの変動は中間回転体から制動力受部に入力されにくくなる。したがって、これらのことから、制動力発生部と制動力受部の間の間隔や対峙姿勢を常に一定に維持することが可能となり、その結果、バルブタイミング制御装置の操作性が安定する。
【0010】
制動力受部と中間回転体は弾性体を介して連結することが望ましい。この場合、制動力受部と中間回転体の連結部において、弾性体によってカムシャフトの先端部の変動を吸収できるため、制動力受部と中間回転体の間の荷重伝達時のガタ付きや衝撃の発生を無くすことが可能となる。
【0011】
制動力発生部は、略円筒状の隙間を挟んで対向する一対の周面状の対向面を有する磁気誘導部材と、前記一対の対向面のうちの径方向内側の面に、複数の極歯要素が円周方向に沿って設けられた内側極歯と、前記一対の対向面のうちの径方向外側の面に、複数の極歯要素が円周方向に沿って設けられ、各極歯要素が前記内側極歯の極歯要素に対して円周方向にオフセットして配置された外側極歯と、内側極歯と外側極歯の間に磁界を生じさせる電磁コイルと、を備えた構成とし、前記制動力受部は、前記内側極歯と外側極歯の間の隙間に挿入される円筒壁を有するヒステリシス材を備えた構成としても良い。
【0012】
ヒステリシス材の磁気的ヒステリシス特性を利用するこのような電磁ブレーキにおいては、各極歯とヒステリシス材の間隔を狭めるほど大きな制動力が得られるため、両者の間隔はできる限り狭めることが望ましい。しかし、各極歯とヒステリシス材の間隔を狭めていくと、ヒステリシス材が両極歯に対して変動したときに、ヒステリシス材が極歯に接触し、それによってブレーキ制御が不安定になるばかりでなく、接触部相互の摩耗や損傷を招き易くなる。このバルブタイミング制御装置で用いるブレーキにおいては、制動力受部であるヒステリシス材と制動力発生部の極歯の間隔が軸受によって一定に維持され、しかも、中間回転体と制動力受部の間のガタ付きが両者間の遊びによって吸収されるため、ヒステリシス材と極歯の接触を招くことなく両者の間隔を充分に狭め、大きな制動力を得ることが可能となる。
【0013】
【発明の実施の形態】
次に、この出願の発明の一実施形態を図面に基づいて説明する。
【0014】
この実施形態は、この出願の発明にかかるバルブタイミング制御装置を内燃機関の吸気側の動力伝達系に適用したものであるが、排気側の動力伝達系に同様に適用することも可能である。
【0015】
バルブタイミング制御装置は、図1に示すように内燃機関のシリンダヘッド(図示せず)に回転自在に支持されたカムシャフト1と、このカムシャフト1の前端部に必要に応じて相対回動できるように組み付けられ、チェーン(図示せず)を介してクランクシャフト(図示せず)に連係されるタイミングスプロケット2を外周に有する駆動リング3(駆動回転体)と、この駆動リング3とカムシャフト1の前方側(図1中左側)に配置されて、両者3,1の組付角を操作する組付角操作機構4と、この組付角操作機構4のさらに前方側に配置されて、同機構4を駆動する操作力付与手段5と、内燃機関の図外のシリンダヘッドとヘッドカバーの前面に跨って取り付けられて組付角操作機構4と操作力付与手段5の前面と周域を覆う図外のVTCカバーと、を備えている。
【0016】
駆動リング3は、段差状の挿通孔6を備えた略円板状に形成され、この挿通孔6部分が、カムシャフト1の前端部に結合された従動軸部材7(従動回転体)に回転可能に組み付けられている。そして、駆動リング3の前面(カムシャフト1と逆側の面)には、図2に示すように、対面する平行な側壁を有する3つの径方向溝8(径方向ガイド)が同リング3のほぼ半径方向に沿うように形成されている。
【0017】
また、従動軸部材7は、図1に示すように、カムシャフト1の前端部に突き合される基部側外周に拡径部が形成されると共に、その拡径部よりも前方側の外周面に放射状に突出する三つのレバー9が一体に形成され、軸芯部を貫通するボルト10によってカムシャフト1に結合されている。各レバー9には、リンク11の基端がピン12によって枢支連結され、各リンク11の先端には前記各径方向溝8に摺動自在に係合する円柱状の突出部13が一体に形成されている。
【0018】
各リンク11は、突出部13が対応する径方向溝8に係合した状態において、ピン12を介して従動軸部材7に連結されているため、リンク11の先端側が外力を受けて径方向溝8に沿って変位すると、駆動リング3と従動軸部材7はリンク11の作用でもって突出部13の変位に応じた方向及び角度だけ相対回動する。
【0019】
また、各リンク11の先端部には、軸方向前方側に開口する収容穴14が形成され、この収容穴14に、後述する渦巻き溝15(渦巻き状ガイド)に係合する係合ピン16と、この係合ピン16を前方側(渦巻き溝15側)に付勢するコイルばね17とが収容されている。尚、この実施形態の場合、リンク11の先端の突出部13と係合ピン16、コイルばね17等によって径方向に変位可能な可動案内部が構成されている。
【0020】
一方、従動軸部材7のレバー9の突設位置よりも前方側には、円板状のフランジ壁を有する中間回転体18が軸受19を介して回転自在に支持されている。この中間回転体18のフランジ壁の後面側には断面半円状の前述の渦巻き溝15が形成され、この渦巻き溝15に、前記各リンク11の先端の係合ピン16が転動自在に案内係合されている。渦巻き溝15の渦巻きは、機関回転方向Rに沿って次第に縮径するように形成されている。したがって、各リンク11先端の係合ピン16が渦巻き溝15に係合した状態において、中間回転体18が駆動リング3に対して遅れ方向に相対回転すると、リンク11の先端部は径方向溝8に案内されつつ、渦巻き溝15の渦巻き形状に誘導されて半径方向内側に移動し、逆に、中間回転体18が進み方向に相対変位すると、半径方向外側に移動する。
【0021】
尚、図中48,49は、駆動リング3と中間回転体18が設定角度以上に相対回動したときに当接して両者3,18の回動を規制する突起とストッパである。
【0022】
組付角操作機構4は、以上説明した駆動リング3の径方向溝8、リンク11、突出部13、係合ピン16、レバー9、中間回転体18、渦巻き溝15等によって構成されている。この組付角操作機構4は、操作力付与手段5から中間回転体18にカムシャフト1に対する相対的な回動操作力が入力されると、その操作力が渦巻き溝15と係合ピン16の係合部を通してリンク11の先端を径方向に変位させ、このときリンク11とレバー9の作用でもって駆動リング3と従動軸部材7に相対的な回動力を伝達する。
【0023】
一方、操作力付与手段5は、中間回転体18を駆動リング3に対して機関回転方向Rに付勢するゼンマイばね47と、中間回転体18を駆動リング3に対して機関回転方向Rと逆方向に付勢すべく制動機構であるヒステリシスブレーキ20(電磁ブレーキ)と、を備えて成り、内燃機関の運転状態に応じてヒステリシスブケーキ20の制動力を適宜制御することにより、中間回転体18を駆動リング3に対して相対回動させ、或は、両者の回転位置を維持するようになっている。
【0024】
ゼンマイばね47は、駆動リング3に延設された円筒壁21にその外周端部が結合される一方、内周端部が中間回転体18の円筒状の基部に結合され、全体が中間回転体18のフランジ壁の前方側スペースに配置されている。また、中間回転体18のカムシャフト1と逆側の端面には、封止壁50が一体に結合され、その封止壁50の外周面が前記円筒壁21の内面に摺動自在に密接している。中間回転体18には、先端部がカムシャフト1と逆側方向に突出する一対の連結ピン53が封止壁50を貫通して取り付けられている。この連結ピン53については後述する。
【0025】
一方、ヒステリシスブレーキ20は、非回転部材であるVTCカバーに取り付けられ、略円筒状の隙間を挟んで対向する一対の周面状の対向面を有する磁気誘導部材22と、前記両対向面に夫々設けられた内側極歯23、及び、外側極歯24と、磁気誘導部材22に取り付けられて内側極歯23と外側極歯24の間に磁界を生じさせる電磁コイル25と、前記中間回転体18に連結された状態で前記両極歯23,24間に挿入配置された円筒状のヒステリシスリング26と、を備え、電磁コイル25が図外のコントローラによって通電制御されるようになっている。
【0026】
この実施形態の場合、ヒステリシスブレーキ20は図1,図4に示すようにユニット化されている。
【0027】
磁気誘導部材22は、外周面に内側極歯23を有する内歯リング27と、内周面に外側極歯24を有する外歯リング28と、内歯リング27と外歯リング28を連結する連結リング29とから構成されている。そして、連結リング29の極歯23,24に臨む側の外周コーナ部分には環状の段部が設けられ、その段部に前記電磁コイル25が嵌合装着されている。
【0028】
また、前記内側極歯23と外側極歯24は夫々軸方向に沿って延出する複数の極歯要素を有している。両極歯23,24の極歯要素は夫々円周方向に沿って配置され、極歯23,24の極歯要素相互は円周方向に相互にオフセットされている。したがって、電磁コイル25が通電されると、両極歯23,24間には、オフセットした位置関係にある相手極歯要素に向かう磁界が発生する。
【0029】
また、電磁コイル25の通電のためのハーネス25aは、磁気誘導部材22(外歯リング28)を径方向外側に貫通し、磁気誘導部材22の外周面側から外部に引き出されている。磁気誘導部材22内の磁路断面積は径方向外側ほど大きく確保できるため、この実施形態のようにハーネス引き出し部を磁気誘導部材22を径方向外側に貫通するように設けた場合には、ハーネス引出し部を設けたことによる磁路断面積の損失の影響は少なくなる。
【0030】
一方、ヒステリシスリング20は、磁気的ヒステリシス特性を有するヒステリシス材から成り、前記両極歯23,24の隙間から突出したその端部には、金属製の円環プレート33(プレート部材)が嵌着固定されている。この円環プレート33は、前記連結リング29の内周面に軸受34,35を介して支持されたステンレス製の軸部材36に一体に結合されている。したがって、ヒステリシスリング20は、円環プレート33と軸部材36を介して磁気誘導部材22に相対回転可能に支持されている。尚、軸部材36は非磁性体であるステンレスによって形成されているため、電磁コイル25の磁束が軸部材36を通過することによって軸部材36に異物が吸着する不具合は生じない。
【0031】
また、円環プレート33の裏面(カムシャフト1側の面)には、一対の円形状の凹部37が設けられ、その各凹部37にゴムブッシュ38(弾性体)を介して中間回転体18側の連結ピン53が嵌合されている。したがって、円環プレート33及びヒステリシスリング20は、ゴムブッシュ38と連結ピン53を介して中間回転体18と一体に回転する。尚、ゴムブッシュ38は弾性を有し、連結ピン53と凹部37の間の若干の相対変位を許容するため、円環プレート33と中間回転体18は所定の遊びをもって連係されているものと言える。また、円環プレート33の裏面の外周縁部には円環状の肉抜き溝31(肉抜き部)が設けられ、その肉抜き溝31によって回転アンバランスを招くことなく円環プレート33の軽量化が図られている。
【0032】
この実施形態の場合、ゴムブッシュ38はほぼ一定肉厚の円筒状に形成され、連結ピン53の外周面に予め加硫接着されている。そして、各連結ピン53の先端部のゴムブッシュ38は、ヒステリシスブレーキ20の設置時に円環プレート33の凹部37内に圧入嵌合される。
【0033】
ここで、前記円環プレート33は、図1,図4に示すように、軸受34,35とスペーサ40と共に軸部材36の頭部36aとナット41の間に挟み込まれることにより、磁気誘導部材22に対して位置固定されているが、磁気誘導部材22の円環プレート33側の端面には、内側極歯23よりも径方向内側位置から軸方向に窪む凹部30が設けられ、円環プレート33の径方向内側領域がこの凹部30内に突出している。そして、円環プレート33のうちの、前記連結ピン53が係合される凹部37や、軸部材36の頭部36aの座面は凹部30側に突出した部分に偏寄して配置されている。したがって、磁気誘導部材22と環状プレート33の組付時における軸方向長さは磁気誘導部材22に凹部30を設けたことによって短縮されている。
【0034】
また、磁気誘導部材22に対する円環プレート33の組付けについてさらに詳しく説明すると、最初に、環状プレート33側の軸受34を、磁気誘導部材22(連結リング29)の中心孔に、その孔内の軸方向略中央の突起32に当接するまで挿入し、軸受34がその突起32に突き当たったところで、軸受34のアウタレースを磁気誘導部材22の円環プレート33側の孔縁にかしめ固定する。次に、円環プレート33を挿入係合した軸部材36をその先端部側から軸受34のインナレースに圧入する。これにより、軸部材36が軸受34を介して磁気誘導部材22に係止され、円環プレート33もこのとき同時に係止される。この後、中心孔の反対側から軸部材36にスペーサ40を嵌挿し、これにつづいて、インナレースがスペーサ40に突き当たるまで他方の軸受35を軸部材36に圧入し、この状態のまま軸部材36の先端部にナット41を螺着する。各軸受34,35のインナレースと円環プレート33は、このナット41の締め込みによって相互に固定される。ただし、磁気誘導部材22の内周の突起32の軸方向長さは、スペーサ40の軸方向長さよりも短く設定され、ナット41を締め込んでいった場合であっても、軸受35のアウタレースが過剰な力で突起に押付けられないようになっている。
【0035】
尚、この実施形態の場合、ヒステリシスブレーキ20の制動力発生部は、極歯23,24を含む磁気誘導部材22と、電磁コイル25によって構成され、制動力受部は、ヒステリシスリング26と円環プレート33によって構成されている。
【0036】
このバルブタイミング制御装置は以上のような構成であるため、内燃機関の始動時やアイドル運転時には、ヒステリシスブレーキ20の電磁コイル25の励磁をオフにしておくことにより、ゼンマイばね47の力によって中間回転体18を駆動リング3に対して機関回転方向Rに最大に回転させておく(図2参照)。これにより、クランクシャフトとカムシャフト1の回転位相(機関弁の開閉タイミング)は最遅角側に維持され、機関回転の安定化と燃費の向上が図られる。
【0037】
そして、この状態から機関の運転が通常運転に移行し、前記回転位相を最進角側に変更すべき指令が図外のコントローラから発されると、ヒステリシスブレーキ20の電磁コイル25の励磁がオンにされ、ゼンマイばね47に抗する制動力が円環プレート33から中間回転体18にゴムブッシュ38と連結ピン53を介して伝達される。これにより、中間回転体18が駆動リング3に対して逆方向に回転し、それによってリンク11の先端の係合ピン16が渦巻き溝15に誘導されてリンク11の先端部が径方向溝8に沿って変位し、図3に示すようにリンク11の作用によって駆動リング3と従動軸部材7の組付角が最進角側に変更される。この結果、クランクシャフトとカムシャフト1の回転位相が最進角側に変更され、それによって機関の高出力化が図られることとなる。
【0038】
また、この状態から前記回転位相を最遅角側に変更すべく指令がコントローラから発されると、ヒステリシスブレーキ20の電磁コイル25の励磁がオフにされ、再度ゼンマイばね47の力によって中間回転体18が機関回転方向Rに回転させられる。すると、渦巻き溝15による係合ピン16の誘導によってリンク11が上記と逆方向に揺動し、図2に示すようにそのリンク11の作用によって駆動リング3の従動軸部材7の組付角が再度遅角側に変更される。
【0039】
尚、このバルブタイミング制御装置によるクランクシャフトとカムシャフト1の回転位相は、以上で説明した最遅角と最進角の二種の位相ばかりでなく、ヒステリシスブレーキ20の制動力の制御によって任意の位相に変更し、ゼンマイばね47の力とヒステリシスブレーキ20の制動力のバランスによってその位相を保持することができる。
【0040】
ところで、このバルブタイミング制御装置は、ヒステリシスブレーキ20の制動力受部側の円環プレート33が、制動力発生部側の磁気誘導部材22に軸受34,35を介して支持され、かつ、円環プレート33と中間回転体18がゴムブッシュ38を介して所定の遊び代をもって連係されているため、機関運転中に、中間回転体18がカムシャフト1と一体に曲げ方向や回転方向に変動することがあっても、その変動によって円環プレート33がガタ付く不具合は生じない。したがって、円環プレート33と一体化されたヒステリシスリング26は、内側極歯23と外側極歯24に対して常に一定の間隔と姿勢を維持される。よって、ヒステリシスブレーキ20は、大きな制動力を確保するためにヒステリシスリング26と極歯23,24の間のギャップを充分に狭めても、安定した制動性能を発揮することが可能となり、バルブタイミング制御装置は、これにより操作性能が確実に向上する。
【0041】
また、この実施形態のバルブタイミング制御装置の場合、中間回転体18に突設した連結ピン53の先端部と円環プレート33の凹部37の間にゴムブッシュ38を介装しているため、カムシャフト1と一体の中間回転体18の変動をこのゴムブッシュ38部分で許容することができると共に、連結ピン53と凹部37の相対変位に伴うガタ付き音や衝撃の発生をゴムブッシュ38の弾性によって防止することができる。
【0042】
尚、ヒステリシスブレーキ20のヒステリシス材(ヒステリシスリング26)は、この実施形態の場合、全体を円筒形状に形成して、別部材の円環プレート33を介して中間回転体18に連結したが、極歯23,24間に非接触状態で介装される円筒壁を有するものであれば、全体を有底円筒形状その他の形状に形成するようにしても良い。ただし、この実施形態のようにヒステリシス材を円筒形状に形成してその端部に別体のプレート部材(円環プレート33)を取り付けるようにした場合には、中間回転体18との連結部を材料コストが安く、造形の容易な材料によって形成できるため、製品全体の製造コストの削減を図ることができる。
【0043】
また、連結ピン53の先端部は、図7,図8に示すような他の形態を採用することも可能である。
【0044】
図7は、ゴムブッシュ138の軸方向両端側の外周面に、金属等の高硬度材料から成る円筒状の当接部材45を加硫接着し、この当接部材45の外周面を円環プレート33の凹部37に圧入するようにしたものである。この場合、高硬度の当接部材45部分で凹部37に当接するため、ゴムブッシュ138を凹部37に圧入することに伴なう同ブッシュ138のいびつな変形や、経時使用によるゴムブッシュ138の外周面の摩耗を防止することができると共に、凹部37からのゴムブッシュ138の脱落を防止することができる。
【0045】
また、図8は、ゴムブッシュ238の全体形状を樽形に形成したものである。この場合、ゴムブッシュ238の軸方向の端部に過大な荷重が入力されにくくなるため、ゴムブッシュ238の早期劣化を防止することができる。
【0046】
次に、上記の実施形態から把握し得る請求項に記載以外の発明について、以下にその作用効果と共に記載する。
【0047】
(イ)前記弾性体を制動力受部と中間回転体の一方に突設された連結ピンの外周に加硫接着し、制動力受部と中間回転体の他方に設けられた凹部に、前記弾性体を連結ピンと共に圧入したことを特徴とする請求項2または3に記載の内燃機関のバルブタイミング制御装置。
【0048】
この場合、極めて簡単な構造でありながら、制動力受部と中間回転体を弾性体を介して確実に連結することが可能となる。
【0049】
(ロ)前記弾性体の外周面の少なくとも一部に、その弾性体よりも高硬度の当接部材を取り付け、その当接部材を前記凹部に圧入したことを特徴とする(イ)に記載の内燃機関のパルブタイミング制御装置。
【0050】
この場合、弾性体の外周側の少なくとも一部が高硬度の当接部材を介して接触するため、弾性体の外周面の凹部への圧入に伴なう歪の発生や、経時使用による弾性体の外周面の摩耗その他の劣化を防止することができると共に、凹部からの弾性体の脱落を確実に防止することができる。
【0051】
(ハ)前記当接部材を弾性体に加硫接着したことを特徴とする(ロ)に記載の内燃機関のバルブタイミング制御装置。
【0052】
この場合、当接部材から弾性体が脱落する不具合を無くすことができる。
【0053】
(ニ)前記弾性体を樽形状に形成したことを特徴とする(イ)に記載の内燃機関のバルブタイミング制御装置。
【0054】
この場合、荷重入力時に弾性体の軸方向の端部に応力が集中する不具合を無くし、弾性体の耐久性を向上させることができる。
【0055】
(ホ)前記制動力受部を円筒状のヒステリシス材と、そのヒステリシス材の端部に結合された別材料から成るプレート部材によって構成し、このプレート部材と中間回転体を所定の遊びを持たせて連係させたことを特徴とする請求項3に記載の内燃機関のバルブタイミング制御装置。
【0056】
この場合、プレート部材を、ヒステリシス材に比較して材料コストが安く、造形の容易な材料によって形成することにより、製造コストの高騰を招くことなく、制動力受部と中間回転体の連係部を造形することが可能となる。
【0057】
(ヘ)磁気誘導部材の前記プレート部材に臨む側の端面のうちの、内側極歯よりも径方向内側に凹部を設け、その凹部内に前記プレート部材の一部を突出させたことを特徴とする(ホ)に記載の内燃機関のバルブタイミング制御装置。
【0058】
この場合、凹部は、磁気誘導部材の内側極歯よりも径方向内側にあって磁気誘導部材内の磁束の流れに殆ど影響を与えることがない。そして、この凹部内にプレート部材の一部を突出させたため、その分、プレート部材の磁気誘導部材と逆側の張り出しを小さくし、磁気誘導部材とプレート部材を組付けた状態における総軸長を短縮することができる。また、磁気誘導部材に凹部を設けた分、軽量化も可能となる。
【0059】
(ト)前記プレート部材に環状の肉抜き部を設けたことを特徴とする(ホ)または(ヘ)に記載の内燃機関のバルブタイミング制御装置。
【0060】
この場合、肉抜き部は環状であるため、プレート部材はアンバランスな慣性力を生じることなく、充分に軽量化される。
【図面の簡単な説明】
【図1】この出願の発明の一実施形態を示す縦断面図。
【図2】同実施形態を示す図1のA−A線に沿う断面図。
【図3】同実施形態の作動状態を示す図2に対応の断面図。
【図4】同実施形態を示す分解斜視図。
【図5】同実施形態を示す部品の斜視図。
【図6】同実施形態を示す部品の正面図。
【図7】この出願の発明の他の実施形態を示す断面図。
【図8】この出願の発明のさらに他の実施形態を示す断面図。
【符号の説明】
1…カムシャフト
3…駆動リング(駆動回転体)
4…組付角操作機構
7…従動軸部材(従動回転体)
18…中間回転体(回転部材)
20…ヒステリシスブレーキ(電磁ブレーキ)
22…磁気誘導部材(制動力発生部)
23…内側極歯
24…外側極歯
25…電磁コイル(制動力発生部)
26…ヒステリシスリング(制動力受部、ヒステリシス材)
33…円環プレート(制動力受部)
34,35…軸受
38…ゴムブッシュ(弾性体)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a valve timing control device for an internal combustion engine that variably controls the opening / closing timing of an intake-side or exhaust-side engine valve of the internal combustion engine in accordance with an operating state.
[0002]
[Prior art]
As this type of valve timing control device, there is one described in JP-A-2001-41013.
[0003]
In this device, a housing (drive rotating body) linked to a crankshaft via a timing chain or the like is rotatably assembled to an end of a camshaft, and a movable guide is formed on a radial guide formed on an inner end surface of the housing. A lever shaft (followed rotating body) having a lever protruding outward in the radial direction is bolted to an end of the camshaft, and the movable guide portion and the lever The shaft lever and the shaft are pivotally connected by a link. An intermediate rotating body having a spiral guide is provided at a position facing the radial guide so as to be rotatable relative to the housing and the lever shaft, and is provided at one end of the movable guide portion in the axial direction. A plurality of projecting substantially arc-shaped projections are guided and engaged with the spiral guide. The intermediate rotator is biased by a spring to the side that advances the rotation with respect to the housing, and receives an appropriate force on the side that delays the rotation by an electromagnetic brake.
[0004]
In the case of this device, when the electromagnetic brake is in the OFF state, the intermediate rotating body is located at the initial position with respect to the housing under the urging force of the mainspring spring, and the movable guide portion that meshes with the spiral guide with a ridge is provided. It is maximally displaced radially outward, causing a link to maintain the assembly angle between the housing and the camshaft at the most retarded position or the most advanced position. Then, when the electromagnetic brake is turned ON from this state, the intermediate rotating body is decelerated and relatively rotates with respect to the delay side with respect to the housing. As a result, the movable guide portion meshing with the spiral guide is displaced radially inward, The assembling angle between the housing and the camshaft is changed to the most advanced position or the most retarded position by gradually tilting the link that has been caused so far.
[0005]
In the electromagnetic brake, a braking force generating portion composed of an electromagnetic coil and a magnetic induction member is fixed to a non-rotating member such as a VTC cover, and an intermediate rotating body facing the end surface of the magnetic induction member receives a braking force directly receiving the braking force. Department.
[0006]
[Problems to be solved by the invention]
However, in the case of the above-described conventional valve timing control device, since the positional relationship between the braking force generating portion (magnetic induction member) of the electromagnetic brake and the braking force receiving portion (intermediate rotating body) is not restricted at all, the engine operation is not performed. When the tip of the camshaft fluctuates in the bending direction or rotation direction, the distance between the braking force generating unit and the braking force receiving unit and the facing position change, and the desired braking force cannot be obtained. there is a possibility.
[0007]
Therefore, the invention of this application enables to always maintain a stable operation performance by maintaining a constant distance or facing position between the braking force generating unit and the braking force receiving unit irrespective of the fluctuation of the tip of the camshaft. It is an object of the present invention to provide a valve timing control device for an internal combustion engine that can perform the above.
[0008]
[Means for Solving the Problems]
As means for solving the above-described problems, the invention of this application is to fix a braking force generating portion of an electromagnetic brake to a non-rotating member and to connect a braking force receiving portion of the electromagnetic brake to the braking force generating portion via a bearing. The braking force receiving portion is linked to the intermediate rotating body of the assembly angle operating mechanism with a predetermined play.
[0009]
In the case of the present invention, since the braking force receiving portion is supported by the braking force generating portion via the bearing, the distance between the two is kept constant regardless of the input of the external force. In addition, since the braking force receiving portion and the intermediate rotating body are linked with a predetermined play, a large load is not transmitted between the braking force receiving portion and the intermediate rotating body in a range where the both do not relatively move beyond a predetermined distance. For this reason, fluctuations of the camshaft are less likely to be input from the intermediate rotor to the braking force receiving portion. Therefore, from these facts, it is possible to always keep the distance between the braking force generating unit and the braking force receiving unit and the facing posture constant, and as a result, the operability of the valve timing control device is stabilized.
[0010]
It is desirable that the braking force receiving portion and the intermediate rotating body be connected via an elastic body. In this case, at the connecting portion between the braking force receiving portion and the intermediate rotating body, the elastic body can absorb the fluctuation of the tip portion of the camshaft. Can be eliminated.
[0011]
The braking force generating unit includes a magnetic induction member having a pair of circumferentially opposed surfaces facing each other across a substantially cylindrical gap, and a plurality of pole teeth on a radially inner surface of the pair of opposed surfaces. A plurality of pole tooth elements are provided along the circumferential direction on an inner pole tooth provided along the circumferential direction of the element, and a plurality of pole tooth elements are provided on a radially outer surface of the pair of opposed surfaces. Has an outer pole tooth arranged circumferentially offset with respect to the pole tooth element of the inner pole tooth, and an electromagnetic coil that generates a magnetic field between the inner pole tooth and the outer pole tooth. The braking force receiving portion may include a hysteresis member having a cylindrical wall inserted into a gap between the inner pole teeth and the outer pole teeth.
[0012]
In such an electromagnetic brake utilizing the magnetic hysteresis characteristics of the hysteresis material, a greater braking force is obtained as the distance between each pole tooth and the hysteresis material is reduced. Therefore, it is desirable that the distance between the two be reduced as much as possible. However, when the distance between each pole tooth and the hysteresis material is reduced, when the hysteresis material fluctuates with respect to both pole teeth, the hysteresis material comes into contact with the pole teeth, thereby causing unstable brake control, In addition, the contact portions are likely to be worn or damaged. In the brake used in this valve timing control device, the distance between the hysteresis material, which is the braking force receiving portion, and the pole teeth of the braking force generating portion is kept constant by the bearing, and the distance between the intermediate rotating body and the braking force receiving portion is maintained. Since the play is absorbed by the play between the two, the gap between the hysteresis material and the pole teeth can be sufficiently reduced without causing contact with the pole teeth, and a large braking force can be obtained.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the invention of this application will be described based on the drawings.
