JP4677844B2 - Engine valve timing control device - Google Patents

Engine valve timing control device Download PDF

Info

Publication number
JP4677844B2
JP4677844B2 JP2005216622A JP2005216622A JP4677844B2 JP 4677844 B2 JP4677844 B2 JP 4677844B2 JP 2005216622 A JP2005216622 A JP 2005216622A JP 2005216622 A JP2005216622 A JP 2005216622A JP 4677844 B2 JP4677844 B2 JP 4677844B2
Authority
JP
Japan
Prior art keywords
engine
valve
temperature
valve timing
timing control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005216622A
Other languages
Japanese (ja)
Other versions
JP2007032415A (en
Inventor
淳 伊勢木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005216622A priority Critical patent/JP4677844B2/en
Publication of JP2007032415A publication Critical patent/JP2007032415A/en
Application granted granted Critical
Publication of JP4677844B2 publication Critical patent/JP4677844B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は、吸気バルブと排気バルブとのバルブオーバーラップを可変とするエンジンのバルブタイミング制御装置に関し、詳しくは、エンジン始動後の暖機中におけるバルブオーバーラップの制御に関する。   The present invention relates to a valve timing control device for an engine in which valve overlap between an intake valve and an exhaust valve is variable, and more particularly to control of valve overlap during warm-up after engine startup.

特許文献1には、低温始動時にバルブオーバーラップを小さくすることで燃焼の安定化を図り、高温始動時にバルブオーバーラップを大きくしてポンピングロスを低減するバルブタイミング制御装置が開示されている。
特開2004−156511号公報
Patent Document 1 discloses a valve timing control device that stabilizes combustion by reducing a valve overlap at a low temperature start and increases a valve overlap at a high temperature start to reduce a pumping loss.
JP 2004-156511 A

上記のように、従来の低温始動時におけるバルブオーバーラップの制御においては、温度が高いときほど、バルブオーバーラップを大きくする一義的な制御を行っていたが、係る従来制御では、極低温の状態で充分な燃焼安定性を確保することができず、極低温時に良好な始動性が得られないという問題があった。
本発明は上記問題点に鑑みなされたものであり、極低温の状態における燃焼安定性をバルブオーバーラップの制御で向上させ、これにより、極低温での始動性を向上させることを目的とする。
As described above, in the control of the valve overlap at the time of the conventional cold start, the unique control is performed to increase the valve overlap as the temperature is higher. Therefore, there is a problem that sufficient combustion stability cannot be ensured and good startability cannot be obtained at extremely low temperatures.
The present invention has been made in view of the above problems, and an object of the present invention is to improve combustion stability in an extremely low temperature state by controlling valve overlap, thereby improving startability at an extremely low temperature.

そのため、本発明に係るエンジンのバルブタイミング制御装置は、エンジン始動後の暖機中において、エンジン温度が所定温度未満である極低温のときには、バルブオーバラップをプラスラップとし、前記所定温度以上のときにはマイナスラップとするように制御し、前記暖機中でなければ、エンジンの負荷、回転数に応じてバルブタイミングを進遅角させる通常制御を行うことを特徴とする。 For this reason, the valve timing control device for an engine according to the present invention provides a valve overlap as a plus lap when the engine temperature is very low, ie, lower than a predetermined temperature, during warm-up after engine startup, and when the engine temperature is equal to or higher than the predetermined temperature. Control is performed so that a minus lap is performed. If the engine is not warming up, normal control for advancing and retarding the valve timing according to the engine load and the rotational speed is performed .

かかる構成によると、エンジン温度が低くなるほどバルブオーバーラップを小さくするのではなく、エンジン温度が所定温度未満である極低温のときには、前記所定温度以上のときに比べてバルブオーバーラップを大側に制御する。
従来、エンジンの燃焼安定性を向上させるためには、バルブオーバーラップを小さくして、燃焼室内の残留ガス量を低下させることが必要と考えられていた。
According to such a configuration, the valve overlap is not reduced as the engine temperature becomes lower, but the valve overlap is controlled to a larger side when the engine temperature is lower than the predetermined temperature compared to when the engine temperature is higher than the predetermined temperature. To do.
Conventionally, in order to improve the combustion stability of the engine, it has been considered necessary to reduce the valve overlap and reduce the amount of residual gas in the combustion chamber.

しかし、極低温状態では、燃料噴射弁から噴射された燃料が液滴のまま燃焼室壁面に付着することにより、着火性が悪化したり燃焼が不安定になったりするため、燃焼室内の残留ガスを増加させ、その熱エネルギを利用して燃料の気化を促進させれば、極低温状態の燃焼安定性を向上させることができる。
そこで、極低温状態で、バルブオーバーラップを大側に制御することで、燃焼室内の残留ガスを増加させて燃焼安定性を向上させ、極低温での始動性を改善する。
However, in the extremely low temperature state, the fuel injected from the fuel injection valve adheres to the combustion chamber wall surface as droplets, resulting in deterioration of ignitability and unstable combustion. If the fuel vaporization is promoted by using the thermal energy, combustion stability in a cryogenic state can be improved.
Therefore, by controlling the valve overlap to the large side in the cryogenic state, the residual gas in the combustion chamber is increased to improve the combustion stability, and the starting performance at the cryogenic temperature is improved.

以下に本発明の実施の形態を図に基づいて説明する。
図1は、実施形態におけるエンジンのシステム図である。
図1に示すエンジン1は、ガソリンエンジンであり、吸気絞り弁2により調量される空気は、吸気コレクタ3に蓄えられた後、吸気マニホールド4、吸気バルブ5を介して各気筒の燃焼室10に導入される。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a system diagram of an engine in the embodiment.
The engine 1 shown in FIG. 1 is a gasoline engine, and the air that is metered by the intake throttle valve 2 is stored in the intake collector 3 and then the combustion chamber 10 of each cylinder via the intake manifold 4 and the intake valve 5. To be introduced.

燃料(ガソリン)は、各気筒の吸気ポート6に配置された燃料噴射弁7より、エンジン回転に同期した所定のタイミングで吸気ポート6内に噴射供給される。
ここで、燃料噴射弁7の開弁時間に比例する量の燃料が噴射されるようになっており、エンジンコントローラ31から出力される噴射パルス信号のパルス幅によって前記開弁時間(燃料噴射量)が制御され、噴射パルス信号の出力タイミングによって燃料噴射時期が制御される。
Fuel (gasoline) is injected and supplied into the intake port 6 from the fuel injection valve 7 arranged in the intake port 6 of each cylinder at a predetermined timing synchronized with the engine rotation.
Here, an amount of fuel proportional to the valve opening time of the fuel injection valve 7 is injected, and the valve opening time (fuel injection amount) depends on the pulse width of the injection pulse signal output from the engine controller 31. The fuel injection timing is controlled by the output timing of the injection pulse signal.

前記エンジンコントローラ31は、エアフローメータ32により検出される吸入空気流量と、クランク角センサ33からの信号に基づいて演算されるエンジン回転速度とに基づき燃料噴射量(噴射パルス幅)を演算する一方、カムセンサ34からの信号に基づいて特定ピストン位置の気筒を判別し、各燃料噴射弁7それぞれに噴射パルス信号を出力する。
前記吸気ポート6内に噴射された燃料は吸気バルブ5を介して燃焼室10内に吸引され、吸気と混合して燃焼室10内に混合気が生成される。
While the engine controller 31 calculates the fuel injection amount (injection pulse width) based on the intake air flow rate detected by the air flow meter 32 and the engine speed calculated based on the signal from the crank angle sensor 33, Based on the signal from the cam sensor 34, the cylinder at the specific piston position is discriminated, and an injection pulse signal is output to each fuel injection valve 7.
The fuel injected into the intake port 6 is sucked into the combustion chamber 10 via the intake valve 5 and mixed with the intake air to generate an air-fuel mixture in the combustion chamber 10.

この混合気は吸気バルブ5を閉じられることで燃焼室10内に閉じこめられ、ピストン11の上昇によって圧縮され、点火プラグ12(点火装置)により着火されて燃焼する。
この燃焼によるガス圧がピストン11を押し下げる仕事を行い、このピストン11の往復運動はクランクシャフト13の回転運動へと変換される。
燃焼後のガス(排気)は、排気バルブ14が開いたとき、触媒コンバータ16,17が備えられる排気通路15へと排出される。
The air-fuel mixture is confined in the combustion chamber 10 by closing the intake valve 5, compressed by the rise of the piston 11, and ignited by the spark plug 12 (ignition device) to burn.
The gas pressure due to the combustion works to push down the piston 11, and the reciprocating motion of the piston 11 is converted into the rotational motion of the crankshaft 13.
The combusted gas (exhaust gas) is discharged to the exhaust passage 15 provided with the catalytic converters 16 and 17 when the exhaust valve 14 is opened.

前記エンジンコントローラ31は、運転条件に応じて燃料噴射弁7からの基本燃料噴射量を定めると共に、前記触媒コンバータ16の上流に設けた空燃比センサ18からの信号に基づいて排気空燃比を検出し、該排気空燃比が目標空燃比になるように、燃料噴射量をフィードバック補正する。
前記吸気絞り弁2は、スロットルアクチュエータ21により開閉駆動される。
The engine controller 31 determines the basic fuel injection amount from the fuel injection valve 7 according to the operating conditions, and detects the exhaust air-fuel ratio based on the signal from the air-fuel ratio sensor 18 provided upstream of the catalytic converter 16. The fuel injection amount is feedback-corrected so that the exhaust air-fuel ratio becomes the target air-fuel ratio.
The intake throttle valve 2 is opened and closed by a throttle actuator 21.

エンジンコントローラ31は、アクセルセンサ35で検出されるアクセルペダル36の開度に基づいて目標トルクを定め、この目標トルクを実現するための目標空気量を定め、この目標空気量が得られるように前記スロットルアクチュエータ21(吸気絞り弁2の開度)を制御する。
また、本実施形態のエンジン1には、クランクシャフト13と吸気バルブ側カムシャフト22との回転位相差を可変制御して、吸気バルブ5のバルブタイミングを進遅角する可変バルブタイミング機構(以下「VTC機構」という。)23を備える。
The engine controller 31 determines a target torque based on the opening of the accelerator pedal 36 detected by the accelerator sensor 35, determines a target air amount for realizing the target torque, and obtains the target air amount. The throttle actuator 21 (the opening degree of the intake throttle valve 2) is controlled.
Further, the engine 1 of the present embodiment has a variable valve timing mechanism (hereinafter referred to as “a valve phase mechanism”) that variably controls the rotational phase difference between the crankshaft 13 and the intake valve side camshaft 22 to advance or retard the valve timing of the intake valve 5. "VTC mechanism") 23.

前記VTC機構23としては、例えば特開2004−156511号公報や特開2003−003872号公報に開示されるような公知の種々の機構を採用することができる。
前記VTC機構23により吸気バルブ5のバルブタイミングを進遅角させることで、図3に示すように、上死点付近で吸気バルブ5と排気バルブ14とが共に開いている期間であるバルブオーバーラップが変化する。
As the VTC mechanism 23, various known mechanisms as disclosed in, for example, Japanese Patent Application Laid-Open Nos. 2004-156511 and 2003-003872 can be employed.
By advancing and retarding the valve timing of the intake valve 5 by the VTC mechanism 23, as shown in FIG. 3, the valve overlap is a period in which both the intake valve 5 and the exhaust valve 14 are open near the top dead center. Changes.

前記排気バルブ14の閉時期は上死点付近に固定である一方、前記吸気バルブ5の開時期は、前記VTC機構23による進遅角制御により、排気バルブ14の閉時期よりも進角された角度位置から、排気バルブ14の閉時期よりも遅角した角度位置までの範囲で変化し、バルブオーバーラップとしては、プラスラップからマイナスラップまで変化するようになっている。   The closing timing of the exhaust valve 14 is fixed near top dead center, while the opening timing of the intake valve 5 is advanced from the closing timing of the exhaust valve 14 by the advance / retard angle control by the VTC mechanism 23. It changes in a range from an angular position to an angular position delayed from the closing timing of the exhaust valve 14, and the valve overlap changes from a plus lap to a minus lap.

ここで、前記エンジンコントローラ31は、エンジン始動後の暖機中において、図2のフローチャートに示すようにして、前記VTC機構23を制御してバルブオーバーラップを調整する。
図2のフローチャートにおいて、まず、エンジン1が始動されると(ステップS1)、ステップS2へ進み、水温センサ37からの検出信号に基づいてエンジン1の冷却水温度Twを検知する。
Here, the engine controller 31 adjusts the valve overlap by controlling the VTC mechanism 23 as shown in the flowchart of FIG. 2 during warm-up after the engine is started.
In the flowchart of FIG. 2, first, when the engine 1 is started (step S1), the process proceeds to step S2, and the coolant temperature Tw of the engine 1 is detected based on the detection signal from the water temperature sensor 37.

上記冷却水温度Twは、エンジン1の温度を代表する状態量であり、冷却水温度Twに代えて、吸気温度を検出させるようにすることができ、更に、シリンダヘッド又はシリンダブロックの温度や潤滑油温度などを検出させることができる。
冷却水温度Twを検知すると、ステップS3へ進み、暖機中であるか否かを、前記冷却水温度Twが暖機判定値を超えているか否かに基づいて判断する。
The cooling water temperature Tw is a state quantity representative of the temperature of the engine 1, and can be made to detect the intake air temperature instead of the cooling water temperature Tw. Further, the temperature or lubrication of the cylinder head or the cylinder block can be detected. Oil temperature etc. can be detected.
When the coolant temperature Tw is detected, the process proceeds to step S3, where it is determined whether the engine is warming up based on whether the coolant temperature Tw exceeds the warm-up determination value.

ここで、冷却水温度Twが暖機判定値以下であって暖機中であると判断されると、ステップS4へ進み、冷却水温度Twの検出値が設定温度(例えば5℃)よりも低い極低温状態であるか否かを判断する。
冷却水温度Twが前記設定温度よりも低い極低温状態であるときには、ステップS5へ進む。
Here, if it is determined that the coolant temperature Tw is equal to or lower than the warm-up determination value and is warming up, the process proceeds to step S4, and the detected value of the coolant temperature Tw is lower than the set temperature (for example, 5 ° C.). It is determined whether or not the temperature is extremely low.
When the cooling water temperature Tw is in an extremely low temperature state lower than the set temperature, the process proceeds to step S5.

ステップS5では、前記VTC機構23により吸気バルブ5のバルブタイミングを進角させ、図3(A)に示すように、バルブオーバーラップがクランク角で4deg程度のプラスラップ状態になるようにする。
図3(A)に示すバルブタイミングでは、排気バルブ14の閉時期EVC(ピストン上死点TDC)よりも4deg前のクランク角位置(BTDC4deg)が吸気バルブ5の開時期IVOに設定され、排気バルブ14の閉時期EVC直前(吸気バルブ5の開き初め)に、クランク角で4degだけ吸気バルブ5と排気バルブ14とが共に開いている期間が設けられる。
In step S5, the valve timing of the intake valve 5 is advanced by the VTC mechanism 23 so that the valve overlap becomes a plus lap state with a crank angle of about 4 deg as shown in FIG.
In the valve timing shown in FIG. 3A, the crank angle position (BTDC 4 deg) 4 deg before the closing timing EVC (piston top dead center TDC) of the exhaust valve 14 is set to the opening timing IVO of the intake valve 5, and the exhaust valve 14 Immediately before the closing timing EVC of 14 (the beginning of opening of the intake valve 5), a period in which both the intake valve 5 and the exhaust valve 14 are opened by 4 deg in crank angle is provided.

一方、冷却水温度Twが前記設定温度以上であって、暖機中であるものの極低温状態ではないときには、ステップS6へ進む。
ステップS6では、前記VTC機構23により吸気バルブ5のバルブタイミングを遅角させ、図3(B)に示すように、排気バルブ14が閉じてからクランク角で4deg程度回転してから吸気バルブ5が開き始めるマイナスラップ状態とする。
On the other hand, when the cooling water temperature Tw is equal to or higher than the set temperature and the engine is warming up but is not in an extremely low temperature state, the process proceeds to step S6.
In step S6, the valve timing of the intake valve 5 is retarded by the VTC mechanism 23, and as shown in FIG. 3B, after the exhaust valve 14 is closed and the crank angle is rotated by about 4 degrees, the intake valve 5 is Set to the minus wrap state that begins to open.

図3(B)に示すバルブタイミングでは、排気バルブ14の閉時期EVC(ピストン上死点TDCから)よりも4degだけ後のクランク角位置(ATDC4deg)が吸気バルブ5の開時期IVOに設定され、排気バルブ14の閉時期EVC直前に、吸気バルブ5と排気バルブ14とが共に開いている期間が設けられない設定である。
一方、ステップS3で暖機中ではないと判断されると、ステップS7へ進み、例えばエンジン負荷及び/又はエンジン回転速度に応じて吸気バルブ5のバルブタイミングを進遅角させる通常制御を行わせる。
In the valve timing shown in FIG. 3B, the crank angle position (ATDC 4 deg) 4 deg later than the closing timing EVC (from the piston top dead center TDC) of the exhaust valve 14 is set as the opening timing IVO of the intake valve 5. This is a setting in which a period during which both the intake valve 5 and the exhaust valve 14 are open is not provided immediately before the closing timing EVC of the exhaust valve 14.
On the other hand, if it is determined in step S3 that the engine is not warming up, the process proceeds to step S7, and normal control for advancing / retarding the valve timing of the intake valve 5 is performed according to, for example, the engine load and / or the engine speed.

エンジン1の排気性能は、始動時に排出される未燃HCによる影響が大きく、大気中に排出される未燃HCを減らすには、点火時期を遅角して燃焼期間を増大させる方法や、排気温度を上昇させて触媒を早期に活性化させる方法がある。
しかし、点火時期を遅角させると燃焼安定性が悪化するため、遅角できる限界はエンジンの燃焼安定性の性能に因るところが大きい。
The exhaust performance of the engine 1 is greatly influenced by the unburned HC discharged at the time of starting. In order to reduce the unburned HC discharged into the atmosphere, a method of delaying the ignition timing and increasing the combustion period, There is a method in which the catalyst is activated early by increasing the temperature.
However, if the ignition timing is retarded, the combustion stability deteriorates, so the limit that can be retarded largely depends on the performance of engine combustion stability.

従来、エンジンの燃焼安定性を向上させるためには、吸排気バルブのバルブオーバーラップを小さくして、燃焼室内の残留ガス量を低下させることが必要と考えられていた。
即ち、バルブオーバーラップが大きく燃焼室内の残留ガス量が多いと、燃焼室内の混合気濃度が低下するため、点火プラグ12近傍の空燃比が薄くなり、着火性が悪化したり火炎伝播が遅くなったりすることにより、燃焼期間が増加し、燃焼が不安定になる。
Conventionally, in order to improve the combustion stability of an engine, it has been considered necessary to reduce the valve overlap of the intake and exhaust valves to reduce the amount of residual gas in the combustion chamber.
That is, if the valve overlap is large and the amount of residual gas in the combustion chamber is large, the mixture concentration in the combustion chamber decreases, so the air-fuel ratio in the vicinity of the spark plug 12 becomes thin, the ignitability deteriorates, and the flame propagation slows down. The combustion period increases and the combustion becomes unstable.

ところが、エンジンの暖機中であっても極低温状態では、バルブオーバーラップ量を逆に増加させて残留ガスを増加させることで、燃焼安定性が向上することを見出した。
これは、極低温状態では、燃料噴射弁7から噴射された燃料の霧化が疎外され、燃料が液滴のまま燃焼室壁面に付着することにより、着火性が悪化したり燃焼が不安定になったりする。
However, it has been found that even when the engine is warming up, combustion stability is improved by increasing the valve overlap amount to increase the residual gas in an extremely low temperature state.
This is because, in an extremely low temperature state, the atomization of the fuel injected from the fuel injection valve 7 is alienated, and the fuel adheres to the combustion chamber wall surface as droplets, so that the ignitability deteriorates or the combustion becomes unstable. It becomes.

そこで、本実施形態では、極低温状態においてバルブオーバーラップを大側に制御することで、燃焼室内の残留ガスを増加させ、この残留ガスの熱エネルギを利用して燃料の気化を促進させることで、燃料が液滴のまま燃焼室壁面に対して付着することがないようにし、燃焼安定性を向上させる。
そして、極低温状態を脱した後においては、バルブオーバーラップをマイナスラップとして残留ガスを少なくすることで、燃焼室内の混合気濃度を高め、エンジンの燃焼安定性を確保する。
Therefore, in the present embodiment, by controlling the valve overlap to the large side in the cryogenic state, the residual gas in the combustion chamber is increased, and the vaporization of fuel is promoted by using the thermal energy of the residual gas. The fuel is prevented from adhering to the combustion chamber wall surface as droplets, and the combustion stability is improved.
After leaving the cryogenic state, the residual gas is reduced by using the valve overlap as a minus lap, thereby increasing the mixture concentration in the combustion chamber and ensuring the combustion stability of the engine.

尚、上記実施形態では、暖機中でも設定温度よりも低い極低温状態であれば、プラスラップとし、前記設定温度以上の暖機状態では、マイナスラップとしたが、温度の上昇に応じて連続的或いはより多段階にバルブオーバーラップを減少変化させても良いし、バルブオーバーラップの減少変化を、マイナスラップまでの変化に限定するものではなく、プラスラップ状態を保持したまま、プラスラップ量を減少変化させても良い。   In the above-described embodiment, a plus lap is used if the temperature is extremely low, which is lower than the set temperature even during warm-up, and a minus lap is used in the warm-up state that is equal to or higher than the set temperature. Alternatively, the valve overlap may be decreased and changed in more stages, and the decrease in valve overlap is not limited to the change up to the minus lap, but the plus lap amount is reduced while maintaining the plus lap state. It may be changed.

また、クランクシャフト13と吸気バルブ側カムシャフト22との回転位相差を可変制御する可変バルブタイミング機構(以下「VTC機構」という。)23に代えて、吸排気バルブを電磁力で開閉駆動する機構や、駆動カムを切り換える機構や、リフト量及び作動角を連続的に変化させる機構を用いて、バルブオーバーラップを変化させることができる。   Further, instead of a variable valve timing mechanism (hereinafter referred to as “VTC mechanism”) 23 that variably controls the rotational phase difference between the crankshaft 13 and the intake valve side camshaft 22, a mechanism that opens and closes the intake and exhaust valves with electromagnetic force. Alternatively, the valve overlap can be changed by using a mechanism for switching the drive cam and a mechanism for continuously changing the lift amount and the operating angle.

更に、排気バルブ14のバルブタイミングを可変にする機構を備え、排気バルブ14のバルブタイミングの可変、又は、吸気バルブ5と排気バルブ14との双方のバルブタイミングの可変によって、バルブオーバーラップを制御することができる。   Further, a mechanism for changing the valve timing of the exhaust valve 14 is provided, and the valve overlap is controlled by changing the valve timing of the exhaust valve 14 or by changing the valve timings of both the intake valve 5 and the exhaust valve 14. be able to.

実施形態におけるエンジンのシステム図。The system diagram of the engine in an embodiment. 同上実施形態における暖機時におけるバルブオーバーラップ制御を示すフローチャート。The flowchart which shows the valve overlap control at the time of warming-up in embodiment same as the above. 同上実施形態におけるバルブオーバーラップの切り換え特性を示す図。The figure which shows the switching characteristic of the valve overlap in embodiment same as the above.

符号の説明Explanation of symbols

1…エンジン、2…吸気絞り弁、5…吸気バルブ、14…排気バルブ、23…可変バルブタイミング機構(VTC機構)、31…エンジンコントローラ、37…水温センサ   DESCRIPTION OF SYMBOLS 1 ... Engine, 2 ... Intake throttle valve, 5 ... Intake valve, 14 ... Exhaust valve, 23 ... Variable valve timing mechanism (VTC mechanism), 31 ... Engine controller, 37 ... Water temperature sensor

Claims (4)

吸気バルブと排気バルブとのバルブオーバーラップを可変とするエンジンのバルブタイミング制御装置において、
エンジン始動後の暖機中において、エンジン温度が所定温度未満である極低温のときには、バルブオーバラップをプラスラップとし、前記所定温度以上のときにはマイナスラップとするように制御し、
前記暖機中でなければ、エンジンの負荷、回転数に応じてバルブタイミングを進遅角させる通常制御を行うことを特徴とするエンジンのバルブタイミング制御装置。
In the engine valve timing control device that makes the valve overlap of the intake valve and the exhaust valve variable,
During engine warm-up after engine start-up, when the engine temperature is extremely low, which is less than a predetermined temperature , the valve overlap is controlled to be a plus lap, and when it is above the predetermined temperature, the minus lap is controlled.
An engine valve timing control device that performs normal control for advancing and retarding the valve timing in accordance with the engine load and rotation speed when the engine is not warming up .
前記所定温度以上であってマイナスラップとするときには、排気バルブの閉時期が上死点付近となるように制御することを特徴とする請求項1記載のエンジンのバルブタイミング制御装置。 2. The engine valve timing control apparatus according to claim 1, wherein when the temperature is equal to or higher than the predetermined temperature and a negative lap is set, the closing timing of the exhaust valve is controlled to be near the top dead center . 前記エンジンの冷却水温度に基づいてエンジン温度を判定することを特徴とする請求項1又は2記載のエンジンのバルブタイミング制御装置。 3. The engine valve timing control device according to claim 1, wherein the engine temperature is determined based on a cooling water temperature of the engine. 前記エンジンの吸気温度に基づいてエンジン温度を判定することを特徴とする請求項1又は2記載のエンジンのバルブタイミング制御装置。 3. The engine valve timing control apparatus according to claim 1, wherein the engine temperature is determined based on an intake air temperature of the engine.
JP2005216622A 2005-07-27 2005-07-27 Engine valve timing control device Active JP4677844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005216622A JP4677844B2 (en) 2005-07-27 2005-07-27 Engine valve timing control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005216622A JP4677844B2 (en) 2005-07-27 2005-07-27 Engine valve timing control device

Publications (2)

Publication Number Publication Date
JP2007032415A JP2007032415A (en) 2007-02-08
JP4677844B2 true JP4677844B2 (en) 2011-04-27

Family

ID=37791953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005216622A Active JP4677844B2 (en) 2005-07-27 2005-07-27 Engine valve timing control device

Country Status (1)

Country Link
JP (1) JP4677844B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063289A1 (en) 2007-11-13 2009-05-22 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
JP5167854B2 (en) * 2008-02-20 2013-03-21 トヨタ自動車株式会社 Internal combustion engine
JP4743287B2 (en) 2009-02-04 2011-08-10 トヨタ自動車株式会社 Control device for variable valve gear
EP2738376A4 (en) 2011-07-28 2015-01-07 Toyota Motor Co Ltd Internal combustion engine control apparatus
US20150337744A1 (en) * 2012-06-25 2015-11-26 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
JP6626738B2 (en) * 2016-02-26 2019-12-25 日立オートモティブシステムズ株式会社 Internal combustion engine control device
CN115142963B (en) * 2022-07-11 2023-09-08 上海汽车集团股份有限公司 Method, system and vehicle for controlling high-temperature load of engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03225032A (en) * 1990-01-31 1991-10-04 Fuji Heavy Ind Ltd Load control method for internal combustion engine
JP2000073798A (en) * 1998-09-02 2000-03-07 Nissan Motor Co Ltd Variable valve system control device for internal combustion engine
JP2001234767A (en) * 2000-02-22 2001-08-31 Toyota Motor Corp Valve characteristic control device and variable valve overlap mechanism for internal combustion engine
JP2004156511A (en) * 2002-11-06 2004-06-03 Hitachi Unisia Automotive Ltd Valve timing controller of internal combustion engine
JP2005180208A (en) * 2003-12-16 2005-07-07 Mazda Motor Corp Engine starter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03225032A (en) * 1990-01-31 1991-10-04 Fuji Heavy Ind Ltd Load control method for internal combustion engine
JP2000073798A (en) * 1998-09-02 2000-03-07 Nissan Motor Co Ltd Variable valve system control device for internal combustion engine
JP2001234767A (en) * 2000-02-22 2001-08-31 Toyota Motor Corp Valve characteristic control device and variable valve overlap mechanism for internal combustion engine
JP2004156511A (en) * 2002-11-06 2004-06-03 Hitachi Unisia Automotive Ltd Valve timing controller of internal combustion engine
JP2005180208A (en) * 2003-12-16 2005-07-07 Mazda Motor Corp Engine starter

Also Published As

Publication number Publication date
JP2007032415A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
US7726289B2 (en) Control apparatus and control method for internal combustion engine
JP2006348863A (en) Starter of internal combustion engine
US7152578B2 (en) Valve characteristic controlling apparatus and method for internal combustion engine
JP2007046500A (en) Internal combustion engine
JP4677844B2 (en) Engine valve timing control device
JP2009062946A (en) Control device of cylinder injection type internal combustion engine
JP4172319B2 (en) Variable valve timing controller for engine
JP5825432B2 (en) Control device for internal combustion engine
JP2018096371A (en) Method and apparatus for controlling engine system
US7441520B2 (en) Valve-timing control apparatus of internal combustion engine
EP3287626B1 (en) Engine control device and engine control method
JP2007056839A (en) Valve timing control device for internal combustion engine
JP2010209728A (en) Control device for cylinder direct injection type engine
JP3979376B2 (en) Engine control device
JP4419800B2 (en) Engine starter
JP3771101B2 (en) Control device for internal combustion engine
JP4285221B2 (en) Internal combustion engine
JP2006125334A (en) Controller for internal combustion engine
JP4816591B2 (en) Control device for internal combustion engine
JP4577469B2 (en) Variable valve timing device
JP2009216035A (en) Control device of internal combustion engine
JP2007092720A (en) Starter of multicylinder engine
JP2007092719A (en) Starter of multicylinder engine
JP3873809B2 (en) Variable valve timing control device for internal combustion engine
JP5041167B2 (en) Engine control device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080331

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110117

R150 Certificate of patent or registration of utility model

Ref document number: 4677844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3