JP4233308B2 - Valve timing control device for internal combustion engine - Google Patents

Valve timing control device for internal combustion engine Download PDF

Info

Publication number
JP4233308B2
JP4233308B2 JP2002322222A JP2002322222A JP4233308B2 JP 4233308 B2 JP4233308 B2 JP 4233308B2 JP 2002322222 A JP2002322222 A JP 2002322222A JP 2002322222 A JP2002322222 A JP 2002322222A JP 4233308 B2 JP4233308 B2 JP 4233308B2
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
temperature
assembly angle
timing control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002322222A
Other languages
Japanese (ja)
Other versions
JP2004156511A (en
Inventor
保 東藤
小久保  直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002322222A priority Critical patent/JP4233308B2/en
Publication of JP2004156511A publication Critical patent/JP2004156511A/en
Application granted granted Critical
Publication of JP4233308B2 publication Critical patent/JP4233308B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

【0001】
【発明の属する技術分野】
この出願の発明は、内燃機関の吸気側または排気側の機関弁の開閉タイミングを運転状態に応じて可変制御する内燃機関のバルブタイミング制御装置に関する。
【0002】
【従来の技術】
この種のバルブタイミング制御装置として、次のようなものが案出されている。
【0003】
このバルブタイミング制御装置は、クランクシャフトにタイミングチェーン等を介して連係されたハウジング(駆動回転体)がカムシャフトの端部に回動可能に組み付けられ、ハウジングの内側端面に形成された径方向ガイドに可動案内部が径方向に沿って摺動自在に係合支持されると共に、径方向外側に突出するレバーを有するレバー軸(従動回転体)がカムシャフトの端部にボルト結合され、可動案内部とレバー軸のレバーとがリンクによって枢支連結されている。そして、前記径方向ガイドに対向する位置には、渦巻き状ガイドを有する中間回転体がハウジングとレバー軸に対して相対回動可能に設けられ、前記可動案内部の軸方向の一方の端部に突設された略円弧状の複数の突条が前記渦巻き状ガイドに案内係合されている。また、中間回転体はハウジングに対して回転を進める側にゼンマイばねによって付勢されると共に、電磁ブレーキによって回転を遅らせる側の力を適宜受けるようになっている。この装置の場合、中間回転体に操作力を付与するゼンマイばね及び電磁ブレーキと、中間回転体の回動に応じてハウジング(駆動回転体)とレバー軸(従動回転体)の組付角を回動操作するリンクと、によって組付角変更手段が構成されている。
【0004】
この装置においては、電磁ブレーキがOFF状態のときには、中間回転体がゼンマイばねの付勢力を受けハウジングに対して初期位置に位置されており、渦巻き状ガイドに突条でもって噛合う可動案内部は径方向外側に最大に変位し、リンクを引き起こしてハウジングとレバー軸の組付角を最遅角位相の角度位置(以下、「最遅角位置」と呼ぶ。)または最進角位相の角度位置(以下、「最進角位置」と呼ぶ。)に維持している。そして、この状態から電磁ブレーキがONにされると、中間回転体が減速されてハウジングに対して遅れ側に相対回転する結果、渦巻き状ガイドに噛合う可動案内部が径方向内側に変位し、今まで引き起こされていたリンクを次第に倒すようにしてハウジングとレバー軸の組付角を最進角位置または最遅角位置に変更する。
【0005】
【特許文献】
特開2001−41013号公報
【0006】
【発明が解決しようとする課題】
上記従来のバルブタイミング制御装置は、内燃機関の始動時の組付角を最遅角位置、または、最進角位置(吸気側の動弁系に適用した場合には最遅角位置。排気側の動弁系に適用した場合には最進角位置)に戻し、それによって吸気弁と排気弁のバルブオーバーラップを少なくして機関始動時の燃焼の安定化を図っている。この機関始動時の組付角は内燃機関の温度に関係なく一定であり、機関始動時の燃焼が不安定になり易い冷間時はもとより、比較的燃焼が安定する高温時においてもに常に一定組付角位置に戻されていた。
【0007】
ところで、内燃機関を高温状態で始動させ、そのままアイドリング等の低速運転を行う状況はしばしばあるが、近年、この状況下におけるさらなる燃費の向上を求める要望がある。
【0008】
この状況下で燃費のさらなる向上を図るには、機関のポンピングロスを少なくするために吸気弁と排気弁のバルブオーバーラップを増大する必要があるが、低温始動時の燃焼安定性(機関始動性)を重視した装置においては、このような要望に応えることはできない。
【0009】
そこでこの出願の発明は、低温時における機関始動性の悪化を招くことなく、高温時の始動直後の燃費の向上を図ることのできる内燃機関のバルブタイミング制御装置を提供しようとするものである。
【0010】
本発明は、前記従来技術の技術的課題を解決するために案出したもので、請求項1に記載の発明は、とりわけ、内燃機関の温度を検出する温度検出手段を設け、内燃機関の始動時における前記組付角変更手段の組付角を、前記温度検出手段による始動時の検出温度が所定の温度より低温のときに、前記始動時の検出温度が前記所定の温度より高温のときよりも遅角側に制御することにより、吸気弁と排気弁のバルブオーバーラップを小さくすることを特徴としている。
【0011】
この発明の場合、内燃機関の温度に応じて始動時の組付角を制御するため、低温時には、吸気弁と排気弁のバルブオーバーラップを小さくして確実な機関始動を実現し、高温時には、前記バルブオーバーラップを大きくすることでポンピングロスを少なくし、機関始動直後の燃費の向上を図ることができる。また、低温始動時にバルブオーバーラップを小さくした場合には、所謂内部EGRが減少するために燃焼温度が上昇し、その結果、不活性ガスの排出を抑制することが可能になると共に、触媒温度の早期上昇によってNOxの排出をも抑えることが可能となる。
【0013】
また、前記温度検出手段による始動時の検出温度が所定の温度より低温のときに、前記始動時の検出温度が前記所定の温度より高温のときよりも遅角側に制御することにより、機関始動のむずかしい低温始動には、バルブオーバーラップが小さくなるために始動時の燃焼の安定化が図られ、比較的機関始動が容易な高温始動時には、逆にバルブオーバーラップが大きくなってポンピングロスが低減される。
また、高温始動時に組付角が進角側に制御されると、バルブオーバーラップが大きくなると同時に吸気弁の閉じタイミングが早くなるため、吸気行程から圧縮行程に移行した初期に混合気が吸気側から逃げにくくなる。このため、実圧縮比が高まり、始動後の低速トルクが高まる。
請求項2に記載の発明は、内燃機関の温度を機関始動時に温度検出手段によって検出し、その検出された温度に応じて内燃機関のクランクキング時に組付角変更手段を制御することを特徴としている。
請求項3に記載の発明は、内燃機関の停止時に、組付角を内燃機関の始動が可能な基準組付角位置に制御することを特徴としている。
請求項4に記載の発明は、組付角変更手段のアクチュエータとして電磁アクチュエータを用いたことを特徴としている。
請求項5に記載の発明にあっては、組付角変更手段は、駆動回転体と従動回転体のいずれか一方に設けられた径方向ガイドと、前記駆動回転体と従動回転体に対して相対回動可能に設けられ、前記径方向ガイドに対峙する側の面に渦巻き状ガイドを有する中間回転体と、前記径方向ガイドと渦巻き状ガイドに変位可能に案内係合される可動案内部と、前記駆動回転体と従動回転体のいずれか他方のものの回転中心から離間した部位と前記可動案内部とを揺動可能に連結するリンクと、前記中間回転体を回動させる回動操作力を発生する操作力発生部と、を備え、中間回転体に入力された回動操作力を、渦巻き状ガイドと可動案内部の係合部によって増幅して、駆動回転体と従動回転体の組付角操作力に変換することを特徴としている。
【0014】
【発明の実施の形態】
次に、この出願の発明の一実施形態を図1〜図7に基づいて説明する。
【0015】
この実施形態は、この出願の発明にかかるバルブタイミング制御装置を内燃機関の吸気側の動弁系に適用したものであるが、排気側の動弁系に同様に適用することも可能である。
【0016】
バルブタイミング制御装置は、図1に示すように内燃機関のシリンダヘッド(図示せず)に回転自在に支持されたカムシャフト1と、このカムシャフト1の前端部に結合された従動軸部材7(従動回転体)と、この従動軸部材7に必要に応じて相対回動できるように組み付けられ、チェーン(図示せず)を介してクランクシャフト(図示せず)に連係されるタイミングスプロケット2を外周に有する駆動リング3(駆動回転体)と、この駆動リング3と従動軸部材7の前方側(図1中左側)に配置され、両者3,1を相対回動させて組付角を操作する組付角変更手段4と、内燃機関の図外のシリンダヘッドとヘッドカバーの前面に跨って取り付けられて組付角変更手段4の前面と周域を覆う図外のVTCカバーと、を備えている。尚、組付角変更手段4は、回動操作力を発生する操作力発生部40と、その操作力発生部40で発生した回動操作力を駆動リング3と従動軸部材7の相対的な回転力に変換する変換機構部41と、によって構成されている。
【0017】
駆動リング3は、段差状の挿通孔6を備えた略円板状に形成され、この挿通孔6部分が従動軸部材7(従動回転体)に回転可能に組み付けられている。そして、駆動リング3の前面(カムシャフト1と逆側の面)には、図2,図3に示すように、対面する平行な側壁を有する3つの径方向溝8(径方向ガイド)が同リング3のほぼ半径方向に沿うように形成されている。
【0018】
また、従動軸部材7は、図1に示すように、カムシャフト1の前端部に突き合される基部側の外周に拡径部が形成されると共に、その拡径部よりも前方側の外周面に放射状に突出する三つのレバー9が一体に形成され、軸芯部を貫通するボルト10によってカムシャフト1に結合されている。各レバー9には、リンク11の基端がピン12によって枢支連結され、各リンク11の先端には前記各径方向溝8に摺動自在に係合する円柱状の突出部13が一体に形成されている。
【0019】
各リンク11は、突出部13が対応する径方向溝8に係合した状態において、ピン12を介して従動軸部材7に連結されているため、リンク11の先端側が外力を受けて径方向溝8に沿って変位すると、駆動リング3と従動軸部材7はリンク11の作用でもって突出部13の変位に応じた方向及び角度だけ相対回動する。
【0020】
また、各リンク11の先端部には、軸方向前方側に開口する収容穴14が形成され、この収容穴14に、後述する渦巻き溝15(渦巻き状ガイド)に係合する係合ピン16と、この係合ピン16を前方側(渦巻き溝15側)に付勢するコイルばね17とが収容されている。尚、この実施形態の場合、リンク11の先端の突出部13と係合ピン16、コイルばね17等によって径方向に変位可能な可動案内部が構成されている。
【0021】
一方、従動軸部材7のレバー9の突設位置よりも前方側には、円板状のフランジ壁を有する中間回転体18が軸受19を介して回転自在に支持されている。この中間回転体18のフランジ壁の後面側には断面半円状の前述の渦巻き溝15が形成され、この渦巻き溝15に、前記各リンク11の先端の係合ピン16が転動自在に案内係合されている。渦巻き溝15の渦巻きは、機関回転方向Rに沿って次第に縮径するように形成されている。したがって、各リンク11先端の係合ピン16が渦巻き溝15に係合した状態において、中間回転体18が駆動リング3に対して遅れ方向に相対回転すると、リンク11の先端部は径方向溝8に案内されつつ、渦巻き溝15の渦巻き形状に誘導されて半径方向内側に移動し、逆に、中間回転体18が進み方向に相対変位すると、半径方向外側に移動する。
【0022】
組付角変更手段4の変換機構部41は、以上説明した駆動リング3の径方向溝8、リンク11、突出部13、係合ピン16、レバー9、中間回転体18、渦巻き溝15等によって構成されている。この変換機構部41は、後述する操作力発生部40から中間回転体18にカムシャフト1に対する相対的な回動操作力が入力されると、その操作力が渦巻き溝15と係合ピン16の係合部を通してリンク11の先端を径方向に変位させ、このときリンク11が揺動してその揺動量に応じて駆動リング3と従動軸部材7を相対回動させる。
【0023】
一方、操作力発生部40は、中間回転体18を駆動リング3に対して機関回転方向Rに付勢する付勢手段としてのゼンマイばね45と、中間回転体18を駆動リング3に対して機関回転方向Rと逆方向に作動させる(付勢手段に抗する力を発生する)電磁アクチュエータとしてのヒステリシスブレーキ20と、を備え、ゼンマイばね45の付勢力とヒステリシスブレーキ20の作動力とのバランスによって中間回転体18を回動操作するようになっている。
【0024】
ゼンマイばね45は、駆動リング3に延設された円筒壁21にその外周端部が結合される一方、内周端部が中間回転体18の円筒状の基部に結合されている。
【0025】
また、中間回転体18のカムシャフト1と逆側の端面には、封止壁46が一体に結合され、その封止壁46の外周面が前記円筒壁21の内面に摺動自在に密接している。
【0026】
図1,図4に示すように、ヒステリシスブレーキ20は、非回転部材であるVTCカバーに取り付けられると共に、略円筒状の隙間を挟む対向面を備えた磁気誘導部材22と、前記対向面に設けられた内側極歯23、及び、外側極歯24と、磁気誘導部材22に取り付けられて内側極歯23と外側極歯24の間に磁界を生じさせる電磁コイル25と、前記両極歯23,24間に非接触状態で挿入配置された円筒状のヒステリシスリング26と、外周端がこのヒステリシスリング26に一体に結合された状態で中間回転体18に連結ピン47とゴムブッシュ48を介して結合された円環プレート27と、を備え、電磁コイル25がコントローラ42の出力信号によって適宜通電制御されるようになっている。
【0027】
磁気誘導部材22の内側極歯23と外側極歯24は夫々軸方向に沿って延出する複数の極歯要素を有している。両極歯23,24の極歯要素は夫々円周方向に沿って配置され、極歯23,24の極歯要素相互は円周方向にオフセットされている。したがって、電磁コイル25が通電されると、両極歯23,24間には、オフセットした位置関係にある相手極歯要素に向かう磁界が発生する。
【0028】
ヒステリシスリング26は、磁気的ヒステリシス特性を有するヒステリシス材から成り、同リング26の回転中に内側極歯23と外側極歯24の間に磁界が発生すると、その磁界の向きとヒステリシスリング26内の磁束の向きとにずれが生じるようになっている。ヒステリシスブレーキ20は、このずれによって制動力を発生する。また、円環プレート27は、磁気誘導部材22の内周面に軸受28,29を介して支持された軸部材30に一体に結合されている。したがって、ヒステリシスリング20は、円環プレート27と軸部材30を介して磁気誘導部材22に相対回転可能に支持されている。
【0029】
尚、図中43は、中間回転体18と駆動リング3の間に設けられ、両者18,3の相対回動範囲を規制するストッパである。
【0030】
コントローラ42には、クランク角センサ35やカム角センサ36等から機関の運転状態を判断するための信号が入力され、コントローラ42は、これらの信号に基づいてヒステリシスブレーキ20の通電電流をフィードバック制御するようになっている。また、コントローラ42には、さらに潤滑油の油温を検出する油温センサ37(この出願における温度検出手段)からの信号が入力され、機関始動時における組付角がコントローラ42によって適宜制御されるようになっている。
【0031】
この実施形態の場合、機関始動時の組付角位置は、油温センサ37によって検出される内燃機関の温度に応じて図5,図6に示すθ1〜θ3のいずれかに制御されるようになっている。ここで、θ1は、最遅角位置と最進角位置のほぼ中間の角度位置であり、θ2は、θ1に対して遅角側に設定角度偏寄させた角度位置、θ3は、θ1に対して進角側に設定角度偏寄させた角度位置である。そして、これらの機関始動時の組付角θ1〜θ3は、図6に示すように2つの敷居温度T1,T2(ただし、T1<T2)を境にして切換えられるようになっている。
【0032】
このバルブタイミング制御装置は以上のような構成であるため、クランクシャフトとカムシャフト1の回転位相(機関弁の開閉タイミング)を最進角側に変更する場合には、ヒステリシスブレーキ20に所定の電流を通電することにより、ゼンマイばね45の力に抗する制動力が円環プレート27から中間回転体18に連結ピン47とゴムブッシュ48を介して伝達される。これにより、中間回転体18が駆動リング3に対して逆方向に回転し、それによってリンク11の先端の係合ピン16が渦巻き溝15に誘導されてリンク11の先端部が径方向内側に変位し、このとき、図3に示すようにリンク11の作用によって駆動リング3と従動軸部材7の組付角が最進角位置に変更される。
【0033】
また、クランクシャフトとカムシャフト1の回転位相(機関弁の開閉タイミング)を最遅角側に変更する場合には、ヒステリシスブレーキ20の通電をオフにすることにより、中間回転体18がゼンマイばね45の力によって機関回転方向に回転させられる。すると、渦巻き溝15による係合ピン16の誘導によってリンク11の先端部が径方向外側に変位し、このとき、図2に示すようにリンク11の作用によって駆動リング3と従動軸部材7の組付角が最遅角位置に変更される。
【0034】
そして、クランクシャフトとカムシャフト1の回転位相を最進角位置と最遅角位置の間の任意の位置に変更する場合には、ヒステリシスブレーキ20に通電する電流値を適宜制御することにより、駆動リング3に対する中間回転体18の相対回動位置がゼンマイばね45とヒステリシスブレーキ20とのバランスによって調整される。
【0035】
また、内燃機関の始動時には前述のように組付角がθ1〜θ3のいずれかに制御されるが、このときの具体的な制御は、図7に示すフローチャートに従って実行される。
【0036】
即ち、最初に、S1においてイグニッションキーがオンにされると、次に、S2で油温センサ37による内燃機関の温度の検出が行われ、その後に、S3において、検出温度Tが下側の敷居温度T1以上であるかどうかが判断される。このとき、検出温度Tが温度T1よりも低い場合にはS4に進んで機関始動時の組付角位置θをθ2に制御し、検出温度Tが温度T1以上である場合にはS5へと進む。S5においては、さらに検出温度Tが上側の敷居温度T2よりも低いかどうかが判断され、温度T2以上の場合にはS6に進んで組付角位置θをθ3に制御し、温度T2よりも低い場合にはS7に進んで組付角位置θをθ1に制御する。
【0037】
したがって、このバルブタイミング制御装置においては、内燃機関の温度TがT<T1となる低温時は機関始動時の初期位置θが遅角側の組付角位置θ2に制御されることとなるため、低温始動時には、図5に示すように吸気弁と排気弁のバルブオーバーラップが小さくなり、それによって始動時やアイドリング時の機関燃焼が安定すると共に、所謂内部EGRが減少することで燃焼温度が上昇し、不活性ガスの抑制効果と、触媒の早期昇温によるHCの抑制効果を得ることができる。
【0038】
さらに、内燃機関の温度TがT2≦Tとなる高温時は機関始動時の初期位置θが遅角側の組付角位置θ2に制御されることとなるため、高温始動時には、図5に示すように吸気弁と排気弁のバルブオーバーラップ大きくなり、その結果、機関始動直後のポンピングロスが低減され、機関の燃費が向上する。また、初期位置θがθ2に制御されると吸気弁の閉じタイミングが早められるために実圧縮比が高まり、機関始動後における低速トルクが向上する。
【0039】
また、内燃機関の温度TがT1≦T<T2となる常温時には、バルブオーバーラップの大きさと吸気弁の閉じタイミングが上述の二つの条件のときのほぼ中間の状態となり、燃焼安定性、燃費、低速トルク等の特性もほぼ中間的なものとなる。
【0040】
また、この装置の場合、以上のように低温時、高温時、常温時の各条件下で機関始動時の組付角が切換えられるが、低温始動時に遅角側の組付角位置θ2に切換えられたときには、図5に示すように機関始動後に組付角を最遅角位置に迅速に切換えることができ、同様に、高温始動時に進角側の組付角位置θ3に切換えられたときには、機関始動後に組付角を最進角側に迅速に切換えることができる。したがって、この実施形態の装置においては、機関始動後に機関温度に応じた望ましい組付角に早期に切換えることができるという利点がある。
【0041】
ところで、この実施形態のバルブタイミング制御装置においては、内燃機関の始動時に機関温度に応じた組付角に制御するようにしているが、これとは別に、機関運転状態からイグニッションキーがオフにされた後、機関が完全停止するまでの間に、組付角θを機関始動時の基準組付角位置(常温時の組付角位置)θ1に戻すようにしても良い。
【0042】
このようにした場合には、機関の始動直前の組付角がθ2とθ3の中間の組付角位置θ1となるため、検出温度によって決まる始動時の組付角がθ1〜θ3のいずれになっても、所定の組付角位置に速やかに変更することができる。
【0043】
尚、この発明の実施形態は以上で説明したものに限るものではなく、例えば、上記の実施形態においては、組付角変更手段の操作力発生部はゼンマイばねとヒステリシスブレーキによって構成したが、操作力発生部はこれら以外の付勢手段と電磁アクチュエータによって構成するようにしても良い。また、操作力発生部は必ずしも付勢手段を用いる必要はなく、正転逆転操作ができる電磁アクチュエータを用いれば付勢手段を無くすこともできる。さらに、組付角変更手段のアクチュエータは油圧アクチュエータを用いるようにしても良い。
【0044】
また、内燃機関の温度を検出する温度検出手段は、油温センサ37に限らず、冷却水温度を検出する水温センサ等であっても良い。
【0045】
また、前述のようにこの出願の発明にかかるバルブタイミング制御装置は排気側の動弁系に適用することも可能であるが、この場合には、低温始動時の組付角を高温始動時の組付角よりも進角側に変更すれば良い。
【0046】
次に、上記の各実施形態から把握し得る請求項に記載以外の発明について、以下にその作用効果と共に記載する。
【0047】
(イ) 内燃機関の温度を機関始動時に温度検出手段によって検出し、その検出された温度に応じて内燃機関のクランクキング時に組付角変更手段を制御することを特徴とする請求項1または2に記載の内燃機関のバルブタイミング制御装置。
【0048】
この場合、機関始動時の内燃機関の温度に応じた組付角制御を正確に行うことができる。
【0049】
(ロ) 内燃機関の停止時に、組付角を内燃機関の始動が可能な基準組付角位置に制御することを特徴とする請求項1,2または前記(イ)に記載の内燃機関のバルブタイミング制御装置。
【0050】
この場合、組付角を機関停止時に予め内燃機関の始動が可能な基準組付角位置に戻しておくことにより、内燃機関の始動時には機関温度に応じた適正組付角に早期に変更することが可能になる。
【0051】
(ハ) 組付角変更手段のアクチュエータとして電磁アクチュエータを用いたことを特徴とする請求項1,2、前記(イ),(ロ)のいずれかに記載の内燃機関のバルブタイミング制御装置。
【0052】
この場合、電磁アクチュエータを用いたため、機関始動時には通電によって即時に大きな起動トルクを得ることができる。したがって、内燃機関の始動時には、組付角変更手段を機関温度に応じた組付角位置に迅速に作動させることができる。
【0053】
(ニ) 組付角変更手段は、
駆動回転体と従動回転体のいずれか一方に設けられた径方向ガイドと、
前記駆動回転体と従動回転体に対して相対回動可能に設けられ、前記径方向ガイドに対峙する側の面に渦巻き状ガイドを有する中間回転体と、
前記径方向ガイドと渦巻き状ガイドに変位可能に案内係合される可動案内部と、
前記駆動回転体と従動回転体のいずれか他方のものの回転中心から離間した部位と前記可動案内部とを揺動可能に連結するリンクと、
前記中間回転体を回動させる回動操作力を発生する操作力発生部と、を備え、中間回転体に入力された回動操作力を、渦巻き状ガイドと可動案内部の係合部によって増幅して、駆動回転体と従動回転体の組付角操作力に変換することを特徴とする請求項1,2、(イ)〜(ハ)のいずれかに記載の内燃機関のバルブタイミング制御装置。
【0054】
この場合、操作力発生部で発生した力を、増幅して駆動回転体と従動回転体の組付角操作力に変換するため、大きな操作力を要する機関始動初期等であっても組付角を機関温度に応じた角度位置に迅速に変更することができる。
【図面の簡単な説明】
【図1】この出願の発明の一実施形態を示す縦断面図。
【図2】同実施形態を示す図1のA−A線に沿う断面図。
【図3】同実施形態の作動状態を示す図2に対応の断面図。
【図4】同実施形態を示す分解斜視図。
【図5】同実施形態のバルブリフト特性を示す図。
【図6】同実施形態の温度と組付角の関係を示す図。
【図7】同実施形態の制御を示すフローチャート。
【符号の説明】
1…カムシャフト
3…駆動リング(駆動回転体)
4…組付角変更手段
7…従動軸部材(従動回転体)
37…油温センサ(温度検出手段)
[0001]
BACKGROUND OF THE INVENTION
The invention of this application relates to a valve timing control device for an internal combustion engine that variably controls the opening / closing timing of an intake-side or exhaust-side engine valve of the internal combustion engine in accordance with an operating state.
[0002]
[Prior art]
As this type of valve timing control device, the following has been devised.
[0003]
In this valve timing control device, a housing (drive rotary member) linked to a crankshaft via a timing chain or the like is rotatably assembled to an end portion of a camshaft, and a radial guide formed on an inner end surface of the housing. The movable guide is slidably engaged and supported along the radial direction, and a lever shaft (driven rotor) having a lever protruding radially outward is bolted to the end of the camshaft, so that the movable guide The part and the lever of the lever shaft are pivotally connected by a link. An intermediate rotating body having a spiral guide is provided at a position facing the radial guide so as to be rotatable relative to the housing and the lever shaft, and is provided at one end in the axial direction of the movable guide portion. A plurality of substantially arc-shaped protruding protrusions are guided and engaged with the spiral guide. Further, the intermediate rotating body is biased by a mainspring spring toward the side where the rotation is advanced with respect to the housing, and appropriately receives a force on the side of delaying rotation by an electromagnetic brake. In the case of this device, the springs and electromagnetic brakes that apply operating force to the intermediate rotating body, and the assembly angle of the housing (drive rotating body) and lever shaft (driven rotating body) are rotated according to the rotation of the intermediate rotating body. The assembly angle changing means is constituted by the link that is operated and operated.
[0004]
In this device, when the electromagnetic brake is in the OFF state, the intermediate rotating body is positioned at the initial position with respect to the housing under the urging force of the mainspring spring, and the movable guide portion that meshes with the spiral guide with the ridge is provided. Displacement to the outside in the radial direction to the maximum, causing the link to cause the assembly angle of the housing and lever shaft to be the angle position of the most retarded angle phase (hereinafter referred to as the “most retarded angle position”) or the angle position of the most advanced angle phase (Hereinafter referred to as “the most advanced position”). Then, when the electromagnetic brake is turned on from this state, the intermediate rotating body is decelerated and rotates relatively to the delay side with respect to the housing, so that the movable guide portion that meshes with the spiral guide is displaced radially inward, The assembly angle of the housing and the lever shaft is changed to the most advanced position or the most retarded position by gradually tilting the link that has been caused so far.
[0005]
[Patent Literature]
JP-A-2001-41013
[Problems to be solved by the invention]
In the conventional valve timing control device described above, the assembling angle at the start of the internal combustion engine is the most retarded angle position or the most advanced angle position (the most retarded angle position when applied to the valve system on the intake side. The exhaust side. When applied to this valve system, the valve is returned to the most advanced position), thereby reducing the valve overlap between the intake valve and the exhaust valve, thereby stabilizing the combustion at the time of engine start. The assembly angle at the start of the engine is constant regardless of the temperature of the internal combustion engine, and is always constant not only in the cold when the engine starts easily but also in the high temperature where the combustion is relatively stable. It was returned to the assembly corner position.
[0007]
By the way, there are many situations where the internal combustion engine is started in a high temperature state and low speed operation such as idling is performed as it is. In recent years, there is a demand for further improvement in fuel consumption under this situation.
[0008]
In order to further improve fuel economy under these circumstances, it is necessary to increase the valve overlap between the intake and exhaust valves in order to reduce the pumping loss of the engine. However, combustion stability at low temperature start (engine startability) However, such a request cannot be met with an apparatus that places emphasis on.
[0009]
Accordingly, the invention of this application is to provide a valve timing control device for an internal combustion engine that can improve fuel efficiency immediately after starting at high temperatures without deteriorating engine startability at low temperatures.
[0010]
The present invention has been devised in order to solve the technical problem of the prior art. The invention according to claim 1 is, in particular, provided with temperature detection means for detecting the temperature of the internal combustion engine, and is capable of starting the internal combustion engine. The assembling angle of the assembling angle changing means at the time when the detected temperature at the time of starting by the temperature detecting means is lower than a predetermined temperature, than when the detected temperature at the starting time is higher than the predetermined temperature. Also, the valve overlap between the intake valve and the exhaust valve is reduced by controlling to the retard side.
[0011]
In the case of this invention, since the assembly angle at the time of starting is controlled according to the temperature of the internal combustion engine, at the time of low temperature, the valve overlap between the intake valve and the exhaust valve is reduced to realize reliable engine starting, and at the time of high temperature, By increasing the valve overlap, it is possible to reduce the pumping loss and improve the fuel consumption immediately after the engine is started. Further, when the valve overlap is reduced at the time of low temperature start, so-called internal EGR is reduced, so that the combustion temperature rises. As a result, it is possible to suppress the discharge of the inert gas and the catalyst temperature. it is possible to suppress the emissions of the NO x early rise.
[0013]
Further, when the temperature detected at the time of starting by the temperature detecting means is lower than a predetermined temperature , the engine is started by controlling the detected temperature at the time of starting to the retard side than when the temperature detected at the time of starting is higher than the predetermined temperature. For difficult low-temperature starting, the valve overlap is reduced, so the combustion during starting is stabilized. At high temperature starting, which is relatively easy to start the engine, the valve overlap increases and pumping loss is reduced. Is done.
In addition, if the assembly angle is controlled to the advance side during high-temperature start, the valve overlap increases and the closing timing of the intake valve is accelerated, so the air-fuel mixture becomes the intake side at the beginning of the transition from the intake stroke to the compression stroke. It becomes difficult to escape from. For this reason, an actual compression ratio increases and the low speed torque after a start increases.
The invention according to claim 2 is characterized in that the temperature of the internal combustion engine is detected by the temperature detection means when the engine is started, and the assembly angle changing means is controlled during cranking of the internal combustion engine according to the detected temperature. Yes.
The invention according to claim 3 is characterized in that when the internal combustion engine is stopped, the assembly angle is controlled to a reference assembly angle position at which the internal combustion engine can be started.
The invention described in claim 4 is characterized in that an electromagnetic actuator is used as the actuator of the assembly angle changing means.
In the invention according to claim 5, the assembling angle changing means is provided with respect to a radial guide provided on one of the drive rotator and the driven rotator, and the drive rotator and the driven rotator. An intermediate rotator which is provided so as to be relatively rotatable and has a spiral guide on a surface facing the radial guide; and a movable guide portion which is slidably guided by the radial guide and the spiral guide. A link that connects the movable guide part with a movable part that is separated from the center of rotation of the other of the drive rotator and the driven rotator, and a rotation operation force that rotates the intermediate rotator. And an assembly of the drive rotating body and the driven rotating body by amplifying the rotating operating force input to the intermediate rotating body by the engaging portion of the spiral guide and the movable guide section. It is characterized by converting it into angular operation force.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the invention of this application will be described with reference to FIGS.
[0015]
In this embodiment, the valve timing control device according to the invention of this application is applied to the valve system on the intake side of the internal combustion engine, but can also be applied to the valve system on the exhaust side.
[0016]
As shown in FIG. 1, the valve timing control device includes a camshaft 1 rotatably supported by a cylinder head (not shown) of an internal combustion engine, and a driven shaft member 7 (coupled to the front end portion of the camshaft 1). A driven rotating body) and a timing sprocket 2 which is assembled to the driven shaft member 7 so as to be rotatable relative to the driven shaft member 7 and linked to a crankshaft (not shown) via a chain (not shown). Is disposed on the front side (left side in FIG. 1) of the drive ring 3 and the driven shaft member 7, and the assembly angle is manipulated by relatively rotating both 3 and 1. The assembling angle changing means 4 and an unillustrated VTC cover that covers the front surface and the peripheral area of the assembling angle changing means 4 that are mounted across the front surface of the cylinder head and the head cover, not shown, of the internal combustion engine. . The assembly angle changing means 4 includes an operating force generating unit 40 that generates a rotating operation force, and the rotating operation force generated by the operating force generating unit 40 relative to the drive ring 3 and the driven shaft member 7. And a conversion mechanism unit 41 that converts it into a rotational force.
[0017]
The drive ring 3 is formed in a substantially disc shape having a step-like insertion hole 6, and the insertion hole 6 portion is rotatably assembled to a driven shaft member 7 (driven rotation body). The front surface of the drive ring 3 (the surface opposite to the camshaft 1) has three radial grooves 8 (radial guides) having parallel side walls facing each other as shown in FIGS. The ring 3 is formed so as to be substantially along the radial direction.
[0018]
Further, as shown in FIG. 1, the driven shaft member 7 has an enlarged diameter portion formed on the outer circumference on the base side that is abutted against the front end portion of the camshaft 1, and an outer circumference on the front side of the enlarged diameter portion. Three levers 9 projecting radially on the surface are integrally formed, and are coupled to the camshaft 1 by bolts 10 penetrating the shaft core portion. The base end of each link 11 is pivotally connected to each lever 9 by a pin 12, and a columnar protrusion 13 slidably engaged with each radial groove 8 is integrally formed at the tip of each link 11. Is formed.
[0019]
Each link 11 is connected to the driven shaft member 7 via the pin 12 in a state where the protruding portion 13 is engaged with the corresponding radial groove 8, so that the distal end side of the link 11 receives an external force and receives the radial groove. When displaced along 8, the drive ring 3 and the driven shaft member 7 are relatively rotated by the action of the link 11 by a direction and an angle corresponding to the displacement of the protrusion 13.
[0020]
In addition, a housing hole 14 that opens to the front side in the axial direction is formed at the tip of each link 11, and an engagement pin 16 that engages with a spiral groove 15 (a spiral guide), which will be described later, in the housing hole 14. A coil spring 17 that urges the engaging pin 16 forward (spiral groove 15 side) is accommodated. In the case of this embodiment, a movable guide portion that is displaceable in the radial direction is configured by the protruding portion 13 at the tip of the link 11, the engaging pin 16, the coil spring 17, and the like.
[0021]
On the other hand, an intermediate rotating body 18 having a disk-like flange wall is rotatably supported via a bearing 19 on the front side of the protruding position of the lever 9 of the driven shaft member 7. The aforementioned spiral groove 15 having a semicircular cross section is formed on the rear surface side of the flange wall of the intermediate rotating body 18, and the engagement pin 16 at the tip of each link 11 is rotatably guided in the spiral groove 15. Is engaged. The spiral of the spiral groove 15 is formed so as to gradually reduce the diameter along the engine rotation direction R. Therefore, when the intermediate rotating body 18 rotates relative to the drive ring 3 in the delay direction in a state where the engaging pin 16 at the tip of each link 11 is engaged with the spiral groove 15, the tip of the link 11 is in the radial groove 8. , Guided to the spiral shape of the spiral groove 15 and moved radially inward, and conversely, when the intermediate rotating body 18 is relatively displaced in the advance direction, it moves radially outward.
[0022]
The conversion mechanism 41 of the assembly angle changing means 4 is constituted by the radial groove 8, the link 11, the protrusion 13, the engagement pin 16, the lever 9, the intermediate rotating body 18, the spiral groove 15, etc. of the drive ring 3 described above. It is configured. When the relative rotation operation force with respect to the camshaft 1 is input to the intermediate rotating body 18 from the operation force generation unit 40 described later, the conversion mechanism unit 41 receives the operation force between the spiral groove 15 and the engagement pin 16. The distal end of the link 11 is displaced in the radial direction through the engaging portion. At this time, the link 11 swings and the drive ring 3 and the driven shaft member 7 are relatively rotated according to the swing amount.
[0023]
On the other hand, the operating force generator 40 includes a spring spring 45 as an urging means for urging the intermediate rotator 18 in the engine rotation direction R with respect to the drive ring 3, and the intermediate rotator 18 with respect to the drive ring 3. A hysteresis brake 20 as an electromagnetic actuator that operates in a direction opposite to the rotation direction R (generates a force against the biasing means), and balances the biasing force of the mainspring spring 45 and the actuation force of the hysteresis brake 20 The intermediate rotating body 18 is rotated.
[0024]
The mainspring spring 45 has an outer peripheral end coupled to the cylindrical wall 21 extending to the drive ring 3, and an inner peripheral end coupled to the cylindrical base of the intermediate rotating body 18.
[0025]
A sealing wall 46 is integrally coupled to the end surface of the intermediate rotating body 18 opposite to the camshaft 1, and the outer peripheral surface of the sealing wall 46 is slidably in close contact with the inner surface of the cylindrical wall 21. ing.
[0026]
As shown in FIGS. 1 and 4, the hysteresis brake 20 is attached to a VTC cover which is a non-rotating member, and provided with a magnetic induction member 22 having an opposing surface sandwiching a substantially cylindrical gap, and provided on the opposing surface. The inner pole teeth 23 and the outer pole teeth 24, the electromagnetic coil 25 attached to the magnetic induction member 22 to generate a magnetic field between the inner pole teeth 23 and the outer pole teeth 24, and the bipolar teeth 23 and 24. A cylindrical hysteresis ring 26 inserted in a non-contact state therebetween, and an outer peripheral end integrally coupled to the hysteresis ring 26 are coupled to the intermediate rotating body 18 via a coupling pin 47 and a rubber bush 48. The electromagnetic coil 25 is appropriately energized and controlled by the output signal of the controller 42.
[0027]
Each of the inner pole teeth 23 and the outer pole teeth 24 of the magnetic induction member 22 has a plurality of pole teeth elements extending along the axial direction. The pole tooth elements of the both pole teeth 23, 24 are arranged along the circumferential direction, and the pole tooth elements of the pole teeth 23, 24 are offset in the circumferential direction. Therefore, when the electromagnetic coil 25 is energized, a magnetic field is generated between the pole teeth 23 and 24 toward the counterpart pole tooth element having an offset positional relationship.
[0028]
The hysteresis ring 26 is made of a hysteresis material having magnetic hysteresis characteristics. When a magnetic field is generated between the inner pole teeth 23 and the outer pole teeth 24 during the rotation of the ring 26, the direction of the magnetic field and the hysteresis ring 26. Deviation occurs in the direction of the magnetic flux. The hysteresis brake 20 generates a braking force due to this deviation. The annular plate 27 is integrally coupled to a shaft member 30 supported on the inner peripheral surface of the magnetic induction member 22 via bearings 28 and 29. Therefore, the hysteresis ring 20 is supported by the magnetic induction member 22 via the annular plate 27 and the shaft member 30 so as to be relatively rotatable.
[0029]
In the figure, reference numeral 43 denotes a stopper provided between the intermediate rotator 18 and the drive ring 3 to restrict the relative rotation range of both the members 18 and 3.
[0030]
The controller 42 receives signals for determining the operating state of the engine from the crank angle sensor 35, the cam angle sensor 36, and the like, and the controller 42 feedback-controls the energization current of the hysteresis brake 20 based on these signals. It is like that. Further, a signal from an oil temperature sensor 37 (temperature detecting means in this application) for detecting the oil temperature of the lubricating oil is further input to the controller 42, and the assembly angle at the time of engine start is appropriately controlled by the controller 42. It is like that.
[0031]
In the case of this embodiment, the assembly angle position at the time of engine start is controlled to one of θ 1 to θ 3 shown in FIGS. 5 and 6 according to the temperature of the internal combustion engine detected by the oil temperature sensor 37. It is like that. Here, θ 1 is an angular position approximately halfway between the most retarded angle position and the most advanced angle position, θ 2 is an angle position that is deviated from θ 1 on the retard angle side, and θ 3 is , Θ 1 is an angular position that is deviated by a set angle toward the advance side. The assembly angles θ 1 to θ 3 at the time of starting the engine can be switched with two threshold temperatures T 1 and T 2 (where T 1 <T 2 ) as shown in FIG. It has become.
[0032]
Since this valve timing control device is configured as described above, when the rotational phase of the crankshaft and the camshaft 1 (the opening / closing timing of the engine valve) is changed to the most advanced angle side, a predetermined current is supplied to the hysteresis brake 20. Is applied to the intermediate rotating body 18 from the annular plate 27 through the connecting pin 47 and the rubber bush 48. As a result, the intermediate rotating body 18 rotates in the opposite direction with respect to the drive ring 3, whereby the engaging pin 16 at the tip of the link 11 is guided to the spiral groove 15, and the tip of the link 11 is displaced radially inward. At this time, as shown in FIG. 3, the assembly angle of the drive ring 3 and the driven shaft member 7 is changed to the most advanced position by the action of the link 11.
[0033]
Further, when the rotational phase of the crankshaft and the camshaft 1 (opening / closing timing of the engine valve) is changed to the most retarded angle side, the intermediate rotating body 18 is turned to the spring spring 45 by turning off the power supply to the hysteresis brake 20. It is rotated in the direction of engine rotation by the force of. Then, the leading end portion of the link 11 is displaced radially outward by the guide of the engaging pin 16 by the spiral groove 15, and at this time, the combination of the drive ring 3 and the driven shaft member 7 by the action of the link 11 as shown in FIG. The angle is changed to the most retarded position.
[0034]
When the rotational phase of the crankshaft and the camshaft 1 is changed to an arbitrary position between the most advanced angle position and the most retarded angle position, the current value supplied to the hysteresis brake 20 is appropriately controlled to drive The relative rotational position of the intermediate rotating body 18 with respect to the ring 3 is adjusted by the balance between the mainspring spring 45 and the hysteresis brake 20.
[0035]
Further, when the internal combustion engine is started, the assembly angle is controlled to any one of θ 1 to θ 3 as described above. Specific control at this time is executed according to the flowchart shown in FIG.
[0036]
That is, first, when the ignition key is turned on in S1, the temperature of the internal combustion engine is detected by the oil temperature sensor 37 in S2, and then, in S3, the detected temperature T is set to the lower threshold. whether a temperature above T 1 is determined. In this case, the detected temperature T is controls the theta assembling angle position at engine starting to theta 2 advances to step S4 is lower than the temperature T 1 of, when the detected temperature T is a temperature above T 1 is S5 Proceed to In S5, further the detected temperature T is determined whether lower than the upper threshold temperature T 2, and controls the theta assembling angle position proceeds to step S6 in the case of temperature T 2 above theta 3, the temperature T When it is lower than 2 , the routine proceeds to S7, where the assembly angular position θ is controlled to θ 1 .
[0037]
Therefore, in this valve timing control device, when the temperature T of the internal combustion engine is a low temperature where T <T 1 , the initial position θ at the start of the engine is controlled to the retarded angle position θ 2. Therefore, at the time of cold start, as shown in FIG. 5, the valve overlap between the intake valve and the exhaust valve becomes small, so that the engine combustion at the start and idling is stabilized and the so-called internal EGR is reduced, so that the combustion temperature is reduced. As a result, the inert gas suppression effect and the HC suppression effect due to the early temperature rise of the catalyst can be obtained.
[0038]
Further, when the temperature T of the internal combustion engine is high such that T 2 ≦ T, the initial position θ at the time of starting the engine is controlled to the retarded angle position θ 2 , so at the time of high temperature starting, FIG. As shown in FIG. 4, the valve overlap between the intake valve and the exhaust valve is increased, and as a result, the pumping loss immediately after the engine is started is reduced, and the fuel efficiency of the engine is improved. Further, when the initial position θ is controlled to θ 2 , the closing timing of the intake valve is advanced, so that the actual compression ratio is increased and the low speed torque after the engine is started is improved.
[0039]
Further, at the normal temperature where the temperature T of the internal combustion engine satisfies T 1 ≦ T <T 2 , the valve overlap magnitude and the intake valve closing timing are almost in the middle of the above two conditions, and combustion stability, Characteristics such as fuel consumption and low-speed torque are also almost intermediate.
[0040]
Further, in this apparatus, at a low temperature as described above, at high temperatures, but assembling angle at engine starting in the condition of normal temperature is switched, the assembling angle position theta 2 of the retarded side during cold start When the engine is switched, the assembly angle can be quickly switched to the most retarded position after the engine is started as shown in FIG. 5, and similarly, the engine is switched to the advanced assembly angle position θ 3 at the high temperature start. Sometimes the assembly angle can be quickly switched to the most advanced angle after the engine is started. Therefore, in the apparatus of this embodiment, there is an advantage that it is possible to quickly switch to a desired assembly angle corresponding to the engine temperature after the engine is started.
[0041]
By the way, in the valve timing control device of this embodiment, when the internal combustion engine is started, the assembly angle is controlled in accordance with the engine temperature. However, separately from this, the ignition key is turned off from the engine operating state. Then, before the engine is completely stopped, the assembly angle θ may be returned to the reference assembly angle position at the time of starting the engine (assembly angle position at normal temperature) θ 1 .
[0042]
In this case, the assembly angle immediately before starting the engine is the intermediate assembly angle position θ 1 between θ 2 and θ 3 , so the assembly angle at the start determined by the detected temperature is θ 1 to θ In any of the cases, it can be quickly changed to a predetermined assembly angle position.
[0043]
The embodiment of the present invention is not limited to the above-described embodiment. For example, in the above embodiment, the operating force generating portion of the assembly angle changing means is configured by a spring and a hysteresis brake. The force generation unit may be configured by an urging unit and an electromagnetic actuator other than these. Further, the operating force generator does not necessarily need to use an urging means, and the urging means can be eliminated if an electromagnetic actuator capable of forward / reverse rotation is used. Furthermore, a hydraulic actuator may be used as the actuator of the assembly angle changing means.
[0044]
Further, the temperature detecting means for detecting the temperature of the internal combustion engine is not limited to the oil temperature sensor 37 but may be a water temperature sensor for detecting the cooling water temperature or the like.
[0045]
As described above, the valve timing control device according to the invention of this application can also be applied to the valve system on the exhaust side. In this case, the assembly angle at the low temperature start is set to the same as that at the high temperature start. What is necessary is just to change to an advance side rather than an assembly angle.
[0046]
Next, inventions other than those described in the claims that can be grasped from each of the above embodiments will be described below together with the effects thereof.
[0047]
(A) The temperature of the internal combustion engine is detected by the temperature detection means when the engine is started, and the assembly angle changing means is controlled during cranking of the internal combustion engine according to the detected temperature. A valve timing control device for an internal combustion engine according to claim 1.
[0048]
In this case, the assembly angle control according to the temperature of the internal combustion engine at the time of starting the engine can be accurately performed.
[0049]
(B) When the internal combustion engine is stopped, the assembly angle is controlled to a reference assembly angle position at which the internal combustion engine can be started. Timing control device.
[0050]
In this case, the assembly angle is returned to the reference assembly angle position where the internal combustion engine can be started in advance when the engine is stopped, so that the internal assembly engine can be quickly changed to an appropriate assembly angle according to the engine temperature. Is possible.
[0051]
(C) The valve timing control device for an internal combustion engine according to any one of claims 1 and 2, and (a) and (b), wherein an electromagnetic actuator is used as the actuator of the assembly angle changing means.
[0052]
In this case, since the electromagnetic actuator is used, a large starting torque can be obtained immediately upon energization when the engine is started. Therefore, when starting the internal combustion engine, the assembly angle changing means can be quickly operated to the assembly angle position corresponding to the engine temperature.
[0053]
(D) Assembling angle changing means:
A radial guide provided on one of the drive rotor and the driven rotor,
An intermediate rotator which is provided so as to be relatively rotatable with respect to the drive rotator and the driven rotator, and which has a spiral guide on a surface facing the radial guide;
A movable guide unit that is movably guided and engaged with the radial guide and the spiral guide;
A link that oscillates and couples the movable guide portion with a portion spaced from the rotation center of the other of the drive rotator and the driven rotator,
An operation force generating unit that generates a rotation operation force for rotating the intermediate rotating body, and the rotation operation force input to the intermediate rotating body is amplified by the engaging portion of the spiral guide and the movable guide unit. The valve timing control device for an internal combustion engine according to any one of claims 1, 2, and (a) to (c), wherein the valve timing control device is converted into an assembly angle operating force of the driving rotating body and the driven rotating body. .
[0054]
In this case, since the force generated by the operating force generator is amplified and converted into an assembly angle operating force of the drive rotator and the driven rotator, the assembly angle can be obtained even at the initial stage of engine start, which requires a large operating force. Can be quickly changed to an angular position corresponding to the engine temperature.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an embodiment of the invention of this application.
2 is a cross-sectional view taken along the line AA of FIG. 1 showing the embodiment.
3 is a cross-sectional view corresponding to FIG. 2 showing an operating state of the embodiment.
FIG. 4 is an exploded perspective view showing the embodiment.
FIG. 5 is a view showing valve lift characteristics of the embodiment.
FIG. 6 is a view showing the relationship between the temperature and the assembly angle according to the embodiment.
FIG. 7 is a flowchart showing control of the embodiment.
[Explanation of symbols]
1 ... Camshaft 3 ... Drive ring (drive rotor)
4 ... Assembly angle changing means 7 ... Driven shaft member (driven rotor)
37. Oil temperature sensor (temperature detection means)

Claims (5)

内燃機関のクランクシャフトによって回転駆動される駆動回転体と、
吸気側のカムシャフト若しくは同シャフトに結合された別体部材から成り、前記駆動回転体が必要に応じて相対回動できるように組み付けられた従動回転体と、
前記駆動回転体と従動回転体の組付角を操作する組付角変更手段と、を備えた内燃機関のバルブタイミング制御装置において、
内燃機関の温度を検出する温度検出手段を設け、内燃機関の始動時における前記組付角変更手段の組付角を、前記温度検出手段による始動時の検出温度が所定の温度より低温のときに、前記始動時の検出温度が前記所定の温度より高温のときよりも遅角側に制御することにより、吸気弁と排気弁のバルブオーバーラップを小さくすることを特徴とする内燃機関のバルブタイミング制御装置。
A drive rotator that is rotationally driven by a crankshaft of the internal combustion engine;
A driven rotary body composed of a camshaft on the intake side or a separate member coupled to the same shaft, and assembled so that the drive rotary body can be relatively rotated as required;
In a valve timing control device for an internal combustion engine, comprising: an assembly angle changing means for operating an assembly angle of the drive rotor and the driven rotor.
Temperature detection means for detecting the temperature of the internal combustion engine is provided, and the assembly angle of the assembly angle changing means at the start of the internal combustion engine is set so that the temperature detected at the start by the temperature detection means is lower than a predetermined temperature. The valve timing control of the internal combustion engine is characterized in that the valve overlap between the intake valve and the exhaust valve is reduced by controlling the detected temperature at the time of starting to a retard side than when the detected temperature is higher than the predetermined temperature. apparatus.
内燃機関の温度を機関始動時に温度検出手段によって検出し、その検出された温度に応じて内燃機関のクランクキング時に組付角変更手段を制御することを特徴とする請求項1に記載の内燃機関のバルブタイミング制御装置。  2. The internal combustion engine according to claim 1, wherein the temperature of the internal combustion engine is detected by the temperature detection means when the engine is started, and the assembly angle changing means is controlled during cranking of the internal combustion engine according to the detected temperature. Valve timing control device. 内燃機関の停止時に、組付角を内燃機関の始動が可能な基準組付角位置に制御することを特徴とする請求項1または2に記載の内燃機関のバルブタイミング制御装置。  The valve timing control device for an internal combustion engine according to claim 1 or 2, wherein when the internal combustion engine is stopped, the assembly angle is controlled to a reference assembly angle position at which the internal combustion engine can be started. 組付角変更手段のアクチュエータとして電磁アクチュエータを用いたことを特徴とする請求項1〜3のいずれか一項に記載の内燃機関のバルブタイミング制御装置。  The valve timing control device for an internal combustion engine according to any one of claims 1 to 3, wherein an electromagnetic actuator is used as the actuator of the assembly angle changing means. 組付角変更手段は、
駆動回転体と従動回転体のいずれか一方に設けられた径方向ガイドと、
前記駆動回転体と従動回転体に対して相対回動可能に設けられ、前記径方向ガイドに対峙する側の面に渦巻き状ガイドを有する中間回転体と、
前記径方向ガイドと渦巻き状ガイドに変位可能に案内係合される可動案内部と、
前記駆動回転体と従動回転体のいずれか他方のものの回転中心から離間した部位と前記可動案内部とを揺動可能に連結するリンクと、
前記中間回転体を回動させる回動操作力を発生する操作力発生部と、を備え、
中間回転体に入力された回動操作力を、渦巻き状ガイドと可動案内部の係合部によって増幅して、駆動回転体と従動回転体の組付角操作力に変換することを特徴とする請求項1〜4のいずれか一項に記載の内燃機関のバルブタイミング制御装置。
The assembly angle changing means is
A radial guide provided on one of the drive rotator and the driven rotator,
An intermediate rotator which is provided so as to be rotatable relative to the drive rotator and the driven rotator, and which has a spiral guide on a surface facing the radial guide;
A movable guide unit that is movably guided and engaged with the radial guide and the spiral guide;
A link that oscillates the movable guide part and a portion spaced from the rotation center of the other of the drive rotator and the driven rotator,
An operation force generator that generates a rotation operation force for rotating the intermediate rotating body,
The rotating operation force input to the intermediate rotating body is amplified by the engaging portion of the spiral guide and the movable guide portion, and converted into an assembly angle operating force of the driving rotating body and the driven rotating body. The valve timing control device for an internal combustion engine according to any one of claims 1 to 4.
JP2002322222A 2002-11-06 2002-11-06 Valve timing control device for internal combustion engine Expired - Fee Related JP4233308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002322222A JP4233308B2 (en) 2002-11-06 2002-11-06 Valve timing control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002322222A JP4233308B2 (en) 2002-11-06 2002-11-06 Valve timing control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004156511A JP2004156511A (en) 2004-06-03
JP4233308B2 true JP4233308B2 (en) 2009-03-04

Family

ID=32802468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002322222A Expired - Fee Related JP4233308B2 (en) 2002-11-06 2002-11-06 Valve timing control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4233308B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4677844B2 (en) * 2005-07-27 2011-04-27 日産自動車株式会社 Engine valve timing control device
JP4600379B2 (en) * 2006-10-06 2010-12-15 株式会社デンソー Valve timing adjustment device

Also Published As

Publication number Publication date
JP2004156511A (en) 2004-06-03

Similar Documents

Publication Publication Date Title
JP4749981B2 (en) Variable valve operating device for internal combustion engine
JP2008303773A (en) Variable valve system of internal combustion engine
JP4516401B2 (en) Engine start control device
JP4776447B2 (en) Variable valve operating device for internal combustion engine
JP5662264B2 (en) Variable valve operating device for internal combustion engine
US20060272608A1 (en) Compression ignition engine
JP2008267300A (en) Variable valve gear for internal combustion engine
JP2010138737A (en) Variable valve gear for internal combustion engine and controller of the same
JP2009156029A (en) Variable valve system for internal combustion engine, and controller to be used for the same
JP2012251483A (en) Variable valve gear of internal combustion engine and start control apparatus of internal combustion engine
JP4156346B2 (en) Valve timing control device for internal combustion engine
JP3736627B2 (en) Valve timing adjustment device
JP2007113440A (en) Control device of internal combustion engine
JP2005146993A (en) Valve timing control device for internal combustion engine
JP4295081B2 (en) Valve timing control device for internal combustion engine
JP4233308B2 (en) Valve timing control device for internal combustion engine
JP4415788B2 (en) Variable valve operating apparatus for internal combustion engine and control method thereof
JP4163482B2 (en) Valve timing control device for internal combustion engine
JP4606473B2 (en) Valve timing control device for internal combustion engine, controller for the valve timing control device, and controller used for valve timing changing mechanism
JP4109972B2 (en) Valve timing control device for internal combustion engine
JP4166644B2 (en) Valve timing control device for internal combustion engine
JP4109967B2 (en) Valve timing control device for internal combustion engine
JP5284232B2 (en) Internal combustion engine and control device for internal combustion engine.
JP5379555B2 (en) Valve timing control device for internal combustion engine
JP4561505B2 (en) Variable valve operating apparatus for internal combustion engine and control method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050914

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4233308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141219

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees