JP3979376B2 - Engine control device - Google Patents

Engine control device Download PDF

Info

Publication number
JP3979376B2
JP3979376B2 JP2003364104A JP2003364104A JP3979376B2 JP 3979376 B2 JP3979376 B2 JP 3979376B2 JP 2003364104 A JP2003364104 A JP 2003364104A JP 2003364104 A JP2003364104 A JP 2003364104A JP 3979376 B2 JP3979376 B2 JP 3979376B2
Authority
JP
Japan
Prior art keywords
timing
intake valve
intake
valve
ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003364104A
Other languages
Japanese (ja)
Other versions
JP2005127230A (en
Inventor
賢吾 久保
立男 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003364104A priority Critical patent/JP3979376B2/en
Publication of JP2005127230A publication Critical patent/JP2005127230A/en
Application granted granted Critical
Publication of JP3979376B2 publication Critical patent/JP3979376B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明はエンジン(内燃機関)の制御装置、特に始動時の制御に関する。   The present invention relates to a control device for an engine (internal combustion engine), and more particularly to control at start-up.

吸気バルブ15のバルブリフト量及び作動角を連続的に可変制御する可変バルブ機構と、クランクシャフト7と吸気バルブ用カムシャフト25との回転位相差を連続的に可変制御して吸気バルブ15のバルブタイミングを進遅角する可変バルブタイミング機構とを備え、始動からファーストアイドル時にこの可変バルブ機構によって吸気バルブのリフト量を低く(小さく)設定し、かつ可変バルブタイミング機構によってバルブタイミングを遅らせ、かつ燃料噴射タイミングを吸気行程中とするものがある(特許文献1参照)。
特開2003−3872号公報
A variable valve mechanism that continuously and variably controls the valve lift amount and the operating angle of the intake valve 15 and a variable valve mechanism of the intake valve 15 by continuously variably controlling the rotational phase difference between the crankshaft 7 and the intake valve camshaft 25. Variable valve timing mechanism for advancing / retarding the timing, the intake valve lift amount is set to be low (small) by this variable valve mechanism from the start to the first idling, the valve timing is delayed by the variable valve timing mechanism, and the fuel Some have the injection timing during the intake stroke (see Patent Document 1).
JP 2003-3872 A

ところで、上記の特許文献1において吸気バルブのリフト量を小さく設定しかつ燃料噴射タイミングを吸気行程中とするのは、吸気流速を速めて噴射燃料の微粒化を促進するためであるが、実験してみたところ、吸気バルブの壁流量の多い条件では燃焼室内の壁流量が却って増加し、これによりエンジンより排出されるHCが増えてしまうことが分かった。   By the way, the reason why the intake valve lift amount is set to a small value and the fuel injection timing is set to the intake stroke in the above-mentioned Patent Document 1 is to accelerate the atomization of the injected fuel by increasing the intake air flow rate. As a result, it was found that the wall flow rate in the combustion chamber increased on the condition that the wall flow rate of the intake valve was large, and this increased the HC discharged from the engine.

これについて説明すると、吸気バルブの傘裏部の壁流量が多い場合に大リフトの状態から小リフトの状態にすると、燃焼室5内の壁流量特に燃焼室上面に付着する壁流量が多くなる。これはバルブリフトが小さいと吸気バルブ15と吸気ポート4壁の隙間を通過する吸気流速が速くなるため、吸気バルブ傘裏部に付着した壁流燃料が燃焼室内に吸入される際に横方向に飛んで燃焼室上面に付着するためである。   To explain this, when the wall flow rate at the umbrella back of the intake valve is large, when the large lift state is changed to the small lift state, the wall flow rate in the combustion chamber 5, particularly, the wall flow rate adhering to the upper surface of the combustion chamber increases. This is because if the valve lift is small, the flow velocity of the intake air passing through the gap between the intake valve 15 and the intake port 4 wall increases, so that when the wall flow fuel adhering to the back of the intake valve umbrella is sucked into the combustion chamber, This is because it flies and adheres to the upper surface of the combustion chamber.

一方、吸気行程中に燃料を噴射すると燃料噴射弁からの噴霧が吸気の流れに乗って燃焼室の中まで吸入されてしまうため吸気バルブ傘裏部に付着する壁流量は排気行程中に燃料噴射するときより減少するものの燃焼室内のシリンダ面に付着する壁流量は増加してしまうのである。   On the other hand, if fuel is injected during the intake stroke, the spray from the fuel injection valve rides on the flow of intake air and is sucked into the combustion chamber, so the wall flow rate adhering to the back of the intake valve umbrella is injected during the exhaust stroke. However, the wall flow rate adhering to the cylinder surface in the combustion chamber is increased, although it is smaller than when it is done.

このように、上記の特許文献1の技術によれば、燃料の微粒化そのものは促進されるものの燃焼室上面及び燃焼室内のシリンダ面の壁流量をどちらも増やす結果となり、HCが増えてしまうのである。   Thus, according to the technique of the above-mentioned Patent Document 1, although the atomization of the fuel itself is promoted, both the flow rate on the upper surface of the combustion chamber and the cylinder surface in the combustion chamber are increased, resulting in an increase in HC. is there.

そこで本発明は、吸気バルブが小リフト状態でかつ吸気バルブの壁流量が多い条件においても、燃焼室内の壁流量を減少させHCを低減する装置を提供することを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an apparatus for reducing HC by reducing the wall flow rate in the combustion chamber even in a condition where the intake valve is in a small lift state and the wall flow rate of the intake valve is high.

本発明は、図1に示したように吸気バルブ(15)と、吸気バルブ(15)のバルブリフト量とバルブタイミングとを可変的に制御可能な可変動弁機構(26、27)と、点火装置(14)と、吸気ポート(4)より吸気バルブ(15)に向けて燃料噴射を行う燃料噴射装置(21)とを備え、エンジンコントローラ(31)がエンジンの始動時に、吸気バルブ(15)が所定の小リフトの特性で作動すると共に吸気バルブ(15)と排気バルブ(16)のオーバーラップ量がエンジンの暖機完了後より拡大するように可変動弁機構(26、27)を、燃焼安定限界で点火が行われるように点火装置(14)の点火時期エンジンの暖機完了後の点火時期よりも進角側にそれぞれ制御する。 As shown in FIG. 1, the present invention includes an intake valve (15), variable valve mechanisms (26, 27) capable of variably controlling the valve lift and valve timing of the intake valve (15), ignition, And a fuel injection device (21) for injecting fuel from the intake port (4) toward the intake valve (15). When the engine controller (31) starts the engine, the intake valve (15) Is operated with a predetermined small lift characteristic, and the variable valve mechanism (26, 27) is combusted so that the amount of overlap between the intake valve (15) and the exhaust valve (16) increases after the engine is warmed up. The ignition timing of the ignition device (14) is controlled to be more advanced than the ignition timing after completion of warming up of the engine so that ignition is performed at the stability limit.

本発明によれば、エンジンの始動時に、図2の二点鎖線で示したように吸気バルブを所定の小リフトの特性で作動させると共に吸排気バルブのオーバーラップ量が拡大するようにしたので、燃焼室内に残留する高温の排ガスが多くなって燃料の霧化が促進されると共に未燃HCが再燃焼され、これによりエンジンより排出されるHC量を低減できる。   According to the present invention, when starting the engine, the intake valve is operated with a predetermined small lift characteristic as shown by a two-dot chain line in FIG. 2 and the overlap amount of the intake and exhaust valves is increased. High-temperature exhaust gas remaining in the combustion chamber is increased, fuel atomization is promoted, and unburned HC is reburned, whereby the amount of HC discharged from the engine can be reduced.

以下、図面に基づき本発明の実施形態について説明する。図1はL−ジェトロニック方式のガソリン噴射エンジンに適用した本発明の第1実施形態のシステムを説明するための概略図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view for explaining a system according to a first embodiment of the present invention applied to an L-Jetronic gasoline injection engine.

吸気絞り弁23により調量される空気は、吸気コレクタ2に蓄えられた後、吸気マニホールド3を介して各気筒の燃焼室5に導入される。燃料は各気筒の吸気ポート4に配置された燃料噴射弁21(燃料噴射装置)より、所定のタイミング(始動時より常時排気行程)で吸気ポート4内に、より具体的には吸気ポート4に遮るように存在する吸気バルブ15(傘裏部)に向けて間欠的に噴射供給される。ここで、燃料噴射弁21に与える燃料噴射量は、エンジンコントローラ31がエアフローメータ32により検出される吸入空気流量と、クランク角センサ(33、34)からの信号に基づいて演算されるエンジン回転速度とに応じて算出している。   The air metered by the intake throttle valve 23 is stored in the intake collector 2 and then introduced into the combustion chamber 5 of each cylinder via the intake manifold 3. Fuel enters the intake port 4 at a predetermined timing (always an exhaust stroke from the start) from the fuel injection valve 21 (fuel injection device) disposed in the intake port 4 of each cylinder, more specifically, to the intake port 4. Injection is intermittently supplied toward the intake valve 15 (back of the umbrella) that exists so as to be blocked. Here, the fuel injection amount given to the fuel injection valve 21 is the engine rotational speed calculated by the engine controller 31 based on the intake air flow rate detected by the air flow meter 32 and the signals from the crank angle sensors (33, 34). It is calculated according to.

吸気弁15に向けて噴射された燃料は吸気と混合して混合気を作り、この混合気は吸気バルブ15を閉じることで燃焼室5内に閉じこめられ、ピストン6の上昇によって圧縮され、点火プラグ14(点火装置)により着火されて燃焼する。この燃焼によるガス圧がピストン6を押し下げる仕事を行い、このピストン6の往復運動はクランクシャフト7の回転運動へと変換される。燃焼後のガス(排気)は排気バルブ16が開いたとき排気通路8へと排出される。   The fuel injected toward the intake valve 15 is mixed with intake air to form an air-fuel mixture. The air-fuel mixture is confined in the combustion chamber 5 by closing the intake valve 15 and compressed by the rise of the piston 6, and the spark plug 14 (ignition device) ignites and burns. The gas pressure due to the combustion works to push down the piston 6, and the reciprocating motion of the piston 6 is converted into the rotational motion of the crankshaft 7. The combusted gas (exhaust gas) is discharged into the exhaust passage 8 when the exhaust valve 16 is opened.

排気通路8には三元触媒9、10を備える。三元触媒9、10は排気の空燃比が理論空燃比を中心とした狭い範囲にあるとき、排気に含まれるHC、CO及びNOxを同時に効率よく除去できる。このため、エンジンコントローラ31では運転条件に応じて燃料噴射弁21からの基本燃料噴射量を定めると共に、三元触媒9の上流に設けたO2センサ35からの信号に基づいて空燃比をフィードバック制御する。 The exhaust passage 8 includes three-way catalysts 9 and 10. The three-way catalysts 9, 10 can efficiently remove HC, CO and NOx contained in the exhaust gas simultaneously when the air-fuel ratio of the exhaust gas is in a narrow range centered on the stoichiometric air-fuel ratio. For this reason, the engine controller 31 determines the basic fuel injection amount from the fuel injection valve 21 according to the operating conditions, and feedback controls the air-fuel ratio based on the signal from the O 2 sensor 35 provided upstream of the three-way catalyst 9. To do.

上記の吸気絞り弁23はスロットルモータ24により駆動される。運転者が要求するトルクはアクセルペダル41の踏み込み量(アクセル開度)に現れるので、エンジンコントローラ31ではアクセルセンサ42からの信号に基づいて目標トルクを定め、この目標トルクを実現するための目標空気量を定め、この目標空気量が得られるようにスロットルモータ24を介して吸気絞り弁23の開度を制御する。   The intake throttle valve 23 is driven by a throttle motor 24. Since the torque required by the driver appears in the amount of depression of the accelerator pedal 41 (accelerator opening), the engine controller 31 determines a target torque based on a signal from the accelerator sensor 42, and a target air for realizing this target torque. The amount is determined, and the opening degree of the intake throttle valve 23 is controlled via the throttle motor 24 so that this target air amount is obtained.

上記吸気バルブ15のバルブリフト量及び作動角を連続的に可変制御する多節リンク状の機構で構成される可変バルブ機構(以下、「VEL機構」という。)26と、クランクシャフト7と吸気バルブ用カムシャフト25との回転位相差を連続的に可変制御して、吸気バルブ15のバルブタイミングを進遅角する可変バルブタイミング機構(以下「VTC機構」という。)27とを備える。これらの具体的な構成は特開2003−3872号公報により公知であるのでその詳しい説明は省略する。例えば、VEL機構27とVTC機構26の両方に指令値を与えてないときには吸気バルブ15のバルブリフトは、図2Aに示した特性(実線参照)、つまり出力要求に応じる特性であり、排気バルブ16とほぼ同等の大きなバルブリフト量と大きな作動角とを有している。これに対して、VEL機構27に対してのみ指令値を与えると、バルブリフトが最大となるクランク角位置を変えずにバルブリフト量と作動角とが共に小さくなる。また、VTC機構26に対して指令値を与えていないときには回転位相が最遅角位置にありVTC機構26に対してのみ指令値を与えたときバルブリフト量、作動角を変更することなく回転位相、具体的には吸気弁開時期IVO(あるいは吸気バルブ閉時期IVC)のみが進角側に移動する。   A variable valve mechanism (hereinafter referred to as “VEL mechanism”) 26 configured by a multi-node link mechanism that continuously and variably controls the valve lift amount and the operating angle of the intake valve 15, the crankshaft 7, and the intake valve And a variable valve timing mechanism (hereinafter referred to as a “VTC mechanism”) 27 that advances and retards the valve timing of the intake valve 15 by continuously variably controlling the rotational phase difference with the camshaft 25 for use. Since these specific configurations are known from Japanese Patent Laid-Open No. 2003-3872, detailed description thereof is omitted. For example, when the command value is not given to both the VEL mechanism 27 and the VTC mechanism 26, the valve lift of the intake valve 15 has the characteristic shown in FIG. 2A (see the solid line), that is, the characteristic corresponding to the output request. Have a large valve lift and a large operating angle. On the other hand, when a command value is given only to the VEL mechanism 27, both the valve lift amount and the operating angle are reduced without changing the crank angle position at which the valve lift becomes maximum. Further, when the command value is not given to the VTC mechanism 26, the rotation phase is at the most retarded angle position, and when the command value is given only to the VTC mechanism 26, the rotation phase is changed without changing the valve lift amount and the operating angle. Specifically, only the intake valve opening timing IVO (or the intake valve closing timing IVC) moves to the advance side.

本実施形態では、図5で後述するように、エンジンが始動したタイミングt1から吸気バルブ温度が冷却水温Twより一定値だけ高い温度(この温度を以下「平衡温度」という。)に達するタイミングt2(第1のタイミング)までの期間(この期間を以下「始動後第一期間」という。)と、吸気バルブ温度が平衡温度に達するタイミングt2から触媒9が活性化するタイミングt3(第2のタイミング)までの期間(この期間を以下「始動後第二期間」という。)と、触媒9が活性化するタイミングt3以降の期間(この期間を以下「通常時」という。)とで吸気バルブ15のバルブリフト(リフト量及びバルブタイミング)を異ならせており、これに対応してこれら2つの機構26、27を次のように作動させる。なお、本実施形態では、通常時はエンジンの暖機完了後でもある。   In this embodiment, as will be described later with reference to FIG. 5, the timing t2 (the temperature at which the intake valve temperature reaches a temperature higher than the cooling water temperature Tw by a certain value from the timing t1 when the engine is started (hereinafter referred to as “equilibrium temperature”). A period until the first timing) (this period is hereinafter referred to as "first period after start"), and a timing t3 (second timing) at which the catalyst 9 is activated from a timing t2 when the intake valve temperature reaches the equilibrium temperature. Of the intake valve 15 in the period up to (this period is hereinafter referred to as “second period after start”) and the period after the timing t3 when the catalyst 9 is activated (this period is hereinafter referred to as “normal time”). The lifts (lift amount and valve timing) are made different, and the two mechanisms 26 and 27 are operated as follows in response to the lifts. In this embodiment, the normal time is also after completion of warming up of the engine.

〔1〕始動後第一期間ではVEL機構26とVTC機構27の両方に指令値を与えて作動させる。VEL機構26の作動で吸気バルブ15のリフト量及び作動角が通常時より共に小さくなり、VTC機構27の作動により吸気バルブ15のリフト量が最大となるクランク角位置が進角側に移動するので、このときの吸気バルブ15のバルブリフトは図2Cに示した特性(二点鎖線参照)となる。すなわち、小リフト量(例えば3〜4mm)となりかつ吸排気バルブ15、16のオーバーラップ量が拡大する。   [1] In the first period after starting, command values are given to both the VEL mechanism 26 and the VTC mechanism 27 to operate them. As the VEL mechanism 26 is operated, the lift amount and the operating angle of the intake valve 15 are both smaller than normal, and the crank angle position where the lift amount of the intake valve 15 is maximum is moved to the advance side by the operation of the VTC mechanism 27. The valve lift of the intake valve 15 at this time has the characteristics shown in FIG. 2C (see the two-dot chain line). That is, the lift amount is small (for example, 3 to 4 mm), and the overlap amount of the intake / exhaust valves 15 and 16 is increased.

〔2〕始動後第二期間ではVEL機構26とVTC機構27の両方に指令値を与えて作動させるが、VTC機構27への指令値を小さくするので、このときの吸気バルブ15のバルブリフトは図2Bに示した特性(破線参照)となる。すなわち、小リフト量のまま吸気バルブ15のバルブタイミングが遅角側へと移動し、吸気バルブ15の開時期IVOは通常時と同じほぼ吸気上死点TDCに、これに対して吸気バルブ15の閉時期IVCは通常時よりもほぼ吸気下死点BDCにまで進角する。   [2] In the second period after starting, the command value is given to both the VEL mechanism 26 and the VTC mechanism 27 to operate, but the command value to the VTC mechanism 27 is reduced, so the valve lift of the intake valve 15 at this time is The characteristics shown in FIG. 2B (see the broken line) are obtained. That is, the valve timing of the intake valve 15 moves to the retard side with the small lift amount, and the opening timing IVO of the intake valve 15 is substantially the same as the intake top dead center TDC as in the normal time. The closing timing IVC advances substantially to the intake bottom dead center BDC as compared with the normal time.

〔3〕通常時にはVEL機構26とVTC機構27の両方に指令値を与えず非作動とする。このとき、吸気バルブ15のバルブリフトは図2Aに示した特性となる。   [3] During normal operation, command values are not given to both the VEL mechanism 26 and the VTC mechanism 27, and they are deactivated. At this time, the valve lift of the intake valve 15 has the characteristics shown in FIG. 2A.

ここで、始動後第一期間に吸気バルブ15のバルブリフトを図2Cに示した特性とするのは、図3破線に示したように始動直後には吸排気バルブ15、16のオーバーラップを拡大させたほうが実線で示した通常時(大リフト)より燃焼室5内の壁流量(燃焼室5上面の壁流量及び燃焼室5内のシリンダ面の壁流量)が減少してHCを低減できるからである。さらに述べると、始動直後にはオーバーラップ量を拡大することにより燃焼室5内の残留ガス量を多くして高温のガスにより燃料の霧化を促進させると共に燃焼室5内の未燃HCを再燃焼させるためであり、これによりエンジンより排出されるHC量が減少するのである。一方、吸気バルブ温度が平衡温度に達するt2のタイミング以降になると燃焼室5内の壁流量が通常時より却って多くなるので、図2Cの特性とするのはt2のタイミングまでである。   Here, the valve lift of the intake valve 15 in the first period after the start has the characteristics shown in FIG. 2C because the overlap between the intake and exhaust valves 15 and 16 is enlarged immediately after the start as shown by the broken line in FIG. This makes it possible to reduce HC by reducing the wall flow rate in the combustion chamber 5 (the wall flow rate on the upper surface of the combustion chamber 5 and the wall flow rate on the cylinder surface in the combustion chamber 5) from the normal time (large lift) indicated by the solid line. It is. More specifically, immediately after start-up, the amount of residual gas in the combustion chamber 5 is increased by increasing the overlap amount to promote atomization of the fuel with the high-temperature gas, and the unburned HC in the combustion chamber 5 is recycled. This is because the amount of HC discharged from the engine is reduced. On the other hand, since the wall flow rate in the combustion chamber 5 increases after the timing of t2 when the intake valve temperature reaches the equilibrium temperature, the characteristic in FIG. 2C is until the timing of t2.

次に、始動後第二期間に吸気バルブ15のバルブリフトを図2Bに示した特性とする理由を説明する。図4に図2Aの特性と図2Bの特性とで点火時期に対するHC、排温、燃焼安定度がどのように異なるのかを示している。図4において図2Bに示すバルブリフトへと変更して吸気バルブ閉時期IVCを吸気下死点BDCに近づけると、有効圧縮比が図2Aに示すバルブリフトのときより向上して燃焼安定度が向上する。この場合にエンジンを燃焼安定限界で運転するとすれば、図4第3段目に示したように図2Aのバルブリフトであるとき燃焼安定限界での点火時期はADVaであり、これに対して図2Bのバルブリフトでは燃焼安定限界での点火時期がADVaより遅角側のADVbへと移動する。このことは燃焼安定限界での運転を続けるのであれば、図2Aのバルブリフトより図2Bのバルブリフトへと変更したとき点火時期をADVaよりADVbへと所定値ΔADVだけ遅角できることを意味する。このように点火時期を遅角できると、その点火時期遅角量ΔADVの分だけ排温が上昇し(図4第段目参照)、エンジン出口でのHCが減少する(図4第段目参照)。 Next, the reason why the valve lift of the intake valve 15 is set to the characteristics shown in FIG. 2B in the second period after starting will be described. FIG. 4 shows how the characteristics of FIG. 2A and the characteristics of FIG. 2B differ in HC, exhaust temperature, and combustion stability with respect to the ignition timing. When the valve lift shown in FIG. 4 is changed to the valve lift shown in FIG. 2B and the intake valve closing timing IVC is brought closer to the intake bottom dead center BDC, the effective compression ratio is improved as compared with the valve lift shown in FIG. To do. If the engine is operated at the combustion stability limit in this case, the ignition timing at the combustion stability limit is ADVa when the valve lift of FIG. 2A is used as shown in the third stage of FIG. In the valve lift of 2B, the ignition timing at the combustion stability limit moves to ADVb that is retarded from ADVa. This means that if the operation at the combustion stability limit is continued, the ignition timing can be retarded from ADVa to ADVb by a predetermined value ΔADV when the valve lift in FIG. 2A is changed to the valve lift in FIG. 2B. If the ignition timing can be retarded in this way, the exhaust temperature increases by the ignition timing retardation amount ΔADV (see the second stage in FIG. 4), and HC at the engine outlet decreases ( first stage in FIG. 4). See eye).

このように、始動後第二期間には吸気バルブ閉時期IVCを吸気下死点BDCに近づけることで、運転性を確保しつつ点火時期をリタードでき、その結果としてHCを低減しかつ排温を上昇させることができる。   Thus, the ignition timing can be retarded while ensuring drivability by bringing the intake valve closing timing IVC closer to the intake bottom dead center BDC in the second period after the start, resulting in a reduction in HC and exhaust temperature. Can be raised.

図5は図2〜図4について前述したところをまとめて、つまり冷間始動よりアイドル状態を保って運転する場合に吸気バルブ15のバルブリフト(リフト量、閉時期IVC)及び点火時期ADVをどのように制御するのかをモデル的に示したタイミングチャートである。   FIG. 5 summarizes what has been described above with reference to FIGS. 2 to 4, that is, the valve lift (lift amount, closing timing IVC) and ignition timing ADV of the intake valve 15 when operating while maintaining an idle state from cold start. It is the timing chart which showed how to control like a model.

ここでは吸気バルブ15のバルブリフト及び点火時期の制御を次のように経時的に3つのステージに分けて行う。   Here, control of the valve lift and ignition timing of the intake valve 15 is performed in three stages over time as follows.

(1)始動したタイミングt1から吸気バルブ温度が平衡温度に達するタイミングt 2までの期間(つまり始動後第一期間)
(2)タイミングt2から触媒9が活性化するタイミングt3までの期間(つまり始 動後第二期間)
(3)第2のタイミングt3以降の期間(つまり通常時)
上記(1)の始動後第一期間では、VEL機構26を作動させて吸気バルブ15のリフト量VLを始動後第一、第二の期間に共通の目標値VL2に設定して小さくし(例えば3〜4mm)、かつVTC機構27を作動させて吸気バルブ閉時期IVCを始動後第一期間の目標値IVC2(後述する目標値IVC1より約10°進角側)まで進角させ吸排気バルブ15、16のオーバーラップ量を拡大する。この通常時よりも大きなオーバーラップにより燃焼室5内に残留する高温の排ガスが増え、この高温の排ガスが燃焼室内5の温度を上昇させるため、燃焼室5内の壁流量が減少し(図3参照)、これによってエンジンから排出されるHCを低減できる。
(1) A period from the start timing t1 to the timing t2 when the intake valve temperature reaches the equilibrium temperature (that is, the first period after the start)
(2) Period from timing t2 to timing t3 when the catalyst 9 is activated (that is, the second period after the start)
(3) Period after the second timing t3 (that is, normal time)
In the first period after the start of (1) above, the VEL mechanism 26 is operated, and the lift amount VL of the intake valve 15 is set to a target value VL2 common to the first and second periods after the start and is reduced (for example, 3 to 4 mm), and the VTC mechanism 27 is operated to advance the intake valve closing timing IVC to a target value IVC2 (about 10 ° advance side from a target value IVC1 to be described later) in the first period after starting the intake / exhaust valve 15 , 16 overlap amount is enlarged. Due to the larger overlap than usual, the high-temperature exhaust gas remaining in the combustion chamber 5 increases, and this high-temperature exhaust gas raises the temperature of the combustion chamber 5, so that the wall flow rate in the combustion chamber 5 decreases (FIG. 3). As a result, HC discharged from the engine can be reduced.

ただし、オーバーラップ量を拡大すると燃焼に寄与しない残留ガスが増えるため、燃焼安定度が悪化する。これを避けるため点火時期ADVを始動後第一期間の目標値ADV2へと進角させる。この目標値ADV2は吸気バルブ15が小リフトかつオーバーラップ量を拡大した状態での燃焼安定限界の点火時期(残留ガス増加分だけ通常時の点火時期を進角させた値)である。   However, if the overlap amount is increased, the residual gas that does not contribute to combustion increases, so the combustion stability deteriorates. In order to avoid this, the ignition timing ADV is advanced to the target value ADV2 in the first period after starting. This target value ADV2 is the ignition timing at the combustion stability limit in a state where the intake valve 15 is a small lift and the overlap amount is enlarged (a value obtained by advancing the normal ignition timing by the amount of increase in residual gas).

上記(2)の始動後第二期間でもVEL機構26を作動させて吸気バルブ15を小リフトに設定すると共にVTC機構27に与える指令値を小さくし、吸気バルブ15の閉時期IVCを吸気下死点BDCの近傍にある始動後第二期間の目標値IVC3まで遅角する。これによって有効圧縮率が向上して燃焼安定度がよくなる。燃焼安定限界で運転するのであれば、この燃焼安定度の向上代だけ点火時期ADVを通常時より遅角できるので、点火時期ADVを通常時の目標値ADV1より遅らせた時期を始動後第二期間の目標値ADV3とする。これにより排温が上昇しそのぶん触媒9が早く活性化する。   Even during the second period after the start of the above (2), the VEL mechanism 26 is operated to set the intake valve 15 to a small lift, and the command value given to the VTC mechanism 27 is reduced, and the closing timing IVC of the intake valve 15 is set to the intake bottom dead. The angle is retarded to the target value IVC3 in the second period after the start in the vicinity of the point BDC. This improves the effective compression ratio and improves the combustion stability. If the engine is operated at the combustion stability limit, the ignition timing ADV can be retarded from the normal time by the amount of improvement in the combustion stability. Therefore, the second period after starting the timing when the ignition timing ADV is delayed from the normal target value ADV1. Target value ADV3. As a result, the exhaust temperature rises and the catalyst 9 is activated earlier.

上記(3)の通常時になると、吸気バルブ15のバルブリフト、点火時期ADVとも通常時の目標値へと戻す。すなわち、VEL機構26を非作動として吸気バルブ15のリフト量VLを通常時の目標値VL1(大リフト)に戻し、VTC機構27を非作動として吸気バルブの閉時期IVCを通常時の目標値IVC1(例えば50〜60°ABDC)へと遅角する。安定限界での運転を継続するため点火時期ADVを通常時の点火時期ADV1へと進角させる。   When the normal time (3) is reached, both the valve lift of the intake valve 15 and the ignition timing ADV are returned to the normal target values. That is, the VEL mechanism 26 is deactivated and the lift amount VL of the intake valve 15 is returned to the normal target value VL1 (large lift), and the VTC mechanism 27 is deactivated and the intake valve closing timing IVC is set to the normal target value IVC1. The angle is retarded (for example, 50 to 60 ° ABDC). In order to continue the operation at the stability limit, the ignition timing ADV is advanced to the normal ignition timing ADV1.

なお、図5においてエンジンを始動しようとスタータスイッチ36をOFFよりONへと切換えたタイミングt0より始動タイミングt1までの期間(始動期間)では、上記(1)の始動後第一期間と同じにVEL機構26、VTC機構27を作動させる。これは、始動タイミングt1でVEL機構26、VTC機構27を即座に作動させようとしてもVEL機構26、VTC機構27に作動遅れを避けられないので、始動タイミングt1の前に予め吸気バルブ15のリフト量VLを小さく設定しかつ吸気バルブ閉時期IVCを進角させて吸排気バルブ15、16のオーバーラップ量を拡大させておくためである。   In FIG. 5, the period from the timing t0 when the starter switch 36 is switched from OFF to ON to start the engine (starting period) from the timing t1 to the starting timing t1 is the same as the first period after starting (1). The mechanism 26 and the VTC mechanism 27 are operated. This is because even if the VEL mechanism 26 and the VTC mechanism 27 are immediately operated at the start timing t1, a delay in the operation of the VEL mechanism 26 and the VTC mechanism 27 cannot be avoided. Therefore, the lift of the intake valve 15 is previously performed before the start timing t1. This is because the amount of overlap between the intake and exhaust valves 15 and 16 is increased by setting the amount VL small and advancing the intake valve closing timing IVC.

また、始動期間での点火時期は始動に適合させた点火時期CRADVで、基本的にエンジンのクランキング回転速度をパラメータとしており、従ってクランキング回転速度に応じて変化している。   The ignition timing in the starting period is an ignition timing CRADV adapted to the starting, and basically uses the cranking rotation speed of the engine as a parameter, and therefore changes according to the cranking rotation speed.

エンジンコントローラ31で実行されるこの制御を図6のフローチャートに従って詳述する。図は吸気バルブ閉時期IVC[°ABDC]、バルブリフト量VL、点火時期ADV[°BTDC]を演算するためのもので、一定時間毎(例えば10ms毎)に実行する。 This control executed by the engine controller 31 will be described in detail according to the flowchart of FIG. FIG. 6 is for calculating the intake valve closing timing IVC [° ABDC], the valve lift VL, and the ignition timing ADV [° BTDC], and is executed at regular intervals (for example, every 10 ms).

ただし、以下では運転条件は継続してアイドル状態にあるものとして述べる。   However, in the following description, it is assumed that the operating conditions are continuously in an idle state.

ステップ1ではスタータスイッチ36からの信号をみる。スタータスイッチ36からの信号がONであれば始動時であると判断してステップ2に進み水温センサ37により検出される冷却水温Twを始動時水温TWINTとしてサンプリングする。   In step 1, the signal from the starter switch 36 is observed. If the signal from the starter switch 36 is ON, it is determined that the engine is starting, and the process proceeds to step 2 where the cooling water temperature Tw detected by the water temperature sensor 37 is sampled as the starting water temperature TWINT.

ステップ3では、吸気バルブ閉時期IVCを前回吸気バルブ閉時期IVColdに、バルブリフト量VLを前回バルブリフト量VLoldに移す。   In Step 3, the intake valve closing timing IVC is moved to the previous intake valve closing timing IVCold, and the valve lift amount VL is moved to the previous valve lift amount Vold.

ここで、吸気バルブ閉時期IVC、バルブリフト量VLの初期値は図5で示したように吸気バルブ閉時期の始動後第一期間目標値IVC2、小リフト量である始動後第一期間目標値VL2である(図5第2段目、第4段目参照)。   Here, the initial values of the intake valve closing timing IVC and the valve lift amount VL are the first period target value IVC2 after starting of the intake valve closing timing and the first period target value after starting which is a small lift amount as shown in FIG. VL2 (see the second and fourth stages in FIG. 5).

一方、スタータスイッチ36からの信号がOFFであるとき(始動後)にはステップ1よりステップ2を飛ばしてステップ3の操作を実行する。   On the other hand, when the signal from the starter switch 36 is OFF (after starting), step 2 is skipped from step 1 and the operation of step 3 is executed.

ステップ4、5、6では次の条件が成立しているか否かを一つずつ判定し全ての条件が成立しているときステップ7に、いずれか一つでも成立していないときにはステップ15〜23に進む。   In steps 4, 5, and 6, it is determined one by one whether or not the following conditions are satisfied, and when all the conditions are satisfied, step 7 is performed, and when any one of the conditions is not satisfied, steps 15 to 23 are performed. Proceed to

〈1〉始動時水温TWINTが所定値TEMP1未満であること。   <1> The starting water temperature TWINT is lower than a predetermined value TEMP1.

〈2〉触媒9の入口温度Te1が所定値Te1H未満であること。   <2> The inlet temperature Te1 of the catalyst 9 is lower than a predetermined value Te1H.

〈3〉アイドル状態であること。   <3> Be in an idle state.

ここで、上記〈2〉の所定値Te1Hは排気マニホールド集合部の近くに設けた触媒9が活性化する温度の下限値である。上記〈1〉の所定値TEMP1(例えば40℃程度)は冷間始動時とホットリスタート時とを切り分けるための値である。   Here, the predetermined value Te1H of <2> is a lower limit value of the temperature at which the catalyst 9 provided near the exhaust manifold assembly is activated. The predetermined value TEMP1 (for example, about 40 ° C.) of <1> is a value for distinguishing between cold start and hot restart.

上記触媒9入口温度Te1は触媒の入口に設けた温度センサ37により検出する。アイドル状態であるか否かはアイドルスイッチ38からの信号により判断する。   The catalyst 9 inlet temperature Te1 is detected by a temperature sensor 37 provided at the catalyst inlet. Whether or not it is in an idle state is determined by a signal from the idle switch 38.

上記〈1〉〜〈3〉の条件が全て成立するとき、つまり冷間始動時で触媒9が活性化前にありかつ運転条件がアイドル状態にあるときにステップ7に進む。   When the above conditions <1> to <3> are all met, that is, when the catalyst 9 is before activation at the cold start and the operation condition is in the idle state, the routine proceeds to step 7.

ステップ7では現在の冷却水温Twと始動時水温TWINTとの差(Tw−TWINT)を所定値DTWと比較する。ここで、所定値DTWは吸気バルブ15の温度が平衡温度に達するときの冷却水温と始動時水温との差を定める値である。詳細には図7に示したように始動時水温TWINTをパラメータとして始動時水温TWINTが低くなるほど大きくなる値(可変値)で与えている。これは始動時水温TWINTが低いほど吸気バルブ15温度が平衡温度に達するのが遅れるためである。   In step 7, the difference (Tw−TWINT) between the current cooling water temperature Tw and the starting water temperature TWINT is compared with a predetermined value DTW. Here, the predetermined value DTW is a value that determines the difference between the cooling water temperature and the starting water temperature when the temperature of the intake valve 15 reaches the equilibrium temperature. More specifically, as shown in FIG. 7, the starting water temperature TWINT is used as a parameter, and a value (variable value) that increases as the starting water temperature TWINT decreases is given. This is because the lower the starting water temperature TWINT, the later the intake valve 15 temperature reaches the equilibrium temperature.

差(Tw−TWINT)が所定値DTW未満であるとき(吸気バルブ温度が上昇する前)にはステップ8に進んで始動後第一期間の目標値ADV2を点火時期ADVとする。目標値ADV2としては吸気バルブ15を小リフトとしかつ吸気バルブタイミングを進角して吸排気バルブ15、16のバルブオーバーラップを拡大した状態での燃焼安定限界の点火時期で、例えば、冷却水温Twやエンジン回転速度をパラメータとするマップ値で設定しておけばよい。   When the difference (Tw−TWINT) is less than the predetermined value DTW (before the intake valve temperature rises), the routine proceeds to step 8 where the target value ADV2 for the first period after start is set as the ignition timing ADV. The target value ADV2 is the ignition timing of the combustion stability limit in a state where the intake valve 15 is made a small lift and the intake valve timing is advanced to increase the valve overlap of the intake and exhaust valves 15 and 16, for example, the cooling water temperature Tw Or a map value with the engine speed as a parameter.

次回よりステップ3〜8の操作を繰り返す。やがて、差(Tw−TWINT)が所定値DTW以上となったときには吸気バルブ温度が平衡温度まで上昇したと判断し、ステップ7よりステップ9〜14に進む。   Repeat steps 3-8 from the next time. Eventually, when the difference (Tw−TWINT) becomes equal to or greater than the predetermined value DTW, it is determined that the intake valve temperature has risen to the equilibrium temperature, and the process proceeds from step 7 to steps 9 to 14.

ステップ9〜11は吸気バルブ閉時期IVCを始動後第一期間の目標値IVC2から始動後第二期間の目標値IVC3(吸気下死点BDC近傍)まで遅角させる部分である。すなわち、ステップ9では次式により吸気バルブ閉時期IVCを一定値DIVCだけ遅角する。   Steps 9 to 11 are parts for retarding the intake valve closing timing IVC from the target value IVC2 in the first period after startup to the target value IVC3 (in the vicinity of the intake bottom dead center BDC) in the second period after startup. That is, in step 9, the intake valve closing timing IVC is retarded by a constant value DIVC according to the following equation.

IVC=IVCold+DIVC…(1)
ただし、DIVC;一定値(演算周期当たりの補正量)、
ステップ10ではこの遅角後の吸気バルブ閉時期IVCと始動後第二期間目標値IVC3を比較し、吸気バルブ閉時期IVCが始動後第二期間目標値IVC3より大きい(遅角側にある)ときにはステップ11に進んで吸気バルブ閉時期IVCを始動後第二期間目標値IVC3に制限し、これに対して吸気バルブ閉時期IVCが始動後第二期間目標値IVC3以下の(進角側にある)ときにはステップ12を飛ばす。
IVC = IVCold + DIVC (1)
However, DIVC; constant value (correction amount per calculation cycle),
In step 10, the intake valve closing timing IVC after the retard is compared with the second period target value IVC3 after starting, and when the intake valve closing timing IVC is greater than the second period target value IVC3 after starting (it is on the retarding side). Proceeding to step 11, the intake valve closing timing IVC is limited to the second period target value IVC3 after starting, whereas the intake valve closing timing IVC is less than or equal to the second period target value IVC3 (starting side) after starting. Sometimes step 12 is skipped.

ステップ12〜14は点火時期ADVを始動後第一期間目標値ADV2から始動後第二期間目標値ADV3まで遅角させる部分である。すなわち、ステップ12では次式により点火時期ADVを一定値DADVだけ遅角する。   Steps 12 to 14 are parts for retarding the ignition timing ADV from the first period target value ADV2 after starting to the second period target value ADV3 after starting. That is, in step 12, the ignition timing ADV is retarded by a constant value DADV by the following equation.

ADV=ADVold−DADV…(2)
ただし、DADV;一定値(演算周期当たりの補正量)、
ステップ13ではこの点火時期ADVと始動後第二期間目標値ADV3を比較する。ここで、目標値ADV3としては吸気バルブ15を小リフトとしかつ吸気バルブ閉時期IVCを吸気下死点BDC近傍とした状態での燃焼安定限界の点火時期で、上記目標値ADV2と同様に例えば、冷却水温Twやエンジン回転速度をパラメータとするマップ値で設定しておけばよい。点火時期ADVがこの目標値ADV3より小さい(遅角側にある)ときにはステップ14に進んで点火時期ADVを目標値ADV3に制限し、これに対して点火時期ADVが目標値ADV3以上の(進角側にある)ときにはステップ14を飛ばす。
ADV = ADVold−DADV (2)
However, DADV; constant value (correction amount per calculation cycle),
In step 13, the ignition timing ADV is compared with the second period target value ADV3 after starting. Here, the target value ADV3 is an ignition timing at the combustion stability limit in a state where the intake valve 15 is a small lift and the intake valve closing timing IVC is in the vicinity of the intake bottom dead center BDC. What is necessary is just to set with the map value which uses the cooling water temperature Tw and engine rotational speed as a parameter. When the ignition timing ADV is smaller than the target value ADV3 (on the retard side), the routine proceeds to step 14 where the ignition timing ADV is limited to the target value ADV3, while the ignition timing ADV is greater than the target value ADV3 (advance angle). Step 14 is skipped.

次回からはステップ7、9〜14の操作を繰り返すので、吸気バルブの閉時期IVCは始動後第一期間目標値IVC2から一定値DIVCずつ遅角されてゆき、やがて始動後第二期間目標値IVC3と一致しその後は始動後第二期間目標値IVC3に保持される。なお、吸気バルブ15のリフト量VLはステップ3での操作により初期値つまり小リフト量であるVL2のままである。また、点火時期ADVは始動後第一期間目標値ADV2から一定値DADVずつ遅角されてゆき、やがて始動後第二期間目標値ADV3と一致しその後は始動後第二期間目標値ADV3に保持される。   Since the operations of Steps 7 and 9 to 14 are repeated from the next time, the closing timing IVC of the intake valve is retarded by a certain value DIVC from the first period target value IVC2 after starting, and eventually the second period target value IVC3 after starting. After that, it is held at the target value IVC3 for the second period after starting. Note that the lift amount VL of the intake valve 15 remains at the initial value, that is, the small lift amount VL2 by the operation in step 3. Further, the ignition timing ADV is retarded from the first period target value ADV2 by a constant value DADV, and eventually coincides with the second period target value ADV3 after starting, and thereafter is held at the second period target value ADV3 after starting. The

この保持状態は触媒入口温度Te1が所定値Te1Hに達するまで続き、やがて触媒入口温度Te1が所定値Te1H以上となったときには触媒9が活性化したと判断してステップ5よりステップ15〜23に進む。   This holding state continues until the catalyst inlet temperature Te1 reaches a predetermined value Te1H. When the catalyst inlet temperature Te1 becomes equal to or higher than the predetermined value Te1H, it is determined that the catalyst 9 is activated, and the process proceeds from step 5 to steps 15 to 23. .

ステップ15〜17は吸気バルブ15のバルブリフト量VLを目標値VL2(小リフト)から通常時の目標値VL1(大リフト)へと切換える部分である。すなわち、ステップ15では次式によりバルブリフト量VLを一定値DVLだけ大きくする。   Steps 15 to 17 are parts for switching the valve lift amount VL of the intake valve 15 from the target value VL2 (small lift) to the normal target value VL1 (large lift). That is, in step 15, the valve lift amount VL is increased by a constant value DVL by the following equation.

VL=VLold+DVL…(3)
ただし、DVL;一定値(演算周期当たりの補正量)、
ステップ16ではバルブリフト量VLと通常時目標値VL1を比較し、バルブリフト量VLが通常時目標値VL1より大きいときにはステップ17に進んでバルブリフト量VLを通常時目標値VL1に制限し、これに対してバルブリフト量VLが通常時目標値VL1以下のときにはステップ17を飛ばす。
VL = Vold + DVL (3)
However, DVL; constant value (correction amount per calculation cycle),
In step 16, the valve lift amount VL is compared with the normal target value VL1, and when the valve lift amount VL is larger than the normal target value VL1, the process proceeds to step 17 to limit the valve lift amount VL to the normal target value VL1. On the other hand, when the valve lift amount VL is less than or equal to the normal target value VL1, step 17 is skipped.

ステップ18〜20は吸気バルブ閉時期IVCを始動後第二期間目標値IVC3から通常時の目標値IVC1(吸気下死点後50〜60°)にまで遅角させる部分である。すなわち、ステップ18では次式により吸気バルブ閉時期IVCを一定値DIVCだけ遅角する。   Steps 18 to 20 are parts for retarding the intake valve closing timing IVC from the second period target value IVC3 after starting to the normal target value IVC1 (50 to 60 ° after intake bottom dead center). That is, in step 18, the intake valve closing timing IVC is retarded by a constant value DIVC according to the following equation.

IVC=IVCold+DIVC…(4)
ただし、DIVC;一定値(演算周期当たりの補正量)、
ステップ19ではこの吸気バルブ閉時期IVCと通常時目標値IVC1を比較し、吸気バルブ閉時期IVCが通常時目標値IVC2より大きい(遅角側にある)ときにはステップ20に進んで吸気バルブ閉時期IVCを通常時目標値IVC1に制限し、これに対して吸気バルブ閉時期IVCが通常時目標値IVC1以下の(進角側にある)ときにはステップ20を飛ばす。
IVC = IVCold + DIVC (4)
However, DIVC; constant value (correction amount per calculation cycle),
In step 19, the intake valve closing timing IVC is compared with the normal target value IVC1, and when the intake valve closing timing IVC is larger than the normal target value IVC2 (on the retard side), the routine proceeds to step 20 and the intake valve closing timing IVC. Is limited to the normal target value IVC1, and when the intake valve closing timing IVC is less than or equal to the normal target value IVC1 (on the advance side), step 20 is skipped.

ステップ21〜23は点火時期ADVを通常時目標値ADV1まで進角させる部分である。すなわち、ステップ21では次式により点火時期ADVを一定値DADVだけ進角する。   Steps 21 to 23 are parts for advancing the ignition timing ADV to the normal target value ADV1. That is, in step 21, the ignition timing ADV is advanced by a constant value DADV by the following equation.

ADV=ADVold+DADV…(5)
ただし、DADV;一定値(演算周期当たりの補正量)、
ステップ22ではこの点火時期ADVと通常時目標値ADV1を比較する。ここで、目標値ADV1としては吸気バルブ15を通常時とした状態、つまり大リフトとしかつ吸気バルブ閉時期IVCを吸気下死点50〜60°とした状態での燃焼安定限界の点火時期で、これも目標値ADV2、ADV3と同様に例えば冷却水温Twやエンジン回転速度をパラメータとするマップ値で設定しておけばよい。点火時期ADVが通常時目標値ADV1より大きい(進角側にある)ときにはステップ23に進んで点火時期ADVを通常時目標値ADV1に制限し、これに対して点火時期ADVが通常時目標値ADV3以下の(遅角側にある)ときにはステップ23を飛ばす。
ADV = ADVold + DADV (5)
However, DADV; constant value (correction amount per calculation cycle),
In step 22, the ignition timing ADV is compared with the normal target value ADV1. Here, the target value ADV1 is an ignition timing at a combustion stability limit in a state where the intake valve 15 is in a normal state, that is, a large lift and an intake valve closing timing IVC is 50 to 60 °. Similarly to the target values ADV2 and ADV3, for example, a map value with the cooling water temperature Tw and the engine rotation speed as parameters may be set. When the ignition timing ADV is larger than the normal target value ADV1 (at the advance side), the routine proceeds to step 23, where the ignition timing ADV is limited to the normal target value ADV1, and the ignition timing ADV is compared with the normal target value ADV3. Step 23 is skipped at the following time (on the retard side).

次回からはステップ5、15〜23の操作を繰り返す。このうちステップ15〜17において吸気バルブ15のバルブリフト量VLが一定値DVLずつ大きくされてゆき、やがて通常時目標値VL1と一致しその後は通常時目標値VL1に保持される(図5第4段目参照)。ステップ18〜20では吸気バルブ閉時期IVCが始動後第二期間目標値IVC3から一定値DIVCずつ遅角されてゆき、やがて通常時目標値IVC1と一致しその後は通常時目標値IVC1に保持される(図5第2段目参照)。ステップ21〜23では点火時期ADVが一定値DADVずつ進角されてゆき、やがて通常時目標値ADV1と一致しその後は通常時目標値ADV1に保持される(図5第3段目参照)。   From the next time, steps 5 and 15 to 23 are repeated. Among these, in steps 15 to 17, the valve lift amount VL of the intake valve 15 is increased by the constant value DVL, and eventually coincides with the normal target value VL1, and thereafter is maintained at the normal target value VL1 (FIG. 4 fourth). (See the steps). In steps 18 to 20, the intake valve closing timing IVC is retarded by a constant value DIVC from the second period target value IVC3 after starting, and eventually coincides with the normal target value IVC1, and thereafter is maintained at the normal target value IVC1. (See FIG. 5, second row). In steps 21 to 23, the ignition timing ADV is advanced by a constant value DADV, and eventually coincides with the normal target value ADV1, and thereafter is held at the normal target value ADV1 (see the third stage in FIG. 5).

図示しないフローでは、このようにして演算される吸気バルブ閉時期IVCに従ってVTC機構27の作動、非作動及びVTC機構27への指令値が制御される(吸気バルブ閉時期IVCが始動後第一期間目標値IVC2にあるときにはVTC機構27作動されると共に指令値が大きくされ、始動後第二期間目標値IVC3になるとVTC機構27への指令値が小さくされ、これに対して吸気バルブ閉時期IVCが通常時目標値IVC1にあるときにはVTC機構27が非作動とされる。また、始動後第二期間目標値IVC3、通常時目標値IVC1への切換時にはVTC機構27への指令値が可変制御される。)。   In a flow (not shown), the operation and non-operation of the VTC mechanism 27 and the command value to the VTC mechanism 27 are controlled according to the intake valve closing timing IVC calculated in this manner (the intake valve closing timing IVC is the first period after the start. When the target value IVC2 is reached, the VTC mechanism 27 is activated and the command value is increased. When the target value IVC3 is reached after the start, the command value to the VTC mechanism 27 is decreased. On the other hand, the intake valve closing timing IVC is The VTC mechanism 27 is deactivated when the target value IVC1 is at the normal time, and the command value to the VTC mechanism 27 is variably controlled at the time of switching to the target value IVC3 for the second period after startup and the target value IVC1 at the normal time. .)

また、このようにして演算される15のリフト量VLに従ってVEL機構26の作動、非作動が制御される(吸気バルブ15のリフト量VLが始動後第一期間、始動後第二期間の目標値VL2にあるときにはVEL機構26が作動され、これに対して吸気バルブ15のリフト量VLが通常時目標値VL1にあるときにはVEL機構26が非作動とされる。また、通常時目標値VL1への切換時にはVEL機構26への指令値が可変制御される。)。   Further, the operation or non-operation of the VEL mechanism 26 is controlled according to the 15 lift amount VL calculated in this way (the lift amount VL of the intake valve 15 is a target value for the first period after the start and the second period after the start. The VEL mechanism 26 is actuated when it is at VL2, while the VEL mechanism 26 is deactivated when the lift amount VL of the intake valve 15 is at the normal target value VL1, and also to the normal target value VL1. At the time of switching, the command value to the VEL mechanism 26 is variably controlled.)

また、このようにして演算される点火時期ADVを用いて点火プラグ14により火花点火が行われる。   Further, spark ignition is performed by the spark plug 14 using the ignition timing ADV calculated in this way.

ここで、本実施形態の作用を説明する。   Here, the operation of the present embodiment will be described.

本実施形態(請求項1に記載の発明)によれば、VEL機構26及びVTC機構27を用いて、エンジンの始動時に吸気バルブ15を小リフトの特性で作動させると共に吸排気バルブ15、16のオーバーラップ量が拡大するようにしたので(図2Cのバルブリフト参照)、燃焼室5内に残留する高温の排ガスが多くなって燃料の霧化が促進されると共に燃焼室5内の未燃HCが再燃焼され、これによりエンジンより排出されるHC量を低減できる。   According to the present embodiment (the invention described in claim 1), the intake valve 15 is operated with the characteristics of a small lift when the engine is started using the VEL mechanism 26 and the VTC mechanism 27, and the intake / exhaust valves 15, 16 are operated. Since the overlap amount is increased (see the valve lift in FIG. 2C), the high-temperature exhaust gas remaining in the combustion chamber 5 increases to promote fuel atomization and unburned HC in the combustion chamber 5 Is reburned, and the amount of HC discharged from the engine can be reduced.

本実施形態(請求項2に記載の発明)によれば、図5において始動後の第1のタイミングt2で吸気バルブ15の閉時期IVCが吸気下死点BDC近傍である目標値IVC3にくるようにするので(図6ステップ7、9〜11、図2Bのバルブリフト参照)、有効圧縮比が向上し燃焼安定度が増す。このとき、燃焼安定限界で運転するので、この燃焼安定度の増し分だけ通常時より点火時期をリタードすることができ(図6ステップ12〜14、図5第3段目参照)、これによりにHC低減と排温上昇の各効果を得ることができる。   According to the present embodiment (the invention described in claim 2), in FIG. 5, at the first timing t2 after the start, the closing timing IVC of the intake valve 15 reaches the target value IVC3 that is in the vicinity of the intake bottom dead center BDC. (Steps 7 and 9 to 11 in FIG. 6, refer to the valve lift in FIG. 2B), the effective compression ratio is improved and the combustion stability is increased. At this time, since the operation is performed at the combustion stability limit, the ignition timing can be retarded from the normal time by the increase in the combustion stability (see steps 12 to 14 in FIG. 6 and the third stage in FIG. 5). Each effect of HC reduction and exhaust temperature rise can be obtained.

始動から時間が経過したタイミングになっても吸気バルブ15を小リフトの特性で作動させると、ポンピングロスの増大により燃費が悪化してしまうのであるが、本実施形態(請求項5に記載の発明)によれば、図5において第1のタイミングt2より遅い第2のタイミングt3で吸気バルブ15を大リフトの特性で作動させると共に吸気バルブ15の閉時期を吸気下死点を過ぎた位置(例えば50〜60°ABDC)とするので(図6ステップ5、15〜20、図2Aのバルブリフト参照)、燃費の悪化を抑えることができる。   If the intake valve 15 is operated with a small lift characteristic even when the time has elapsed since the start, the fuel consumption deteriorates due to an increase in pumping loss. This embodiment (the invention according to claim 5) ), The intake valve 15 is operated with a large lift characteristic at a second timing t3 later than the first timing t2 in FIG. 5, and the closing timing of the intake valve 15 is set to a position past the intake bottom dead center (for example, 50 to 60 ° ABDC) (see steps 5 and 15 to 20 in FIG. 6 and the valve lift in FIG. 2A), the deterioration of fuel consumption can be suppressed.

本実施形態(請求項6に記載の発明)によれば、上記第2のタイミングt3は触媒9が活性化するタイミングであるので、さらに排気性能を確保できる。   According to this embodiment (the invention described in claim 6), since the second timing t3 is a timing at which the catalyst 9 is activated, further exhaust performance can be ensured.

本実施形態によれば、触媒入口温度Te1が所定値Te1H以上となったとき触媒9が活性化したと判断するので(請求項7に記載の発明)、始動からの運転条件の差だけではなく、触媒9の昇温特性(熱容量等)の差も切換タイミングに反映させることができ、燃費悪化の抑制、HC低減をより図ることができる。   According to the present embodiment, when the catalyst inlet temperature Te1 becomes equal to or higher than the predetermined value Te1H, it is determined that the catalyst 9 has been activated (the invention according to claim 7), so not only the difference in operating conditions from the start. Further, the difference in the temperature rise characteristics (heat capacity, etc.) of the catalyst 9 can be reflected in the switching timing, so that the deterioration of fuel consumption can be further suppressed and the HC can be reduced.

実施形態では、L−ジェトロニック方式のガソリン噴射エンジンで説明したが、D−ジェトロニック方式のガソリン噴射エンジンにも適用できる。   In the embodiment, the L-Jetronic gasoline injection engine has been described, but the present invention can also be applied to a D-Jetronic gasoline injection engine.

請求項1に記載の制御手段の機能は、図1のエンジンコントローラ31により果たされている。   The function of the control means described in claim 1 is performed by the engine controller 31 of FIG.

本発明の第1実施形態の概略構成図。1 is a schematic configuration diagram of a first embodiment of the present invention. 吸排気バルブのバルブリフトの特性図。The characteristic figure of the valve lift of an intake / exhaust valve. 始動直後に吸気バルブを小リフトとしかつ吸排気バルブのオーバーラップ量を拡大した場合のHC量、燃焼室内壁流量の変化を示す波形図。FIG. 6 is a waveform diagram showing changes in the HC amount and the combustion chamber wall flow rate when the intake valve is made a small lift and the overlap amount of the intake and exhaust valves is enlarged immediately after the start. 吸気バルブ閉時期IVCを吸気下死点近傍に設定することによる排気低減効果の説明図。Explanatory drawing of the exhaust_gas | exhaustion reduction effect by setting the intake valve closing timing IVC to the intake bottom dead center vicinity. 始動からのタイミングチャート。Timing chart from start. 吸気バルブのリフト量、吸気バルブ閉時期、点火時期の演算を説明するためのフローチャート。The flowchart for demonstrating the calculation of the lift amount of an intake valve, intake valve closing timing, and ignition timing. 所定値DTWの特性図。The characteristic diagram of predetermined value DTW.

符号の説明Explanation of symbols

14 点火プラグ(点火装置)
15 吸気バルブ
26 VEL機構(可変動弁機構)
27 VTC機構(可変動弁機構)
31 エンジンコントローラ(制御手段)
36 スタータスイッチ
14 Spark plug (ignition device)
15 Intake valve 26 VEL mechanism (variable valve mechanism)
27 VTC mechanism (Variable valve mechanism)
31 Engine controller (control means)
36 Starter switch

Claims (8)

吸気ポートを開閉する吸気バルブと、
この吸気バルブのバルブリフト量とバルブタイミングとを可変的に制御可能な可変動弁機構と、
燃焼室内に火花点火を行う点火装置と、
前記吸気ポートより前記吸気バルブに向けて燃料噴射を行う燃料噴射装置と
を備え、
エンジンの始動時に、前記吸気バルブが所定の小リフトの特性で作動すると共に前記吸気バルブと排気バルブのオーバーラップ量がエンジンの暖機完了後より拡大するように前記可変動弁機構を、燃焼安定限界で点火が行われるように前記点火装置の点火時期エンジンの暖機完了後の点火時期よりも進角側にそれぞれ制御する制御手段
を備えることを特徴とするエンジンの制御装置。
An intake valve that opens and closes the intake port;
A variable valve mechanism capable of variably controlling the valve lift amount and valve timing of the intake valve;
An ignition device that performs spark ignition in the combustion chamber;
A fuel injection device that injects fuel from the intake port toward the intake valve;
Combustion stabilization of the variable valve mechanism so that when the engine is started, the intake valve operates with a predetermined small lift characteristic, and the amount of overlap between the intake valve and the exhaust valve increases after the engine is warmed up. A control device for an engine, comprising: control means for controlling the ignition timing of the ignition device to be more advanced than the ignition timing after completion of warm-up of the engine so that ignition is performed at a limit.
始動後の第1のタイミングで前記吸気バルブが前記小リフトの特性で作動するのを継続すると共に前記吸気バルブの閉時期が吸気下死点近傍にくるように前記可変動弁機構を、燃焼安定限界で点火が行われるように前記点火装置をそれぞれ制御することを特徴とする請求項1に記載のエンジンの制御装置。   The variable valve mechanism is maintained in a combustion stable state so that the intake valve continues to operate with the characteristics of the small lift at the first timing after starting and the closing timing of the intake valve is close to the intake bottom dead center. The engine control device according to claim 1, wherein each of the ignition devices is controlled so that ignition is performed at a limit. 前記第1のタイミングは前記吸気バルブが冷却水温より所定値高い平衡温度に達するタイミングであることを特徴とする請求項2に記載のエンジンの制御装置。   The engine control device according to claim 2, wherein the first timing is a timing at which the intake valve reaches an equilibrium temperature higher than a coolant temperature by a predetermined value. 前記吸気バルブが前記平衡温度に達するタイミングは、冷却水温から始動時水温を差し引いた値が所定値以上となったときであることを特徴とする請求項3に記載のエンジンの制御装置。   The engine control device according to claim 3, wherein the timing at which the intake valve reaches the equilibrium temperature is when a value obtained by subtracting a starting water temperature from a cooling water temperature is equal to or greater than a predetermined value. 前記第1のタイミングより遅い第2のタイミングで前記吸気バルブが所定の大リフトの特性で作動すると共に前記吸気バルブの閉時期が吸気下死点を過ぎた位置にくるように前記可変動弁機構を、燃焼安定限界で点火が行われるように前記点火装置をそれぞれ制御することを特徴とする請求項2に記載のエンジンの制御装置。   The variable valve mechanism so that the intake valve operates at a predetermined large lift characteristic at a second timing later than the first timing, and the closing timing of the intake valve is at a position past the intake bottom dead center. The engine control device according to claim 2, wherein each of the ignition devices is controlled so that ignition is performed at a combustion stability limit. 排気中の有害成分を浄化する触媒を備え、前記第2のタイミングは前記触媒が活性化するタイミングであることを特徴とする請求項5に記載のエンジンの制御装置。   6. The engine control device according to claim 5, further comprising a catalyst for purifying harmful components in the exhaust gas, wherein the second timing is a timing at which the catalyst is activated. 前記触媒が活性化するタイミングは、前記触媒の温度が所定値以上となったときであることを特徴とする請求項6に記載のエンジンの制御装置。   The engine control device according to claim 6, wherein the catalyst is activated when the temperature of the catalyst becomes equal to or higher than a predetermined value. 前記第2のタイミング以降が前記エンジンの暖機完了後であることを特徴とする請求項6に記載のエンジンの制御装置。   The engine control apparatus according to claim 6, wherein the second timing and after is after completion of warming up of the engine.
JP2003364104A 2003-10-24 2003-10-24 Engine control device Expired - Fee Related JP3979376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003364104A JP3979376B2 (en) 2003-10-24 2003-10-24 Engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003364104A JP3979376B2 (en) 2003-10-24 2003-10-24 Engine control device

Publications (2)

Publication Number Publication Date
JP2005127230A JP2005127230A (en) 2005-05-19
JP3979376B2 true JP3979376B2 (en) 2007-09-19

Family

ID=34643183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003364104A Expired - Fee Related JP3979376B2 (en) 2003-10-24 2003-10-24 Engine control device

Country Status (1)

Country Link
JP (1) JP3979376B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329144A (en) * 2005-05-30 2006-12-07 Nissan Motor Co Ltd Variable valve gear of internal combustion engine
JP4701871B2 (en) 2005-06-28 2011-06-15 日産自動車株式会社 Engine control device
JP4978075B2 (en) * 2006-06-19 2012-07-18 日産自動車株式会社 Engine ignition timing control method and engine ignition timing control device
JP4849475B2 (en) * 2007-09-27 2012-01-11 日立オートモティブシステムズ株式会社 Ignition timing control device for spark ignition internal combustion engine
JP4858398B2 (en) 2007-10-15 2012-01-18 株式会社豊田自動織機 Premixed compression ignition engine
JP4844758B2 (en) * 2007-12-25 2011-12-28 三菱自動車工業株式会社 Exhaust gas purification device for internal combustion engine
JP4716053B2 (en) 2008-09-12 2011-07-06 三菱自動車工業株式会社 Internal combustion engine
JP5040980B2 (en) * 2009-09-30 2012-10-03 株式会社デンソー Engine waste heat control device
US8612117B2 (en) 2009-06-12 2013-12-17 Denso Corporation Apparatus for controlling the amount of waste heat of an engine

Also Published As

Publication number Publication date
JP2005127230A (en) 2005-05-19

Similar Documents

Publication Publication Date Title
JP4404028B2 (en) Control device for internal combustion engine
JP4367398B2 (en) Control device for internal combustion engine
JP5310733B2 (en) Control device for internal combustion engine
JP2006348863A (en) Starter of internal combustion engine
JP4172319B2 (en) Variable valve timing controller for engine
JP2002161770A (en) Variable valve timing control device for internal combustion engine
JP4677844B2 (en) Engine valve timing control device
JP3979376B2 (en) Engine control device
JP4124101B2 (en) Engine control device
JP4182888B2 (en) Engine control device
JP2004028031A (en) Control device and method of direct injection spark ignition-type engine
JP4315068B2 (en) Control device for internal combustion engine provided with movable valve mechanism
JP2007278073A (en) Engine control method and engine controller
JP2006125276A (en) Engine start device
JP2004162617A (en) Control device for internal combustion engine
JP2007092719A (en) Starter of multicylinder engine
RU2656873C1 (en) Engine controller and method of engine control
JP4151563B2 (en) Engine control device
JP6156226B2 (en) Control device for compression ignition engine
JP2004176607A (en) Engine
JP3928613B2 (en) Engine control device
JP2002188550A (en) Control device for direct-injection spark-ignition engine
JP2006170109A (en) Ignition control device for cylinder direct injection type internal combustion engine
JP2004346853A (en) Controller for internal combustion engine
JP2008025537A (en) Engine control method and engine controller

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070618

R150 Certificate of patent or registration of utility model

Ref document number: 3979376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees