JP2004346853A - Controller for internal combustion engine - Google Patents

Controller for internal combustion engine Download PDF

Info

Publication number
JP2004346853A
JP2004346853A JP2003146026A JP2003146026A JP2004346853A JP 2004346853 A JP2004346853 A JP 2004346853A JP 2003146026 A JP2003146026 A JP 2003146026A JP 2003146026 A JP2003146026 A JP 2003146026A JP 2004346853 A JP2004346853 A JP 2004346853A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
operation mode
ignition operation
stroke cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003146026A
Other languages
Japanese (ja)
Inventor
Tomio Kimura
富雄 木村
Shohei Okazaki
尚平 岡崎
Katsura Okubo
桂 大久保
Akira Kato
彰 加藤
Toru Kitamura
徹 北村
Toshihiro Yamaki
利宏 八巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003146026A priority Critical patent/JP2004346853A/en
Publication of JP2004346853A publication Critical patent/JP2004346853A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3058Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used the engine working with a variable number of cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3076Controlling fuel injection according to or using specific or several modes of combustion with special conditions for selecting a mode of combustion, e.g. for starting, for diagnosing

Abstract

<P>PROBLEM TO BE SOLVED: To provide a controller for an internal combustion engine capable of effectively purifying the exhaust by shortening a warm-up time, and stably operating the internal combustion engine at all times. <P>SOLUTION: This internal combustion engine capable of being operated in a spark ignition operation mode, a two-stroke cycle compression ignition operation mode, or a four-stroke cycle compression ignition operation mode, comprises operating state detecting means 21, 22 for detecting an operating state of the internal combustion engine, and a control means 30 for controlling the operation of the internal combustion engine by switching three operation modes in accordance with the operating state of the internal combustion engine. The control means 30 controls the internal combustion engine in the spark ignition operation mode in starting, in the two-stroke cycle compression ignition operation mode until a water temperature of the engine is raised to a specific temperature after the starting, and in the four-stroke cycle compression ignition operation mode, when the water temperature of the engine is over the specific temperature. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、火花点火運転と圧縮着火運転のいずれの運転モードでも運転可能な内燃機関の制御装置に関する。
【0002】
【従来の技術】
内燃機関に供給される混合気を圧縮着火(圧縮自己着火)により燃焼させる圧縮着火運転によれば、圧縮比が高いため燃費が良く、空燃比がリーンな状態でも比較的安定した燃焼を実現し、しかも燃焼温度が比較的低いので、NOxの発生量を低減することができる。
【0003】
しかし内燃機関の始動時などで安定した圧縮着火運転を行うことは困難なので、機関の運転状態に応じて圧縮着火運転と火花点火運転とを切り換えるように内燃機関を制御する例がある(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開2000−87749号公報
【0005】
特許文献1には、4ストロークサイクル型の自動車用ガソリン内燃機関において、機関水温が設定値以上であるか否かを判断し、設定値未満であれば火花点火運転とし、設定値以上となると圧縮着火運転に切り換える制御技術が開示されている。
【0006】
始動直後などの機関水温が低い状態では、燃焼室内のガス温度が圧縮行程の後期になっても十分高くならず自己着火を起こすに至らず失火するおそれがあるが、かかる状態のときは火花点火運転とし、機関水温が設定値を越える安定した運転状態となったときに圧縮着火運転とすることで、常に内燃機関を安定して運転させようとするものである。
【0007】
【発明が解決しようとする課題】
しかし4ストロークサイクルで運転を行う場合、熱の発生は機関の2回転に対して1回の燃焼によるもので冷却時間の割合が、2ストロークサイクルの運転に比べて大きい。
【0008】
したがって、始動直後の暖機運転中に4ストロークサイクル運転を続けても急速な暖機は望めず、排気触媒の活性化までの昇温に時間を要して排気浄化に不利となる。
【0009】
本発明は、かかる点に鑑みなされたもので、その目的とする処は、暖機時間を短縮して排気浄化を効果的に行い、かつ内燃機関を常に安定して運転することができる内燃機関の制御装置を供する点にある。
【課題を解決するための手段及び作用効果】
上記目的を達成するために、本発明は、火花点火運転モードと2ストロークサイクル圧縮着火運転モードと4ストロークサイクル圧縮着火運転モードのいずれの運転モードでも運転可能な内燃機関において、該内燃機関の運転状態を検出する運転状態検出手段と、前記運転状態検出手段が検出した該内燃機関の運転状態に応じて前記3つの運転モードを切り換えて該内燃機関を運転制御する制御手段とを備え、前記制御手段は、該内燃機関を、始動時に火花点火運転モードで制御し、始動後より機関水温の上昇が所定温度に至るまでは2ストロークサイクル圧縮着火運転モードで制御し、機関水温が前記所定温度を越えると4ストロークサイクル圧縮着火運転モードで制御する内燃機関の制御装置とした。
【0010】
始動時には火花点火運転モードで内燃機関を運転することで、失火を回避して安定した運転を行い、始動後は2ストロークサイクル圧縮着火運転モードで内燃機関を運転することで、暖機時間を短縮し排気浄化を効果的に行い、機関水温が所定温度を越えると4ストロークサイクル圧縮着火運転モードで内燃機関を運転することで、燃料量の多い高負荷状態で安定した圧縮着火を4ストロークサイクルで実現でき、燃費の向上とともに全ての運転状態で内燃機関を常に安定して運転することができる。
【0011】
【発明の実施の形態】
以下本発明に係る一実施の形態について図1ないし図5に基づき説明する。
本実施の形態に係る内燃機関1は、火花点火(SI:Spark Ignition)燃焼方式による運転(火花点火運転)と、圧縮着火(HCCI:Homogeneous Charge Compression Ignition)燃焼方式による運転(圧縮着火運転)の燃焼方式の異なる運転がともに可能である多気筒内燃機関(単気筒でもよい)である。
【0012】
図1は、該内燃機関1の概略構成図であり、シリンダ2内をピストン3が往復動し、シリンダ2内を閉塞するシリンダヘッドとピストン3との間に燃焼室4が構成されている。
【0013】
燃焼室4からポートを介して吸気通路5と排気通路6が延出しており、吸気ポートの燃焼室4に臨む開口には吸気弁7、排気ポートの燃焼室4に臨む開口には排気弁8が配設されており、燃焼室4への吸気を制御する吸気弁7と燃焼室4からの排気を制御する排気弁8はともに電磁バルブである。
【0014】
その他に燃焼室4には点火プラグ9が取り付けられるとともに、直接燃焼室4内に燃料を噴射する燃料噴射弁10が取り付けられている。
【0015】
点火プラグ9は、火花点火運転時に駆動され放電により燃焼室4内の混合気に点火する。
燃料噴射弁10は図示されない燃料供給ポンプに接続されて制御されたタイミングで制御された時間燃料を燃焼室4内に噴射する。
【0016】
吸気通路5には吸気流量を調節するスロットル弁11が介装されており、スロットル弁11はアクチュエータ(図示せず)により駆動され、運転状態に応じてスロットル弁開度が制御される。
【0017】
排気通路6には排気浄化装置12が介装され、排気浄化装置12にはNOx吸着触媒(LNC)が用いられている。
【0018】
概ね以上のような構造の内燃機関1の運転状態を検出する各種センサが各所に設けられている。
内燃機関1のクランク軸の回転数(機関回転数)Neを検出する回転数センサ21、内燃機関1の冷却水の温度(機関水温)Twを検出する水温センサ22が、内燃機関1本体に設けられている。
【0019】
吸気通路5には、スロットル弁11にスロットル弁開度Thを検出するスロットルセンサ23が設けられるとともに、スロットル弁11の下流側に吸気通路5内の吸気負圧Pbを検出する吸気圧センサ24および吸気通路5内の吸気温度Taを検出する吸気温センサ25が設けられている。
【0020】
排気通路6には、排気浄化装置12の上流側に排気の広範囲の空燃比に亘ってそれに比例したレベルの出力を得る空燃比センサ(LAF)26および排気温度Teを検出する排気温センサ27が設けられている。
【0021】
以上の回転数センサ21,水温センサ22,スロットルセンサ23,吸気圧センサ24,吸気温センサ25等の各種センサからの検出信号は、電子制御ユニットECU30に入力され、コンピュータにより処理されて、吸気弁7,排気弁8,点火プラグ9,燃料噴射弁10,スロットル弁11等の駆動制御に供される。
【0022】
本内燃機関1は、以上のような構成において火花点火運転と圧縮着火運転が可能であるとともに、4ストロークサイクル運転と2ストロークサイクル運転が可能であり、これらの組み合わせにより4ストロークサイクル火花点火運転モードと2ストロークサイクル圧縮着火運転モードと4ストロークサイクル圧縮着火運転モードの3つの運転モードをECU30により切り換え制御されるようになっている。
【0023】
ECU30による内燃機関1の運転モードの切り換え制御における制御系の概略ブロック図を図2に示す。
ECU30には、運転モード判定手段31と駆動制御手段32とを備える。
【0024】
運転モード判定手段31には前記回転数センサ21の検出した機関回転数Neと水温センサ22の検出した機関水温Twが入力され、機関回転数Neと機関水温Twに基づいて運転モードを判定する。
【0025】
駆動制御手段32は、運転モード判定手段31の判定結果に基づいて制御信号を内燃機関1の各機構に出力する。
すなわち吸気弁7と排気弁8の弁開閉を行う可動弁機構41、点火プラグ9の放電を行う点火機構42、燃料噴射弁10の弁開閉を行う燃料噴射機構43、スロットル弁11の駆動を行うスロットル弁駆動機構44が、制御信号により駆動制御される。
【0026】
運転モード判定手段31による運転モードの判定手順を図3に示すフローチャートに従って説明する。
まずステップ1で内燃機関1が始動後完爆したと判断できる所定回転数N1に機関回転数Neが達したか否かを判別する。
【0027】
機関回転数Neが所定回転数N1に至るまでのスタータクランキング状態では、ステップ3に飛んで4ストロークサイクル火花点火運転モードと判定する。
機関回転数Neが所定回転数N1を越え内燃機関1が完爆してアイドリング状態となると、ステップ2に進み、機関水温Twが所定水温T1を越えたか否かを判別する。
【0028】
内燃機関1が完爆後、暖機により機関水温Twが昇温して所定水温T1になるまでは、ステップ4に飛んで、2ストロークサイクル圧縮着火運転モードと判定する。
【0029】
そして機関水温Twが所定水温T1を越えると、ステップ2からステップ5に飛んで、4ストロークサイクル圧縮着火運転モードと判定する。
以上のように内燃機関1の運転状態に応じて運転モードが切り換え制御される。
【0030】
圧縮自己着火を起こさせるためには、燃焼室4内のガス温度を所定の温度以上に高める必要があり、一般的に吸気加熱や内部EGR(排気再循環)等が利用され、本実施の形態では内部EGRにより圧縮着火運転を行う。
【0031】
内燃機関1の始動時における燃焼室4内のガス温度が所定の温度より低い低負荷運転時には、ピストン3の上死点付近でも着火温度に達せず失火してしまうので、燃焼室4内のガス温度が所定の温度を越えて内燃機関1が完爆するまでは4ストロークサイクル火花点火運転モードとして点火機構42が駆動制御され点火プラグ9の放電により確実に点火するようにしている。
【0032】
なお、ここで4ストロークサイクル火花点火運転としているが、2ストロークサイクル火花点火運転としてもよい。
完爆した後は、内燃機関1は燃焼室4内のガス温度は圧縮着火が可能な状態となっており、2ストロークサイクル圧縮着火運転モードに切り換えられて運転される。
【0033】
2ストロークサイクル圧縮着火運転モードでは、可動弁機構41,燃料噴射機構43が制御されて図4に示すタイミングで吸気弁7,排気弁8が弁開閉し、燃料噴射弁10が燃料を噴射させる。
【0034】
すなわち図4を参照して2ストロークサイクル圧縮着火運転モードでは、通常膨張・排気行程半ばくらいから排気弁8を開き排気を開始し、その直後にはシリンダ圧力が下がるので吸気弁7を開く。
燃焼ガスが排気ポートへと流れ、かつピストン3が下降(膨張)しているので、吸気ポートから新気が流れ込んでくる。
【0035】
吸気・圧縮行程になってもその勢いが続き、新気が排気を押し出す(新気も一部排出される)。
吸気弁7および排気弁8を早く閉じることにより、ガス交換を途中で止めることになり、EGR量を増すことができ燃焼室内温度を上げ圧縮着火を容易にする。
【0036】
吸気弁7および排気弁8が閉じた辺りで、燃料噴射弁10が燃料を噴射する。
燃焼室4内は、燃料が噴射されEGRによりガス温度が上昇しているところに断熱圧縮により自己着火燃焼が起こる。
【0037】
2ストロークサイクルで運転を行う場合、熱の発生は機関の1回転に対して1回の燃焼によるもので冷却時間の割合が、4ストロークサイクルの運転に比べて小さく、その分熱の発生効率が高く、暖機に要する時間が短くてすむ。
【0038】
そしてこの急速な暖機により、排気浄化装置12のNOx吸着触媒(LNC)の活性化までの昇温が早まり、排気浄化を効果的に機能させることができる。
【0039】
また2ストロークサイクル運転は、1回転ごとの燃焼によりトルク変動が少なく失火の無い安定した運転が可能であり、仮に失火したとしても4ストロークサイクル運転に比べて次の燃焼までの時間が短いためリカバリーが可能で、失火による機関停止は少ない。
【0040】
このように2ストロークサイクル圧縮着火運転モードで暖機運転し、暖機が完了し安定走行運転領域に入る時期には、機関水温Twが上昇して所定水温T1を越え、4ストロークサイクル圧縮着火運転モードに切り換えられる。
【0041】
4ストロークサイクル圧縮着火運転モードでは、可動弁機構41,燃料噴射機構43が制御されて図5に示すタイミングで吸気弁7,排気弁8が弁開閉し、燃料噴射弁10が燃料を噴射させる。
【0042】
すなわちEGRを利用しない通常の火花点火運転では排気行程で排気弁を開いて燃焼したガスを全て排気するが、4ストロークサイクル圧縮着火運転モードでは、図5を参照して排気行程における排気弁8の閉タイミングまたは吸気行程における吸気弁7の開タイミングを変更して、燃焼したガスを全て排気せず一部燃焼室4内に閉じ込めることで、内部EGR量を制御して4ストロークサイクルの圧縮着火を行う。
【0043】
4ストロークサイクル圧縮着火運転モードにおいては、機関回転数に対する軸トルクの変化が滑らかで、広い運転域において安定的かつ良性能を得ることができる。
【0044】
始動後完爆までを火花点火運転モードとし、完爆後は2ストロークサイクルと4ストロークサイクルの圧縮着火運転モードとして、できるだけ広い運転領域で圧縮着火燃焼を実現することで、燃費の向上を図るとともに、窒素酸化物(NOx)の排出量の抑制を図ることができる。
【0045】
窒素酸化物の排出量の抑制は、前記暖機時間の短縮により排気浄化装置12を効果的に機能させることと合わせて、排気浄化を益々促進させることができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る内燃機関の概略構成図である。
【図2】同内燃機関の運転モードの切り換え制御における制御系の概略ブロック図である。
【図3】運転モードの判定手順を示すフローチャートである。
【図4】2ストロークサイクル圧縮着火運転モードにおけるバルブタイミングを示す説明図である。
【図5】4ストロークサイクル圧縮着火運転モードにおけるバルブタイミングを示す説明図である。
【符号の説明】
1…内燃機関、2…シリンダ、3…ピストン、4…燃焼室、5…吸気通路、6…排気通路、7…吸気弁、8…排気弁、9…点火プラグ、10…燃料噴射弁、11…スロットル弁、12…排気浄化装置、
21…回転数センサ、22…水温センサ、23…スロットルセンサ、24…吸気圧センサ、25…吸気温センサ、26…空燃比センサ(LAF)、27…排気温センサ、
30…ECU、31…運転モード判定手段、32…駆動制御手段、41…可動弁機構、42…点火機構、43…燃料噴射機構、44…スロットル弁駆動機構。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a control device for an internal combustion engine operable in any of a spark ignition operation and a compression ignition operation mode.
[0002]
[Prior art]
According to the compression ignition operation in which the air-fuel mixture supplied to the internal combustion engine is burned by compression ignition (compression self-ignition), fuel efficiency is high due to the high compression ratio, and relatively stable combustion is realized even when the air-fuel ratio is lean. Moreover, since the combustion temperature is relatively low, the amount of generated NOx can be reduced.
[0003]
However, since it is difficult to perform a stable compression ignition operation at the time of starting the internal combustion engine or the like, there is an example in which the internal combustion engine is controlled so as to switch between the compression ignition operation and the spark ignition operation according to the operation state of the engine (for example, Patent Document 1).
[0004]
[Patent Document 1]
JP 2000-87749 A
Patent Literature 1 discloses that in a four-stroke cycle type gasoline internal combustion engine for an automobile, it is determined whether the engine water temperature is equal to or higher than a set value. If the engine water temperature is lower than the set value, spark ignition operation is performed. A control technique for switching to ignition operation is disclosed.
[0006]
When the engine water temperature is low, such as immediately after start-up, the gas temperature in the combustion chamber may not be sufficiently high even in the later stages of the compression stroke and may not cause self-ignition, but may cause a misfire. The internal combustion engine is always operated stably by setting the operation to the compression ignition operation when the engine water temperature is in a stable operation state exceeding a set value.
[0007]
[Problems to be solved by the invention]
However, when the operation is performed in a four-stroke cycle, heat is generated by one combustion for two rotations of the engine, and the ratio of the cooling time is larger than that in the two-stroke cycle operation.
[0008]
Therefore, even if the four-stroke cycle operation is continued during the warm-up operation immediately after the start, rapid warm-up cannot be expected, and it takes time to raise the temperature until the exhaust catalyst is activated, which is disadvantageous for exhaust gas purification.
[0009]
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object thereof is to provide an internal combustion engine capable of effectively performing exhaust gas purification by shortening a warm-up time and constantly operating the internal combustion engine stably. In providing the control device.
Means for Solving the Problems and Functions and Effects
In order to achieve the above object, the present invention provides an internal combustion engine operable in any one of a spark ignition operation mode, a two-stroke cycle compression ignition operation mode, and a four-stroke cycle compression ignition operation mode. Operating state detecting means for detecting a state, and control means for controlling the operation of the internal combustion engine by switching between the three operating modes in accordance with the operating state of the internal combustion engine detected by the operating state detecting means; The means controls the internal combustion engine in a spark ignition operation mode at the time of start, and controls the engine water temperature in a two-stroke cycle compression ignition operation mode until the engine water temperature reaches a predetermined temperature after the start. When it exceeds, the control device of the internal combustion engine is controlled in the 4-stroke cycle compression ignition operation mode.
[0010]
At start-up, the internal combustion engine is operated in the spark ignition operation mode to avoid misfires and perform stable operation. After startup, the internal combustion engine is operated in the two-stroke cycle compression ignition operation mode to shorten the warm-up time. When the engine water temperature exceeds a predetermined temperature, the internal combustion engine is operated in a four-stroke cycle compression ignition operation mode, thereby achieving stable compression ignition in a high load state with a large amount of fuel in a four-stroke cycle. As a result, the internal combustion engine can always be stably operated in all operating states with improved fuel efficiency.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment according to the present invention will be described below with reference to FIGS.
The internal combustion engine 1 according to the present embodiment operates in a spark ignition (SI: Spark Ignition) combustion mode (spark ignition operation) and operates in a compression ignition (HCCI: Homogenous Charge Compression Ignition) combustion mode (compression ignition operation). This is a multi-cylinder internal combustion engine (single cylinder may be used) that can operate with different combustion systems.
[0012]
FIG. 1 is a schematic configuration diagram of the internal combustion engine 1, in which a piston 3 reciprocates in a cylinder 2, and a combustion chamber 4 is formed between the piston 3 and a cylinder head that closes the cylinder 2.
[0013]
An intake passage 5 and an exhaust passage 6 extend from the combustion chamber 4 through a port. An intake valve 7 is provided at an opening of the intake port facing the combustion chamber 4, and an exhaust valve 8 is provided at an opening of the exhaust port facing the combustion chamber 4. The intake valve 7 for controlling the intake to the combustion chamber 4 and the exhaust valve 8 for controlling the exhaust from the combustion chamber 4 are both electromagnetic valves.
[0014]
In addition, a spark plug 9 is attached to the combustion chamber 4 and a fuel injection valve 10 for directly injecting fuel into the combustion chamber 4 is attached.
[0015]
The spark plug 9 is driven during the spark ignition operation and ignites the mixture in the combustion chamber 4 by discharging.
The fuel injection valve 10 is connected to a fuel supply pump (not shown) and injects fuel into the combustion chamber 4 for a controlled time at a controlled timing.
[0016]
A throttle valve 11 for adjusting the intake flow rate is interposed in the intake passage 5, and the throttle valve 11 is driven by an actuator (not shown), and the throttle valve opening is controlled in accordance with the operation state.
[0017]
An exhaust gas purification device 12 is interposed in the exhaust passage 6, and the exhaust gas purification device 12 uses a NOx adsorption catalyst (LNC).
[0018]
Various sensors for detecting the operating state of the internal combustion engine 1 having the above-described structure are provided at various places.
The main body of the internal combustion engine 1 is provided with a rotation speed sensor 21 for detecting the rotation speed Ne of the crankshaft (engine speed) Ne of the internal combustion engine 1 and a water temperature sensor 22 for detecting the temperature of the cooling water (engine water temperature) Tw of the internal combustion engine 1. Have been.
[0019]
In the intake passage 5, a throttle sensor 23 for detecting the throttle valve opening Th of the throttle valve 11 is provided, and an intake pressure sensor 24 for detecting an intake negative pressure Pb in the intake passage 5 downstream of the throttle valve 11; An intake air temperature sensor 25 for detecting an intake air temperature Ta in the intake passage 5 is provided.
[0020]
In the exhaust passage 6, an air-fuel ratio sensor (LAF) 26 for obtaining an output of a level proportional to the air-fuel ratio over a wide range of exhaust gas and an exhaust gas temperature sensor 27 for detecting the exhaust gas temperature Te are provided upstream of the exhaust gas purification device 12. Is provided.
[0021]
Detection signals from various sensors such as the rotation speed sensor 21, the water temperature sensor 22, the throttle sensor 23, the intake pressure sensor 24, and the intake temperature sensor 25 are input to the electronic control unit ECU 30, processed by a computer, and processed by the computer. 7, the exhaust valve 8, the ignition plug 9, the fuel injection valve 10, the throttle valve 11, and the like.
[0022]
The internal combustion engine 1 is capable of performing the spark ignition operation and the compression ignition operation in the above-described configuration, and is also capable of performing the four-stroke cycle operation and the two-stroke cycle operation. The ECU 30 switches and controls three operation modes, namely, a two-stroke cycle compression ignition operation mode and a four-stroke cycle compression ignition operation mode.
[0023]
FIG. 2 is a schematic block diagram of a control system in the switching control of the operation mode of the internal combustion engine 1 by the ECU 30.
The ECU 30 includes an operation mode determination unit 31 and a drive control unit 32.
[0024]
The engine speed Ne detected by the engine speed sensor 21 and the engine water temperature Tw detected by the water temperature sensor 22 are input to the operation mode determining means 31, and the operation mode is determined based on the engine speed Ne and the engine water temperature Tw.
[0025]
The drive control unit 32 outputs a control signal to each mechanism of the internal combustion engine 1 based on the determination result of the operation mode determination unit 31.
That is, the movable valve mechanism 41 that opens and closes the intake valve 7 and the exhaust valve 8, the ignition mechanism 42 that discharges the ignition plug 9, the fuel injection mechanism 43 that opens and closes the fuel injection valve 10, and the drive of the throttle valve 11. The drive of the throttle valve drive mechanism 44 is controlled by the control signal.
[0026]
The procedure for determining the operation mode by the operation mode determination means 31 will be described with reference to the flowchart shown in FIG.
First, in step 1, it is determined whether or not the engine speed Ne has reached a predetermined speed N1 at which it can be determined that the internal combustion engine 1 has completely exploded after starting.
[0027]
In the starter cranking state until the engine speed Ne reaches the predetermined speed N1, the routine jumps to step 3 to determine the four-stroke cycle spark ignition operation mode.
When the engine speed Ne exceeds the predetermined speed N1 and the internal combustion engine 1 is completely exploded and enters an idling state, the routine proceeds to step 2, where it is determined whether or not the engine water temperature Tw has exceeded the predetermined water temperature T1.
[0028]
After the internal combustion engine 1 has completely exploded, the routine jumps to step 4 until the engine water temperature Tw is raised by warm-up to reach the predetermined water temperature T1, and the two-stroke cycle compression ignition operation mode is determined.
[0029]
When the engine water temperature Tw exceeds the predetermined water temperature T1, the process jumps from step 2 to step 5 to determine the four-stroke cycle compression ignition operation mode.
As described above, the operation mode is controlled to be switched according to the operation state of the internal combustion engine 1.
[0030]
In order to cause compression self-ignition, it is necessary to raise the gas temperature in the combustion chamber 4 to a predetermined temperature or higher. In general, intake air heating, internal EGR (exhaust gas recirculation), and the like are used. Then, the compression ignition operation is performed by the internal EGR.
[0031]
At the time of low load operation in which the gas temperature in the combustion chamber 4 is lower than a predetermined temperature when the internal combustion engine 1 is started, the ignition does not reach the ignition temperature even near the top dead center of the piston 3 and misfires. Until the temperature exceeds a predetermined temperature and the internal combustion engine 1 is completely detonated, the ignition mechanism 42 is driven and controlled in a four-stroke cycle spark ignition operation mode so that the ignition plug 9 discharges reliably.
[0032]
Here, the four-stroke cycle spark ignition operation is described, but the two-stroke cycle spark ignition operation may be performed.
After the complete explosion, the internal combustion engine 1 is in a state where the gas temperature in the combustion chamber 4 is in a state where compression ignition is possible, and the internal combustion engine 1 is operated by switching to a two-stroke cycle compression ignition operation mode.
[0033]
In the two-stroke cycle compression ignition operation mode, the movable valve mechanism 41 and the fuel injection mechanism 43 are controlled so that the intake valve 7 and the exhaust valve 8 open and close at the timing shown in FIG. 4, and the fuel injection valve 10 injects fuel.
[0034]
That is, referring to FIG. 4, in the two-stroke cycle compression ignition operation mode, the exhaust valve 8 is opened and the exhaust is started from about the middle of the normal expansion / exhaust stroke. Immediately thereafter, the intake valve 7 is opened because the cylinder pressure decreases.
Since the combustion gas flows to the exhaust port and the piston 3 is descending (expanding), fresh air flows from the intake port.
[0035]
Even during the intake and compression strokes, the momentum continues, and the fresh air pushes out the exhaust (some of the fresh air is also exhausted).
By closing the intake valve 7 and the exhaust valve 8 early, gas exchange is stopped halfway, the EGR amount can be increased, the temperature in the combustion chamber is increased, and compression ignition is facilitated.
[0036]
When the intake valve 7 and the exhaust valve 8 are closed, the fuel injection valve 10 injects fuel.
In the combustion chamber 4, self-ignition combustion occurs by adiabatic compression where fuel is injected and the gas temperature is rising by EGR.
[0037]
When the operation is performed in a two-stroke cycle, the heat is generated by one combustion per one revolution of the engine, and the ratio of the cooling time is smaller than that in the four-stroke cycle, and the heat generation efficiency is accordingly reduced. High and short warm-up time.
[0038]
This rapid warm-up speeds up the temperature rise of the exhaust purification device 12 until the activation of the NOx adsorption catalyst (LNC), and allows the exhaust purification to function effectively.
[0039]
In addition, the 2-stroke cycle operation enables stable operation with little torque fluctuation and no misfire due to combustion for each revolution, and even if a misfire occurs, the recovery time is shorter than the 4-stroke cycle operation because the time until the next combustion is short. It is possible to stop the engine due to a misfire.
[0040]
As described above, the warm-up operation is performed in the two-stroke cycle compression ignition operation mode, and when the warm-up is completed and the vehicle enters the stable driving operation region, the engine water temperature Tw rises and exceeds the predetermined water temperature T1, and the four-stroke cycle compression ignition operation is performed. Mode.
[0041]
In the 4-stroke cycle compression ignition operation mode, the movable valve mechanism 41 and the fuel injection mechanism 43 are controlled so that the intake valve 7 and the exhaust valve 8 open and close at the timing shown in FIG. 5, and the fuel injection valve 10 injects fuel.
[0042]
That is, in a normal spark ignition operation that does not use EGR, the exhaust valve is opened in the exhaust stroke to exhaust all the combusted gas. However, in the four-stroke cycle compression ignition operation mode, referring to FIG. By changing the closing timing or the opening timing of the intake valve 7 in the intake stroke to confine some of the burned gas in the combustion chamber 4 without exhausting it, the internal EGR amount is controlled to perform compression ignition in a four-stroke cycle. Do.
[0043]
In the four-stroke cycle compression ignition operation mode, the change in the shaft torque with respect to the engine speed is smooth, and stable and good performance can be obtained in a wide operation range.
[0044]
The spark ignition operation mode is used from the start to the complete explosion, and the compression ignition operation mode of the two-stroke cycle and the four-stroke cycle is used after the complete explosion to achieve compression ignition combustion in the widest possible operating range, thereby improving fuel efficiency. In addition, the amount of emission of nitrogen oxides (NOx) can be suppressed.
[0045]
Suppressing the amount of emission of nitrogen oxides can make the exhaust purification device 12 function more effectively by shortening the warm-up time, and can further promote exhaust purification.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an internal combustion engine according to one embodiment of the present invention.
FIG. 2 is a schematic block diagram of a control system in switching control of an operation mode of the internal combustion engine.
FIG. 3 is a flowchart showing a procedure for determining an operation mode.
FIG. 4 is an explanatory diagram showing valve timing in a two-stroke cycle compression ignition operation mode.
FIG. 5 is an explanatory diagram showing valve timing in a 4-stroke cycle compression ignition operation mode.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine, 2 ... Cylinder, 3 ... Piston, 4 ... Combustion chamber, 5 ... Intake passage, 6 ... Exhaust passage, 7 ... Intake valve, 8 ... Exhaust valve, 9 ... Spark plug, 10 ... Fuel injection valve, 11 ... Throttle valve, 12 ... Exhaust gas purification device,
21: rotational speed sensor, 22: water temperature sensor, 23: throttle sensor, 24: intake pressure sensor, 25: intake temperature sensor, 26: air-fuel ratio sensor (LAF), 27: exhaust temperature sensor,
Reference numerals 30: ECU, 31: operation mode determination means, 32: drive control means, 41: movable valve mechanism, 42: ignition mechanism, 43: fuel injection mechanism, 44: throttle valve drive mechanism.

Claims (1)

火花点火運転モードと2ストロークサイクル圧縮着火運転モードと4ストロークサイクル圧縮着火運転モードのいずれの運転モードでも運転可能な内燃機関において、
該内燃機関の運転状態を検出する運転状態検出手段と、
前記運転状態検出手段が検出した該内燃機関の運転状態に応じて前記3つの運転モードを切り換えて該内燃機関を運転制御する制御手段とを備え、
前記制御手段は、該内燃機関を、始動時に火花点火運転モードで制御し、始動後より機関水温の上昇が所定温度に至るまでは2ストロークサイクル圧縮着火運転モードで制御し、機関水温が前記所定温度を越えると4ストロークサイクル圧縮着火運転モードで制御することを特徴とする内燃機関の制御装置。
An internal combustion engine operable in any one of the spark ignition operation mode, the two-stroke cycle compression ignition operation mode, and the four-stroke cycle compression ignition operation mode,
Operating state detecting means for detecting an operating state of the internal combustion engine;
Control means for controlling the operation of the internal combustion engine by switching between the three operation modes according to the operation state of the internal combustion engine detected by the operation state detection means,
The control means controls the internal combustion engine in a spark ignition operation mode at the time of startup, and controls the internal combustion engine in a two-stroke cycle compression ignition operation mode until the engine water temperature rises to a predetermined temperature after the start. A control device for an internal combustion engine, wherein control is performed in a four-stroke cycle compression ignition operation mode when a temperature is exceeded.
JP2003146026A 2003-05-23 2003-05-23 Controller for internal combustion engine Pending JP2004346853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003146026A JP2004346853A (en) 2003-05-23 2003-05-23 Controller for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003146026A JP2004346853A (en) 2003-05-23 2003-05-23 Controller for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2004346853A true JP2004346853A (en) 2004-12-09

Family

ID=33533004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003146026A Pending JP2004346853A (en) 2003-05-23 2003-05-23 Controller for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2004346853A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011085111A (en) * 2009-10-19 2011-04-28 Osaka Gas Co Ltd Engine and engine generator
US11946427B2 (en) 2022-04-28 2024-04-02 Volvo Truck Corporation Method for controlling the operation of an engine system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011085111A (en) * 2009-10-19 2011-04-28 Osaka Gas Co Ltd Engine and engine generator
US11946427B2 (en) 2022-04-28 2024-04-02 Volvo Truck Corporation Method for controlling the operation of an engine system

Similar Documents

Publication Publication Date Title
JPH10169488A (en) Exhaust temperature raising device
KR20080017037A (en) Starting system and method of internal combustion engine
WO2006134470A1 (en) Starting system and method of internal combustion engine
JP2007016685A (en) Internal combustion engine control device
US7063068B2 (en) Variable valve timing controller for an engine
JP2001254645A (en) Fuel injection device of diesel engine
JP2004124754A (en) Engine starter
JP3931820B2 (en) Internal combustion engine and control method for internal combustion engine
JP4085902B2 (en) Start control device for in-cylinder internal combustion engine
JP3257430B2 (en) Exhaust heating device
JP4180995B2 (en) Control device for compression ignition internal combustion engine
JP3979376B2 (en) Engine control device
JP4098684B2 (en) Control device for compression ignition internal combustion engine
JP3743499B2 (en) Exhaust temperature raising device
JP2004346854A (en) Controller of compression ignition operation of internal combustion engine
JP2004346853A (en) Controller for internal combustion engine
JP3763177B2 (en) Diesel engine control device
JPH11270387A (en) Starting control device of internal combustion engine
JP4102268B2 (en) Compression ignition internal combustion engine
US11976604B2 (en) Method for heating an exhaust gas aftertreatment component, and internal combustion engine
JP5756399B2 (en) Control device for compression ignition internal combustion engine
JP3269350B2 (en) In-cylinder spark ignition internal combustion engine
JP4066476B2 (en) Control device for internal combustion engine
JP4464901B2 (en) Control device for compression ignition internal combustion engine
JP2002188550A (en) Control device for direct-injection spark-ignition engine