JP4109967B2 - Valve timing control device for internal combustion engine - Google Patents

Valve timing control device for internal combustion engine Download PDF

Info

Publication number
JP4109967B2
JP4109967B2 JP2002322219A JP2002322219A JP4109967B2 JP 4109967 B2 JP4109967 B2 JP 4109967B2 JP 2002322219 A JP2002322219 A JP 2002322219A JP 2002322219 A JP2002322219 A JP 2002322219A JP 4109967 B2 JP4109967 B2 JP 4109967B2
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
assembly angle
changing means
valve timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002322219A
Other languages
Japanese (ja)
Other versions
JP2004156509A (en
Inventor
保 東藤
小久保  直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002322219A priority Critical patent/JP4109967B2/en
Publication of JP2004156509A publication Critical patent/JP2004156509A/en
Application granted granted Critical
Publication of JP4109967B2 publication Critical patent/JP4109967B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

【0001】
【発明の属する技術分野】
この出願の発明は、内燃機関の吸気側または排気側の機関弁の開閉タイミングを運転状態に応じて可変制御する内燃機関のバルブタイミング制御装置に関する。
【0002】
【従来の技術】
この種のバルブタイミング制御装置として、次のようなものが案出されている。
【0003】
このバルブタイミング制御装置は、クランクシャフトにタイミングチェーン等を介して連係されたハウジング(駆動回転体)がカムシャフトの端部に回動可能に組み付けられ、ハウジングの内側端面に形成された径方向ガイドに可動案内部が径方向に沿って摺動自在に係合支持されると共に、径方向外側に突出するレバーを有するレバー軸(従動回転体)がカムシャフトの端部にボルト結合され、可動案内部とレバー軸のレバーとがリンクによって枢支連結されている。そして、前記径方向ガイドに対向する位置には、渦巻き状ガイドを有する中間回転体がハウジングとレバー軸に対して相対回動可能に設けられ、前記可動案内部の軸方向の一方の端部に突設された略円弧状の複数の突条が前記渦巻き状ガイドに案内係合されている。また、中間回転体はハウジングに対して回転を進める側にゼンマイばねによって付勢されると共に、電磁ブレーキによって回転を遅らせる側の力を適宜受けるようになっている。この装置の場合、中間回転体に操作力を付与するゼンマイばね及び電磁ブレーキと、中間回転体の回動に応じてハウジング(駆動回転体)とレバー軸(従動回転体)の組付角を回動操作するリンクと、によって組付角変更手段が構成されている。
【0004】
この装置においては、電磁ブレーキがOFF状態のときには、中間回転体がゼンマイばねの付勢力を受けハウジングに対して初期位置に位置されており、渦巻き状ガイドに突条でもって噛合う可動案内部は径方向外側に最大に変位し、リンクを引き起こしてハウジングとレバー軸の組付角を最遅角位相の角度位置(以下、「最遅角位置」と呼ぶ。)または最進角位相の角度位置(以下、「最進角位置」と呼ぶ。)に維持している。そして、この状態から電磁ブレーキがONにされると、中間回転体が減速されてハウジングに対して遅れ側に相対回転する結果、渦巻き状ガイドに噛合う可動案内部が径方向内側に変位し、今まで引き起こされていたリンクを次第に倒すようにしてハウジングとレバー軸の組付角を最進角位置または最遅角位置に変更する。
【0005】
【特許文献】
特開2001−41013号公報
【0006】
【発明が解決しようとする課題】
上記従来のバルブタイミング制御装置は、組付角変更手段の各部が摺動して駆動回転体と従動回転体の組付角を変更するが、駆動回転体と従動回転体の組付角が長時間一定角度位置に保持されると、カムシャフト等からの微振動の入力によって摺動部に局部的な摩耗や変形が生じ、その摩耗や変形によって装置の円滑な作動が阻害されることがある。
【0007】
そこでこの出願の発明は、駆動回転体と従動回転体の組付角が一定角度位置に長時間保持されることによる摺動部の摩耗や変形を確実に防止し、長期に亙って安定した作動を得ることのできる内燃機関のバルブタイミング制御装置を提供しようとするものである。
【0008】
【課題を解決するための手段】
本発明は、前記従来の技術的課題を解決するために案出されたもので、とりわけ、内燃機関の回転速度が設定速度以上になったときに、組付角変更手段のフィードバック制御が働かない範囲で前記組付角変更手段を微小作動させるディザー制御を行い、内燃機関の回転速度が設定速度以上でないときには、前記ディザー制御を行わないで通常のフィードバック制御を行うことを特徴としている。
【0011】
本発明によれば、内燃機関の回転速度が設定速度以上になると、組付角変更手段がディザー制御により微小作動することによって摺動部を変動させるため、組付角が一定角度位置に維持されることによる摺動部の局部的な摩耗や変形を確実に防止することができる。
つまり、内燃機関が高回転域にあるときには、組付角を頻繁に変える必要が少ないうえ、摺動部の摩耗や変形の原因となるカムシャフトの変動トルクの振れが大きくなる。
また、前述のように、内燃機関の回転速度が設定速度以上になったときに組付角変更手段を微小作動させるため、組付角の変更操作に悪影響を及ぼすことなく摺動部の摩耗や変形を効果的に防止することができる。また、組付角変更手段の微小作動は同変更手段のフィードバック制御が働かない範囲で行われるため、この微小振動による組付角の大きな狂いを無くすことができる。
【0012】
【発明の実施の形態】
次に、この出願の発明の一実施形態を図1〜図7に基づいて説明する。
【0013】
この実施形態は、この出願の発明にかかるバルブタイミング制御装置を内燃機関の吸気側の動弁系に適用したものであるが、排気側の動弁系に同様に適用することも可能である。
【0014】
バルブタイミング制御装置は、図1に示すように内燃機関のシリンダヘッド(図示せず)に回転自在に支持されたカムシャフト1と、このカムシャフト1の前端部に結合された従動軸部材7(従動回転体)と、この従動軸部材7に必要に応じて相対回動できるように組み付けられ、チェーン(図示せず)を介してクランクシャフト(図示せず)に連係されるタイミングスプロケット2を外周に有する駆動リング3(駆動回転体)と、この駆動リング3と従動軸部材7の前方側(図1中左側)に配置され、両者3,1を相対回動させて組付角を操作する組付角変更手段4と、内燃機関の図外のシリンダヘッドとヘッドカバーの前面に跨って取り付けられて組付角変更手段4の前面と周域を覆う図外のVTCカバーと、を備えている。尚、組付角変更手段4は、回動操作力を発生する操作力発生部40と、その操作力発生部40で発生した回動操作力を駆動リング3と従動軸部材7の相対的な回転力に変換する変換機構部41と、によって構成されている。
【0015】
駆動リング3は、段差状の挿通孔6を備えた略円板状に形成され、この挿通孔6部分が従動軸部材7(従動回転体)に回転可能に組み付けられている。そして、駆動リング3の前面(カムシャフト1と逆側の面)には、図2,図3に示すように、対面する平行な側壁を有する3つの径方向溝8(径方向ガイド)が同リング3のほぼ半径方向に沿うように形成されている。
【0016】
また、従動軸部材7は、図1に示すように、カムシャフト1の前端部に突き合される基部側の外周に拡径部が形成されると共に、その拡径部よりも前方側の外周面に放射状に突出する三つのレバー9が一体に形成され、軸芯部を貫通するボルト10によってカムシャフト1に結合されている。各レバー9には、リンク11の基端がピン12によって枢支連結され、各リンク11の先端には前記各径方向溝8に摺動自在に係合する円柱状の突出部13が一体に形成されている。
【0017】
各リンク11は、突出部13が対応する径方向溝8に係合した状態において、ピン12を介して従動軸部材7に連結されているため、リンク11の先端側が外力を受けて径方向溝8に沿って変位すると、駆動リング3と従動軸部材7はリンク11の作用でもって突出部13の変位に応じた方向及び角度だけ相対回動する。
【0018】
また、各リンク11の先端部には、軸方向前方側に開口する収容穴14が形成され、この収容穴14に、後述する渦巻き溝15(渦巻き状ガイド)に係合する係合ピン16と、この係合ピン16を前方側(渦巻き溝15側)に付勢するコイルばね17とが収容されている。尚、この実施形態の場合、リンク11の先端の突出部13と係合ピン16、コイルばね17等によって径方向に変位可能な可動案内部が構成されている。
【0019】
一方、従動軸部材7のレバー9の突設位置よりも前方側には、円板状のフランジ壁を有する中間回転体18が軸受19を介して回転自在に支持されている。この中間回転体18のフランジ壁の後面側には断面半円状の前述の渦巻き溝15が形成され、この渦巻き溝15に、前記各リンク11の先端の係合ピン16が転動自在に案内係合されている。渦巻き溝15の渦巻きは、機関回転方向Rに沿って次第に縮径するように形成されている。したがって、各リンク11先端の係合ピン16が渦巻き溝15に係合した状態において、中間回転体18が駆動リング3に対して遅れ方向に相対回転すると、リンク11の先端部は径方向溝8に案内されつつ、渦巻き溝15の渦巻き形状に誘導されて半径方向内側に移動し、逆に、中間回転体18が進み方向に相対変位すると、半径方向外側に移動する。
【0020】
組付角変更手段4の変換機構部41は、以上説明した駆動リング3の径方向溝8、リンク11、突出部13、係合ピン16、レバー9、中間回転体18、渦巻き溝15等によって構成されている。この変換機構部41は、後述する操作力発生部40から中間回転体18にカムシャフト1に対する相対的な回動操作力が入力されると、その操作力が渦巻き溝15と係合ピン16の係合部を通してリンク11の先端を径方向に変位させ、このときリンク11が揺動してその揺動量に応じて駆動リング3と従動軸部材7を相対回動させる。
【0021】
尚、上述の変換機構部41には、カムシャフト1側から内燃機関の潤滑油が連続的に送られ、径方向溝8、リンク11、係合ピン16、渦巻き溝15をはじめとする各部の摺動部に潤滑油が常時供給されるようになっている。
【0022】
一方、操作力発生部40は、中間回転体18を駆動リング3に対して機関回転方向Rに付勢する付勢手段としてのゼンマイばね45と、中間回転体18を駆動リング3に対して機関回転方向Rと逆方向に作動させる(付勢手段に抗する力を発生する)ヒステリシスブレーキ20と、を備え、ゼンマイばね45の付勢力とヒステリシスブレーキ20の作動力とのバランスによって中間回転体18を回動操作するようになっている。尚、この実施形態においては、電磁アクチュエータの一例としてヒステリシスデレーキ20を用いたが、ヒステリシスブレーキに限らず他の形式の電磁ブレーキを採用することも可能である。
【0023】
ゼンマイばね45は、駆動リング3に延設された円筒壁21にその外周端部が結合される一方、内周端部が中間回転体18の円筒状の基部に結合されている。
【0024】
また、中間回転体18のカムシャフト1と逆側の端面には、封止壁46が一体に結合され、その封止壁46の外周面が前記円筒壁21の内面に摺動自在に密接している。
【0025】
図1,図4に示すように、ヒステリシスブレーキ20は、非回転部材であるVTCカバーに取り付けられると共に、略円筒状の隙間を挟む対向面を備えた磁気誘導部材22と、前記対向面に設けられた内側極歯23、及び、外側極歯24と、磁気誘導部材22に取り付けられて内側極歯23と外側極歯24の間に磁界を生じさせる電磁コイル25と、前記両極歯23,24間に非接触状態で挿入配置された円筒状のヒステリシスリング26と、外周端がこのヒステリシスリング26に一体に結合された状態で中間回転体18に連結ピン47とゴムブッシュ48を介して結合された円環プレート27と、を備え、電磁コイル25がコントローラ42の出力信号によって適宜通電制御されるようになっている。
【0026】
磁気誘導部材22の内側極歯23と外側極歯24は夫々軸方向に沿って延出する複数の極歯要素を有している。両極歯23,24の極歯要素は夫々円周方向に沿って配置され、極歯23,24の極歯要素相互は円周方向にオフセットされている。したがって、電磁コイル25が通電されると、両極歯23,24間には、オフセットした位置関係にある相手極歯要素に向かう磁界が発生する。
【0027】
ヒステリシスリング26は、磁気的ヒステリシス特性を有するヒステリシス材から成り、同リング26の回転中に内側極歯23と外側極歯24の間に磁界が発生すると、その磁界の向きとヒステリシスリング26内の磁束の向きとにずれが生じるようになっている。ヒステリシスブレーキ20は、このずれによって制動力を発生する。また、円環プレート27は、磁気誘導部材22の内周面に軸受28,29を介して支持された軸部材30に一体に結合されている。したがって、ヒステリシスリング20は、円環プレート27と軸部材30を介して磁気誘導部材22に相対回転可能に支持されている。
【0028】
また、コントローラ42には、クランク角センサ35やカム角センサ36等から機関の運転状態を判断するための信号が入力され、コントローラ42は、これらの信号に基づいてヒステリシスブレーキ20の通電電流を適宜制御するようになっている。具体的には、コントローラ42は上述の検出信号に基いてそのときの機関運転状態を判断し、その機関運転状態に適した組付角を目標組付角として決定した後、実際の組付角が目標組付角に近付くようにヒステリシスブレーキ20の通電電流をフィードバック制御する。
【0029】
ここで、コントローラ42は上述のように通電電流をフィードバック制御するが、このフィードバック制御では、組付角変更機構4の不安定な過敏作動を抑制するために所謂不感帯(フィードバック制御が働かない角度範囲。)が存在する。このバルブタイミング制御装置においては、組付角変更機構4の作動範囲が上記の不感帯の範囲内となるように、以下の(1),(2)条件下で電流波形が鋸歯状となるディザー電流(図5参照。)を通電するようにしている。以下、ディザー電流を通電する制御を「ディザー制御」と呼ぶものとする。
(1)内燃機関の回転速度が図6の設定速度R0以上であるとき。
【0030】
ただし、速度R0はカムシャフト1の変動トルク(バルブスプリングと駆動カムのプロフィールに起因する交番トルク)のピーク値を時間軸に沿って繋いだとき、その線の傾きが0から正または負の勾配を持ち始めるときの速度、即ち、変動トルクの正負いずれかのピークの絶対値が増加を始めるときの速度である。
(2)設定時間T1以上、設定角α以上の組付角変更指令が無いとき。
【0031】
ただし、時間T1は任意に決めた時間であり、設定角αは不感帯に相当する角度である。
【0032】
尚、図1〜図3中、43は、中間回転体18と駆動リング3の間に設けられ、両者18,3の相対回動範囲を規制するストッパである。
【0033】
このバルブタイミング制御装置は以上のような構成であるため、クランクシャフトとカムシャフト1の回転位相(機関弁の開閉タイミング)を最進角側に変更する場合には、ヒステリシスブレーキ20に所定の電流を通電することにより、ゼンマイばね45の力に抗する制動力が円環プレート27から中間回転体18に連結ピン47とゴムブッシュ48を介して伝達される。これにより、中間回転体18が駆動リング3に対して逆方向に回転し、それによってリンク11の先端の係合ピン16が渦巻き溝15に誘導されてリンク11の先端部が径方向内側に変位し、このとき、図3に示すようにリンク11の作用によって駆動リング3と従動軸部材7の組付角が最進角位置に変更される。
【0034】
また、クランクシャフトとカムシャフト1の回転位相(機関弁の開閉タイミング)を最遅角側に変更する場合には、ヒステリシスブレーキ20の通電をオフにすることにより、中間回転体18がゼンマイばね45の力によって機関回転方向に回転させられる。すると、渦巻き溝15による係合ピン16の誘導によってリンク11の先端部が径方向外側に変位し、このとき、図2に示すようにリンク11の作用によって駆動リング3と従動軸部材7の組付角が最遅角位置に変更される。
【0035】
そして、クランクシャフトとカムシャフト1の回転位相を最進角位置と最遅角位置の間の任意の位置に変更する場合には、ヒステリシスブレーキ20に通電する電流値を適宜制御することにより、駆動リング3に対する中間回転体18の相対回動位置がゼンマイばね45とヒステリシスブレーキ20とのバランスによって調整される。
【0036】
これらのヒステリシスブレーキ20に対する電流の制御は基本的に前述のフィードバック制御によって行われるが、この電流の制御にあたっては図7のフローチャートに示すような処理が実行される。
【0037】
この処理について説明すると、まず、S1において、機関回転速度が設定速度R0以上であるかどうかが判断され、設定速度R0以上でない場合にはディザー制御を行わない通常のフィードバック制御を行い、設定速度R0以上である場合にはS2に進む。S2においては、一定時間T1内に設定角度以上の組付角変換指令があったかどうかが判断され、その指令があった場合にはディザー制御を行わないフィードバック制御を行い、その指令がなかった場合にだけディザー制御を行う。
【0038】
したがって、このバルブタイミング制御装置においては、機関回転速度がR0以上であり、かつ、組付角が設定時間T1以上、フィードバック制御の働かない誤差範囲内の一定角度位置に維持されたときにのみ、ヒステリシスブレーキ20にディザー電流が通電される。そして、ディザー電流が通電されると、図5に示すように組付角がαの範囲で微小作動して組付角変更手段4の各部の摺動部が微小に変動し、その結果、摺動部が長時間一定接触状態に維持されることによる摩耗や変形が防止される。特に、この実施形態の場合、組付角変更手段4の各部に潤滑油が供給されるが、この潤滑油は上記の摺動部の微小作動によって摺動部の接触面に確実に回り込み、接触面の潤滑油切れを確実に防止する。
【0039】
ところで、この実施形態のバルブタイミング制御装置においては、上記二つの条件を満たすときにディザー制御に切換えるようにしているが、ディザー電流の切換えはいずれか一方の条件を満たすときのみ行うようにしても良い。
【0040】
即ち、前者の機関回転速度がR0以上の条件下では、機関回転速度が比較的高回転域であるために頻繁な組付角操作(回転位相の変更)を行う必要がなく、しかも、カムシャフトの変動トルクの振れが組付角変更手段4の各部の摺動部に摩耗や変形の危害を及ぼすことがない。したがって、この条件を満たすときのみディザー制御を行うようにすれば、ディザー電流の通電によってフィードバック制御に悪影響(制御が不安定になる影響。)が及ぶ可能性が少なくなる。
【0041】
また、後者の条件下では、組付角が長時間一定角度位置に維持され、組付角変更手段4の摺動部に摩耗や変形が最も生じ易くなり、この条件のときにのみディザー制御を行えば、やはりフィードバック制御への悪影響は少なくなる。
【0042】
ただし、上述の実施形態のように二つの条件を同時に満たすときにのみディザー制御を行うようにした場合には、フィードバック制御への悪影響をより少なくしつつ、摺動部の摩耗や変形を確実に防止することができる。
【0043】
尚、この発明の実施形態は以上で説明したものに限るものではなく、例えば、上記の実施形態においては、組付角変更手段の操作力発生部はゼンマイばねとヒステリシスブレーキによって構成したが、操作力発生部はこれら以外の付勢手段と電磁アクチュエータによって構成するようにしても良い。また、操作力発生部は必ずしも付勢手段を用いる必要はなく、正転逆転操作ができるアクチュエータを用いれば付勢手段を無くすこともできる。
【0044】
さらに、組付角変更手段の操作力発生部は油圧アクチュエータを用いるようにしても良い。この場合、例えば、フィードバック制御が働かない範囲で油圧アクチュエータの供給油圧を微小変動させれば前述の実施形態と同様に組付角変動機構を微小作動させることができる。
【0045】
次に、上記の各実施形態から把握し得る請求項に記載以外の発明について、以下にその作用効果と共に記載する。
【0046】
(イ) 内燃機関の回転速度が設定速度以上で、かつ、前記駆動回転体と従動回転体の組付角が設定時間以上、組付角変更手段のフィードバック制御が働かない誤差範囲内の一定角度位置に維持されたときに、前記フィードバック制御が働かない範囲で組付角変更手段を微小作動させることを特徴とする請求項1に記載の内燃機関のバルブタイミング制御装置。
【0047】
この場合、組付角変更手段の微小作動がフィードバック制御に悪影響を及ぼす可能性がより少なくなる。
【0048】
(ロ) 前記設定回転速度は、カムシャフトの変動トルクのピーク値が変化し始める回転速度であることを特徴とする請求項2または前記(イ)に記載の内燃機関のバルブタイミング制御装置。
【0049】
この場合、カムシャフトの変動トルクが摺動部の摩耗や変形に影響を与える回転域のみ組付角変更手段を微小作動させるため、必要外の回転域での組付角変更手段の微小作動がなく、フィードバック制御への悪影響や制御の複雑化を回避することができる。
【0050】
(ハ) 組付角変更手段の摺動部には潤滑油が供給されていることを特徴とする請求項1、2、前記(イ),(ロ)のいずれかに記載の内燃機関のバルブタイミング制御装置。
【0051】
この場合、組付角変更手段の微小作動に伴なう摺動部の変動により、摺動部に確実に潤滑油が行き渡る。したがって、この潤滑油によって摺動部の局部的な摩耗や変形をより確実に防止することができる。
【0052】
(ニ) 組付角変更手段のアクチュエータとして電磁アクチュエータが用いられていることを特徴とする請求項1,2、前記(イ)〜(ハ)のいずれかに記載の内燃機関のバルブタイミング制御装置。
【0053】
この場合、組付角変更手段に油圧アクチュエータを用いるものと異なり、組付角変更手段の各部がオイルの内部に浸されていないため、組付変更手段を微小作動させることは摺動部の局部的な摩耗や変形を防止するうえで特に有効となる。
【0054】
(ホ) 組付角変更手段は、
駆動回転体と従動回転体のいずれか一方に設けられた径方向ガイドと、
前記駆動回転体と従動回転体に対して相対回動可能に設けられ、前記径方向ガイドに対峙する側の面に渦巻き状ガイドを有する中間回転体と、
前記径方向ガイドと渦巻き状ガイドに変位可能に案内係合される可動案内部と、
前記駆動回転体と従動回転体のいずれか他方のものの回転中心から離間した部位と前記可動案内部とを揺動可能に連結するリンクと、
前記中間回転体を回動させる回動操作力を発生する操作力発生部と、を備え、中間回転体に入力された回動操作力を、渦巻き状ガイドと可動案内部の係合部によって増幅して、駆動回転体と従動回転体の組付角操作力に変換することを特徴とする請求項1,2、(イ)〜(ニ)のいずれかに記載の内燃機関のバルブタイミング制御装置。
【0055】
この場合、操作力発生部から中間回転体に入力された回動操作力を渦巻き状ガイドを通して可動案内部の径方向の変位に変換するものでため、可動案内部に接触する渦巻き状ガイドの摺動部を円滑に保つうえで特に有効となる。
【図面の簡単な説明】
【図1】この出願の発明の一実施形態を示す縦断面図。
【図2】同実施形態を示す図1のA−A線に沿う断面図。
【図3】同実施形態の作動状態を示す図2に対応の断面図。
【図4】同実施形態を示す分解斜視図。
【図5】同実施形態と従来のものの時間軸上における通電電流と変換角の変化を示す図。
【図6】同実施形態のカムシャフトトルク−機関回転数特性を示す図。
【図7】同実施形態の制御を示すフローチャート。
【符号の説明】
1…カムシャフト
3…駆動リング(駆動回転体)
4…組付角変更手段
7…従動軸部材(従動回転体)
[0001]
BACKGROUND OF THE INVENTION
The invention of this application relates to a valve timing control device for an internal combustion engine that variably controls the opening / closing timing of an intake-side or exhaust-side engine valve of the internal combustion engine in accordance with an operating state.
[0002]
[Prior art]
As this type of valve timing control device, the following has been devised.
[0003]
In this valve timing control device, a housing (drive rotary member) linked to a crankshaft via a timing chain or the like is rotatably assembled to an end portion of a camshaft, and a radial guide formed on an inner end surface of the housing. The movable guide is slidably engaged and supported along the radial direction, and a lever shaft (driven rotor) having a lever protruding radially outward is bolted to the end of the camshaft, so that the movable guide The part and the lever of the lever shaft are pivotally connected by a link. An intermediate rotating body having a spiral guide is provided at a position facing the radial guide so as to be rotatable relative to the housing and the lever shaft, and is provided at one end in the axial direction of the movable guide portion. A plurality of substantially arc-shaped protruding protrusions are guided and engaged with the spiral guide. Further, the intermediate rotating body is biased by a mainspring spring toward the side where the rotation is advanced with respect to the housing, and appropriately receives a force on the side of delaying rotation by an electromagnetic brake. In the case of this device, the springs and electromagnetic brakes that apply operating force to the intermediate rotating body, and the assembly angle of the housing (drive rotating body) and lever shaft (driven rotating body) are rotated according to the rotation of the intermediate rotating body. The assembly angle changing means is constituted by the link that is operated and operated.
[0004]
In this device, when the electromagnetic brake is in the OFF state, the intermediate rotating body is positioned at the initial position with respect to the housing under the urging force of the mainspring spring, and the movable guide portion that meshes with the spiral guide with the ridge is provided. Displacement to the outside in the radial direction to the maximum, causing the link to cause the assembly angle of the housing and lever shaft to be the angle position of the most retarded angle phase (hereinafter referred to as the “most retarded angle position”) or the angle position of the most advanced angle phase. (Hereinafter referred to as “the most advanced position”). Then, when the electromagnetic brake is turned on from this state, the intermediate rotating body is decelerated and rotates relatively to the delay side with respect to the housing, so that the movable guide portion that meshes with the spiral guide is displaced radially inward, The assembly angle of the housing and the lever shaft is changed to the most advanced position or the most retarded position by gradually tilting the link that has been caused so far.
[0005]
[Patent Literature]
JP-A-2001-41013
[Problems to be solved by the invention]
In the conventional valve timing control device described above, each part of the assembly angle changing means slides to change the assembly angle between the drive rotator and the driven rotator, but the assembly angle between the drive rotator and the driven rotator is long. If held at a certain angular position for a time, local wear and deformation may occur in the sliding portion due to the input of slight vibration from the camshaft and the like, and the smooth operation of the device may be hindered by the wear and deformation. .
[0007]
Therefore, the invention of this application reliably prevents wear and deformation of the sliding portion due to the assembly angle of the driving rotating body and the driven rotating body being held at a constant angular position for a long time, and is stable over a long period of time. It is an object of the present invention to provide a valve timing control device for an internal combustion engine that can be operated.
[0008]
[Means for Solving the Problems]
The present invention has been devised in order to solve the above-described conventional technical problem. In particular, when the rotational speed of the internal combustion engine exceeds a set speed, the feedback control of the assembly angle changing means does not work. A dither control for minutely operating the assembly angle changing means within a range is performed, and when the rotational speed of the internal combustion engine is not equal to or higher than a set speed, normal feedback control is performed without performing the dither control.
[0011]
According to the present invention, when the rotation speed of the internal combustion engine becomes equal to or higher than the set speed, the assembly angle changing means is slightly operated by dither control to change the sliding portion, so that the assembly angle is maintained at a constant angle position. Therefore, local wear and deformation of the sliding portion can be reliably prevented.
That is, when the internal combustion engine is in the high rotation range, it is not necessary to frequently change the assembly angle, and the fluctuation of the camshaft torque that causes wear and deformation of the sliding portion increases.
Further, as described above, since the assembly angle changing means is micro-actuated when the rotational speed of the internal combustion engine becomes equal to or higher than the set speed, the wear of the sliding portion can be reduced without adversely affecting the operation of changing the assembly angle. Deformation can be effectively prevented. Further, since the minute operation of the assembly angle changing means is performed within the range where the feedback control of the changing means does not work, it is possible to eliminate the large deviation of the assembly angle due to this minute vibration.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the invention of this application will be described with reference to FIGS.
[0013]
In this embodiment, the valve timing control device according to the invention of this application is applied to the valve system on the intake side of the internal combustion engine, but can also be applied to the valve system on the exhaust side.
[0014]
As shown in FIG. 1, the valve timing control device includes a camshaft 1 rotatably supported by a cylinder head (not shown) of an internal combustion engine, and a driven shaft member 7 (coupled to the front end portion of the camshaft 1). A driven rotating body) and a timing sprocket 2 which is assembled to the driven shaft member 7 so as to be rotatable relative to the driven shaft member 7 and linked to a crankshaft (not shown) via a chain (not shown). Is disposed on the front side (left side in FIG. 1) of the drive ring 3 and the driven shaft member 7, and the assembly angle is manipulated by relatively rotating both 3 and 1. The assembling angle changing means 4 and an unillustrated VTC cover that covers the front surface and the peripheral area of the assembling angle changing means 4 that are mounted across the front surface of the cylinder head and the head cover, not shown, of the internal combustion engine. . The assembly angle changing means 4 includes an operating force generating unit 40 that generates a rotating operation force, and the rotating operation force generated by the operating force generating unit 40 relative to the drive ring 3 and the driven shaft member 7. And a conversion mechanism unit 41 that converts it into a rotational force.
[0015]
The drive ring 3 is formed in a substantially disc shape having a step-like insertion hole 6, and the insertion hole 6 portion is rotatably assembled to a driven shaft member 7 (driven rotation body). The front surface of the drive ring 3 (the surface opposite to the camshaft 1) has three radial grooves 8 (radial guides) having parallel side walls facing each other as shown in FIGS. The ring 3 is formed so as to be substantially along the radial direction.
[0016]
Further, as shown in FIG. 1, the driven shaft member 7 has an enlarged diameter portion formed on the outer circumference on the base side that is abutted against the front end portion of the camshaft 1, and an outer circumference on the front side of the enlarged diameter portion. Three levers 9 projecting radially on the surface are integrally formed, and are coupled to the camshaft 1 by bolts 10 penetrating the shaft core portion. The base end of each link 11 is pivotally connected to each lever 9 by a pin 12, and a columnar protrusion 13 slidably engaged with each radial groove 8 is integrally formed at the tip of each link 11. Is formed.
[0017]
Each link 11 is connected to the driven shaft member 7 via the pin 12 in a state where the protruding portion 13 is engaged with the corresponding radial groove 8, so that the distal end side of the link 11 receives an external force and receives the radial groove. When displaced along 8, the drive ring 3 and the driven shaft member 7 are relatively rotated by the action of the link 11 by a direction and an angle corresponding to the displacement of the protrusion 13.
[0018]
In addition, a housing hole 14 that opens to the front side in the axial direction is formed at the tip of each link 11, and an engagement pin 16 that engages with a spiral groove 15 (a spiral guide), which will be described later, in the housing hole 14. A coil spring 17 that urges the engaging pin 16 forward (spiral groove 15 side) is accommodated. In the case of this embodiment, a movable guide portion that is displaceable in the radial direction is configured by the protruding portion 13 at the tip of the link 11, the engaging pin 16, the coil spring 17, and the like.
[0019]
On the other hand, an intermediate rotating body 18 having a disk-like flange wall is rotatably supported via a bearing 19 on the front side of the protruding position of the lever 9 of the driven shaft member 7. The aforementioned spiral groove 15 having a semicircular cross section is formed on the rear surface side of the flange wall of the intermediate rotating body 18, and the engagement pin 16 at the tip of each link 11 is rotatably guided in the spiral groove 15. Is engaged. The spiral of the spiral groove 15 is formed so as to gradually reduce the diameter along the engine rotation direction R. Therefore, when the intermediate rotating body 18 rotates relative to the drive ring 3 in the delay direction in a state where the engaging pin 16 at the tip of each link 11 is engaged with the spiral groove 15, the tip of the link 11 is in the radial groove 8. , Guided to the spiral shape of the spiral groove 15 and moved radially inward, and conversely, when the intermediate rotating body 18 is relatively displaced in the advance direction, it moves radially outward.
[0020]
The conversion mechanism 41 of the assembly angle changing means 4 is constituted by the radial groove 8, the link 11, the protrusion 13, the engagement pin 16, the lever 9, the intermediate rotating body 18, the spiral groove 15, etc. of the drive ring 3 described above. It is configured. When the relative rotation operation force with respect to the camshaft 1 is input to the intermediate rotating body 18 from the operation force generation unit 40 described later, the conversion mechanism unit 41 receives the operation force between the spiral groove 15 and the engagement pin 16. The distal end of the link 11 is displaced in the radial direction through the engaging portion. At this time, the link 11 swings and the drive ring 3 and the driven shaft member 7 are relatively rotated according to the swing amount.
[0021]
In addition, the lubricating oil of the internal combustion engine is continuously sent from the camshaft 1 side to the conversion mechanism portion 41 described above, and each portion including the radial groove 8, the link 11, the engagement pin 16, and the spiral groove 15 is supplied. Lubricating oil is always supplied to the sliding portion.
[0022]
On the other hand, the operating force generator 40 includes a spring spring 45 as an urging means for urging the intermediate rotator 18 in the engine rotation direction R with respect to the drive ring 3, and the intermediate rotator 18 with respect to the drive ring 3. A hysteresis brake 20 that operates in a direction opposite to the rotation direction R (generates a force that resists the biasing means), and the intermediate rotating body 18 by a balance between the biasing force of the spring 45 and the actuation force of the hysteresis brake 20. Is operated to rotate. In this embodiment, the hysteresis delay 20 is used as an example of the electromagnetic actuator. However, the present invention is not limited to the hysteresis brake, and other types of electromagnetic brakes may be employed.
[0023]
The mainspring spring 45 has an outer peripheral end coupled to the cylindrical wall 21 extending to the drive ring 3, and an inner peripheral end coupled to the cylindrical base of the intermediate rotating body 18.
[0024]
A sealing wall 46 is integrally coupled to the end surface of the intermediate rotating body 18 opposite to the camshaft 1, and the outer peripheral surface of the sealing wall 46 is slidably in close contact with the inner surface of the cylindrical wall 21. ing.
[0025]
As shown in FIGS. 1 and 4, the hysteresis brake 20 is attached to a VTC cover which is a non-rotating member, and provided with a magnetic induction member 22 having an opposing surface sandwiching a substantially cylindrical gap, and provided on the opposing surface. The inner pole teeth 23 and the outer pole teeth 24, the electromagnetic coil 25 attached to the magnetic induction member 22 to generate a magnetic field between the inner pole teeth 23 and the outer pole teeth 24, and the bipolar teeth 23 and 24. A cylindrical hysteresis ring 26 inserted in a non-contact state therebetween, and an outer peripheral end integrally coupled to the hysteresis ring 26 are coupled to the intermediate rotating body 18 via a coupling pin 47 and a rubber bush 48. The electromagnetic coil 25 is appropriately energized and controlled by the output signal of the controller 42.
[0026]
Each of the inner pole teeth 23 and the outer pole teeth 24 of the magnetic induction member 22 has a plurality of pole teeth elements extending along the axial direction. The pole tooth elements of the both pole teeth 23, 24 are arranged along the circumferential direction, and the pole tooth elements of the pole teeth 23, 24 are offset in the circumferential direction. Therefore, when the electromagnetic coil 25 is energized, a magnetic field is generated between the pole teeth 23 and 24 toward the counterpart pole tooth element having an offset positional relationship.
[0027]
The hysteresis ring 26 is made of a hysteresis material having magnetic hysteresis characteristics. When a magnetic field is generated between the inner pole teeth 23 and the outer pole teeth 24 during the rotation of the ring 26, the direction of the magnetic field and the inside of the hysteresis ring 26 are changed. Deviation occurs in the direction of the magnetic flux. The hysteresis brake 20 generates a braking force due to this deviation. The annular plate 27 is integrally coupled to a shaft member 30 supported on the inner peripheral surface of the magnetic induction member 22 via bearings 28 and 29. Therefore, the hysteresis ring 20 is supported by the magnetic induction member 22 via the annular plate 27 and the shaft member 30 so as to be relatively rotatable.
[0028]
The controller 42 receives signals for determining the engine operating state from the crank angle sensor 35, the cam angle sensor 36, and the like, and the controller 42 appropriately sets the energization current of the hysteresis brake 20 based on these signals. It comes to control. Specifically, the controller 42 determines the engine operating state at that time based on the above-described detection signal, determines the assembly angle suitable for the engine operating state as the target assembly angle, and then sets the actual assembly angle. Is feedback-controlled so that the energization current of the hysteresis brake 20 approaches the target assembly angle.
[0029]
Here, the controller 42 performs feedback control of the energization current as described above. In this feedback control, a so-called dead zone (an angular range in which the feedback control does not work) is used to suppress the unstable hypersensitive operation of the assembly angle changing mechanism 4. .) Exists. In this valve timing control device, the dither current has a sawtooth current waveform under the following conditions (1) and (2) so that the operating range of the assembly angle changing mechanism 4 is within the range of the dead zone. (See FIG. 5). Hereinafter, control for energizing the dither current is referred to as “dither control”.
(1) When the rotational speed of the internal combustion engine is equal to or higher than the set speed R 0 in FIG.
[0030]
However, when the peak value of the fluctuation torque of the camshaft 1 (alternating torque resulting from the profile of the valve spring and the drive cam) is connected along the time axis, the speed R 0 is the slope of the line from 0 to positive or negative. This is the speed at which the gradient starts, that is, the speed at which the absolute value of either the positive or negative peak of the variable torque starts to increase.
(2) Setting time T 1 or more, when there is no assembling angle change command equal to or greater than the predetermined angle α.
[0031]
However, the time T 1 is an arbitrarily determined time, and the set angle α is an angle corresponding to the dead zone.
[0032]
In FIG. 1 to FIG. 3, reference numeral 43 denotes a stopper that is provided between the intermediate rotating body 18 and the drive ring 3 and restricts the relative rotation range of the both 18 and 3.
[0033]
Since this valve timing control device is configured as described above, when the rotational phase of the crankshaft and the camshaft 1 (the opening / closing timing of the engine valve) is changed to the most advanced angle side, a predetermined current is supplied to the hysteresis brake 20. Is applied to the intermediate rotating body 18 from the annular plate 27 through the connecting pin 47 and the rubber bush 48. As a result, the intermediate rotating body 18 rotates in the opposite direction with respect to the drive ring 3, whereby the engaging pin 16 at the tip of the link 11 is guided to the spiral groove 15, and the tip of the link 11 is displaced radially inward. At this time, as shown in FIG. 3, the assembly angle of the drive ring 3 and the driven shaft member 7 is changed to the most advanced position by the action of the link 11.
[0034]
Further, when the rotational phase of the crankshaft and the camshaft 1 (opening / closing timing of the engine valve) is changed to the most retarded angle side, the intermediate rotating body 18 is turned to the spring spring 45 by turning off the power supply to the hysteresis brake 20. It is rotated in the direction of engine rotation by the force of. Then, the leading end portion of the link 11 is displaced radially outward by the guide of the engaging pin 16 by the spiral groove 15, and at this time, the combination of the drive ring 3 and the driven shaft member 7 by the action of the link 11 as shown in FIG. The angle is changed to the most retarded position.
[0035]
When the rotational phase of the crankshaft and the camshaft 1 is changed to an arbitrary position between the most advanced angle position and the most retarded angle position, the current value supplied to the hysteresis brake 20 is appropriately controlled to drive The relative rotational position of the intermediate rotating body 18 with respect to the ring 3 is adjusted by the balance between the mainspring spring 45 and the hysteresis brake 20.
[0036]
The current control for these hysteresis brakes 20 is basically performed by the above-described feedback control. In this current control, processing shown in the flowchart of FIG. 7 is executed.
[0037]
This process will be described. First, in S1, it is determined whether or not the engine speed is equal to or higher than the set speed R0 . When the engine speed is not equal to or higher than the set speed R0 , normal feedback control is performed without performing dither control. When the speed is equal to or higher than R 0 , the process proceeds to S2. In S2, whether there was a assembling angle conversion command or set an angle within a predetermined time T 1 is is determined, it performs feedback control is not performed dither control when there is the instruction, when there is no the directive Dither control is performed only for
[0038]
Therefore, in this valve timing control device, when the engine rotational speed is R 0 or more and the assembly angle is maintained at a constant angular position within an error range where feedback control does not work for a set time T 1 or more. Only, the dither current is applied to the hysteresis brake 20. When the dither current is applied, as shown in FIG. 5, the assembling angle is slightly operated within the range of α, and the sliding portion of each part of the assembling angle changing means 4 slightly fluctuates. Wear and deformation due to the moving part being maintained in a constant contact state for a long time are prevented. In particular, in the case of this embodiment, lubricating oil is supplied to each part of the assembly angle changing means 4, but this lubricating oil surely wraps around the contact surface of the sliding part by the micro-operation of the sliding part and makes contact Prevents the surface from running out of lubricant.
[0039]
By the way, in the valve timing control device of this embodiment, the dither control is switched when the above two conditions are satisfied, but the dither current is switched only when either one of the conditions is satisfied. good.
[0040]
That is, under the conditions of the engine rotational speed is equal to or higher than R 0 former, the engine rotational speed is relatively high rpm and is frequent assembling angle operation for (changing the rotational phase) it is not necessary to perform, yet, the cam The fluctuation of the torque of the shaft does not cause the danger of wear or deformation on the sliding portions of each part of the assembly angle changing means 4. Therefore, if the dither control is performed only when this condition is satisfied, the possibility that the feedback control is adversely affected (the effect that the control becomes unstable) is reduced by the application of the dither current.
[0041]
Further, under the latter condition, the assembly angle is maintained at a constant angle position for a long time, and the sliding portion of the assembly angle changing means 4 is most likely to be worn or deformed. Only under this condition, the dither control is performed. If done, the negative effect on the feedback control will be reduced.
[0042]
However, when the dither control is performed only when the two conditions are satisfied at the same time as in the above-described embodiment, the sliding part is reliably worn and deformed while reducing adverse effects on the feedback control. Can be prevented.
[0043]
The embodiment of the present invention is not limited to the above-described embodiment. For example, in the above embodiment, the operating force generating portion of the assembly angle changing means is configured by a spring and a hysteresis brake. The force generation unit may be configured by an urging unit and an electromagnetic actuator other than these. Further, the operating force generator does not necessarily need to use an urging means, and if an actuator capable of forward / reverse rotation is used, the urging means can be eliminated.
[0044]
Furthermore, a hydraulic actuator may be used as the operating force generation unit of the assembly angle changing means. In this case, for example, if the supply hydraulic pressure of the hydraulic actuator is minutely varied within a range where the feedback control does not work, the assembly angle variation mechanism can be minutely operated as in the above-described embodiment.
[0045]
Next, inventions other than those described in the claims that can be grasped from each of the above embodiments will be described below together with the effects thereof.
[0046]
(B) A constant angle within an error range in which the rotation speed of the internal combustion engine is equal to or higher than a set speed, and the assembly angle of the driving rotary body and the driven rotary body is equal to or longer than a set time, and feedback control of the assembly angle changing means does not work. 2. The valve timing control apparatus for an internal combustion engine according to claim 1, wherein the assembly angle changing means is finely operated within a range in which the feedback control does not work when the position is maintained.
[0047]
In this case, the possibility that the minute operation of the assembly angle changing means will adversely affect the feedback control is further reduced.
[0048]
(B) The valve timing control device for an internal combustion engine according to (2) or (A), wherein the set rotation speed is a rotation speed at which a peak value of a fluctuation torque of a camshaft starts to change.
[0049]
In this case, since the assembling angle changing means is finely operated only in the rotation range where the fluctuation torque of the camshaft affects the wear and deformation of the sliding portion, the assembling angle changing means is not finely operated in the unnecessary rotation range. Therefore, adverse effects on feedback control and complicated control can be avoided.
[0050]
(C) The internal combustion engine valve according to any one of claims 1 and 2, and (a) and (b), wherein a lubricating oil is supplied to the sliding portion of the assembly angle changing means. Timing control device.
[0051]
In this case, the lubricant is reliably distributed to the sliding portion due to the variation of the sliding portion accompanying the minute operation of the assembly angle changing means. Therefore, this lubricating oil can more reliably prevent local wear and deformation of the sliding portion.
[0052]
(D) An electromagnetic actuator is used as the actuator of the assembly angle changing means. The valve timing control device for an internal combustion engine according to any one of claims 1 and 2, and (a) to (c), .
[0053]
In this case, unlike the case where a hydraulic actuator is used for the assembly angle changing means, each part of the assembly angle changing means is not immersed in the oil. This is particularly effective in preventing typical wear and deformation.
[0054]
(E) Assembly angle changing means
A radial guide provided on one of the drive rotor and the driven rotor,
An intermediate rotator which is provided so as to be relatively rotatable with respect to the drive rotator and the driven rotator, and which has a spiral guide on a surface facing the radial guide;
A movable guide unit that is movably guided and engaged with the radial guide and the spiral guide;
A link that oscillates and couples the movable guide portion with a portion spaced from the rotation center of the other of the drive rotator and the driven rotator,
An operation force generating unit that generates a rotation operation force for rotating the intermediate rotating body, and the rotation operation force input to the intermediate rotating body is amplified by the engaging portion of the spiral guide and the movable guide unit. The valve timing control device for an internal combustion engine according to any one of claims 1, 2, (a) to (d), wherein the driving angle is converted into an assembly angle operating force of the drive rotator and the driven rotator. .
[0055]
In this case, since the turning operation force input to the intermediate rotating body from the operation force generating unit is converted into the radial displacement of the movable guide unit through the spiral guide, the spiral guide sliding in contact with the movable guide unit is converted. This is particularly effective for keeping the moving part smooth.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an embodiment of the invention of this application.
2 is a cross-sectional view taken along the line AA of FIG. 1 showing the embodiment.
3 is a cross-sectional view corresponding to FIG. 2 showing an operating state of the embodiment.
FIG. 4 is an exploded perspective view showing the embodiment.
FIG. 5 is a diagram showing changes in energization current and conversion angle on the time axis of the embodiment and the conventional one.
FIG. 6 is a view showing a camshaft torque-engine speed characteristic of the embodiment;
FIG. 7 is a flowchart showing control of the embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Cam shaft 3 ... Drive ring (drive rotary body)
4 ... Assembly angle changing means 7 ... Driven shaft member (driven rotor)

Claims (5)

内燃機関のクランクシャフトによって回転駆動される駆動回転体と、
カムシャフト若しくは同シャフトに結合された別体部材から成り、前記駆動回転体が必要に応じて相対回動できるように組み付けられた従動回転体と、
前記駆動回転体と従動回転体の組付角を操作する組付角変更手段と、を備え、
前記組付角変更手段が、前記駆動回転体と従動回転体の組付角を目標角度位置に近付けるべくフィードバック制御される内燃機関のバルブタイミング制御装置において、
内燃機関の回転速度が設定速度以上になったときに、組付角変更手段のフィードバック制御が働かない範囲で前記組付角変更手段を微小作動させるディザー制御を行い、
内燃機関の回転速度が設定速度以上でないときには、前記ディザー制御を行わないで通常のフィードバック制御を行うことを特徴とする内燃機関のバルブタイミング制御装置。
A drive rotor that is driven to rotate by the crankshaft of the internal combustion engine;
A driven rotary body composed of a camshaft or a separate member coupled to the shaft, and assembled so that the drive rotary body can be relatively rotated as required;
An assembly angle changing means for operating an assembly angle of the driving rotating body and the driven rotating body,
In the valve timing control device for an internal combustion engine, wherein the assembly angle changing means is feedback-controlled so as to bring the assembly angle of the driving rotary body and the driven rotary body closer to a target angular position.
When the rotational speed of the internal combustion engine becomes equal to or higher than the set speed, dither control is performed to finely operate the assembly angle changing means within a range where the feedback control of the assembly angle changing means does not work ,
A valve timing control device for an internal combustion engine , wherein when the rotational speed of the internal combustion engine is not equal to or higher than a set speed, normal feedback control is performed without performing the dither control .
前記設定回転速度は、カムシャフトの変動トルクのピーク値が変化し始める回転速度であることを特徴とする請求項1に記載の内燃機関のバルブタイミング制御装置。 2. The valve timing control device for an internal combustion engine according to claim 1, wherein the set rotational speed is a rotational speed at which a peak value of a fluctuation torque of the camshaft starts to change . 組付角変更手段の摺動部には潤滑油が供給されていることを特徴とする請求項1または2に記載の内燃機関のバルブタイミング制御装置。The valve timing control device for an internal combustion engine according to claim 1 or 2, wherein lubricating oil is supplied to the sliding portion of the assembly angle changing means. 組付角変更手段のアクチュエータとして電磁アクチュエータが用いられていることを特徴とする請求項1〜3のいずれか一項に記載の内燃機関のバルブタイミング制御装置。The valve timing control device for an internal combustion engine according to any one of claims 1 to 3, wherein an electromagnetic actuator is used as the actuator of the assembly angle changing means. 組付角変更手段は、The assembly angle changing means is
駆動回転体と従動回転体のいずれか一方に設けられた径方向ガイドと、  A radial guide provided on one of the drive rotor and the driven rotor,
前記駆動回転体と従動回転体に対して相対回動可能に設けられ、前記径方向ガイドに対峙する側の面に渦巻き状ガイドを有する中間回転体と、  An intermediate rotator which is provided so as to be relatively rotatable with respect to the drive rotator and the driven rotator, and which has a spiral guide on a surface facing the radial guide;
前記径方向ガイドと渦巻き状ガイドに変位可能に案内係合される可動案内部と、  A movable guide unit that is movably guided and engaged with the radial guide and the spiral guide;
前記駆動回転体と従動回転体のいずれか他方のものの回転中心から離間した部位と前記可動案内部とを揺動可能に連結するリンクと、  A link that oscillates and couples the movable guide portion with a portion spaced from the rotation center of the other of the drive rotator and the driven rotator,
前記中間回転体を回動させる回動操作力を発生する操作力発生部と、を備え、  An operation force generating unit that generates a rotation operation force for rotating the intermediate rotating body,
中間回転体に入力された回動操作力を、渦巻き状ガイドと可動案内部の係合部によって増幅して、駆動回転体と従動回転体の組付角操作力に変換することを特徴とする請求項1〜4のいずれか一項に記載の内燃機関のバルブタイミング制御装置。  The rotating operation force input to the intermediate rotating body is amplified by the engaging portion of the spiral guide and the movable guide portion, and converted into an assembly angle operating force of the driving rotating body and the driven rotating body. The valve timing control apparatus of the internal combustion engine as described in any one of Claims 1-4.
JP2002322219A 2002-11-06 2002-11-06 Valve timing control device for internal combustion engine Expired - Fee Related JP4109967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002322219A JP4109967B2 (en) 2002-11-06 2002-11-06 Valve timing control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002322219A JP4109967B2 (en) 2002-11-06 2002-11-06 Valve timing control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004156509A JP2004156509A (en) 2004-06-03
JP4109967B2 true JP4109967B2 (en) 2008-07-02

Family

ID=32802465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002322219A Expired - Fee Related JP4109967B2 (en) 2002-11-06 2002-11-06 Valve timing control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4109967B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4934630B2 (en) * 2008-04-16 2012-05-16 日立オートモティブシステムズ株式会社 Control device for variable valve mechanism
JP5713215B2 (en) * 2012-10-30 2015-05-07 株式会社デンソー Control method of drive device

Also Published As

Publication number Publication date
JP2004156509A (en) 2004-06-03

Similar Documents

Publication Publication Date Title
JP3986371B2 (en) Valve timing control device for internal combustion engine
JP3960917B2 (en) Valve timing control device for internal combustion engine
JP2006299867A (en) Valve timing control device for internal combustion engine
JP4156346B2 (en) Valve timing control device for internal combustion engine
JP2003206710A (en) Controller for variable valve timing mechanism
JP2009222037A (en) Valve timing regulating device
JP4109967B2 (en) Valve timing control device for internal combustion engine
JP2003206711A (en) Controller for variable valve timing mechanism
JP4606473B2 (en) Valve timing control device for internal combustion engine, controller for the valve timing control device, and controller used for valve timing changing mechanism
JP4094911B2 (en) Valve timing control device for internal combustion engine
JP4109972B2 (en) Valve timing control device for internal combustion engine
JP4233308B2 (en) Valve timing control device for internal combustion engine
JP4160414B2 (en) Valve timing control device for internal combustion engine
JP4163482B2 (en) Valve timing control device for internal combustion engine
JP2005299605A (en) Valve timing control device for internal combustion engine
JP3989764B2 (en) Valve timing control device for internal combustion engine
JP4698696B2 (en) Valve timing control device for internal combustion engine and its controller
JP4200111B2 (en) Valve control device
JP4076398B2 (en) Valve timing control device for internal combustion engine
JP2002227616A (en) Valve timing controller of internal combustion engine
JP5379555B2 (en) Valve timing control device for internal combustion engine
JP2004162565A (en) Valve timing control device for internal combustion engine
JP4076399B2 (en) Valve timing control device for internal combustion engine
JP2005299604A (en) Valve timing control device for internal combustion engine
JP4083609B2 (en) Valve timing control device for internal combustion engine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050914

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4109967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150411

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees