JP2004162565A - Valve timing control device for internal combustion engine - Google Patents

Valve timing control device for internal combustion engine Download PDF

Info

Publication number
JP2004162565A
JP2004162565A JP2002327768A JP2002327768A JP2004162565A JP 2004162565 A JP2004162565 A JP 2004162565A JP 2002327768 A JP2002327768 A JP 2002327768A JP 2002327768 A JP2002327768 A JP 2002327768A JP 2004162565 A JP2004162565 A JP 2004162565A
Authority
JP
Japan
Prior art keywords
braking
control device
timing control
valve timing
electromagnetic brake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002327768A
Other languages
Japanese (ja)
Inventor
Katsunari Yoshida
克成 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Hitachi Unisia Automotive Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Unisia Automotive Ltd filed Critical Hitachi Unisia Automotive Ltd
Priority to JP2002327768A priority Critical patent/JP2004162565A/en
Publication of JP2004162565A publication Critical patent/JP2004162565A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Valve Device For Special Equipments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To maintain an excellent operation responsiveness of a device and to improve fuel economy by reducing wear on a friction surface of an electromagnetic brake and unnecessary power loss in the electromagnetic brake part. <P>SOLUTION: A rotation operating mechanism 41 to change an assembling angle of a driving ring 3 on a crankshaft side and a driven shaft member 7 on a camshaft 1 side is interposed between the driving ring 3 and the driven shaft member 7. The rotation operating mechanism 41 is properly operated by an energizing control of the electromagnetic brake 20. In this valve timing control device, a brake block 25 of the electromagnetic brake 20 is mounted on a VTC cover 5 via a plate spring 27. By the plate spring 27, the brake block 25 is energized in a direction separating from a braking force receiving plate 26. When the electromagnetic brake 20 is not energized, the brake block 25 is surely separated from the braking force receiving plate 26 by force of the plate spring 27. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この出願の発明は、内燃機関の吸気側または排気側の機関弁の開閉タイミングを運転状態に応じて可変制御する内燃機関のバルブタイミング制御装置に関する。
【0002】
【従来の技術】
この種のバルブタイミング制御装置は、クランクシャフトとカムシャフトの間の動力伝達部に設けられ、クランクシャフト側の駆動回転体とカムシャフト側の従動回転体が回動操作機構を介して連結されると共に、回動操作機構がアクチュエータによって適宜制御されるようになっている。このアクチュエータには様々なものが用いられているが、接触型の電磁ブレーキをアクチュエータとして用いたものがある。
【0003】
この電磁ブレーキを用いた従来の装置について簡単に説明すると、この装置は、回動操作機構の操作入力部をばね材によって機関回転方向に付勢しておき、操作入力部に対して機関回転中に電磁ブレーキの制動力を適宜付与することによって回動操作機構を制御するようになっている。電磁ブレーキは、電磁コイルや磁気誘導部材、フリクション部材等の制動部材がVTCカバー(静止部材)に回動を規制されて浮動状態で取り付けられ、前記操作入力部に一体に設けらた被制動部材がフリクション部材に対峙して配置されている。そして、この電磁ブレーキは、電磁コイルが通電されると、その磁気的吸引力によって制動部材全体が被制動部材方向に変位し、このときフリクション部材が被制動部材に摩擦接触することで操作入力部に対して制動力を付与する。
【0004】
尚、以上では電磁ブレーキの制動部材を単に浮動状態にして静止部材に取り付けた装置について説明したが、制動部材を付勢手段によって被制動部材方向に付勢しておき、電磁コイルに通電しない間もフリクション部材を被制動部材に軽接触させておくものも案出されている。
【0005】
【特許文献】
特開2002−97908号公報
【0006】
【発明が解決しようとする課題】
この従来のバルブタイミング制御装置は、制動部材を付勢手段によって被制動部材方向に付勢しておくものはもとより、付勢手段で付勢しないものにあっても、電磁ブレーキの非通電時にフリクション部材が被制動部材に接触することがあり、この場合、機関回転中にフリクション部材と被制動部材の間に必要外の摩擦が生じてしまう。このフリクション部材と被制動部材の必要外の摩擦は、経時使用による摩擦接触面の摩耗を早めるうえ、内燃機関の動力損失を招くこととなる。そして、摩擦接触面の摩耗は制動性能の低下による装置の作動応答性の低下を招き、動力損失の増大は燃費の悪化の原因となる。
【0007】
そこでこの出願の発明は、電磁ブレーキの摩擦面の摩耗と電磁ブレーキ部分での必要外の動力損失を減少させ、装置の良好な作動応答性の維持と燃費の向上を図ることのできる内燃機関のバルブタイミング制御装置を提供しようとするものである。
【0008】
【課題を解決するための手段】
上述した課題を解決するための手段として、この出願の発明は、電磁ブレーキの制動部材と被制動部材の少なくともいずれか一方に両部材を離反させる方向に付勢する付勢手段を設けるようにした。
【0009】
この発明の場合、電磁ブレーキの通電時には、磁気的吸引力によって制動部材と被制動部材が付勢手段の力に抗して接触し、電磁ブレーキの非通電時には、付勢手段の力によって制動部材と被制動部材が確実に引き離される。したがって、この発明によれば、制動部材と被制動部材の必要外の接触が無くなることから、摩擦接触面の早期摩耗と動力損失の増大を防止し、それによって良好な作動応答性の維持と内燃機関の燃費向上を実現することができる。
【0010】
前記付勢手段については、制動部材と静止部材、被制動部材と操作入力部の少なくとも一方の部材相互間を板ばねによって連結し、その板ばねを付勢手段とすることが望ましい。この場合、板ばねが、制動部材や被制動部材をこれらの支持部材に係合させるための係合部としての機能と、付勢手段としての機能を併せ持つこととなるため、係合部と付勢手段を別々に設ける必要がなくなり、その結果、構造の簡素化や部品点数の削減を図ることが可能となる。
【0011】
また、回動操作機構の操作入力部が回動作動するバルブタイミング制御装置においては、制動部材と被制動部材の間に両者間の傾きを規制するラジアル軸受を介在させるようにしても良い。この場合、制動部材と被制動部材の傾きがラジアル軸受によって常時規制されるため、制動部材と被制動部材の片当たりを確実に防止することができる。
【0012】
【発明の実施の形態】
次に、この出願の発明の一実施形態を図1〜図5に基づいて説明する。
【0013】
この実施形態は、この出願の発明にかかるバルブタイミング制御装置を内燃機関の吸気側の動弁系に適用したものであるが、排気側の動弁系に同様に適用することも可能である。
【0014】
バルブタイミング制御装置は、図1に示すように内燃機関のシリンダヘッド(図示せず)に回転自在に支持されたカムシャフト1と、このカムシャフト1の前端部に結合された従動軸部材7(従動回転体)と、この従動軸部材7に必要に応じて相対回動できるように組み付けられ、クランクシャフト(図示せず)に連動するタイミングスプロケット2が一体に結合された駆動リング3(駆動回転体)と、この駆動リング3と従動軸部材7の前方側(図1中左側)に配置され、両者3,1を相対回動させて組付角を操作する組付角変更手段4と、内燃機関の図外のシリンダヘッドとヘッドカバーの前面に跨って取り付けられて組付角変更手段4の前面を覆うVTCカバー5(静止部材)と、を備えている。尚、組付角変更手段4は、回動操作力を発生する操作力発生部40と、その操作力発生部40で発生した回動操作力を受けて駆動リング3と従動軸部材7を相対回動させる回動操作機構41と、によって構成されている。
【0015】
駆動リング3は段差状の挿通孔6を備え、この挿通孔6部分が従動軸部材7(従動回転体)に回転可能に組み付けられている。そして、駆動リング3の前面(カムシャフト1と逆側の面)には、図2,図3に示すように、対面する平行な側壁を有する3つの径方向溝8(径方向ガイド)が同リング3のほぼ半径方向に沿うように形成されている。
【0016】
また、従動軸部材7は、図1に示すように、カムシャフト1の前端部に突き合される基部側の外周に拡径部が形成されると共に、その拡径部よりも前方側の外周面に放射状に突出する三つのレバー9が一体に形成され、軸芯部を貫通するボルト10によってカムシャフト1に結合されている。各レバー9には、リンク11の基端がピン12によって枢支連結され、各リンク11の先端には前記各径方向溝8に摺動自在に係合する円柱状の突出部13が一体に形成されている。
【0017】
各リンク11は、突出部13が対応する径方向溝8に係合した状態において、ピン12を介して従動軸部材7に連結されているため、リンク11の先端側が外力を受けて径方向溝8に沿って変位すると、駆動リング3と従動軸部材7はリンク11の作用でもって突出部13の変位に応じた方向及び角度だけ相対回動する。
【0018】
また、各リンク11の先端部には、軸方向前方側に開口する収容穴14が形成され、この収容穴14に、後述する渦巻き溝15(渦巻き状ガイド)に係合する係合ピン16と、この係合ピン16を前方側(渦巻き溝15側)に付勢するコイルばね17とが収容されている。尚、この実施形態の場合、リンク11の先端の突出部13と係合ピン16、コイルばね17等によって径方向に変位可能な可動案内部が構成されている。
【0019】
一方、従動軸部材7のレバー9の突設位置よりも前方側には、円板状のフランジ壁を有する中間回転体18(操作入力部)が軸受19を介して回転自在に支持されている。この中間回転体18のフランジ壁の後面側には断面半円状の前述の渦巻き溝15が形成され、この渦巻き溝15に、前記各リンク11の先端の係合ピン16が転動自在に案内係合されている。渦巻き溝15の渦巻きは、機関回転方向Rに沿って次第に縮径するように形成されている。したがって、各リンク11の先端の係合ピン16が渦巻き溝15に係合した状態において、中間回転体18が駆動リング3に対して遅れ方向に相対回転すると、リンク11の先端部は径方向溝8に案内されつつ、渦巻き溝15の渦巻き形状に誘導されて半径方向内側に移動し、逆に、中間回転体18が進み方向に相対変位すると、半径方向外側に移動する。
【0020】
組付角変更手段4の回動操作機構41は、以上説明した駆動リング3の径方向溝8、リンク11、突出部13、係合ピン16、レバー9、中間回転体18、渦巻き溝15等によって構成されている。この回動操作機構41は、後述する操作力発生部40から中間回転体18に駆動リング3に対する相対的な回動操作力が入力されると、その操作力が渦巻き溝15と係合ピン16の係合部を通してリンク11の先端を径方向に変位させ、このときリンク11が揺動してその揺動量に応じて駆動リング3と従動軸部材7を相対回動させる。
【0021】
一方、操作力発生部40は、中間回転体18を駆動リング3に対して機関回転方向Rに付勢する付勢手段としてのゼンマイばね45と、中間回転体18を駆動リング3に対して機関回転方向Rと逆方向に作動させる(付勢手段に抗する力を発生する)摩擦接触型の電磁ブレーキ20と、を備え、ゼンマイばね45の付勢力と電磁ブレーキ20の作動力とのバランスによって中間回転体18を回動操作する。
【0022】
ゼンマイばね45は、駆動リング3と一体のスプロケット2にその外周端部が結合される一方、内周端部が中間回転体18の径方向内側領域にピン結合されている。尚、中間回転体18のカムシャフト1と逆側の端面には、軸受19とゼンマイばね45の幅を越えて前方に突出する連結突起21が一体に形成され、後述する電磁ブレーキ20の作動力がこの連結突起21を通して中間回転体18に入力されるようになっている。
【0023】
電磁ブレーキ20は、VTCカバー5に回転を規制された状態で取り付けられた制動ブロック25(制動部材)と、中間回転体18と一体に回転する制動力受けプレート26(被制動部材)とを備え、制動ブロック25は、円環状のヨーク22に電磁コイル23とフリクション部材24とが組み付けられている。電磁コイル23は、図外のコントローラによって適宜通電制御され、通電による磁気的吸引力をヨーク22を通して制動力受けプレート26方向に作用させる。制動ブロック25は、このとき磁気的吸引力によって制動力受けプレート26方向に変位し、それによってフリクション部材24を制動力受けプレート26に摩擦接触させる。
【0024】
前記フリクション部材24は制動力受けプレート26に臨むヨーク22の正面側に配置されているが、ヨーク22の背面側には円板状の板ばね27がプロジェクション溶接によって固定され、この板ばね27の内周縁部がVTCカバー5に固定されている。したがって、ヨーク22を含む制動ブロック25は板ばね27を介してVTCカバー5に支持され、板ばね27の弾性によって軸方向に変位可能とされている。
【0025】
板ばね27の内周縁部は、具体的にはワッシャ28と支持プレート29によって挟持され、その状態でVTCカバー5にボルト30によって結合されている。支持プレート29は、全体がほぼ有底円筒状に形成され、中間回転体18方向に突出する円筒壁31の外周面に前記ヨーク22が摺動自在に嵌合されている。また、板ばね27は、図4に示すように径方向外側がVTCカバー5側に湾曲して形成され、初期状態においてフリクション部材24が制動力受けプレート26の接触面に対して所定距離dだけ離間するようになっている。この板ばね27は、この出願の発明における付勢手段を構成し、制動ブロック25を制動受けプレート26から離反させる方向に常時付勢している。また、支持プレート29の端面の外周側は段差状に肉取りされ、その段差部分29aで板ばね27の軸方向変位を許容するようになっている。尚、この実施形態の場合、支持プレート29はVTCカバー5と共に静止部材を構成している。
【0026】
一方、制動力受けプレート26は、前記フリクション部材24と接触する本体部がドーナツ円板状に形成され、その本体部の内周縁部にVTCカバー5側に突出する円筒壁32が形成されている。この円筒壁32と支持プレート29側の円筒壁31の間にはラジアル軸受33が介装されている。したがって、制動力受けプレート26はこの円筒壁32部分で支持プレート29に回転可能に軸受支持され、それによって制動力受けプレート26の径方向の振れや傾きが常時規制されている。また、制動力受けプレート26の本体部には係合孔34が形成され、この係合孔34に中間回転体18の前記連結突起21が所定の遊び代をもって係合されている。
【0027】
尚、図2,図3中43は、中間回転体18と駆動リング3の間に設けられ、両者18,3の相対回動範囲を規制するストッパである。
【0028】
以上の構成において、クランクシャフトとカムシャフト1の回転位相(機関弁の開閉タイミング)を最進角側に変更する場合には、電磁ブレーキ20のコイル23に電流を通電することにより、制動ブロック25を板ばね27の力に抗して制動力受けプレート26方向に変位させ、フリクション部材24を制動力受けプレート26に摩擦接触させる。これにより、電磁ブレーキ20の制動力が連結突起21を介して中間回転体18に伝達され、このとき中間回転体18が駆動リング3に対して機関回転方向Rと逆方向に相対回転する。この結果、リンク11の先端の係合ピン16が渦巻き溝15に誘導されてリンク11の先端部が径方向内側に変位し、このとき、図3に示すようにリンク11の作用によって駆動リング3と従動軸部材7の組付角が最進角位置に変更される。
【0029】
また、クランクシャフトとカムシャフト1の回転位相(機関弁の開閉タイミング)を最遅角側に変更する場合には、電磁ブレーキ20の通電をオフにすることによって、制動ブロック25を板ばね27の力によって初期位置まで後退させる。中間回転体18は、このとき電磁ブレーキ20による制動力が解除される結果、ゼンマイばね45の力によって機関回転方向Rに回転させられる。すると、渦巻き溝15による係合ピン16の誘導によってリンク11の先端部が径方向外側に変位し、このとき、図2に示すようにリンク11の作用によって駆動リング3と従動軸部材7の組付角が最遅角位置に変更される。
【0030】
そして、クランクシャフトとカムシャフト1の回転位相を最進角位置と最遅角位置の間の任意の位置に変更する場合には、電磁ブレーキ20に通電する電流値を適宜制御することにより、駆動リング3に対する中間回転体18の相対回動位置がゼンマイばね45と電磁ブレーキ20の力のバランスによって調整される。
【0031】
このバルブタイミング制御装置の場合、前述のように電磁ブレーキ20の通電がオフにされると、制動ブロック26が板ばね27の力によって制動力受けプレート26から完全に引き離されるため、フリクション部材24が必要外に制動力受けプレート26に接触する不具合が生じない。したがって、この装置においては、フリクション部材24や制動力受けプレート26の早期摩耗を防止することができるうえ、内燃機関の動力損失をも低減することができ、これらのことから制動性能の悪化による作動応答性の低下と燃費の低下を防止することができる。
【0032】
また、この実施形態の装置においては、付勢手段である板ばね27によって制動ブロック25をVTCカバー5に取り付けるようにしているため、制動ブロック25をVTCカバー5に回り止めするための構造を特別に設ける必要がなく、その分、構造の簡素化や部品点数の削減を図ることができるという利点がある。
【0033】
さらに、このバルブタイミング制御装置においては、制動力受けプレート26の円筒壁32をラジアル軸受33と支持プレート29を介してVTCカバー5に支持させるようにしているため、制動力受けプレート26の径方向の振動や傾きを常時確実に防止することができる。また、制動ブロック25を支持プレート29の円筒壁30に摺動自在に嵌合させるようにしているため、制動ブロック25の軸方向の自由な変位を許容しつつも同ブロック25の傾きを確実に防止することができる。したがって、これらのことから制動時における制動ブロック25と制動力受けプレート26の片当りを確実に防止し、摩擦面の偏摩耗や制動性能の低下を無くすことができる。また、この装置の場合、制動ブロック25の軸方向の変位を支持プレート29の円筒壁31部分で許容するようにしているため、ラジアル軸受33側に制動ブロック25と制動力受けプレート26の軸方向の相対変位を許容するための構造を設ける必要がなく、その分ラジアル軸受33の構造を簡素化することができるという利点もある。
【0034】
尚、この発明の実施形態は以上で説明したものに限るものではなく、例えば、以上の実施形態では制動部材(制動ブロック25)と被制動部材(制動力受けプレート26)を離反させる方向に付勢する付勢手段として板ばね27を用いたが、付勢手段としては、板ばねに限らず、皿ばねやコイルスプリング、ゴム弾性体等を採用するようにしても良い。また、付勢手段は、被制動部材側に設けるようにしても良く、さらに制動部材側と被制動部材側の両方に設けるようにしても良い。
【0035】
次に、上記の各実施形態から把握し得る請求項に記載以外の発明について、以下にその作用効果と共に記載する。
【0036】
(イ) 前記制動部材を付勢部材を介して静止部材に取り付けると共に、その制動部材の内周部または外周部を静止部材の円筒壁に軸方向に摺動自在に嵌合し、被制動部材の外周部または内周部をラジアル軸受を介して静止部材の前記円筒壁に回動自在に支持させたことを特徴とする請求項3に記載の内燃機関のバルブタイミング制御装置。
【0037】
この場合、制動部材は円筒壁との嵌合部によって静止部材に対する径方向の変位と傾きが規制され、被制動部材はラジアル軸受によって静止部材に対する径方向の変位と傾きが規制される。また、制動部材の軸方向の作動は円筒壁によってガイドされる。したがって、ラジアル軸受側には制動部材と被制動部材の軸方向の相対変位を許容するための構造を持たせる必要がないため、ラジアル軸受の構造を簡素化して製造コストを削減することができる。
【0038】
(ロ)) 回動操作機構は、
駆動回転体と従動回転体のいずれか一方に設けられた径方向ガイドと、
前記駆動回転体と従動回転体に対して相対回動可能に設けられ、前記径方向ガイドに対峙する側の面に渦巻き状ガイドを有する中間回転体と、
前記径方向ガイドと渦巻き状ガイドに変位可能に案内係合される可動案内部と、
前記駆動回転体と従動回転体のいずれか他方のものの回転中心から離間した部位と前記可動案内部とを揺動可能に連結するリンクと、を備え、
電磁ブレーキから中間回転体に入力された回動操作力を、渦巻き状ガイドと可動案内部の係合部によって増幅して、駆動回転体と従動回転体の組付角操作力に変換することを特徴とする請求項1〜3、前記(イ)のいずれかに記載の内燃機関のバルブタイミング制御装置。
【0039】
この場合、電磁ブレーキで発生した力をロス無く増幅して駆動回転体と従動回転体の回動操作力に変換することができるため、内燃機関の動力損失をより小さくして燃費のさらなる向上を図ることができる。
【図面の簡単な説明】
【図1】この出願の発明の一実施形態を示す縦断面図。
【図2】同実施形態を示す図1のA−A線に沿う断面図。
【図3】同実施形態の作動状態を示す図2に対応の断面図。
【図4】同実施形態を示す要部の拡大断面図。
【図5】同実施形態を示す要部の拡大断面図。
【符号の説明】
1…カムシャフト
3…駆動リング(駆動回転体)
5…VTCカバー(静止部材)
7…従動軸部材(従動回転体)
20…電磁ブレーキ
25…制動ブロック(制動部材)
26…制動力受けプレート(被制動部材)
27…板ばね(付勢手段)
29…支持プレート(静止部材)
33…ラジアル軸受
41…回動操作機構
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a valve timing control device for an internal combustion engine that variably controls the opening / closing timing of an intake-side or exhaust-side engine valve of the internal combustion engine in accordance with an operating state.
[0002]
[Prior art]
This type of valve timing control device is provided in a power transmission section between a crankshaft and a camshaft, and a driving rotary body on the crankshaft side and a driven rotary body on the camshaft side are connected via a rotary operation mechanism. At the same time, the rotation operation mechanism is appropriately controlled by the actuator. Although various actuators are used, there are actuators using a contact type electromagnetic brake as the actuator.
[0003]
The conventional device using the electromagnetic brake will be briefly described. In this device, the operation input unit of the rotary operation mechanism is biased in the engine rotation direction by a spring material, and the operation input unit is rotated during engine rotation. The turning operation mechanism is controlled by appropriately applying a braking force of an electromagnetic brake to the motor. In the electromagnetic brake, a braking member such as an electromagnetic coil, a magnetic induction member, and a friction member is attached to the VTC cover (stationary member) in a floating state with its rotation restricted, and a braked member provided integrally with the operation input unit. Are arranged to face the friction member. When the electromagnetic coil is energized, the electromagnetic braking force causes the entire braking member to be displaced in the direction of the member to be braked. At this time, the friction member comes into frictional contact with the member to be braked. To the braking force.
[0004]
In the above description, the device in which the braking member of the electromagnetic brake is simply floated and attached to the stationary member has been described. However, the braking member is urged toward the member to be braked by the urging means so that the electromagnetic coil is not energized. In addition, a device in which the friction member is brought into light contact with the member to be braked has been proposed.
[0005]
[Patent Document]
JP 2002-97908 A
[Problems to be solved by the invention]
This conventional valve timing control device includes a device for urging the braking member in the direction of the member to be braked by the urging means and a device for not energizing the braking member when the electromagnetic brake is de-energized. The member may come into contact with the member to be braked, and in this case, unnecessary friction occurs between the friction member and the member to be braked during rotation of the engine. Unnecessary friction between the friction member and the member to be braked accelerates wear of the frictional contact surface due to use over time and causes power loss of the internal combustion engine. The wear of the frictional contact surface causes a reduction in the operation responsiveness of the device due to a reduction in braking performance, and an increase in power loss causes a deterioration in fuel efficiency.
[0007]
Therefore, the invention of this application is to reduce the wear of the friction surface of the electromagnetic brake and unnecessary power loss in the electromagnetic brake part, and to maintain the good operation responsiveness of the device and improve the fuel efficiency of the internal combustion engine. It is intended to provide a valve timing control device.
[0008]
[Means for Solving the Problems]
As a means for solving the above-mentioned problem, the invention of this application is configured such that at least one of a braking member and a member to be braked of an electromagnetic brake is provided with biasing means for biasing the two members in a direction of separating the two members. .
[0009]
In the case of the present invention, when the electromagnetic brake is energized, the braking member and the member to be braked come into contact with each other against the force of the urging means by magnetic attraction, and when the electromagnetic brake is not energized, the braking member is caused by the force of the urging means. And the member to be braked are reliably separated. Therefore, according to the present invention, unnecessary contact between the braking member and the member to be braked is eliminated, thereby preventing early wear of the friction contact surface and an increase in power loss, thereby maintaining good operation responsiveness and improving internal combustion. It is possible to improve the fuel efficiency of the engine.
[0010]
As for the urging means, it is desirable that at least one of the braking member and the stationary member, and between the member to be braked and the operation input unit be connected by a leaf spring, and the leaf spring be used as the urging means. In this case, since the leaf spring has both a function as an engaging portion for engaging the braking member and the member to be braked with these supporting members and a function as the urging means, the engaging portion is There is no need to provide separate biasing means, and as a result, it is possible to simplify the structure and reduce the number of parts.
[0011]
In the valve timing control device in which the operation input unit of the rotation operation mechanism is rotated, a radial bearing for regulating the inclination between the braking member and the member to be braked may be interposed between the braking member and the member to be braked. In this case, since the inclination of the braking member and the member to be braked is always regulated by the radial bearing, it is possible to reliably prevent the braking member and the member to be braked from hitting each other.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the invention of this application will be described with reference to FIGS.
[0013]
In this embodiment, the valve timing control device according to the invention of this application is applied to a valve train on the intake side of an internal combustion engine. However, the valve timing control device can be similarly applied to a valve train on the exhaust side.
[0014]
As shown in FIG. 1, the valve timing control device includes a camshaft 1 rotatably supported by a cylinder head (not shown) of an internal combustion engine, and a driven shaft member 7 (connected to a front end of the camshaft 1). A drive ring 3 (drive rotation) integrally assembled with a driven sprocket 2) and a timing sprocket 2 that is linked to a driven shaft member 7 so as to be able to rotate relative to the driven shaft member 7 if necessary. An assembly angle changing means 4 disposed on the front side (left side in FIG. 1) of the drive ring 3 and the driven shaft member 7 and operating the assembly angle by relatively rotating the two 3 and 1; The engine includes a cylinder head (not shown) of the internal combustion engine and a VTC cover 5 (stationary member) attached to the front of the head cover and covering the front of the assembling angle changing means 4. The assembling angle changing means 4 moves the driving ring 3 and the driven shaft member 7 relative to each other by receiving the turning force generated by the turning force generated by the turning force. And a turning operation mechanism 41 for turning.
[0015]
The drive ring 3 has a stepped insertion hole 6, and the insertion hole 6 is rotatably mounted on a driven shaft member 7 (driven rotation body). As shown in FIGS. 2 and 3, three radial grooves 8 (radial guides) having parallel side walls facing each other are formed on the front surface of the drive ring 3 (the surface opposite to the camshaft 1). The ring 3 is formed substantially along the radial direction.
[0016]
Further, as shown in FIG. 1, the driven shaft member 7 has an enlarged diameter portion formed on an outer periphery of a base portion which is abutted against a front end portion of the camshaft 1, and has an outer peripheral portion located forward of the enlarged diameter portion. Three levers 9 protruding radially from the surface are integrally formed, and are connected to the camshaft 1 by bolts 10 penetrating the shaft core. A base end of a link 11 is pivotally connected to each lever 9 by a pin 12, and a column-shaped projection 13 slidably engaged with each of the radial grooves 8 is integrally formed at a distal end of each link 11. Is formed.
[0017]
Each link 11 is connected to the driven shaft member 7 via the pin 12 in a state where the protrusion 13 is engaged with the corresponding radial groove 8. When displaced along 8, the drive ring 3 and the driven shaft member 7 rotate relative to each other by the action of the link 11 in a direction and an angle corresponding to the displacement of the projection 13.
[0018]
A receiving hole 14 is formed at the distal end of each link 11 and opens forward in the axial direction. The receiving hole 14 has an engaging pin 16 that engages with a spiral groove 15 (a spiral guide) described later. And a coil spring 17 for urging the engagement pin 16 forward (toward the spiral groove 15). In the case of this embodiment, a movable guide portion that can be displaced in the radial direction is configured by the protrusion 13 at the tip of the link 11, the engagement pin 16, the coil spring 17, and the like.
[0019]
On the other hand, an intermediate rotator 18 (operation input unit) having a disk-shaped flange wall is rotatably supported via a bearing 19 in front of the driven shaft member 7 with respect to the position where the lever 9 protrudes. . The above-mentioned spiral groove 15 having a semicircular cross section is formed on the rear surface side of the flange wall of the intermediate rotating body 18, and the engaging pin 16 at the tip of each link 11 is guided in the spiral groove 15 so as to freely roll. Is engaged. The spiral of the spiral groove 15 is formed so that its diameter gradually decreases along the engine rotation direction R. Therefore, when the intermediate rotating body 18 relatively rotates in the delay direction with respect to the drive ring 3 in a state where the engaging pin 16 at the tip of each link 11 is engaged with the spiral groove 15, the tip of the link 11 becomes radially grooved. While being guided by 8, the spiral groove 15 is guided in the spiral shape and moves radially inward. Conversely, when the intermediate rotating body 18 is relatively displaced in the advancing direction, it moves radially outward.
[0020]
The turning operation mechanism 41 of the assembling angle changing means 4 includes the radial groove 8, the link 11, the projecting portion 13, the engaging pin 16, the lever 9, the intermediate rotating body 18, the spiral groove 15, etc. of the drive ring 3 described above. It is constituted by. When a relative rotation operation force with respect to the drive ring 3 is input to the intermediate rotating body 18 from an operation force generation unit 40 described later, the rotation operation mechanism 41 applies the operation force to the spiral groove 15 and the engagement pin 16. The distal end of the link 11 is displaced in the radial direction through the engaging portion, and at this time, the link 11 swings, and the drive ring 3 and the driven shaft member 7 are relatively rotated according to the swing amount.
[0021]
On the other hand, the operating force generating unit 40 includes a mainspring spring 45 as urging means for urging the intermediate rotating body 18 in the engine rotation direction R with respect to the drive ring 3, and an engine rotating mechanism that pushes the intermediate rotating body 18 with respect A frictional contact type electromagnetic brake 20 that operates in a direction opposite to the rotation direction R (generates a force against the urging means), and the balance between the urging force of the mainspring spring 45 and the operating force of the electromagnetic brake 20 The intermediate rotating body 18 is rotated.
[0022]
The mainspring 45 has an outer peripheral end coupled to the sprocket 2 integral with the drive ring 3, and an inner peripheral end is pin-coupled to a radially inner region of the intermediate rotating body 18. A connecting projection 21 that projects forward beyond the width of the bearing 19 and the mainspring 45 is integrally formed on the end face of the intermediate rotating body 18 opposite to the camshaft 1. Is input to the intermediate rotating body 18 through the connecting protrusion 21.
[0023]
The electromagnetic brake 20 includes a braking block 25 (braking member) attached to the VTC cover 5 in a state where rotation is restricted, and a braking force receiving plate 26 (braking member) that rotates integrally with the intermediate rotating body 18. In the braking block 25, an electromagnetic coil 23 and a friction member 24 are assembled on an annular yoke 22. The electromagnetic coil 23 is appropriately controlled to be energized by a controller (not shown), and applies a magnetic attractive force due to the energization to the braking force receiving plate 26 through the yoke 22. At this time, the braking block 25 is displaced in the direction of the braking force receiving plate 26 by the magnetic attraction force, thereby bringing the friction member 24 into frictional contact with the braking force receiving plate 26.
[0024]
The friction member 24 is disposed on the front side of the yoke 22 facing the braking force receiving plate 26. A disc-shaped leaf spring 27 is fixed to the back side of the yoke 22 by projection welding. The inner peripheral edge is fixed to the VTC cover 5. Therefore, the braking block 25 including the yoke 22 is supported by the VTC cover 5 via the leaf spring 27, and can be displaced in the axial direction by the elasticity of the leaf spring 27.
[0025]
Specifically, the inner peripheral edge of the leaf spring 27 is sandwiched between a washer 28 and a support plate 29, and is coupled to the VTC cover 5 by a bolt 30 in this state. The support plate 29 has a substantially bottomed cylindrical shape as a whole, and the yoke 22 is slidably fitted on the outer peripheral surface of a cylindrical wall 31 protruding in the direction of the intermediate rotating body 18. As shown in FIG. 4, the leaf spring 27 is formed so that its radially outer side is curved toward the VTC cover 5, and in the initial state, the friction member 24 is separated from the contact surface of the braking force receiving plate 26 by a predetermined distance d. It is designed to be separated. The leaf spring 27 constitutes an urging means in the invention of the present application, and always urges the brake block 25 in a direction for separating the brake block 25 from the brake receiving plate 26. The outer peripheral side of the end face of the support plate 29 is cut into a stepped shape, and the stepped portion 29a allows the leaf spring 27 to be displaced in the axial direction. In this embodiment, the support plate 29 and the VTC cover 5 constitute a stationary member.
[0026]
On the other hand, the braking force receiving plate 26 has a main body portion in contact with the friction member 24 formed in a donut disk shape, and a cylindrical wall 32 protruding toward the VTC cover 5 is formed on an inner peripheral edge of the main body portion. . A radial bearing 33 is interposed between the cylindrical wall 32 and the cylindrical wall 31 on the support plate 29 side. Accordingly, the braking force receiving plate 26 is rotatably supported by the support plate 29 at the cylindrical wall 32 so that the radial deflection and inclination of the braking force receiving plate 26 are constantly regulated. An engaging hole 34 is formed in the main body of the braking force receiving plate 26, and the connecting protrusion 21 of the intermediate rotating body 18 is engaged with the engaging hole 34 with a predetermined allowance.
[0027]
Reference numeral 43 in FIGS. 2 and 3 denotes a stopper that is provided between the intermediate rotating body 18 and the drive ring 3 and regulates a relative rotation range between the two.
[0028]
In the above configuration, when the rotation phase (opening / closing timing of the engine valve) of the crankshaft and the camshaft 1 is changed to the most advanced side, a current is applied to the coil 23 of the electromagnetic brake 20 to thereby control the braking block 25. Is displaced in the direction of the braking force receiving plate 26 against the force of the leaf spring 27, and the friction member 24 is brought into frictional contact with the braking force receiving plate 26. As a result, the braking force of the electromagnetic brake 20 is transmitted to the intermediate rotating body 18 via the connecting protrusion 21, and at this time, the intermediate rotating body 18 rotates relative to the drive ring 3 in the direction opposite to the engine rotation direction R. As a result, the engaging pin 16 at the tip of the link 11 is guided by the spiral groove 15, and the tip of the link 11 is displaced radially inward. At this time, as shown in FIG. And the assembly angle of the driven shaft member 7 is changed to the most advanced position.
[0029]
When the rotational phase of the crankshaft and the camshaft 1 (opening / closing timing of the engine valve) is changed to the most retarded side, the electromagnetic brake 20 is turned off so that the brake block 25 Retract to the initial position by force. At this time, the braking force of the electromagnetic brake 20 is released, so that the intermediate rotating body 18 is rotated in the engine rotation direction R by the force of the mainspring 45. Then, the leading end of the link 11 is displaced radially outward by the guide of the engagement pin 16 by the spiral groove 15, and at this time, the combination of the drive ring 3 and the driven shaft member 7 by the action of the link 11, as shown in FIG. The angle is changed to the most retarded position.
[0030]
When the rotational phase of the crankshaft and the camshaft 1 is changed to an arbitrary position between the most advanced position and the most retarded position, the current value to be supplied to the electromagnetic brake 20 is appropriately controlled to drive the motor. The relative rotation position of the intermediate rotating body 18 with respect to the ring 3 is adjusted by the balance between the forces of the mainspring spring 45 and the electromagnetic brake 20.
[0031]
In the case of this valve timing control device, when the energization of the electromagnetic brake 20 is turned off as described above, the braking block 26 is completely separated from the braking force receiving plate 26 by the force of the leaf spring 27, so that the friction member 24 Unnecessary trouble of contact with the braking force receiving plate 26 does not occur. Therefore, in this device, it is possible to prevent early wear of the friction member 24 and the braking force receiving plate 26, and it is also possible to reduce the power loss of the internal combustion engine. A decrease in responsiveness and a decrease in fuel efficiency can be prevented.
[0032]
Further, in the apparatus of this embodiment, the brake block 25 is attached to the VTC cover 5 by the leaf spring 27 as the urging means. Therefore, a special structure for preventing the brake block 25 from rotating around the VTC cover 5 is provided. And there is an advantage that the structure can be simplified and the number of parts can be reduced accordingly.
[0033]
Further, in this valve timing control device, since the cylindrical wall 32 of the braking force receiving plate 26 is supported by the VTC cover 5 via the radial bearing 33 and the support plate 29, the radial direction of the braking force receiving plate 26 Vibration and tilt can always be reliably prevented. Further, since the braking block 25 is slidably fitted to the cylindrical wall 30 of the support plate 29, the inclination of the braking block 25 is surely allowed while allowing the free displacement of the braking block 25 in the axial direction. Can be prevented. Accordingly, it is possible to reliably prevent the braking block 25 and the braking force receiving plate 26 from hitting each other at the time of braking, and to eliminate uneven wear of the friction surface and decrease in the braking performance. Further, in the case of this device, since the axial displacement of the braking block 25 is allowed at the cylindrical wall 31 of the support plate 29, the axial displacement of the braking block 25 and the braking force receiving plate 26 on the radial bearing 33 side. There is no need to provide a structure for allowing relative displacement of the radial bearing 33, and there is an advantage that the structure of the radial bearing 33 can be simplified accordingly.
[0034]
The embodiments of the present invention are not limited to those described above. For example, in the above embodiments, the direction in which the braking member (braking block 25) and the member to be braked (braking force receiving plate 26) are separated from each other. Although the leaf spring 27 is used as the urging means for urging, the urging means is not limited to the leaf spring, but may be a disc spring, a coil spring, a rubber elastic body, or the like. The biasing means may be provided on the braked member side, or may be provided on both the braked member side and the braked member side.
[0035]
Next, inventions other than those described in the claims that can be understood from the above embodiments will be described below together with their operational effects.
[0036]
(B) The braking member is attached to a stationary member via an urging member, and the inner or outer peripheral portion of the braking member is axially slidably fitted to the cylindrical wall of the stationary member. 4. The valve timing control device for an internal combustion engine according to claim 3, wherein an outer peripheral portion or an inner peripheral portion of the valve is rotatably supported on the cylindrical wall of the stationary member via a radial bearing.
[0037]
In this case, the displacement and inclination of the braking member with respect to the stationary member are restricted by the fitting portion with the cylindrical wall, and the radial displacement and inclination of the braking member with respect to the stationary member are regulated by the radial bearing. The actuation of the braking member in the axial direction is guided by the cylindrical wall. Therefore, it is not necessary to provide a structure for allowing the relative displacement of the braking member and the member to be braked in the axial direction on the radial bearing side, so that the structure of the radial bearing can be simplified and the manufacturing cost can be reduced.
[0038]
(B)) The rotating operation mechanism is
A radial guide provided on one of the driving rotating body and the driven rotating body,
An intermediate rotating body that is provided so as to be relatively rotatable with respect to the driving rotating body and the driven rotating body, and has a spiral guide on a surface facing the radial guide;
A movable guide portion that is displaceably engaged with the radial guide and the spiral guide;
A link that swingably connects a portion separated from the rotation center of the other of the driving rotator and the driven rotator and the movable guide portion,
Amplifying the turning operation force input from the electromagnetic brake to the intermediate rotating body by the engaging portion of the spiral guide and the movable guide, and converting the amplified operating force into the assembling angle operating force of the driving rotating body and the driven rotating body. The valve timing control device for an internal combustion engine according to any one of claims 1 to 3, and (a).
[0039]
In this case, since the force generated by the electromagnetic brake can be amplified without loss and converted into the rotational operation force of the driving rotating body and the driven rotating body, the power loss of the internal combustion engine can be reduced to further improve fuel efficiency. Can be planned.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an embodiment of the present invention.
FIG. 2 is an exemplary sectional view of the same embodiment taken along line AA of FIG. 1;
FIG. 3 is an exemplary sectional view corresponding to FIG. 2 showing an operation state of the embodiment;
FIG. 4 is an enlarged sectional view of a main part showing the embodiment.
FIG. 5 is an enlarged sectional view of a main part showing the embodiment.
[Explanation of symbols]
1 camshaft 3 drive ring (drive rotary body)
5 VTC cover (stationary member)
7: driven shaft member (driven rotating body)
20 electromagnetic brake 25 braking block (braking member)
26… Brake force receiving plate (member to be braked)
27 ... leaf spring (biasing means)
29 ... Support plate (stationary member)
33 ... Radial bearing 41 ... Rotating operation mechanism

Claims (3)

内燃機関のクランクシャフトによって回転駆動される駆動回転体と、カムシャフト若しくは同シャフトに連係された別体部材から成り、前記駆動回転体が必要に応じて相対回動できるように組み付けられた従動回転体と、操作力を付与されて前記駆動回転体と従動回転体を相対回動させる回動操作機構と、この回動操作機構に操作力を付与する電磁ブレーキと、を備え、前記電磁ブレーキが、静止部材に取り付けられた制動部材と、前記回動操作機構の操作入力部と一体作動する被制動部材とから成り、前記制動部材と被制動部材を摩擦接触させることで回動操作機構に操作力を付与するように構成された内燃機関のバルブタイミング制御装置において、
前記制動部材と被制動部材の少なくともいずれか一方に両部材を離反させる方向に付勢する付勢手段を設けたことを特徴とする内燃機関のバルブタイミング制御装置。
A driven rotor, which is driven by a crankshaft of an internal combustion engine, and a camshaft or a separate member linked to the shaft, and the driven rotor is assembled so that the drive rotor can be relatively rotated as required. Body, a rotating operation mechanism to which an operating force is applied to relatively rotate the driving rotator and the driven rotator, and an electromagnetic brake to apply an operating force to the rotating operation mechanism, wherein the electromagnetic brake A braking member attached to a stationary member, and a member to be braked that operates integrally with an operation input unit of the rotation operation mechanism, and the rotation member is operated by bringing the braking member and the member to be frictionally contacted. In a valve timing control device for an internal combustion engine configured to apply force,
A valve timing control device for an internal combustion engine, comprising: an urging means for urging at least one of the braking member and the member to be braked in a direction to separate the two members.
前記制動部材と静止部材、被制動部材と操作入力部の少なくとも一方の部材相互間を板ばねによって連結し、その板ばねを前記付勢手段としたことを特徴とする請求項1に記載の内燃機関のバルブタイミング制御装置。The internal combustion engine according to claim 1, wherein the braking member and the stationary member, and the member to be braked and at least one of the operation input unit are connected to each other by a leaf spring, and the leaf spring is used as the urging means. Engine valve timing control device. 前記操作入力部が回動作動する請求項1または2に記載のバルブタイミング制御装置において、
前記制動部材と被制動部材の間に両者間の傾きを規制するラジアル軸受を介在させたことを特徴とする内燃機関のバルブタイミング制御装置。
The valve timing control device according to claim 1, wherein the operation input unit rotates.
A valve timing control device for an internal combustion engine, wherein a radial bearing for regulating the inclination between the braking member and the member to be braked is interposed.
JP2002327768A 2002-11-12 2002-11-12 Valve timing control device for internal combustion engine Pending JP2004162565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002327768A JP2004162565A (en) 2002-11-12 2002-11-12 Valve timing control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002327768A JP2004162565A (en) 2002-11-12 2002-11-12 Valve timing control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2004162565A true JP2004162565A (en) 2004-06-10

Family

ID=32806259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002327768A Pending JP2004162565A (en) 2002-11-12 2002-11-12 Valve timing control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2004162565A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102003233A (en) * 2010-12-08 2011-04-06 成都恒高机械电子有限公司 Large-flow continuous variable valve timing (CVVT) fuel control valve with filter screen
WO2014177238A1 (en) * 2013-05-02 2014-11-06 Daimler Ag Adjusting device, in particular for adjusting a camshaft of an internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102003233A (en) * 2010-12-08 2011-04-06 成都恒高机械电子有限公司 Large-flow continuous variable valve timing (CVVT) fuel control valve with filter screen
WO2014177238A1 (en) * 2013-05-02 2014-11-06 Daimler Ag Adjusting device, in particular for adjusting a camshaft of an internal combustion engine
US10344633B2 (en) 2013-05-02 2019-07-09 Daimler Ag Adjusting device, in particular for adjusting a camshaft of an internal combustion engine

Similar Documents

Publication Publication Date Title
JP3798944B2 (en) Valve timing control device for internal combustion engine
US6805081B2 (en) Valve timing control device for internal combustion engine
JP3960917B2 (en) Valve timing control device for internal combustion engine
JP2002227623A (en) Valve timing controlling device of internal combustion engine
JP2005146993A (en) Valve timing control device for internal combustion engine
JP4226591B2 (en) Valve timing control device for internal combustion engine
JP2004162565A (en) Valve timing control device for internal combustion engine
JP2003129805A (en) Valve timing control device for internal combustion engine
JP4109967B2 (en) Valve timing control device for internal combustion engine
JP3989764B2 (en) Valve timing control device for internal combustion engine
JP4076399B2 (en) Valve timing control device for internal combustion engine
JP2003120226A (en) Valve timing control device for internal combustion engine
JP4094911B2 (en) Valve timing control device for internal combustion engine
JP4606473B2 (en) Valve timing control device for internal combustion engine, controller for the valve timing control device, and controller used for valve timing changing mechanism
JP4015836B2 (en) Valve timing control device for internal combustion engine
JP2004052729A (en) Valve timing control device for internal combustion engine
JP2003184516A (en) Valve timing control unit of internal combustion engine
JP4109972B2 (en) Valve timing control device for internal combustion engine
JP2005299605A (en) Valve timing control device for internal combustion engine
JP2005299604A (en) Valve timing control device for internal combustion engine
JP2003120227A (en) Valve timing control device for internal combustion engine
JP2004270606A (en) Valve timing control device for internal combustion engine
JP2003049615A (en) Rotary brake and valve timing control device for internal combustion engine
JP2004270475A (en) Valve timing control device for internal combustion engine
JP4818313B2 (en) Valve timing control device for internal combustion engine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041217