[0014]
In this embodiment, the valve timing control device according to the invention of this application is applied to a power transmission system on the intake side of an internal combustion engine. However, the valve timing control device can be similarly applied to a power transmission system on the exhaust side.
[0015]
As shown in FIG. 1, the valve timing control device is rotatable relative to a camshaft 1 rotatably supported by a cylinder head (not shown) of an internal combustion engine, and can rotate relative to the front end of the camshaft 1 as necessary. Ring (drive rotary member) having a timing sprocket 2 on its outer periphery, which is linked to a crankshaft (not shown) via a chain (not shown), and the drive ring 3 and the camshaft 1 1 is arranged on the front side (the left side in FIG. 1) of the assembling angle operating mechanism 4 for operating the assembling angle of the both 3 and 1; FIG. 2 is a diagram showing an operating force applying means 5 for driving the mechanism 4, and a cylinder head (not shown) of the internal combustion engine, which is attached across a front surface of a head cover and covers the front surface and the peripheral area of the assembly angle operating mechanism 4 and the operating force applying means 5. VT outside And it includes a cover, a.
[0016]
The drive ring 3 is formed in a substantially disk shape having a stepped insertion hole 6, and the insertion hole 6 is rotated by a driven shaft member 7 (driven rotation body) coupled to the front end of the camshaft 1. Assembled as possible. As shown in FIG. 2, three radial grooves 8 (radial guides) having parallel side walls facing each other are formed on the front surface of the drive ring 3 (the surface opposite to the camshaft 1). It is formed substantially along the radial direction.
[0017]
As shown in FIG. 1, the driven shaft member 7 has an enlarged-diameter portion formed on an outer periphery of a base portion that abuts on a front end portion of the camshaft 1, and has an outer peripheral surface on a front side of the enlarged diameter portion. Three levers 9 projecting radially are integrally formed and connected to the camshaft 1 by bolts 10 penetrating the shaft core. A base end of a link 11 is pivotally connected to each lever 9 by a pin 12, and a column-shaped projection 13 slidably engaged with each of the radial grooves 8 is integrally formed at a distal end of each link 11. Is formed.
[0018]
Each link 11 is connected to the driven shaft member 7 via the pin 12 in a state where the protrusion 13 is engaged with the corresponding radial groove 8. When displaced along 8, the drive ring 3 and the driven shaft member 7 rotate relative to each other by the action of the link 11 in a direction and an angle corresponding to the displacement of the projection 13.
[0019]
A receiving hole 14 is formed at the distal end of each link 11 and opens forward in the axial direction. The receiving hole 14 has an engaging pin 16 that engages with a spiral groove 15 (a spiral guide) described later. And a coil spring 17 for urging the engagement pin 16 forward (toward the spiral groove 15). In the case of this embodiment, a movable guide portion that can be displaced in the radial direction is configured by the protrusion 13 at the tip of the link 11, the engagement pin 16, the coil spring 17, and the like.
[0020]
On the other hand, an intermediate rotating body 18 having a disk-shaped flange wall is rotatably supported via a bearing 19 in front of the driven shaft member 7 at a position forward of the lever 9. The above-mentioned spiral groove 15 having a semicircular cross section is formed on the rear surface side of the flange wall of the intermediate rotating body 18, and the engaging pin 16 at the tip of each link 11 is guided in the spiral groove 15 so as to freely roll. Is engaged. The spiral of the spiral groove 15 is formed so that its diameter gradually decreases along the engine rotation direction R. Therefore, when the intermediate rotating body 18 relatively rotates in the delay direction with respect to the drive ring 3 in a state where the engaging pin 16 at the tip of each link 11 is engaged with the spiral groove 15, the tip of the link 11 is While being guided by the spiral shape of the spiral groove 15 and moving inward in the radial direction, conversely, when the intermediate rotating body 18 is relatively displaced in the advancing direction, it moves outward in the radial direction.
[0021]
Reference numerals 48 and 49 in the figure denote projections and stoppers that come into contact with each other when the drive ring 3 and the intermediate rotating body 18 rotate relative to each other by more than a set angle, thereby restricting the rotation of the two.
[0022]
The assembling angle operating mechanism 4 includes the radial groove 8, the link 11, the protrusion 13, the engaging pin 16, the lever 9, the intermediate rotating body 18, the spiral groove 15, and the like of the drive ring 3 described above. When the relative rotation operation force with respect to the camshaft 1 is input from the operation force applying means 5 to the intermediate rotating body 18, the operation angle operation mechanism 4 applies the operation force to the spiral groove 15 and the engagement pin 16. The distal end of the link 11 is displaced in the radial direction through the engaging portion, and at this time, relative rotational power is transmitted to the drive ring 3 and the driven shaft member 7 by the action of the link 11 and the lever 9.
[0023]
On the other hand, the operating force applying means 5 includes a mainspring spring 47 for urging the intermediate rotating body 18 in the engine rotation direction R with respect to the drive ring 3, and an operating force applying means 5 for rotating the intermediate rotating body 18 with respect to the drive ring 3 in the engine rotation direction R. A hysteresis brake 20 (electromagnetic brake), which is a braking mechanism, for urging the intermediate rotating body 18 in the direction. Is rotated relative to the drive ring 3 or the rotational positions of both are maintained.
[0024]
The mainspring spring 47 has an outer peripheral end coupled to the cylindrical wall 21 extending from the drive ring 3, and an inner peripheral end coupled to the cylindrical base of the intermediate rotating body 18, and is entirely formed of the intermediate rotating body. 18 are arranged in the front space of the flange wall. A sealing wall 50 is integrally connected to the end face of the intermediate rotating body 18 opposite to the camshaft 1, and the outer peripheral surface of the sealing wall 50 is slidably in close contact with the inner surface of the cylindrical wall 21. ing. A pair of connecting pins 53 whose tips project in the direction opposite to the camshaft 1 penetrate the sealing wall 50 and are attached to the intermediate rotating body 18. This connecting pin 53 will be described later.
[0025]
On the other hand, the hysteresis brake 20 is attached to a VTC cover that is a non-rotating member, and has a pair of circumferentially facing magnetic induction members 22 that face each other across a substantially cylindrical gap. The inner pole teeth 23 and the outer pole teeth 24 provided; an electromagnetic coil 25 attached to the magnetic induction member 22 to generate a magnetic field between the inner pole teeth 23 and the outer pole teeth 24; And a cylindrical hysteresis ring 26 inserted between the bipolar teeth 23 and 24 in a state where the electromagnetic coil 25 is connected to the pole teeth 23 and 24. The electromagnetic coil 25 is energized by a controller (not shown).
[0026]
In the case of this embodiment, the hysteresis brake 20 is unitized as shown in FIGS.
[0027]
The magnetic guide member 22 includes an inner tooth ring 27 having inner pole teeth 23 on the outer peripheral surface, an outer tooth ring 28 having outer polar teeth 24 on the inner peripheral surface, and a connection connecting the inner tooth ring 27 and the outer tooth ring 28. And a ring 29. An annular step is provided at the outer peripheral corner of the connecting ring 29 on the side facing the pole teeth 23, 24, and the electromagnetic coil 25 is fitted and mounted on the step.
[0028]
Further, the inner pole teeth 23 and the outer pole teeth 24 each have a plurality of pole tooth elements extending along the axial direction. The pole teeth elements of the both pole teeth 23 and 24 are respectively arranged along the circumferential direction, and the pole tooth elements of the pole teeth 23 and 24 are mutually offset in the circumferential direction. Therefore, when the electromagnetic coil 25 is energized, a magnetic field is generated between the two pole teeth 23 and 24 toward the partner pole tooth element having an offset positional relationship.
[0029]
A harness 25a for energizing the electromagnetic coil 25 penetrates the magnetic induction member 22 (the external tooth ring 28) radially outward, and is drawn out from the outer peripheral surface side of the magnetic induction member 22. Since the cross-sectional area of the magnetic path in the magnetic guide member 22 can be secured to be larger toward the outside in the radial direction, when the harness lead-out portion is provided so as to penetrate the magnetic guide member 22 to the radial outside as in this embodiment, The influence of the loss of the magnetic path cross-sectional area due to the provision of the lead portion is reduced.
[0030]
On the other hand, the hysteresis ring 20 is made of a hysteresis material having magnetic hysteresis characteristics, and a metal annular plate 33 (plate member) is fitted and fixed to an end protruding from the gap between the bipolar teeth 23 and 24. Have been. The annular plate 33 is integrally connected to a stainless steel shaft member 36 supported on the inner peripheral surface of the connection ring 29 via bearings 34 and 35. Therefore, the hysteresis ring 20 is rotatably supported by the magnetic guide member 22 via the annular plate 33 and the shaft member 36. Since the shaft member 36 is formed of stainless steel, which is a non-magnetic material, there is no problem that the magnetic flux of the electromagnetic coil 25 passes through the shaft member 36 and foreign matter is attracted to the shaft member 36.
[0031]
In addition, a pair of circular concave portions 37 are provided on the back surface (the surface on the camshaft 1 side) of the annular plate 33, and each of the concave portions 37 is provided with a rubber bush 38 (elastic body) on the intermediate rotating body 18 side. Are connected. Therefore, the annular plate 33 and the hysteresis ring 20 rotate integrally with the intermediate rotating body 18 via the rubber bush 38 and the connecting pin 53. Since the rubber bush 38 has elasticity and allows a slight relative displacement between the connecting pin 53 and the concave portion 37, it can be said that the annular plate 33 and the intermediate rotating body 18 are linked with a predetermined play. . An annular lightening groove 31 (lightening portion) is provided on the outer peripheral edge of the back surface of the annular plate 33, and the lightening groove 31 reduces the weight of the annular plate 33 without causing rotational imbalance. Is planned.
[0032]
In the case of this embodiment, the rubber bush 38 is formed in a cylindrical shape having a substantially constant thickness, and is previously vulcanized and bonded to the outer peripheral surface of the connecting pin 53. The rubber bush 38 at the tip of each connecting pin 53 is press-fitted into the recess 37 of the annular plate 33 when the hysteresis brake 20 is installed.
[0033]
Here, as shown in FIGS. 1 and 4, the annular plate 33 is sandwiched between the head 36a of the shaft member 36 and the nut 41 together with the bearings 34 and 35 and the spacer 40, so that the magnetic induction member 22 is formed. The magnetic guide member 22 is provided with a recess 30 that is axially recessed from a position radially inward of the inner pole teeth 23 on the end surface of the magnetic guide member 22 on the side of the annular plate 33. A radially inner region 33 projects into the recess 30. In the annular plate 33, the concave portion 37 with which the connecting pin 53 is engaged and the seat surface of the head portion 36a of the shaft member 36 are arranged so as to be deviated to a portion protruding toward the concave portion 30 side. . Therefore, the length in the axial direction when the magnetic guide member 22 and the annular plate 33 are assembled is reduced by providing the concave portion 30 in the magnetic guide member 22.
[0034]
Further, the assembling of the annular plate 33 to the magnetic guide member 22 will be described in more detail. First, the bearing 34 on the annular plate 33 side is attached to the center hole of the magnetic guide member 22 (the connection ring 29). The outer race of the bearing 34 is caulked and fixed to the hole edge of the magnetic guide member 22 on the side of the annular plate 33 when the bearing 34 abuts the projection 32 at the substantially central portion in the axial direction. Next, the shaft member 36 into which the annular plate 33 is inserted and engaged is pressed into the inner race of the bearing 34 from the tip end side. Thus, the shaft member 36 is locked to the magnetic guide member 22 via the bearing 34, and the annular plate 33 is also locked at this time. Thereafter, the spacer 40 is inserted into the shaft member 36 from the opposite side of the center hole, and then the other bearing 35 is pressed into the shaft member 36 until the inner race hits the spacer 40. A nut 41 is screwed into the tip of the 36. The inner races of the bearings 34 and 35 and the annular plate 33 are fixed to each other by tightening the nut 41. However, the axial length of the protrusion 32 on the inner circumference of the magnetic guide member 22 is set shorter than the axial length of the spacer 40, and even if the nut 41 is tightened, the outer race of the bearing 35 is It cannot be pressed against the projection with excessive force.
[0035]
In this embodiment, the braking force generating portion of the hysteresis brake 20 is constituted by the magnetic induction member 22 including the pole teeth 23 and 24 and the electromagnetic coil 25, and the braking force receiving portion is formed by the hysteresis ring 26 and the ring. It is constituted by a plate 33.
[0036]
Since the valve timing control device is configured as described above, the excitation of the electromagnetic coil 25 of the hysteresis brake 20 is turned off at the time of starting the internal combustion engine or at the time of idling, whereby the intermediate rotation is performed by the force of the mainspring spring 47. The body 18 is rotated to the maximum in the engine rotation direction R with respect to the drive ring 3 (see FIG. 2). As a result, the rotational phase of the crankshaft and the camshaft 1 (opening / closing timing of the engine valve) is maintained at the most retarded side, so that engine rotation is stabilized and fuel efficiency is improved.
[0037]
Then, from this state, the operation of the engine shifts to the normal operation, and when a command to change the rotation phase to the most advanced side is issued from a controller (not shown), the excitation of the electromagnetic coil 25 of the hysteresis brake 20 is turned on. The braking force against the mainspring 47 is transmitted from the annular plate 33 to the intermediate rotating body 18 via the rubber bush 38 and the connecting pin 53. As a result, the intermediate rotating body 18 rotates in the opposite direction with respect to the drive ring 3, whereby the engaging pin 16 at the tip of the link 11 is guided to the spiral groove 15, and the tip of the link 11 is inserted into the radial groove 8. 3, the assembling angle between the drive ring 3 and the driven shaft member 7 is changed to the most advanced angle side by the action of the link 11, as shown in FIG. As a result, the rotation phases of the crankshaft and the camshaft 1 are changed to the most advanced angle side, thereby increasing the output of the engine.
[0038]
When a command is issued from the controller to change the rotation phase to the most retarded side from this state, the excitation of the electromagnetic coil 25 of the hysteresis brake 20 is turned off, and the force of the mainspring spring 47 is again applied to the intermediate rotating body. 18 is rotated in the engine rotation direction R. Then, the guide pin 16 guided by the spiral groove 15 causes the link 11 to swing in the opposite direction to the above, and as shown in FIG. 2, the action of the link 11 causes the angle of attachment of the driven shaft member 7 of the drive ring 3 to be reduced. It is changed to the retard side again.
[0039]
The rotation phase of the crankshaft and the camshaft 1 by this valve timing control device is not limited to the two phases of the most retarded angle and the most advanced angle described above, but may be any value determined by controlling the braking force of the hysteresis brake 20. The phase can be changed and the phase can be maintained by the balance between the force of the mainspring 47 and the braking force of the hysteresis brake 20.
[0040]
By the way, in this valve timing control device, the annular plate 33 on the braking force receiving portion side of the hysteresis brake 20 is supported by the magnetic induction member 22 on the braking force generating portion side via bearings 34 and 35 and Since the plate 33 and the intermediate rotating body 18 are linked with a predetermined play allowance via the rubber bush 38, the intermediate rotating body 18 fluctuates integrally with the camshaft 1 in the bending direction or the rotating direction during the operation of the engine. Even if there is, there is no problem that the annular plate 33 rattles due to the fluctuation. Therefore, the hysteresis ring 26 integrated with the annular plate 33 is always maintained at a constant distance and posture with respect to the inner pole teeth 23 and the outer pole teeth 24. Therefore, the hysteresis brake 20 can exhibit stable braking performance even if the gap between the hysteresis ring 26 and the pole teeth 23, 24 is sufficiently narrowed in order to secure a large braking force. The device thereby ensures improved operating performance.
[0041]
Further, in the case of the valve timing control device of this embodiment, the rubber bush 38 is interposed between the distal end of the connection pin 53 protruding from the intermediate rotating body 18 and the concave portion 37 of the annular plate 33, Fluctuations of the intermediate rotating body 18 integral with the shaft 1 can be tolerated at the rubber bush 38 portion, and rattling noise and impact due to relative displacement between the connecting pin 53 and the concave portion 37 can be reduced by the elasticity of the rubber bush 38. Can be prevented.
[0042]
In this embodiment, the hysteresis material (hysteresis ring 26) of the hysteresis brake 20 is formed in a cylindrical shape as a whole, and is connected to the intermediate rotating body 18 via a ring plate 33 as a separate member. As long as it has a cylindrical wall interposed between the teeth 23 and 24 in a non-contact state, the whole may be formed into a bottomed cylindrical shape or another shape. However, in the case where the hysteresis material is formed in a cylindrical shape and a separate plate member (annular plate 33) is attached to the end as in this embodiment, the connecting portion with the intermediate rotating body 18 is formed. Since the material can be formed with a low material cost and a material that can be easily formed, the manufacturing cost of the entire product can be reduced.
[0043]
Further, the tip portion of the connecting pin 53 can adopt another form as shown in FIGS.
[0044]
FIG. 7 shows a cylindrical contact member 45 made of a high-hardness material such as a metal, which is vulcanized and bonded to the outer peripheral surfaces of both ends in the axial direction of the rubber bush 138. 33 is press-fitted into the recess 37. In this case, since the high hardness abutting member 45 contacts the concave portion 37, the rubber bush 138 is deformed due to the press-fitting of the rubber bush 138 into the concave portion 37, or the outer periphery of the rubber bush 138 due to use over time. The wear of the surface can be prevented, and the rubber bush 138 can be prevented from falling off from the recess 37.
[0045]
FIG. 8 shows the overall shape of the rubber bush 238 formed in a barrel shape. In this case, since an excessive load is less likely to be input to the axial end of the rubber bush 238, early deterioration of the rubber bush 238 can be prevented.
[0046]
Next, inventions other than those described in the claims that can be grasped from the above-described embodiments will be described below together with their operational effects.
[0047]
(A) The elastic body is vulcanized and adhered to the outer periphery of a connecting pin protruding from one of the braking force receiving portion and the intermediate rotating body, and the elastic member is provided in a recess provided on the other of the braking force receiving portion and the intermediate rotating body. 4. The valve timing control device for an internal combustion engine according to claim 2, wherein the elastic body is press-fitted together with the connecting pin.
[0048]
In this case, it is possible to reliably connect the braking force receiving portion and the intermediate rotating body via the elastic body while having a very simple structure.
[0049]
(B) A contact member having a hardness higher than that of the elastic body is attached to at least a part of the outer peripheral surface of the elastic body, and the contact member is pressed into the recess. Valve timing control device for internal combustion engine.
[0050]
In this case, at least a part of the outer peripheral side of the elastic body comes into contact via a high-hardness abutting member, so that distortion occurs due to press-fitting of the outer peripheral surface of the elastic body into the concave portion or the elastic body due to use over time. Wear and other deterioration of the outer peripheral surface of the elastic member can be prevented, and the elastic body can be reliably prevented from falling off from the concave portion.
[0051]
(C) The valve timing control device for an internal combustion engine according to (B), wherein the contact member is vulcanized and bonded to an elastic body.
[0052]
In this case, it is possible to eliminate the problem that the elastic body falls off from the contact member.
[0053]
(D) The valve timing control device for an internal combustion engine according to (a), wherein the elastic body is formed in a barrel shape.
[0054]
In this case, it is possible to eliminate the problem that stress is concentrated on the axial end of the elastic body when a load is input, and to improve the durability of the elastic body.
[0055]
(E) The braking force receiving portion is constituted by a cylindrical hysteresis material and a plate member made of another material joined to an end of the hysteresis material, and the plate member and the intermediate rotating body have a predetermined play. The valve timing control device for an internal combustion engine according to claim 3, wherein the valve timing control device is connected to the valve timing control device.
[0056]
In this case, by forming the plate member from a material that is cheaper than the hysteresis material and is easily formed, the linking portion between the braking force receiving portion and the intermediate rotating body can be formed without increasing the manufacturing cost. It can be shaped.
[0057]
(F) A concave portion is provided radially inward of the inner pole teeth on an end surface of the magnetic guide member facing the plate member, and a part of the plate member is protruded into the concave portion. The valve timing control device for an internal combustion engine according to (e).
[0058]
In this case, the concave portion is located radially inward of the inner pole teeth of the magnetic guide member and hardly affects the flow of the magnetic flux in the magnetic guide member. Since a part of the plate member protrudes into the concave portion, the protrusion of the plate member on the side opposite to the magnetic guide member is reduced by that much, and the total axial length in a state where the magnetic guide member and the plate member are assembled is reduced. Can be shortened. In addition, the weight can be reduced by the provision of the concave portion in the magnetic guide member.
[0059]
(G) The valve timing control device for an internal combustion engine according to (e) or (f), wherein an annular lightening portion is provided on the plate member.
[0060]
In this case, since the lightening portion is annular, the weight of the plate member is sufficiently reduced without generating unbalanced inertial force.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an embodiment of the present invention.
FIG. 2 is an exemplary sectional view of the same embodiment taken along line AA of FIG. 1;
FIG. 3 is an exemplary sectional view corresponding to FIG. 2 showing an operation state of the embodiment;
FIG. 4 is an exploded perspective view showing the same embodiment.
FIG. 5 is an exemplary perspective view of a part showing the embodiment;
FIG. 6 is an exemplary front view of the part showing the embodiment;
FIG. 7 is a sectional view showing another embodiment of the invention of this application.
FIG. 8 is a sectional view showing still another embodiment of the invention of this application.
[Explanation of symbols]
1 camshaft 3 drive ring (drive rotary body)
4: Assembling angle operating mechanism 7: Driven shaft member (driven rotator)
18 Intermediate rotating body (rotating member)
20: Hysteresis brake (electromagnetic brake)
22 ... magnetic induction member (braking force generation unit)
23 inner pole teeth 24 outer pole teeth 25 electromagnetic coil (braking force generating section)
26 ... Hysteresis ring (braking force receiving part, hysteresis material)
33 ... Ring plate (braking force receiving part)
34, 35 ... bearing 38 ... rubber bush (elastic body)

Claims (3)

内燃機関のクランクシャフトによって回転駆動される駆動回転体と、カムシャフト若しくは同シャフトに結合された別体部材から成る従動回転体と、前記駆動回転体と従動回転体に対して相対回動可能な中間回転体を有し、その中間回転体が回動操作されることによって駆動回転体と従動回転体の組付角を変更する組付角操作機構と、前記中間回転体に同回転体を回動操作すべく制動力を付与する電磁ブレーキと、を備えた内燃機関のバルブタイミング制御装置において、
電磁ブレーキの制動力発生部を非回転部材に固定すると共に、電磁ブレーキの制動力受部を前記制動力発生部に軸受を介して相対回転自在に支持させ、前記制動力受部を、組付角操作機構の中間回転体に所定の遊びをもたせて連係させたことを特徴とする内燃機関のバルブタイミング制御装置。
A driving rotor that is rotationally driven by a crankshaft of an internal combustion engine, a driven rotor composed of a camshaft or a separate member coupled to the same shaft, and is rotatable relative to the driving rotor and the driven rotor. An assembling angle operation mechanism for changing an assembling angle between the driving rotator and the driven rotator by rotating the intermediate rotator; and rotating the rotator to the intermediate rotator. An electromagnetic brake for applying a braking force to perform a dynamic operation, and a valve timing control device for an internal combustion engine comprising:
The braking force generating portion of the electromagnetic brake is fixed to a non-rotating member, and the braking force receiving portion of the electromagnetic brake is rotatably supported by the braking force generating portion via a bearing, and the braking force receiving portion is assembled. A valve timing control device for an internal combustion engine, wherein an intermediate rotating body of a corner operating mechanism is linked with a predetermined play.
前記制動力受部と中間回転体を弾性体を介して連結したことを特徴とする請求項1に記載の内燃機関のバルブタイミング制御装置。The valve timing control device for an internal combustion engine according to claim 1, wherein the braking force receiving portion and the intermediate rotating body are connected via an elastic body. 前記制動力発生部は、略円筒状の隙間を挟んで対向する一対の周面状の対向面を有する磁気誘導部材と、前記一対の対向面のうちの径方向内側の面に、複数の極歯要素が円周方向に沿って設けられた内側極歯と、前記一対の対向面のうちの径方向外側の面に、複数の極歯要素が円周方向に沿って設けられ、各極歯要素が前記内側極歯の極歯要素に対して円周方向にオフセットして配置された外側極歯と、内側極歯と外側極歯の間に磁界を生じさせる電磁コイルと、を備えた構成とし、
前記制動力受部は、前記内側極歯と外側極歯の間の隙間に挿入される円筒壁を有するヒステリシス材を備えた構成としたことを特徴とする請求項1または2に記載の内燃機関のバルブタイミング制御装置。
The braking force generating unit includes a magnetic induction member having a pair of circumferentially opposed surfaces facing each other across a substantially cylindrical gap, and a plurality of poles on a radially inner surface of the pair of opposed surfaces. A plurality of pole tooth elements are provided along a circumferential direction on an inner pole tooth provided with a tooth element along a circumferential direction, and a plurality of pole tooth elements are provided on a radially outer surface of the pair of opposed surfaces; A configuration comprising: an outer pole tooth whose elements are circumferentially offset with respect to the pole tooth element of the inner pole tooth; and an electromagnetic coil that generates a magnetic field between the inner pole tooth and the outer pole tooth. age,
3. The internal combustion engine according to claim 1, wherein the braking force receiving portion includes a hysteresis member having a cylindrical wall inserted into a gap between the inner pole teeth and the outer pole teeth. Valve timing control device.
JP2002247985A 2002-08-28 2002-08-28 Valve timing control device for internal combustion engine Expired - Fee Related JP4076399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002247985A JP4076399B2 (en) 2002-08-28 2002-08-28 Valve timing control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002247985A JP4076399B2 (en) 2002-08-28 2002-08-28 Valve timing control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004084588A true JP2004084588A (en) 2004-03-18
JP4076399B2 JP4076399B2 (en) 2008-04-16

Family

ID=32055473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002247985A Expired - Fee Related JP4076399B2 (en) 2002-08-28 2002-08-28 Valve timing control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4076399B2 (en)

Also Published As

Publication number Publication date
JP4076399B2 (en) 2008-04-16

Similar Documents

Publication Publication Date Title
JP3986371B2 (en) Valve timing control device for internal combustion engine
JP3911982B2 (en) Variable valve timing device for internal combustion engine
JP2006299867A (en) Valve timing control device for internal combustion engine
JP4156346B2 (en) Valve timing control device for internal combustion engine
JP4076399B2 (en) Valve timing control device for internal combustion engine
JP2003129805A (en) Valve timing control device for internal combustion engine
JP4160414B2 (en) Valve timing control device for internal combustion engine
JP4109967B2 (en) Valve timing control device for internal combustion engine
JP2007071261A (en) Electromagnetic brake device
JP4094911B2 (en) Valve timing control device for internal combustion engine
JP4163482B2 (en) Valve timing control device for internal combustion engine
JP3989764B2 (en) Valve timing control device for internal combustion engine
JP4606473B2 (en) Valve timing control device for internal combustion engine, controller for the valve timing control device, and controller used for valve timing changing mechanism
JP2005299605A (en) Valve timing control device for internal combustion engine
JP4109972B2 (en) Valve timing control device for internal combustion engine
JP2004270475A (en) Valve timing control device for internal combustion engine
JP2004162565A (en) Valve timing control device for internal combustion engine
JP2005299604A (en) Valve timing control device for internal combustion engine
JP4008225B2 (en) Valve timing control device for internal combustion engine
JP4233308B2 (en) Valve timing control device for internal combustion engine
JP2004270606A (en) Valve timing control device for internal combustion engine
JP2008082343A (en) Valve timing control device for internal combustion engine
JP2004088934A (en) Hysteresis brake
JP3949080B2 (en) Electromagnetic brake
JP2003120226A (en) Valve timing control device for internal combustion engine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080129

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees